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Abstract
Water scarcity is the most obstacle faced by irrigation water requirements, likewise, lim-
ited available meteorological data to calculate reference evapotranspiration. Consequently, 
the focal aims of the investigation are to assess the potential of machine learning mod-
els in forecasting irrigation water requirements (IWR) of snap beans by evolving multi-
scenarios of inputs parameters to figure out the impact of meteorological, crop, and soil 
parameters on IWR. Six models were applied, support vector regressor (SVR), random for-
est (RF), deep neural networks (DNN), convolutional neural networks (CNN), long short-
term memory (LSTM), and Hybrid CNN-LSTM. Ten variables including maximum and 
minimum temperature, Relative humidity, wind speed, precipitation, root depth, basal crop 
coefficient, soil evaporation, a fraction of surface wetted and, exposed and soil wetted frac-
tion were used as the input data for models with their combination, 8 input scenarios were 
designed. Overall models, the best scenario was scenario 4 (relative humidity, wind speed, 
basal crop coefficient, soil evaporation), however, the best scenario for DNN and RF model 
was scenario 7 (root depth, basal crop coefficient, soil evaporation, fraction of surface wet-
ted, exposed and soil wetted fraction). While the weakest one was the group of climatic 
factors in scenario 6 (maximum temperature, minimum temperature, relative humidity, 
wind speed, and precipitation). Among the models, the hybrid LTSM & CNN was the 
most accurate and the SVR model had the lowest estimation accuracy. The outcomes of 
this research work could set up a modeling strategy that would set in motion the improve-
ment of efforts to identify the shortages in IWR forecasting, which sequentially may sup-
port alleviation strategies such as policies for sustainable water use and water resources 
management. The current approach was promising and has research value for other similar 
regions.
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1 Introduction

The widespread climatic changes in the twenty-first century and the negative impacts that 
follow on the available water resources have become one of the most important issues that 
cast their shadows on the focus of contemporary environmental events and issues (Smith 
et al. 2012; UNEP 1999). The irrigated agriculture sector represents the largest consumer 
of water in Egypt, representing 85% of the total water share available to Egypt, which rep-
resents 55.5 billion cubic meters. In addition, the biggest problem is that most of the irri-
gated lands apply surface irrigation systems where the efficiency of application and dis-
tribution of water do not exceed 50%, which represents the biggest challenge that must be 
faced to reduce water losses (Monem 2021). Irrigated agriculture covers about 25% of the 
cultivated area in the world, yet it contributes 50% of the global food basket. Despite the 
increase in production with irrigated agriculture, it consumes 67% of the water in agricul-
tural production and 87% of the water is consumed in the irrigation sector (Smith et  al. 
2012; Shiklomanov 1997). The availability of food is the main element for the survival of 
the human race, although it faces many challenges, the main cause of which is humans, 
perhaps the most prominent of which are the rapid population growth and climatic changes 
resulting from global warming that affect the hydrological cycle (Bellido-Jiménez et  al. 
2021). Therefore, irrigation scheduling, which is determining the amount of irrigation 
water added and the time of its addition during the growing season of the crop, is one of 
the things that must be taken into account under conditions of water scarcity (Kalboussi 
et al. 2019).

There are many methods used for irrigation scheduling, including visual and thermal 
monitoring, soil moisture content measuring devices, rainfall estimation devices, and refer-
ence evapotranspiration estimation, from which it is possible to estimate the crop evapo-
transpiration by knowing the crop coefficient, through available climatic data on local basis 
or through commercial scheduling programs available through the international informa-
tion network (Zhang et al. 2013). The actual crop evapotranspiration (ETa) is considered 
one of the main criteria for estimating the amount of water consumed by the crop, and 
thus greatly affects the hydrological, environmental and agricultural management, and then 
the ETa is one of the basic elements when designing and managing irrigation networks in 
the agricultural project. ETa is estimated through field measurements using lysimeters or 
through empirical equations by estimating the reference evapotranspiration (ETo) and the 
crop coefficient (Djaman et  al. 2018). The water balance method for irrigation schedul-
ing includes estimating of the crop water consumption during the growing season, which 
includes the amount of water added, whether through irrigation, precipitation and capil-
lary rise, which subtracts the amount of water losses, whether by evaporation from the soil 
surface, deep percolation the rootzone area, and runoff (Andales et al. 2014; Karam et al. 
2019a, b).

The estimation of ETo is one of the most important indicators used in irrigation water 
management and hydrological studies, and despite the difficult requirements of the empiri-
cal equations of ETo, it gives accurate values in addition to its validity on various climatic 
conditions, which are the main indicators in the empirical equations (Ferreira and da Cunha 
2020a, b; Pereira et al. 2015a, b). In light of the limited climatic parameters available for 
estimating ETo, fast and accurate methods that require least number of meteorological indi-
cators are considered among the most important requirements for irrigation water schedul-
ing (Fan et al. 2021). The Penman–Monteith equation is the standard equation for calculat-
ing ETo and is recommended by the United Nations Agriculture and Food Organization. 
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The Penman Monteith equation requires many daily meteorological parameters to calculate 
such as maximum and minimum temperature, wind speed, net solar radiation, and rela-
tive humidity. However, under the conditions of limited climatic parameters available in 
the study area, which requires the availability of methods that require less climatic data, 
while maintaining the accuracy of the calculated values of ETo in the same range to a large 
extent (Fan et al. 2019). The application of the Penman Monteith equation faces many dif-
ficulties, especially in developing countries, which face many challenges represented in the 
limited monitoring stations and their lack of regular distribution in each country, where the 
focus is in the areas of spread of irrigated agricultural areas in addition to the lack of ability 
to measure all the climatic criteria required to apply the Penman–Monteith equation with 
the required accuracy (Fan et al. 2021).

Recently used computer software’s models have shown high accuracy in estimating and 
forecasting ETo, e.g. Support Vector Machines (SVM) (Fan et al. 2019). In recent years, 
the use of machine learning programs for ETo estimation has spread with making rela-
tionships between the inputs and outputs used in ETo estimation, which are mainly mete-
orological data, which gives higher accuracy and power to apply machine learning pro-
grams in ETo modeling (Ferreira and Cunha 2020a, b; Kumar et al. 2011). The use of both 
Random Forest (RF) and Generalized Regression Neural Network (GRNN) to predict ETo 
proved highly accurate under local conditions and across-stations applications, but RF was 
better than GRNN (Feng et al. 2017). The common method of predicting ETo values using 
machine learning models is based on the use of former ETo values as input data (Ashrafza-
deh et al. 2020; Landeras et al. 2009; Trajkovic et al. 2003). In addition, the use of former 
daily meteorological data used to estimate ETo through the Penman–Monteith equation in 
addition to the lagged ETo values greatly enhances the performance of machine learning 
models and the accuracy of the forecasting ETo.

In addition to what machine learning programs provide an estimate of ETo values for 
the previous and current agricultural seasons, it gives the possibility to predict the ETo 
values for the upcoming seasons using the so-called deep learning models, which are 
restricted to knowing the expected changes in temperature and the amount of precipitation 
related to global warming, from which it can be make good planning and management of 
irrigation water for the coming years with an attempt to correct the existing strategies to 
avoid the negative effects of global warming (Ferreira and da Cunha 2020a, b). By increas-
ing the forecast period from 1 to 30 days, the accuracy of the resulting data decreases (Fer-
reira and da Cunha 2020a, b). Several deep learning models have been used to forecasting 
time series, including long short-term memory (LSTM) (Son and Kim 2020; Tian et  al. 
2018; Zhou et  al. 2019), and a one-dimensional convolutional neural network can (1D 
CNN) (Barzegar et  al. 2020). In addition to the above, Barzegar et  al. (2020) and Kim 
et al. (2019) create hybrid software from both LSTM and 1D CNN. Although deep learn-
ing programs have proven outstanding performance in many fields, their use in the field of 
climatic and hydrological studies is still limited.

Therefore, this paper aims to participate in saving water tasks by forecasting irriga-
tion water requirement (IWR) for green bean by an on-field scale experiment, where there 
wasn’t common literature about modeling of irrigation water requirement forecasting in 
versus of ETo estimation studies. Moreover, the irrigation water requirements forecasting 
could make irrigation scheduling improved, and so give better solutions for decision mak-
ers. This research is based on determining the most important criteria required to forecast 
IWR of green bean to achieve the best irrigation scheduling in light of the challenges of 
climatic changes and water scarcity using six models (SVR, RF, DNN, CNN, LSTM and 
CNN-LSTM) to forecast IWR. To the best of authors’ knowledge, the applied approaches 
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are applying for first time for forecasting of IWR, further, no research has been published 
in the literature that analyses irrigation water requirement using a combination of climate 
data, soil data and crop data based novel artificial intelligence approaches applied. Thus, 
to overcome the gap in literature dealing with the importance of IWR prediction, the main 
objectives of this study are to 1) evaluate the potential of machine and deep learning mod-
els in forecasting IWR of snap beans, 2) develop multi-scenarios of the inputs variables 
(combinations) to study the impact of meteorological, crop and soil parameters on IWR 
and, 3) figure out the best scenario with best model performance in IWR prediction.

2  Materials and Methods

The workflow of this study is showing in Fig. 1. The first phase of the workflow involves 
the climate, soil and crops data collection and the calculation of the IWR during two sea-
sons. Within the second phase, we applied five machine learning models (SVR, RF, DNN, 
LSTM and CNN) and hybrid between LSTM and CNN to predict the IWR based on 8 Sce-
narios (combinations of climate, soil and crop data).

2.1  Climate Conditions

The climatic variables (maximum air temperature, minimum temperature of air, the aver-
age air temperature, air relative humidity, and the number of hours of sunshine) were daily 
recorded during both growing seasons. The maximum air temperature ranged during the 
growing season (October to December) between 19–30 °C, while minimum air tempera-
tures ranged from 11 to 21  °C during growing season. The total rainfall was negligible 

Fig. 1  Flowchart of the research. Note: Tmax: maximum temperature, Tmin: minimum temperature, RH: 
Relative humidity, WS: wind speed, P: precipitation, Rd: root depth, Kcb: basal crop coefficient, Ke is the 
soil evaporation, Fw: fraction of surface wetted, Few: Exposed and soil wetted fraction, SVR: support vec-
tor regression, RF: random forest, DNN: deep neural network, CNN: convolutional neural networks, LSTM: 
long short-term memory, Sc: scenarios
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(< 20 mm) thus, the irrigation is main variable for the soil water availability. Table 1 sum-
marizes the monthly mean climatic data during the two seasons.

2.2  Machine Learning Implementations

2.2.1  Support Vector Machine (SVM)

SVM is a supervised learning algorithm, and it can also be used as a regression model, 
maintain all the main features that describe the algorithm (maximal margin). SVR uses 
a similar theory as SVM for classification method, with a few slightly changes. The main 
aim is minimizing error, individualizing the hyperplane that increases the tolerance limit, 
taking in consideration that the part of error is tolerated. The approximated function in the 
algorithm of SVM is cleared as follows:

where φ (x) is feature space of higher-dimensional converted from the input vector x, ω is 
the weights vector and b are a threshold, which were estimated by minimizing the follow-
ing regularized risk function:

where C is the penalty parameter of the error,  di is the desired value, n is observations 
number, and C

1

n

n∑
i=1

L(di, yi) is the empirical error, in which the function  Lε is determined 
as:

where 0.5 Ѡ2 is the so-called regularization term and ɛ is the tube size. The approximated 
function in Eq. (1) is finally expressed in an explicit form by introducing Lagrange multi-
pliers and exploiting the optimality constraints as:

(1)f (�) = ��(�) + b

(2)R(C) = C
1

n

n∑

i=1

L(Li, yi) +
1

2
�

2

(3)L
�
(d, y) = |d − y| − �|d − y| ≥ � or 0 otherwise

Table 1  Average monthly 
climatic variables for both 
growing seasons during the 
experiments

Year Climatic variables Month

October November December

2017 Tmin. (Rockström et al. 2009) 21 17 12
Tmax (Rockström et al. 2009) 30 26.3 20
Tave (Rockström et al. 2009) 26 21 16
Relative humidity (%) 59.9 62 53
Sunshine (h) 11.5 10.5 10.2

2018 Tmin (Rockström et al. 2009) 18 17 11
Tmax (Rockström et al. 2009) 28 26 19
Tave (Rockström et al. 2009) 23 21 15
Relative humidity (%) 57 59 56
Sunshine (h) 11.4 10.9 10.3
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where k (x,  xi) is the kernel function. (Fan et al. 2018) provide detailed information and 
computation procedures of the SVM algorithm.

2.2.2  Random Forest (RF)

The RF model was developed by Breiman (2001) and used Breiman’s “bagging” idea to 
ensemble a collection of decision trees with controlled variance. The RF model is com-
monly used for regression and predicting problems. More detailed information can be 
found at (Ferreira and da Cunha 2020a, b; Breiman 2001).

2.2.3  Deep Neural Network (DNN)

Deep neural networks (DNN) model has become a fundamental but recently still powerful 
deep learning model (Achieng 2019; Montes-Atenas et  al. 2016). The DNN is an artifi-
cial neural network (Springmann et al. 2018) with multiple layers between the inputs, hid-
den layers and output layers to learn more complex nonlinear relationships between inputs 
and output. The rectified linear unit (ReLu) was applied as activation function which is 
commonly employed (Ghimire et al. 2019; Achieng 2019).

The loss function in the DNN model is expressed as:

where n is the number of observation data, and T ′ is the estimated value by the DNN 
model, which can be defined below for a three-hidden-layer DNN model with the ReLu 
activation function:

where ω1, ω2, ω3 and ω4 are the weights in the network,  b1,  b2,  b3 and  b4 are the bias 
terms.

2.2.4  Convolutional Neural Network (CNN)

CNN consists of a sequence of convolutional layers, the output of which is connected only 
to local regions in the input. This is achieved by sliding a filter, or weight matrix, over 
the input and at each point computing the dot product between the two (i.e., a convolu-
tion between the input and filter). This structure allows the model to learn filters that are 
able to recognize specific patterns in the input data. Recent advances in CNNs for time 
series forecasting include (Mittelman 2015). Zuo et al. (2019) stated that the architecture 
of a typical CNN consists of a convolutional layer pooling layer, and fully connected layer. 
Finally, these abstract features are merged through the fully connected layer, and an activa-
tion function is used to solve the classification or regression problem (Fig. 2).

(4)f (x, �i, �
∗

i
) =

n∑

i=1
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∗

i
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i
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(7)T
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= Re Lu � 1(� 3[Re Lu(� 2(Re Lu)(�1 + b1) + b3)] + b4
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2.2.5  Long Short‑Term Memory (LSTM)

LSTM network contains different memory blocks which are linked through layers. Each 
layer includes a set of frequently connected memory pixels and three multiplicative units, 
namely the input, forget and output gates. LSTM has the ability to automatically store and 
remove temporal state information.

2.2.6  Hybrid LSTM and CNN

LSTM and CNN were trained with the same input, and they were hybrid to forecast results, 
the proposed hybrid CNN-LSTM model uses CNN layers for feature extraction from the input 
data with LSTM layers for sequence learning. The CNN and the LSTM are the most com-
monly used deep learning models. Our main aim in designing the hybrid model of CNN and 
LSTM layers is to exploit their characteristics for developing an efficient model for forecasting. 

Fig. 2  Architecture of the LSTM model and cell structure (a) and the formation of the CNN model (b) 
(Mokhtar et al. 2021a, b)
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The hyper parameters of convolutional and LSTM layers were the same ones described above 
for CNN and LSTM models, respectively. Training algorithm, learning rate, batch size and 
number of training epochs followed the same configurations described for LSTM and CNN.

2.3  Input Combination and Performance Evaluation of the Models

In this study, eight scenarios were consisting of various combinations of the climatic, soil and 
crop variables to investigate their effects on IWR and evaluate the contribution of each vari-
able (Table 2). This may help improve water resources analysis for data scarcity regions. The 
two seasons’ data were divided into two subsets with 75% data for training and the remaining 
25% data for testing.

The mean absolute error (MAE), the root mean square error (RMSE), and mean bias 
error (Springmann et al. 2018) were used to evaluate the applied models. Moreover, uncer-
tainty with 95% confidence level (U95) and T-Statistic test (Tstat) to evaluate the signifi-
cant differences between the predicted and calculated yield were used (Behar et al. 2015; 
Gueymard 2014)(Stone 1994).

(8)MAE =
1

n

n∑

i=1

|Oi − Pi|

(9)RMSE =

√
1

n

∑
(Pi − Oi)

2

(10)MBE =
1

n

n∑

i=1

(Oi − Pi)

(11)SI =
RMSE

O

Table 2  The summary of the 8 
scenarios applied in this study

Tmax maximum temperature, Tmin minimum temperature, RH Rela-
tive humidity, WS wind speed, P precipitation, Rd root depth, Kcb 
basal crop coefficient, Ke is the soil evaporation, Fw fraction of sur-
face wetted, Few Exposed and soil wetted fraction

Scenario Input

Tmax Tmin RH WS P Rd Kcb Ke Fw Few

S1 √ √ √ √
S2 √ √ √ √ √
S3 √ √ √ √
S4 √ √ √ √
S5 √ √
S6 √ √ √ √ √
S7 √ √ √ √ √
S8 √ √ √ √ √ √ √ √ √ √
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where O represent the average values of the observed IWR, Oi and Pi are the observed and 
predicted IWR, respectively, and i is the number of observations. SD is the standard devia-
tion of the difference between the measured and estimated value. PSR is ratio of the root 
mean square error to the standard deviation of measured data. Further, A is the accuracy, 
 R2 is the coefficient of determination and MAPE is the mean average percentage error.

3  Results

At first, the input variables were arranged according to Table 2. The combination of all 10 
inputs, reached 8 input scenarios which must be trained by the models.

(12)Tstat =

√
(1 − n)MBE2

RMSE2 −MBE2

(13)U95 = 1.96
√
(SD2 + RMSE2)

(14)NSE = 1 −
∑
(Pi−Oi)

∑
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∑
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2
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The input scenarios were randomized and divided into training and testing phases, then 
entered the models. The models were implemented, and their estimations were evaluated 
by the criteria MBE, RMSE and NSE (Table 3).

There are noticeable differences between the models, but also some similarities in rela-
tion to individual scenarios. The performance of the models is more favorable when the 
RMSE and MBE are closer to zero, and NSE are closer to 1. In all models, the NSE values 
are higher than 0.75, which shows that the models are well performed in IWR estimation. 
The best estimation of the models are mostly presented by the S4 scenario and after that S7. 
The weakest accuracy was obtained by SVR model with MBE = 0.007, RMSE = 0.077 mm 
and NSE = 0.850, under the S4 input scenario. The most accurate estimation was 
resulted by DNN model under S7 scenario, with MBE = -0.001, RMSE = 0.055 mm and 
NSE = 0.824. In order to examine the correlation between the actual and predicted IWR 
values, scatter plots were developed (Fig. 3).

The analysis showed that in the S1 scenario, the highest correlation was obtained for 
the LSTM and CNN models  (R2 = 0.9421,  R2 = 0.9119, respectively, the lowest for SVR. 
S1 scenario takes into account air temperature (Tmax and Tmin) and basal crop coeffi-
cient (Kcb) and soil evaporation (Ke). In the second scenario S2, where in addition to S1, 
relative humidity (RH), the strongest correlation between real and predicted IWR was also 
shown for the LSTM model  (R2 = 0.83225), and the weakest for SVR  (R2 = 0.6369). In the 
S3 scenario (4 parameters: temperature, wind speed and Kcb), the best correlation between 
actual and predicted IWR values   was determined for the LSTM & CNN hybrid model 
 (R2 = 0.7618). This is a relatively low correlation, which indicates that the IWR prediction 

Table 3  Evaluating the models’ estimation performance

* The bold rows show the best performance of each model

Model Index Input scenario

S1 S2 S3 S4 S5 S6 S7 S8

LTSM MBE (mm) −0.015 0.003 −0.004 0.002 0.01 −0.001 0.002 0.008
RMSE (mm) 0.075 0.084 0.104 0.064 0.087 0.121 0.071 0.072
NSE 0.929 0.813 0.649 0.889 0.101 0.578 0.846 0.859

LTSM + CNN MBE (mm) −0.009 0.016 −0.003 −0.003 −0.005 0.008 −0.005 0.009
RMSE (mm) 0.137 0.13 0.060 0.117 0.123 0.062 0.069
NSE 0.768 0.716 0.757 0.889 0.595 0.511 0.896 0.866

CNN MBE (mm) 0.000 0.015 0.007 0.007 0.001 0.015 0.006 −0.003
RMSE (mm) 0.058 0.066 0.13 0.066 0.109 0.128 0.109 0.047
NSE 0.907 0.788 0.497 0.895 0.838 0.775 0.842 0.938

DNN MBE (mm) 0.011 0.010 −0.009 −0.014 0.023 0.003 −0.001 0.006
RMSE (mm) 0.065 0.061 0.085 0.06 0.082 0.08 0.055 0.033
NSE 0.753 0.778 0.57 0.789 0.600 0.621 0.824 0.936

SVR MBE (mm) 0.012 0.029 0.03 0.007 −0.032 −0.061 −0.009 −0.024
RMSE 0.121 0.169 0.194 0.077 0.140 0.127 0.108 0.070
NSE 0.599 0.609 0.539 0.850 0.423 0.098 0.719 0.811

RF MBE (mm) 0.003 −0.034 −0.03 −0.007 −0.018 0.003 −0.020 −0.05
RMSE (mm) 0.072 0.085 0.089 0.117 0.107 0.150 0.066 0.108
NSE 0.854 0.757 0.609 0.539 0.527 0.537 0.818 0.293
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is also influenced by RH and Ke, and there is Kcb and wind speed, in addition to air tem-
perature, is not sufficient this parameter. In the S3 scenario, the results are not promising, a 
relatively low  R2 was obtained, which means that the predictors used support the prediction 
of IWR within 50–76%. The weakest correlation was shown by the CNN model  (R2 = 0.5) 

Fig. 3  Scatter plots to investigate the correlations between actual and predicted IWR values
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but the LSTM & CNN hybrid already gives a good correlation result between actual and 
predicted IWR values.

In the S4 scenario, where wind speed, RH, Kcb and Ke are considered, the  R2 value 
ranges from 0.6874 for the RF model to 0.922 for the CNN model. Apart from RF, the 
remaining models showed a high correlation of actual and predicted IWR, which empha-
sizes that the selection of predictors in the discussed scenario is optimal for the prediction. 
In the S5 scenario, considering only the two predictors RH and WS, the best correlation for 
the current and predicted IWR values   was obtained for the CNN model  (R2 = 0.8781), while 
weak correlation applies to the SVR  (R2 = 0.4522) and RF  (R2 = 0.5655) models. In the 
next scenario S6, where the group of climatic factors (Table 3) was considered as Input, the 
highest  R2 was obtained for the CNN model (0.837), while the weakest result in the SVR 
model  (R2 = 0.3948). In this variant, the remaining models showed a weak  (R2 = 0.5–0.6) 
correlation between actual and predicted IWR values, which indicates that climatic factors 
alone are not sufficient for predicting of irrigation requirement (IR), predicting irrigation 
demand (IR). In the S7 scenario, which takes into account only non-climatic parameters 
root depth,  kcb,  ke,  fw and  few (Table 3), in almost all models a similar dimension of the cor-
relation strength between actual and predicted IWR values   (R2 > 0.8) was obtained, except 
for the SVR model  (R2 = 0.7287). In the last scenario S8, in which all predictors were taken 
into account (Table 3), the highest  R2 > 0.9 were obtained for the CNN and DNN models, 
and the weakest correlations concerned the RF model  (R2 = 0.6128). In the next step, for 
the test period, combo charts (combined line-bar chart) were used to compare the scenarios 
based on the CC and  U95 criteria and in the second variant A and PSR (Fig. 4).

Comparison charts (combo-graphs) show that the values   of CC and  U95 show wide dif-
ferentiation. The analyzes show that the highest CC = 0.97 was determined for the S1 sce-
nario in the LTSM model. However, in the case of the CNN model, for most of the sce-
narios (except S3, which takes into account temperature, wind speed and crop factor), the 
CC coefficient is above CC = 90. The uncertainty of the scenarios adopted in modeling was 
additionally determined for the limits of the 95% confidence interval  (U95), which means 
the probability of obtaining the result lying close to the expected value within the range 
defined by this uncertainty. S5 and S6 scenarios do not work for LTSM and LTSM & CNN, 
SVR and RF models. However, they are slightly better for IWR prediction using the CNN 
model itself. The S1 scenario seems to be the most optimal, as it achieves satisfactory per-
formance for all models, except for the SVR model. The S4 scenario is also favorable, with 
the exception of the RF model. However, in the case of the remaining scenarios, a differen-
tiated assessment of the CC and  U95 criteria was obtained.

In the second case, the accuracy (A) and PSR. Metrics were used to assess the cor-
rectness of the scenarios used. These criteria are used to obtain more relevant information 
from the time series. Model accuracy (A) is defined as the percentage of correct predic-
tions for the test data, it denotes the degree of compliance of the actual value with the 
arithmetic mean of the results (predicted value) obtained for the marked scenario and pre-
diction model. For accuracy, results above 80% are considered good. In some scenarios and 
models, the obtained values   were higher than 1, which means that the prediction results in 
these variants may be burdened with a random error, which can be considered a random 
error, i.e., a type of measurement error that does not result from systematic and repeatable 
factors.

In the case of the CNN and DNN models in particular, overestimated A values   were 
obtained, which may be related to a random error. For the S1-S4, the best accuracy was 
demonstrated by the SVR model. For the S5 forecast, the LTSM model was the most accu-
rate, while for the other S6-S7 forecasts, the first 4 models presented the most accurate. 

1568 A. Mokhtar et al.



1 3

Another analyzed RSR indicator is strongly related to the RMSE criterion, as it is under-
stood as the ratio of the RMSE and the standard deviation of the measured data. Better 
performance is shown by models with a lower RSR value, which at the same time means a 

Fig. 4  Combo-graphs for comparison between the scenarios, based on the criteria CC,  U95, A and PSR
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lower RMSE. A very good model is classified when 0.00 ≤ RSR ≤ 0.50, while unsatisfac-
tory when RSR > 0.70. The analyzes show that the lowest RSR values   (≤ 0.50), covering 
very good ranges of classification, were achieved by all models for the S4 scenario (Input: 
RH, WS, Kcb, Ke in Table 2), and then by four models: LTSM, CNN, DNN and RF for the 
S1 scenario (Fig. 4).

The LTSM, LTSM & CNN and DNN models additionally achieved high perfor-
mance in the S7 scenario, and the CNN and DNN models also in the S2 scenario. 
The SVR model was the only one that achieved very good quality in only one S4 
scenario. The SVR model was the only one that achieved very good quality in only 
one S4 scenario. In most models, the lowest RSR was achieved in those scenarios 
where the lowest values   also reached the RMSE criterion (Table 3), which proves that 
the scenarios seem to be the most optimal for IWR prediction. Unsatisfactory results 
were achieved in those scenarios where the RSR criterion > 0.70. The most common 
scenarios are: S3 (Input: Tmax, Tmin, WS, Kcb), S5 (Input: RH, WS) and S6 (Input: 
Tmax, Tmin, RH, WS, P), thus mostly scenarios that include climatic parameters as 
input to the model (Fig. 4). In the next stage (Fig. 5), radar charts were developed to 
compare the models in each scenario based on the SI criterion.

The SI values   obtained for the models in various S1-S8 scenarios. According to 
the value of the SI criteria, the performance of models can be divided into several 
levels. In the discussed case, the SI < 0.1 was not obtained, which would classify the 
models as "excellent". Good (if 0.1 < SI < 0.2) and satisfactory (if 0.2 < SI < 0.3) per-
formance of most models was obtained for the S8 scenario, which takes into account 
all the inputs: climate, vegetation characteristics and soil data, and for the scenarios: 
S4 (takes into account 4 components RH, WS, Kcb and Ke) and the S7 scenario 
(Root depth, Kcb, Ke, Fw and Few). Satisfactory performance was achieved by the 
models in the S1 scenario, which takes into account temperature data, Kcb and Ke, 
and in the S5 scenario, which includes only two outputs, namely RH and WS. Poor 
performance was achieved by the SVR model for the S2 and S3 scenarios, and the 
RF and CNN models for the S6 scenario, which takes into account only climatic 
data. The models in the S6 scenario show the least satisfactory performance (Fig. 5).

The LTSM model, according to the Scatter index, achieved the best performance for S4 
and the weakest for S6, the LTSM & CNN hybrid model for S4 and S1 / S6 respectively, 
the CNN model for S1 / S4 and S6 respectively, the DNN model for S4 / S7 and S5, the 
SVR model for S4 and S3, while the RF model for the S7 and S6 scenarios. Figure 5 shows 
that, apart from the distinguished single cases related to specific scenarios, the prediction 
accuracy in most of the developed models regarding the SI value was good (0.1 < SI < 0.2) 
and satisfactory (0.2 < SI < 0.3). Figure 6 shows the MAE values   for 6 different models for 
2 options: under and over estimation.

The MAE is a measure of performance (model quality) used to evaluate the perfor-
mance of a model after finalization. Investigating the models under and over estimations, 
i.e., the study of underestimating and overestimating model estimates was carried out 
using mean absolute error (MAE). In the context of machine learning, absolute error refers 
to the magnitude of the difference between the prediction of an observation and the true 
value of that observation. The values   on two different data sets indicate that MAE values   
in under estimation in almost all models were higher than after Over estimation, except 
for the RF model, where higher MAE was achieved in over estimation. The RF approach 
is another widely used decision tree method (Cavallo et al. 2017; García Nieto et al. 2017, 
2018) which, using the classification and regression tree procedure, combined with ran-
dom node optimization and packing (Breiman 2001) builds a forest of uncorrelated trees. 
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Fig. 5  Radar charts to compare the models in each scenario separately, based on the SI criterion
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However, in the case of noise-rich datasets, RF models tend to over-fit the data. Moreover, 
over-selecting too many characteristic values   also has a greater impact on RF decision 
making, which affects goodness of fit (Naghibi et  al. 2017). The MAE values   decrease 
significantly after over estimation in the case of the following models: LTSM, LTSM & 
CNN, CNN and SVR) (they are within 0.05). This proves that over estimation can reduce 
the MAE values   for most tested models. The smallest MAE differences between the two 
variants (under and over estimation) were obtained in the DNN model, while the largest in 
the SVR model. The use of the LTSM & CNN hybrid model reduced the MAE between 
the two options Under and over estimation.

4  Discussion

The assessment of the amount of irrigation for individual types of crops requires the analy-
sis of a large number of parameters, which are often difficult to obtain through direct meas-
urement and observation are often considered burdensome and costly for farmers. Hardly 
any country has a good system for measuring and recording the total water consumption of 
crops, and more than 40% of crops are grown under irrigation conditions. Hence, in order 
to assess the future situation in terms of obtaining high yields and maintaining ration-
alization in water abstraction for crops, it is necessary to model irrigation water require-
ments (Pulido-Calvo and Gutierrez-Estrada 2009; Döll and Siebert 2002). Modeling of the 
irrigation water needs as a function of the irrigated area, climatic conditions and type of 
crops has a broader context, providing the basis for estimating the future impact of climate 
change, as well as demographic, socio-economic and technological changes.

Fig. 6  Investigating the models’ under and over estimations

1572 A. Mokhtar et al.



1 3

In this study, various machine learning models (SVM, RF, DNN, CNN, LSTM and 
hybrid LSTM & CNN) are investigated to predict the IWR indispensable for the green bean 
crops in Egypt. Importantly, it presents the adaptation of typical deep neural network mod-
els, which include the DNN model and the convolutional neural network, long short-term 
memory network, and finally a combination of some of their variants. An important ele-
ment in the study was the selection of the scenario and model that obtains the best perfor-
mance for the conditions declared in the scenario. Indication of the best predictive model 
for IWR, with the given input data for modeling, is of great importance for the selected 
research area that experiences extreme droughts and the related needs for intensive irriga-
tion of crops. Mokhtar et al. (2021a, b) emphasizes that the droughts in the research area 
in 2015–2019 covered even 80–90% of the area, and 30% in 2010–2019 were affected by 
extreme and very extreme droughts.

The reason for water shortages in the root zone is primarily water consumption by 
crops and evapotranspiration, while rainfall and irrigation ensure water supply (Andales 
et al. 2011; 2014; Karam et al. 2019a, b). However, it should be emphasized that the actual 
evapotranspiration of green bean crops, one of the dominant components in the water bal-
ance, significantly reduces the size of its harvest, which on the other hand, with increas-
ing evaporation, will require increased irrigation of the area. Due to the complexity of the 
evapotranspiration process, it is most often estimated on the basis of meteorological data 
(Pereira et al. 2015a, b; Ferreira and Cunha 2020a, b). However, in this case, monitoring of 
all parameters is often insufficient (El Bilali and Taleb 2020).

In the performed IWR prediction for green bean crops in Egypt, the accurate predic-
tion of IWR was largely dependent on the number of input variables and their impact on 
the modeling results under certain scenario variants. According to Krupakar et al. (2016), 
the sources of parameters influencing the irrigation process tend to differ depending on the 
area where agriculture is grown. In addition, there are new characteristics that we obtain 
thanks to new technologies for terrestrial and satellite measurements. The sources that 
make irrigation water demand prediction possible can be broadly categorized into meteoro-
logical factors, crop input and agricultural parameters. Meteorological factors are impor-
tant in determining the irrigation water needs of crops as rain is the main source of water in 
some areas (e.g., India). Wind speed also affects the amount of irrigation needed, although 
not as much as the temperature (O’Toole and Hatfield 1983; Schlenker and Roberts 2009; 
Krupakar et al. 2016).

In the presented work, the climate data was adapted to the S6 scenario (Table 2), which 
took into account the following parameters: maximum and minimum temperature, rela-
tive humidity, wind speed and precipitation. In the case of having information only from 
the group of climatic factors (treated as input data), taking into account the S6 scenario, 
the best prediction was shown by the CNN model  (R2 = 0.8275), and the weakest SVR 
 (R2 = 0.3).

One of the most important criteria for determining irrigation needs is soil type, and dif-
ferences are seen when the amount of water required for different crops on different soil 
types is compared. The models take into account factors including the type of crop itself 
(Tolk et  al. 1999) or other crop area factors that change over time and affect the water 
requirements of plants (Allen 2000). According to Krupakar et al. (2016) the RNN model 
is robust enough to map the differences in observations that occur due to various factors 
such as global warming, faulty hardware, etc. In the presented study, if only data on crops 
and soils were considered as predictors: root depth, basal crop coefficient, soil evaporation, 
fraction of surface wetted and exposed and soil wetted fraction, in the absence of climate 
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data, as presented in the S7 scenario, the best results were obtained for a hybrid model 
(LSTM & CNN) and separately for LSTM and CNN.

The box plot was developed to show the error distribution in the test section (Fig. 7). 
For IWR prediction, the best models turned out to be LSTM, CNN, LSTM & CNN and 
SVR for the S4, which takes into account the RH, WS, Kcb and Ke parameters, and the 
DNN and RF models for the S7 scenario, which includes root depth, Kcb, Ke, Fw and Few. 
In the group with the S4, the LSTM and LSTM & CNN models performed best because 
they have the lowest values   of Q1, Q3 and IQR (Fig. 7), and the SVR model the worst. 
However, for the S7 scenario, the DNN model turned out to be the best for IWR predic-
tion. In the RF 7 model, the lowest Q3 was obtained among the others, but the IQR was not 
among the lowest and amounted to 0.09. The LSTM 4 and LSTM & CNN 4 have the same 
IQR as the DNN 7 model and slightly lower compared to the RF 7 model (Fig. 7).

In all the models used, the error distribution is around zero, while the median line shows 
the normality of the error distribution, primarily for the LSTM & CNN hybrid model S4. 
Additionally, it should be noted that the models developed for the S4 and S7 scenarios 
obtained the best results in the assessment at the previous stage (Table 2). These scenarios 
are intermediate between the use of all input variables (S8) and the smallest number of 
input data represented by the S5 scenario (RH and WS data).

However, none of the models in the S6 scenario, which takes into account only climatic 
data, was included in the group of the best models distinguished on the basis of distribution 
of the estimation errors of the IWR in the test section for the best model-scenarios (Fig. 7). 
In turn, research by Krupakar et al (2016) showed that ANNs models perform well in predic-
tion based on training but have a lower ability to infer semantic meaning from the sequential 
flow. SVMs models are designed to be tested on normal data, hence they cannot capture the 
essential sequential information. According to Xie and Tang (2010), the factors influencing 

Fig. 7  Boxplots showing the distribution of the estimation errors of the IWR in the test section for the best 
model-scenarios. Q1 and Q3 are lower and upper quartile of errors, and IQR is interquartile range for each 
model
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the amount of irrigation are complex and non-linear, and the support vector machine (SVM) 
has many advantages for non-linear small samples. A forecasting model of irrigation water 
requirement based on least squares support vector machine (LS-SVM) was used in Tarim 
River Basin. These authors demonstrated in their research that the prediction model based on 
the LS-SVM has excellent generalizability and low error, which provides an efficient method 
of forecasting irrigation water requirements (Xie and Tang 2010).

In turn, El Bilali and Taleb (2020), using correlation coefficients, showed the inaccuracy 
of the SVR model in predicting the quality of irrigation water for training and validation 
processes sequentially. Artificial neural network (Springmann et  al. 2018), multiple linear 
regression (MLR), decision tree, random forest (RF), stochastic gradient descent (SGD) and 
adaptive boosting (AdaBoost) demonstrated good prediction accuracy. Krupakar et al. (2016) 
emphasize that the models described for an irrigation prediction system are generally devel-
oped and trained using a large amount of historical data (training data) on objects or character-
istics that influence the amount of water required for irrigation. The new RNN LSTM model 
proposed by them can be used to obtain better results, richer in semantic correlations found 
in the parameters used in real-time data. When testing machine learning models in predicting 
irrigation water, it is emphasized that they are efficient tools for accurately predicting irriga-
tion only using parameters that can be directly measured in a short time. There have been 
a lot of hybrid models that have been used for time series prediction (Ruan 1997; Kavousi-
Fard 2013). Pulido-Calvo et al. (2003) developed a hybrid model of combining CNNs with 
fuzzy membership function, optimized by a genetic optimization algorithm to test the effi-
cacy of irrigation demand prediction, a Pulido-Calvo and Gutierrez-Estrada (2009) presented 
improved irrigation water demand forecasting using a soft computing hybrid model.

For the prediction of irrigation for green bean crops in Egypt, the LSTM & CNN hybrid 
model was proposed, which enhances the information potential for IWR prediction. Deep 
learning concerns multilayer neural networks, which simultaneously act as a generator of 
diagnostic features for the analyzed process and the final function of a classifier or regres-
sion system. It also makes it possible to improve the accuracy of the system operation. The 
recurrent network called LSTM (Long Short-Term Memory) is a recursive network character-
ized by a long memory of short patterns (Schmidhuber 2015; Greff et al. 2017). The levels of 
the LSTM and CNN models are often combined when forecasting time series. This allows 
the LSTM layer to account for sequential dependencies across time series, while the CNN 
layer additionally informs about this process through the use of extended convolutions. Unlike 
LSTM, the CNN model does not keep memory of previous time series patterns, and instead 
can only train have based on data entered over a specific period of time. Krupakar et al. (2016) 
propose a novel methodology of using a sequence learning based recurrent neural network 
(RNN) model that uses the LSTM activation function to model for irrigation requirement so 
that it doesn’t have memory problems on long input streams.

The IWR prediction results for Egyptian green bean crops, performed for different scenario 
variants, show the models’ ability to predict irrigation potential. The proposed predictive irri-
gation planning approach, compared to field studies, makes it possible to reduce or prevent 
water stress in crops. Predicting future IWR values   from the results of predictive models can 
improve the real-time irrigation planning system depending on the meteorological situation 
and terrain factors (plants, soil). Sustainable irrigation aims to adjust water availability and 
demand in terms of quantity and quality, space and time, at reasonable cost and with accept-
able environmental impacts, whereby forecasting water demand is proving to be a valuable 
management tool.

1575Prediction of Irrigation Water Requirements for Green…



1 3

5  Conclusions

Water and food need crisis is facing all over world, furthermore agriculture consume the larg-
est amount of water to cover plant requirement of water. Therefore, the current research applies 
machine models in order to predict the irrigation water requirement for one of the most important 
crops in Egypt (green bean) by actual field experiment, which there weren’t common literature 
about modeling of irrigation requirement forecasting in versus ETo evaluation studies.

The main conclusions were reported as follow; the scenario S4 (relative humidity, wind speed, 
basal crop coefficient, the soil evaporation), is the best scenario for SVR, LSTM, CNN and LSTM 
& CNN models, while the best scenario in DNN and RF model was in scenario (S7) (root depth, 
basal crop coefficient, the soil evaporation, fraction of surface wetted, exposed and soil wetted 
fraction). The climatic factors in scenario (S6) presented the highest  R2 for the CNN model and 
the weakest result in the SVR model. Further, by taking into account only the two predictors rela-
tive humidity and wind speed, the performance of all models ranged from very good to satisfac-
tory fit for all models, while it was an unsatisfactory fit for SVR.

On contrast, the hybrid LTSM & CNN model was the best model for the IWR prediction. 
Finally, the models applied can improve the irrigation planning with few available data. The cur-
rent approach was promising and has research value for other similar regions. Therefore, the future 
work will focus much more in predicting the irrigation water requirements in other crops in other 
regions to draw a general picture of the predicting of the irrigation water requirements in order to 
ensure the water resources management under the impact of the climate changes.
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