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Abstract
The increasing frequency of droughts and floods due to climate change has severely 
affected water resources across the globe in recent years. An optimal design for the sched-
uling and management of irrigation is thus urgently needed to adapt agricultural activi-
ties to the changing climate. The accurate estimation of reference crop evapotranspiration 
(ET0), a vital hydrological component of the water balance and crop water need, is a tire-
some task if all the relevant climatic variables are unavailable. This study investigates the 
potential of four ensemble techniques for estimating precise values of the daily ET0 at rep-
resentative stations in 10 agro-climatic zones in the state of Karnataka, India, from 1979 
to 2014. The performance of these models was evaluated by using several combinations 
of climatic variables as inputs by using tenfold cross-validation. The outcomes indicated 
that predictions of ET0 by all four ensemble models based on all climatic variables were 
the most accurate in comparison with other input combinations. The random forest regres-
sor was found to deliver the best performance among the four models on all measures 
considered (Nash–Sutcliffe efficiency, 1.0, root-mean-squared error, 0.016  mm/day, and 
mean absolute error, 0.011 mm/day). However, it incurred the highest computational cost, 
whereas the computational cost of the bagging model for linear regression was the lowest. 
The extreme gradient-boosting model delivered the most stable performance with a modi-
fied training dataset. The work here shows that these models can be recommended for daily 
 ET0 estimation based on the users’ interests.
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1 Introduction

Agriculture activities majorly depend on adequate irrigation practices for optimal crop 
growth and production. The dearth and uneven rainfall patterns across diverse climates 
demand the water conservation necessary for irrigation. Evapotranspiration plays the most 
crucial role in estimating and scheduling the available water resources as well as assessing 
the impact of climate change on the agriculture sector (Wang et  al. 2012). The accurate 
computation of the reference evapotranspiration (ET0) is crucial for managing irrigation-
related activities. Though there exist several empirical methods, the Penman–Monteith 
(P-M) method by the Food and Agriculture Organization (FAO) is the benchmark method 
that can be applied to diverse climatic conditions across the world. However, it requires a 
large number of meteorological variables, including data on the atmospheric temperature, 
solar radiation, wind speed, and relative humidity, that may not be available at all meteoro-
logical stations (Yamaç and Todorovic 2020). Several other popular empirical equations to 
calculate ET0 require few climatic variables, and have been used in regions for which scant 
data are available (Priestley and Taylor 1972; Hamid 2011; Pandey et al. 2014; Almorox 
et  al. 2015). However, these models exhibited wide variations in performances across 
diverse climatic regimes (Chen et al. 2020). This has led to the development of models that 
can estimate the precise value of  ET0 irrespective of the amount of available climatic data. 
Remarkable developments in Artificial Intelligence (AI) in recent decades have enabled 
researchers to handle large datasets and non- linear relationships between various climatic 
variables to predict  ET0 with significant accuracy.

AI-powered solutions for agriculture have created a revolution in recent years that has 
enabled improvements in the volume of production and quality of the yield by automating 
weeding- and irrigation-related practices (Talaviya et  al. 2020). Several researchers have 
proposed AI-based methods in recent years for modeling ET0, which is a prime component 
in irrigation scheduling.

The techniques such as Extreme Learning Machine (ELM),  Generalized Regression 
Neural Network (GRNN), Artificial Neural Network (ANN), and Linear Regression mod-
els demonstrated their effectiveness in the evaluation of  ET0 using only temperature data 
(Feng et  al. 2017; Kim et  al. 2022) under different time scales in a variety of climatic 
zones. The modeling of ET0 by using input combinations composed of various climatic 
variables, such as the temperature, relative humidity, solar radiation, and wind speed, has 
been explored by using the ANN (Gocić and Amiri 2021; Elbeltagi et al. 2022a, b), sup-
port vector machine (SVM) and tree-based models (Fan et al. 2018), adaptive neuro-fuzzy 
inference system (ANFIS)–firefly algorithm (Tao et al. 2018), hybrid ELM with optimi-
zation (Zhu et al. 2020), and fuzzy logic-based hierarchical fuzzy system (HFS)–particle 
swarm optimization (PSO) algorithm (Roy et al. 2021). Although these heuristic methods 
perform better than the empirical models, they require several climatic variables to esti-
mate ET0 (Wu et al. 2019; Muhammad Adnan et al. 2020).

The water cycle is influenced by rising temperatures that increase the rate of evapora-
tion in the atmosphere and ultimately result in climate change. Mitigation strategies need 
to be implemented to combat the changing climatic conditions which have affected water 
availability and distribution in the form of precipitation over the land. Managing the avail-
able water resources and accurately predicting ET0 has thus become critical environmental 
issues. Although individual machine learning models can accurately predict ET0, they fail 
to handle the errors incurred due to overfitting and uncertainties in the parameters of train-
ing, especially in hydrological systems involving complex non-linear variables. Ensemble 
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machine learning models provide better predictions than individual models by reducing 
bias and variance and have thus been gaining popularity as robust tools for modeling 
hydrological systems (Sharafati et al. 2020).

The decision tree (Fan et  al. 2018) as well as hybrid metaheuristic machine learning 
algorithms, such as additive regression (AR), AR bagging, AR random subspace (AR-
RSS), and AR-M5 Prime (M5P), predicted ET0 with high precision (Elbeltagi et al. 2022a, 
b). Agrawal et  al. (2022) comparatively assessed tree-based and boosting-based ensem-
ble methods in terms of modeling ET0. However, Boosted Ensemble Neural Networks 
reported lower minimum predictive errors than the Bagged and individual Neural Networks 
models (Manikumari et al. 2017). It is useful to assess the performance of various Boost-
ing Ensemble techniques on the classification/regression problems of predicting ET0 under 
different time spans (Fan et al. 2019; Ponraj and Vigneswaran 2019; Wu et al. 2020). Han 
et al. (2019) coupled a bat algorithm with the Extreme Gradient-Boosting (XGB) method 
(the BAXGB model) to estimate the monthly ET0 in arid and semi-arid regions of China 
and found that its results were more accurate than those of the multivariate adaptive regres-
sion splines (MARS) and the Gaussian process regression (GPR) models.

This study seeks to answer the following questions: How do ensemble regression mod-
els perform on data over 10 meteorological stations in locations that exhibit significant het-
erogeneity in climatic conditions? Which combinations of meteorological variables have 
the greatest impact on estimating ET0? Which models can accurately predict ET0 while 
maintaining stability and incurring a low computational cost?

Karnataka, a state in southwest India, is characterized by heterogeneous conditions 
among 10 agro-climatic zones (Energy and Wetlands Research @ CES, IISc, Bangalore, 
India. 2005). Climatic variables play a significant role in estimating ET0, which in turn 
is used to inform farming practices in different climatic zones. The prediction of values 
of ET0 for these climatic zones by using ensemble machine learning techniques is use-
ful as they play a crucial role in irrigation planning and water resource management. Few 
studies to date have assessed the predictive capabilities of bagging-based models of linear 
regression for predicting ET0. Tree-based models can accurately predict ET0 because the 
climatic variables have non-linear relationships among themselves. This study evaluates 
the performance of bagging-based models of linear regression in comparison with that of 
tree-based boosting models of regression in terms of predicting ET0.

2  Study Area and Data Collection

Karnataka is a state in southwestern India with significant variations in climate owing to its 
geographic and physiographic conditions. The climate ranges from arid to semi-arid in the 
plateau, sub-humid to humid tropical in the Western Ghats, and humid tropical monsoon 
in the coastal plains (Bangalore Climate Change Initiative–Karnataka, B. C. C. 2011). A 
trend of decreasing rainfall has been observed in prominent parts of the state due to climate 
change and has led to an increase in the number of drought-prone regions. The changing 
patterns and distribution of rainfall can have adverse impacts on natural water resources in 
these regions. Managing water resources for irrigation purposes is thus a major concern as 
agriculture is the means of livelihood for a majority of people in the state. Hence, ten cli-
matic stations representing the ten agro-climatic zones comprising arid, semi-arid, humid, 
sub-humid, tropical, and humid tropical monsoon conditions are taken under study. Daily 
climate data on maximum and minimum temperature(°C), mean relative humidity (%), wind 
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speed(m/sec), and solar radiation (MJ/m2/day), for periods of 35 years (1979–2014) were 
collected for the ten climate stations of Karnataka from “Global Weather Data for SWAT 
(https:// globa lweat her. tamu. edu/)”. The details of the 10 climate stations of Karnataka are 
shown in Figs. 1 and 2 and the salient features of the same are discussed by Ramachandra 
et al. (2022).

The detailed procedure for computing the values of ET0 is given in the FAO–56 docu-
ment (Allen et  al.  1998). The daily ET0 values at these ten stations were calculated by 
using the FAO P–M method in Python (Ramachandra et al. 2022). The P–M equation is 
expressed as

where,  ET0 is reference evapotranspiration (mm  day−1),  Rnis the net solar radiation at the 
crop surface (MJ  m−2  day−1), G is the soil heat flux density (MJ  m−2  day−1),  (es-ea) is the 
vapor pressure deficit of the air (kPa), γ is the psychometric constant (kPa °C−1), Δ is the 
slope of the vapor pressure curve (kPa °C−1), λ is the latent heat of vaporization (MJ  kg−1), 
T is the air temperature at 2 m height (°C),  u2 is he wind speed at 2 m height  (ms−1),  es is 
the saturation vapor pressure (kPa),  ea is the actual vapor pressure (kPa).

(1)ET0 =
0.408Δ(Rn − G) + �

900

T+273
u2(es − ea)

Δ + �(1 + 0.34u2)

Fig. 1  Map of Karnataka showing its agro-climatic zones

https://globalweather.tamu.edu/
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3  Methodology

3.1  Modelling  ET0 Using Machine Learning Techniques

The climate dataset needed for modeling ET0 comprised data on the maximum and min-
imum temperatures (°C), mean relative humidity (%), wind speed (m/s), solar radiation 
(MJ/m2/day), longitude (o), latitude (o), elevation (m), and ET0 values (mm/day) computed 
at the 10 stations. The present study aims to develop models to predict  ET0 at ten stations 
on a daily scale based on climatic variables by using machine learning techniques. The out-
line of the overall methodology involves the following steps (Fig. 3).

Step 1: Data preparation: The numerous meteorological parameters needed for the com-
putation of  ET0 by the FAO P-M method were selected here. The irrelevant columns hold-
ing date and year attributes were not accounted for in the calculation and hence have been 
dropped out from the CSV file. Any missing values in the file were filled with null values.

Step 2: Design and development of a machine learning model for the prediction of  ET0: 
A regression model has to be developed for the calculation of  ET0. The data is trained on 

Fig. 2  Geographical locations of the ten stations taken for study
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the filtered attributes from step 1. The overall dataset is made to split on an 80:20 ratio 
(80% for training and 20% for testing) to train a regression model.

Step 3: Testing the model: After the construction of the training model, it is tested 
against the remaining 20% of the dataset, and evaluation is done.

Step 4: Performance Evaluation: The values of statistical measures such as Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and Nash–Sutcliffe coefficient (NSE) 
were calculated to check the model performance against test data.

3.2  Ensemble Techniques for Predicting  ET0

Combining the results of numerous models into a single prediction is the goal of ensem-
ble learning, a meta-approach to machine learning. Bagging, stacking, and boosting are 

Fig. 3  Flow diagram of model-
ling of  ET0 using climate 
variables

Climate Data including ET0

Dataset Preparation

Develop ET0 prediction model

using Ensemble techniques

Test the model using test data set

Performance Evaluation 

Predicted ET0 values (mm/day)
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the three basic classes of ensemble learning methods; it is crucial to have a thorough 
grasp of each approach and to take them into account in any predictive modeling project. 
Multiple predictions made by the individual members are combined to achieve a better 
prediction either by majority voting or by averaging the predictions for any classifica-
tion/regression problem.

3.2.1  Ensembles of Regression Models

An ensemble of the regression model is created using different subsets of the original train-
ing set with a single machine-learning algorithm. In the present work, the ensembles of 
the two most known regression models viz., linear regression and decision tree models are 
developed which can attain low variance and low bias. As part of the optimization proce-
dure, the models are trained with carefully chosen hyperparameter values and make predic-
tions about the desired feature. Then the results of the prediction error analysis are pro-
vided to the optimizer for further consideration.

3.2.2  Bagging Linear Regressor

Bagging (or bootstrap aggregation) is a sampling method in which many samples are 
drawn periodically with replacement according to a uniform probability distribution, and 
then a model is fit to the data (Breiman 1996). It uses the aggregate of predictions or the 
results of a majority vote to arrive at a more accurate prediction. When applied to models 
with an overfitting problem, this method improves their performance (high variance mod-
els). Bagging may minimize uncertainty in model prediction without sacrificing accuracy.

3.2.3  Random Forest Regressor

A random forest fits a number of decision trees on various sub-samples of the dataset to 
enhance the predictive accuracy and reduce overfitting by averaging over the predictions 
(Breiman 2001; Geurts et al. 2006). Increasing the number of trees always have an impact 
on regression problems.

The random forest algorithm functions as follows:

 (i) Pick N random records from the dataset.
 (ii) Build individual decision trees for each record.
 (iii) Specify the number of trees required in the algorithm, and repeat steps i and ii.
 (iv) In case of a regression problem, use each tree in the forest to predict a value for Y 

(output) for a new record. The final value can be calculated by taking the average of 
all the predictions by all the nodes in the tree.

3.2.4  Boosting Technique

Boosting is an ensemble technique where the most accurate and strong models are built 
by combining several weak models. Each model is built by correcting the errors present 
in previous models until the complete training set is predicted correctly. The weights are 
redistributed after each training stage, and the outcome depends on the weighted average of 
their estimates.
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Light Gradient Boosting Machine Technique Light Gradient Boosting Machine (LGBM) 
is a tree-based boosting technique that offers many advantages such as faster training speed 
with more accurate results, reduced memory consumption, large-scale data handling, and 
support for parallel, distributed, and GPU learning (Ke et al. 2017). It develops the model 
in a tree leaf-wise pattern (node-wise), thus differs from the XGBOOST which does row-
wise tree construction.

Extreme Gradient Boosting Extreme gradient boosting (XGBOOST) is an improved 
open-source version of the gradient boosting algorithm proposed by (Chen et  al. 2015). 
XGBOOST facilitates the development of a robust, adaptable, and portable model.  For 
making accurate predictions, XGBOOST is superior to other algorithms and ML frame-
works.  The improved performance and precise accuracy are the main reasons behind 
this. To address the flaws in previous approaches, it unifies numerous models into a sin-
gle one. However, training time is very high for large data sets when compared to LGBM 
and gradient boosting with categorical features support (CatBoost). In the present work, 
the XGBOOST technique served as a regression model to predict daily  ET0 from the cli-
mate data set. Non-linear interactions between the various climate variables can be handled 
effectively by making use of this algorithm.

3.3  Input Combinations and Validation of the Models

The following parameters have been used for training and testing the model: air tempera-
ture (min, max), wind speed, solar radiation, and relative humidity. The 8 input meteoro-
logical combinations for the 4 models are:

1. Maximum temperature  (Tmax), minimum temperature  (Tmin)
2. Tmax,  Tmin, Wind speed (WS)
3. Tmax,  Tmin, Relative humidity (RH)
4. Tmax,  Tmin, Solar Radiation (SR)
5. Tmax,  Tmin, RH, WS
6. Tmax,  Tmin, RH, SR
7. Tmax,  Tmin, WS, SR
8. Tmax,  Tmin, WS, RH, SR

Cross-validation is a resampling method to evaluate machine learning models for a 
given new set of data (test data). In this study, a ten-fold cross-validation approach was 
applied to train and validate the ensemble models. The climate dataset containing data on 
Karnataka from 1979 to 2014 was divided into ten equal folds. Nine folds were used to 
train the models, while the 10th was used to test them. The entire procedure was repeated 
10 times and the average values of the results yielded more reliable results. Random com-
binations of the hyperparameters were considered in each iteration to find the optimized 
solution of each model.

3.4  Performance Metrics for Prediction

The predictive performance of the ensemble models was compared by using the 
MAE, RMSE, and NSE. The RMSE assesses the accuracy of the prediction. It is the 
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root-mean-squared deviation in the differences between the predicted and the actual values 
and is defined as

MAE is the sum of absolute differences between the actual value and predicted values 
of the number of observations. It is defined as

NSE, the coefficient of efficiency, is a commonly used statistical parameter in hydrol-
ogy. It indicates the relative assessment of model performance in dimensionless measures. 
NSE = 1 refers to a perfect match between the model and the observed data. A negative 
NSE value indicates unacceptable model performance. The NSE is given by (Nash and 
Sutcliffe 1970)

4  Results

4.1  Effects of Input Variables on Model Performance Across 10 Stations

Table 1 presents the results of the linear regression bagging (Bagging LR), Random Forest- 
based Regressor Bagging (Bagging RF), Extreme Gradient Boosting (XGBOOST), and Light 
Gradient Boosting (LGBM) models for eight input combinations of climatic variables for Ban-
galore station. The best statistical values of all models in the training and testing phases are 
marked in bold. Similarly, the performance metrics of the above four models for the eight input 
combinations at the remaining nine stations are tabulated and given in the supplement file.

The above outcomes reveal that the models with complete climatic data as inputs 
exhibited better predictive accuracy than those that used incomplete datasets at all 10 
stations. The models based on the four input combinations– (Tmax, Tmin, SR), (Tmax, 
Tmin, RH, SR), (Tmax, Tmin, WS, SR), and (Tmax, Tmin, WS, RH, SR)–delivered better 
daily estimations of ET0 compared with the other combinations of climatic inputs. Simi-
lar results were obtained by using the same input combinations during the testing phase at 
all 10 stations, as indicated in Tables S1–S9. The results are in accordance with the find-
ings of previous studies (dos Santos Farias et al. 2020; Mehdizadeh et al. 2021; Elbeltagi 
et al. 2022a, b), which revealed that the use of all climatic variables in the models led to 
higher prediction accuracies.

The prediction-related performance obtained by the input and output variables in the 
model was visualized by using a scatter plot. It is the most widely used graph to show the 
relationship between the predicted and the observed outputs (Wu et  al. 2019; Roy et  al. 
2021; Sattari et al. 2021). The Python implementation of the scatter plots, representing the 
actual values of ET0 and those predicted by all four models by using the complete dataset 
of Bangalore station is depicted in Fig. 4. The ET0 values predicted by the LGBM model 
were close to those that were estimated by using the FAO P–M method in the testing phase, 

(2)RMSE =
√
(1∕n)

�n

i=1
(ETcalcualted − ETpredicted)2

(3)MAE =
1

n

∑n

i=1
|ETcalcualted − ETpredicted|

(4)NSE = 1 −

∑N

i=1
(ETcalculated − ETpredicted)2

∑N

i=1
(ETcalculated − meanETpredicted)2

, ∞ ≤ NSE ≤ 1
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Table 1  Performance of Bagging and Boosting based models at Bangalore station

Models Training Phase Testing Phase

RMSE (mm/
day)

MAE (mm/day) NSE RMSE (mm/
day)

MAE (mm/day) NSE

Tmax, Tmin

Bagging LR1 0.599 0.468 0.823 1.073 0.869 0.43
Bagging RF1 0.210 0.152 0.978 0.734 0.583 0.734
XGBOOST1 0.499 0.378 0.877 0.526 0.397 0.864
LGBM1 0.471 0.345 0.891 0.523 0.379 0.865
Tmax, Tmin, WS
Bagging LR2 0.589 0.463 0.829 1.025 0.830 0.48
Bagging RF2 0.190 0.135 0.982 0.989 0.795 0.517
XGBOOST 2 0.463 0.349 0.894 0.489 0.365 0.882
LGBM2 0.421 0.306 0.913 0.485 0.349 0.884
Tmax, Tmin, RH
Bagging LR3 0.594 0.464 0.826 0.793 0.656 0.689
Bagging RF3 0.189 0.135 0.982 0.813 0.655 0.674
XGBOOST 3 0.463 0.349 0.894 0.494 0.372 0.879
LGBM3 0.422 0.307 0.912 0.482 0.347 0.885
Tmax, Tmin, SR
Bagging LR4 0.112 0.087 0.994 0.426 0.337 0.91
Bagging RF4 0.023 0.017 1.0 0.259 0.193 0.967
XGBOOST4 0.131 0.109 0.991 0.134 0.110 0.991
LGBM4 0.049 0.036 0.999 0.058 0.043 0.998
Tmax, Tmin, RH, 

WS
Bagging LR5 0.573 0.453 0.838 0.792 0.659 0.69
Bagging RF5 0.173 0.123 0.985 0.697 0.547 0.76
XGBOOST5 0.432 0.327 0.908 0.462 0.349 0.894
LGBM5 0.374 0.274 0.931 0.444 0.322 0.903
Tmax, Tmin, RH, 

SR
Bagging LR6 0.112 0.086 0.994 0.418 0.328 0.914
Bagging RF6 0.023 0.016 1.0 0.348 0.256 0.94
XGBOOST6 0.131 0.109 0.992 0.135 0.111 0.991
LGBM6 0.047 0.035 0.999 0.056 0.041 0.998
Tmax, Tmin, WS, 

SR
Bagging LR7 0.111 0.086 0.994 0.401 0.312 0.92
Bagging RF7 0.023 0.017 1.0 0.504 0.375 0.874
XGBOOST7 0.131 0.109 0.992 0.135 0.111 0.991
LGBM7 0.047 0.035 0.999 0.056 0.042 0.998
Tmax, Tmin, WS, 

RH, SR
Bagging LR8 0.111 0.086 0.994 0.222 0.162 0.976
Bagging RF8 0.023 0.017 1.0 0.161 0.115 0.987
XGBOOST8 0.131 0.109 0.992 0.135 0.111 0.991
LGBM8 0.046 0.034 0.999 0.055 0.041 0.998
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as observed in the above-mentioned figures. The predictive accuracies of the Bagging RF 
and XGBOOST models were reasonably high. The Bagging LR model generated more 
scattered ET0 estimates and delivered the worst performance. Similarly, the scatter plots 
for the remaining nine stations revealed that the LGBM model was found to be the best 
performing and the Bagging LR model was found to be the least model. The scatterplots 
for the nine stations are provided in the supplement file.

5  Discussion

5.1  Comparison of Model Stability Under Different Input Combinations Across  
10 Stations

The stability of a model is an important criterion that indicates how far the predictions 
have deviated from the measurements when the training dataset is modified. Stability can 
be determined by the percentage of increase in the values of statistical parameters in the 
testing phase with respect to those in the training phase. The average training and testing 

Table 1  (continued)
Bagging LR linear regression bagging, Bagging RF Random Forest- based Regressor Bagging, XGBOOST 
Extreme Gradient Boosting, LGBM Light Gradient Boosting Model
Best statistical values of RMSE (mm/day), MAE (mm/day) and NSE of both training and testing phases

Fig. 4  Actual and predicted values of  ET0 of Bangalore using a Linear Regression Bagging, b Random For-
est Regressor Bagging, c Extreme Gradient Boosting, d Light Gradient Boosting models
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RMSEs for the 10 weather stations and the percentage of increases in the testing RMSE 
over the training RMSE (average for all weather stations) for the eight input combinations 
are presented in Fig. 5.

Figures 5a–h indicate that the XGBOOST model was the most stable, followed by the 
LGBM model. They provided the smallest percentage of increase in the MAE, ranging 
from 4.35% to 36.55% and 10.96% to 25%, respectively, for most input combinations in 
comparison with the RF regressor. Bagging RF was the most unstable model and failed 
to produce accurate values of  ET0 when new input data (test data) were provided. The 
results agreed well with those obtained by Antonopoulos and Antonopoulos (2017), and 
Huang et al. (2019), highlighting that Bagging RF was the most unstable of the models 
considered. It also recorded a notably large percentage of increase in the MAE at all sta-
tions under the eight input combinations, as depicted in Figs. 6a–h. This implies that the 
Bagging RF model failed to produce precise predictions of  ET0 on the test dataset across 
the 10 stations.

It is remarkable to note that Bagging RF was the most unstable, followed by the Bag-
ging LR model, for the input combination (Tmax, Tmin, SR), and contributed the high-
est percentage of increase in the MAE. LGBM showed a reasonably high percentage of 
increase, ranging from 10.16% to 23.93%, for the input combinations. XGBOOST was the 
most stable model with the smallest percentage of gain, in the range of 1.41% to 8.97%.

Fig. 5  a–h Percentage increase in testing RMSE over training RMSE values averaged over 4 models under 
8 input combinations
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5.2  Comparison of Overall Rank of Models Based on Three Metrics

In this study, four ensemble models were developed by using eight input combinations of 
the climate variables collected from ten climate stations to predict the  ET0 on a daily scale. 
A ranking system was established to evaluate the overall performance of a total of 32 mod-
els (4 × 8), and the model with the smallest error value or the highest NSE was ranked 
number 1 (i.e., ranking score = 1) (Elagib and Mansell 2000). The average value of each 
statistical indicator over the 10 stations was taken to rank the models. The ranking proce-
dure is summarized in the Tables 2, 3 and 4.

5.3  Comparison of Computational Costs of Ensemble Models

A comparison of computational costs of the four ensemble models (i.e., the time 
needed for computation, in seconds) for predicting  ET0 across the 10 stations was 
done. The average computing time was dependent on the volume of the training data. 
Figure  7 shows the average computational costs of the four models over 10 stations 
under the eight input combinations. The results reveal that the average time taken 
by the Bagging LR model was much shorter than those of the other algorithms for 
all input combinations across all stations. The Bagging RF model incurred the high-
est computational cost, which can be attributed to its large number of decision trees. 

Fig. 6  a–h Percentage increase in testing MAE over training MAE values averaged over 4 models under 8 
input combinations
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Huang et al. (2019) also reported that the average time taken by the Bagging RF model 
was much higher than the corresponding boosting-based ensemble technique in pre-
dicting the daily  ET0. By contrast, the Bagging RF model took less time than the SVM, 
ELM, and Gradient-Boosting Decision Tree (GBDT). This contradicts the results of 
this work (Fan et al. 2018). However, in general, an increase in the number of climatic 
variables in the models contributed to rising computational costs.

Table 2  Ranking scores averaged 
over 10 stations for RMSE

Bagging LR linear regression bagging, Bagging RF Random Forest- 
based Regressor Bagging, XGBOOST Extreme Gradient Boosting, 
LGBM Light Gradient Boosting Model

Models Rank

Bagging RF6 1
Bagging RF8 2
Bagging RF7 3
Bagging RF4 4
LGBM8 5
LGBM6 6
LGBM7 7
LGBM4 8
Bagging LR8 9
Bagging LR6 10
Bagging LR7 11
Bagging LR4 12
XGBOOST6 13
XGBOOST8 13
XGBOOST7 14
XGBOOST4 15
Bagging RF5 16
Bagging RF2 17
Bagging RF3 18
Bagging RF1 19
LGBM5 20
LGBM2 21
LGBM3 22
XGBOOST5 23
XGBOOST2 24
XGBOOST3 25
LGBM1 26
XGBOOST1 27
Bagging LR5 28
Bagging LR3 29
Bagging LR2 30
Bagging LR1 31
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Table 3  Ranking scores averaged 
over 10 stations for MAE

Bagging LR linear regression bagging, Bagging RF Random Forest- 
based Regressor Bagging, XGBOOST- Extreme Gradient Boosting, 
LGBM- Light Gradient Boosting Model

Models Rank

Bagging RF6 1
Bagging RF8 2
Bagging RF4 3
Bagging RF7 3
LGBM8 4
LGBM6 5
LGBM7 6
LGBM4 7
Bagging LR8 8
Bagging LR7 9
Bagging LR4 10
XGBOOST8 11
XGBOOST7 12
XGBOOST4 13
Bagging RF5 14
Bagging RF2 15
Bagging RF3 16
Bagging RF1 17
Bagging LR6 18
XGBOOST6 19
LGBM5 20
LGBM2 21
LGBM3 22
XGBOOST5 23
XGBOOST2 24
XGBOOST3 25
LGBM1 26
XGBOOST1 27
Bagging LR5 28
Bagging LR3 29
Bagging LR2 30
Bagging LR1 31
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Table 4  Ranking scores averaged 
over 10 stations for NSE

Bagging LR linear regression bagging, Bagging RF Random Forest- 
based Regressor Bagging, XGBOOST Extreme Gradient Boosting, 
LGBM Light Gradient Boosting Model

Models Rank

Bagging RF4 1
Bagging RF6 1
Bagging RF7 1
Bagging RF8 1
LGBM4 2
LGBM6 2
LGBM7 2
LGBM8 2
Bagging LR8 3
Bagging LR6 4
Bagging LR4 5
Bagging LR7 5
XGBOOST6 6
XGBOOST7 6
XGBOOST8 6
XGBOOST4 7
Bagging RF5 8
Bagging RF3 9
Bagging RF2 9
Bagging RF1 10
LGBM5 11
LGBM3 12
LGBM2 13
XGBOOST5 14
XGBOOST2 15
XGBOOST3 16
LGBM1 17
XGBOOST1 18
Bagging LR5 19
Bagging LR3 20
Bagging LR2 21
Bagging LR1 22
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6  Conclusions

The present study has assessed the performances of four ensemble techniques- Linear 
Regressor Bagging, Random Forest Regressor Bagging, Extreme Gradient Boosting, and 
Light Gradient Boosting models in predicting values of the daily  ET0 at 10 agro-climatic 
stations in Karnataka over 35 years (1979–2014). All four models yielded accurate values 
of the daily ET0 with the complete climate dataset (Tmax, Tmin, WS, RH, SR). How-
ever, the models that used four sets of input combinations, viz., Tmax, Tmin, and SR; 
Tmax, Tmin, RH, and WS; Tmax, Tmin, RH, and SR; and Tmax, Tmin, WS, and SR, 
yielded satisfactory estimates of ET0. Of the four models, the Bagging RF and LGBM 
models had the most accurate predictions. Even though the Bagging RF model was 
ranked the highest and delivered the best performance based on statistical evaluations, 

Fig. 7  Comparison of computational costs of four machine learning models under 8 input combinations
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it was the most expensive model in terms of computation cost while Bagging LR was 
the least expensive. The XGBOOST model was the most stable of the four models on 
modified training datasets. Each of the models considered here had unique advantages in 
terms of predictive accuracy, stability, and computational cost. Thus, the results obtained 
here may provide useful information for researchers in adopting models for the irriga-
tion-related management of agricultural activities.
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