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Abstract
In this paper, a methodological proposal is made to develop an adaptive decision sup-
port system for reservoir management. The system is based on an optimization model that 
determines operating rules that meet certain optimality conditions based on the state of the 
reservoir at a certain time and on a streamflow forecast, if available. The model is based 
on Spiliotis et al. in Water Resour Manage 30:5759-5778, where a general methodology 
was developed to specify static operating rules for reservoir systems. The proposed meth-
odology consists of modifying the optimization procedure developed in the previous work 
to dynamically update operating rules to adapt management to the changing situation. To 
evaluate its effectiveness, the methodology was applied to the Pisuerga-Carrión reservoir 
system, in the Spanish part of the Duero basin. The results obtained with adaptive rules 
were compared with those obtained applying the same static operating rule for the entire 
analysis period. Adaptive rules were found to lead to better operating results, particularly if 
a successful streamflow forecast method is available.

Keywords Water management · Reservoir storage · Drought management

1 Introduction

Drought management plans usually include operational components that contemplate the 
implementation of water saving measures in  situations where there is a risk of failure 
to meet the required supply within a decision horizon. The so-called "hedging rules" 
for reservoir management are an example of this type of measure (You and Cai 2008; 
Peng et  al. 2015; Adeloye et  al. 2016). By means of this technique, storage thresh-
olds are established in reservoirs to trigger water saving measures. If storage reserves 
become depleted beyond the threshold, the supply of certain types of demand is par-
tially restricted to avoid total resource exhaustion. The rationale for this practice is that 
a succession of moderate deficits over a certain period is preferable to having to face 
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unacceptable deficits, even if the duration of this situation is much shorter (Rossi et al. 
2012). The formulation of an optimal operating policy for a reservoir under hedging 
rules requires the definition of thresholds to activate the rules and the identification of 
the appropriate supply restrictions to overcome the deficit periods with minimum dam-
age (Draper and Lund 2004). Many methods have been proposed in the literature to for-
mulate and optimize hedging rules. A recent review was published by Neelakantan and 
Sasireka (2015). The work presented in this paper is based on the model of Spiliotis et al. 
(2016). They presented a methodology based on particle swarm optimization (PSO) to 
identify optimal hedging rules for the operation of a reservoir under drought conditions.

Hedging rules are preferred by practitioners over more sophisticated approaches 
to reservoir operation due to their simplicity and effectiveness. They are easily 
understood and accepted by stakeholders, who can in turn formulate their drought 
management strategies based on the foreseen shortages. For example, most drought 
management plans in Spain adopted hedging rules for operating reservoir systems 
under drought conditions (Estrela and Vargas 2012, Garrote et  al. 2007). However, 
most hedging rule schemes do not have adaptive capabilities. Once the optimal 
policy has been identified, it is applied regardless of the system condition. This is 
acceptable in case of within-the-year reservoir systems because the importance of 
carryover storage is small, and the system practically resets every year. However, 
in the case of over-the-year reservoir systems, carryover storage plays a significant 
role because the conditions at the beginning of each hydrological year may vary over 
time. For these systems, it could be beneficial to consider the state of the system to 
define a new set of hedging rules every hydrological year. Adaptive schemes have 
been proposed for reservoir management under uncertain conditions. The most fre-
quent source of uncertainty is on reservoir inflows. Several adaptive schemes have 
been proposed to cope with inflow uncertainty. Yang and Ng (2017) proposed reser-
voir operating rules under nonstationary inflows based on a fuzzy inference system, 
with emphasis on achieving robustness in operation. Xu et  al. (2015) defined rules 
for multistage optimal hedging operations for the Miyun reservoir in China, where a 
statistically significant decline in reservoir inflow trend has been observed. Ahmadi 
et  al. 2015 applied a meta-heuristic multi-objective optimization algorithm in con-
junction with climate projections to propose adaptive operation of the Karoon-4 res-
ervoir in Iran. Feng et  al. (2017) focused on identifying changing patterns of res-
ervoir operating rules under various inflow alteration scenarios. Leta et  al. (2022) 
examined the effect of land use land cover change on the watershed’s hydrological 
processes and the corresponding patterns of reservoir operation. All these studies 
acknowledge the difficulty of defining operating rules under changing conditions.

The objective of this work is to formulate adaptive hedging rules for reservoir 
drought operation and compare their performance with static hedging rules. The adap-
tive hedging rules are based on the available reservoir storage at the beginning of the 
decision period, as in the model presented by Jin and Lee (2019) and on the availa-
bility of a mid-term streamflow forecast, as in the works of Zhang et  al. (2017) and 
Mostaghimzadeh et al. (2022). The model proposed by Spiliotis et al. (2016) is extended 
to incorporate an adaptive scheme in which a different set of rules is defined every 
hydrological year. Rather than optimizing system performance over the long-term his-
toric time series of reservoir inflows, it is optimized over an ensemble of short-term 
reservoir inflows, either representing climatological conditions or adopting an available 
short-term forecast.
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2  Methodology

The analysis methodology is presented in this section. First, the problem data and the simula-
tion tool are described. Then, the developed adaptive optimization procedure is described.

2.1  Problem Formulation

The methodology is formulated for a water resource management system that must jointly 
meet a series of demands sorted by priority. Water demand may vary from month to month 
but remain constant from year to year in all simulations. The topology of the system con-
sists of inflow points, river reaches, reservoir nodes, and demands. Data are structured 
according to a network topology consisting of nodes and arcs. The nodes may be associ-
ated with inflows, reservoirs, or demands. The arcs are associated with river stretches.

Problem formulation is described in the supplementary material. Full details of the 
mathematical formulation can be found in Spiliotis et al. (2016). Operating rules may be 
static or adaptive. Under the static approach, the optimization problem is solved by running 
the simulation model over the full time series of historical flows. The identified rules are 
assumed to be valid for any system condition, and therefore they are fixed over the entire 
operation period. The adaptive approach is illustrated in Fig.  1. The problem is solved 
cyclically: a new set of operating rules is defined periodically. In each decision horizon 
Hd , the current situation is analysed, and the optimal rules are defined contemplating the 
horizon of analysis Ha . The new rules are applied during the next decision horizon. Once 
the end of the decision horizon is reached, the problem is solved again starting from the 
configuration of the system at the beginning of the new cycle.

2.2  Resolution Algorithm

An optimization algorithm based on dynamic optimization, was developed to solve the 
optimization problem. The algorithm is described in detail in Spiliotis et al. (2016). A 

Fig. 1  Schematic representation of the operation of the adaptive model
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summary of the main steps is presented here. The following describes the initial step 
and an intermediate generic step. The presentation is illustrated in Fig. 2.

The starting point is the set of possible drought thresholds deduced from the system 
risk analysis (Fig. 2a). Risk analysis is conducted by performing a simulation of system 
operation over a period of a certain length starting with a given reservoir storage on a 
given month (for instance, 18 months starting with 75% capacity in March). The model 
is run for all subseries of inflows that begin in the selected month and have a duration 
equal to the period of analysis. For each starting volume, a probability distribution of 
deficits may be estimated by analysing the simulation results. Risk levels are associated 
with specific probability values of having a deficit that exceeds a certain fraction of the 
demand (Fig. 2b). Storage values that lead to the same probability of deficits over the 
year configure the drought activation thresholds (for instance: 60% probability of hav-
ing a deficit equal or larger than 10% of the demand).

For each of these possible drought thresholds, the optimal combination of restric-
tion coefficients is selected for each type of demand. This combination minimizes the 
objective function over the set of expected flows. Figure  2c presents an example in 
which two types of demand, urban supply and irrigation are considered. The value 
of the objective function is represented as both coefficients are modified. The mini-
mum value is obtained for a restriction coefficient of 0.7 for irrigation demand and  
no restriction for urban demand. Once the optimal coefficients have been identified  
in each drought threshold, the curve that achieves the minimum value of the objec-
tive function is selected as the drought activation threshold. Figure  2d  presents the  
values of the objective function for the different activation curves analysed. The coef-
ficients adopted are those that correspond to the optimal management of each curve. 
The minimum value is obtained for the curve that corresponds to monthly storage val-
ues that lead to a probability of 60% of having a deficit of 10% over the period of 
analysis. The management rule is defined by the activation threshold that leads to the 
minimum value of the objective function and the corresponding restriction coefficients 
(Fig. 2e). This basic procedure is repeated for each operation cycle throughout the his-
torical series. The result of the process is a sequence of optimal operating rules that 

Fig. 2  Schematic representation of the methodology
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change over time because they adapt to the volumes stored in the reservoirs and to the 
expected flows in each operation cycle.

3  Case Study

The proposed methodology has been applied to the Pisuerga-Carrión water resources 
system, in the Duero-Douro basin. The Pisuerga-Carrión system comprises the basin of 
the Pisuerga River up to its mouth in the Duero-Douro River, with a total area of 12,007 
 km2. The map of the area and the schematic topology of the model are presented in Fig. 3. 
The Pisuerga-Carrión System is in the north of the Iberian Peninsula. The headwaters of 
the Pisuerga and Carrión rivers are in the Cantabrian Mountain range at elevations over 
2000 m and the rivers flow in a north–south direction through a plateau with an altitude 
between 800 and 600 m. The climate of the headwaters is Atlantic or Euro-Siberian, with 
high rainfall, exceeding 1,400  mm/year. The runoff is mainly concentrated in the head-
waters of the basins, which is where the regulation reservoirs are located. On the plateau, 
the climate is continental. Winters are long and cold, and summers are hot and dry, with 
annual rainfall between 400 and 600 mm/year. An important irrigated agriculture has been 
developed in this plateau area.

The data for the model were obtained from the draft of the ‘River Basin Plan for the 
Spanish Part of the Duero River Basin District’ for the cycle 2022–2027 (Confederación 
Hidrográfica del Duero 2022). The main demands of the system correspond to the urban 
water supply for the cities of Valladolid (44.9  hm3/a) and Palencia (10.4  hm3/a) and the 

Fig. 3  Representation of the Pisuerga-Carrión water supply system and the simplified topology adopted in 
the model
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irrigated areas of Carrión-Saldaña (99  hm3/yr), Canal de Castilla North (62  hm3/yr), 
Canal de Castilla Centre-South (117  hm3/yr) and Pisuerga (80  hm3/a). Total demand in 
the system amounts to 55.3  hm3/yr for urban supply and 357  hm3/yr for irrigation. The 
weighting coefficients adopted for the objective function were �

1
= 1 for urban supply 

and �
2
= 0.1 for irrigation. The hydraulic infrastructure of the basin consists of several 

irrigation canals that serve irrigation districts and five large reservoirs. Camporredondo 
and Compuerto on the Carrión River and Requejada, Cervera and Aguilar on the Pisu-
erga River. The model considers an equivalent reservoir on the Carrión River (169  hm3) 
and another on the Pisuerga River (342  hm3), each of them integrating the storage vol-
ume available in its basin. The total reservoir capacity considered in the model is 511 
 hm3. Streamflow for the model was taken from the results of the SIMPA model (Estrela 
and Quintas 1996; Alvarez et al. 2004). A total of 55 years of monthly time series were 
available, running from the hydrological year 1960–61 to 2015–16. Total mean annual 
flow from the Carrión-Pisuerga basin is 967  hm3/s, but only 558  hm3/yr are regulated  
in the reservoirs: 262  hm3/yr in the Carrión River and 296  hm3/yr in the Pisuerga River.

3.1  Simulation with No Rules

An initial simulation was carried out to evaluate the current ability to meet demands 
without drought operating rules. The results of the simulation are shown in Fig. 4a. It 
represents the evolution of storage in the system as a function of time and the deficits of 
the demands for urban supply and irrigation. There are 13 episodes where the reservoirs 
become empty, thus producing important supply deficits that reach 100% of the monthly 
demand, both for urban supply and irrigation. The cumulative contribution of urban and 
irrigation demands to the objective function is shown as a black line in the correspond-
ing plots of urban and irrigation deficits. The total value of the objective function for 
this simulation is 0.2479  hm3/m. The contribution of urban demand to the objective 
function is 0.1835  hm3/m while the contribution of irrigation demand is 0.0644  hm3/m.

3.2  Static Operating Rules

The results of the simulation with static operating rules are shown in Fig. 4b. The algo-
rithm was run with one activation threshold and one set of restriction coefficients. The 
activation threshold is shown as a dark blue line in the storage plot. The optimal values 
of the restriction coefficients were found to be 1 for urban demand and 0.55 for irriga-
tion demand. Therefore, no restrictions were applied to urban supply. Drought control 
rules manage to reduce the number of episodes where the reservoirs become empty to 
just three. There is one three-month event in which the reservoirs become empty and 
produces deficits in the urban supply. There are two one-month events with empty res-
ervoirs, but they do not produce deficits in urban demand. On the other hand, irrigation 
deficits are more frequent but less intense compared to simulation without rules. The 
total value of the objective function for this simulation is 0.0703  hm3/m. The contribu-
tion of urban demand to the objective function is reduced to 0.0218  hm3/m while the 
contribution of irrigation demand is 0.0485  hm3/m.
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3.3  Adaptive Operating Rules without Forecast

Adaptive operating rules were first applied without forecast. The algorithm was run with 
an annual operation cycle starting in October, with a decision horizon of 12  months. 
The analysis horizon was also set to 12 months. In this case, the ensemble of hydrologi-
cal flows considered in the analysis was the same in each cycle of operation. It was con-
structed by extracting from the historical series all the subseries that begin in the current 
month and have a duration equal to the analysis horizon, Ha . The values of the activation 
thresholds and restriction coefficients were determined for each operation cycle, taking 
advantage of knowing the volume of water available in the reservoirs at the beginning 
of the operation cycle. An optimization problem was solved in each cycle, selecting the 
activation thresholds and restriction coefficients that minimize the expected value of the 
objective function in the analysis horizon, Ha . In each period, a single operating rule 
was defined (one activation threshold and one set of restriction coefficients), due to the 
limitations of computing time, since it is necessary to perform as many optimizations 
as operating cycles are defined (55 in total). Operating rules were required for 53 of 
the 55 years. Restrictions coefficients for urban demand ranged from 0.90 to 1.00. The 

Fig. 4  Results of the simulation of the Pisuerga-Carrión system. a) Simulation without rules. b) Simula-
tion with static rules. c) Simulation with adaptive rules without forecast. d) Simulation with adaptive rules 
with forecast
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restrictions coefficients for irrigation demand ranged from 0.10 to 0.95. The operating 
rules thus defined are applied during the following decision horizon, Hd.

The results of the simulation with adaptive operating rules without forecast are 
shown in Fig.  4c.  The selected activation threshold, shown as a dark blue line in the 
storage plot, changes every operation cycle. The total value of the objective function 
for this simulation is 0.0943  hm3/m. The contribution of urban demand to the objec-
tive function is 0.0381  hm3/m while the contribution of irrigation demand is 0.0563 
 hm3/m. There are nine episodes with empty reservoirs and in three of them the duration 
is longer than a month, thus producing deficits in urban demands.

3.4  Adaptive Operating Rules with Forecast

Adaptive operating rules were also applied assuming that a streamflow forecast is avail-
able over the analysis horizon. Since no actual forecast is operationally available for the 
Pisuerga-Carrión system, the forecast was emulated with a stochastic model built from 
the historical series. In each optimization cycle, the historical series was disturbed on 
the analysis horizon. A random error term was added to the observed values. The error 
term increases over time, to represent the greater uncertainty of longer-term forecasts. 
The following describes the process used to simulate the availability of a forecast.

An increasing error structure is generated from an initial error �
0
 and an increment 

factor � , with 𝜙 > 1 . The error at instant j , �j , will be:

From there, the standard deviation of the error, �j , is modeled as:

With this error structure, a stochastic process is generated, starting from a sequence 
of uncorrelated of random numbers �j of normal distribution with zero mean and stand-
ard deviation �j . The error �j is obtained by accumulating the sum of the sequence of 
random numbers:

The monthly series of streamflow throughout the period is Yk
i
 , where k corresponds 

to the year and i corresponds to the month. First, the standardized series of streamflow, 
xk
i
 , is determined:

where �i is the mean of month i and �i is the standard deviation of month i.
The reference series, xk

j
 , is the normalized series of values that correspond to the 

analysis period. The uncertain forecast, Zk
i
 , is generated by applying the error to the ref-

erence series and reconstructing the original values.

(1)�j = �j−1� = �
0
�j

(2)�j =

√

�2
j
− �2

j−1

(3)�j =

j
∑

1

�j

(4)xk
i
=

Yk
i
− �i

�i
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A forecast ensemble is generated by repeating this procedure with a certain number of 
random series. This forecast can approximate the actual series depending on the chosen 
values of the initial error �

0
 and the increment factor, �.

The algorithm was run with the same settings as in the case without forecast, but sub-
stituting the climatological ensemble by an uncertain forecast consisting of 20 series gen-
erated with an initial error of �

0
= 0.2 and an increase factor of � = 1.15 . In this case, 

the algorithm not only has information on the storage available at the beginning of the 
operation cycle; it also has some information on the inflows that can be expected into the 
reservoirs. This information allows for a reduction in the number of cycles where operating 
rules were required to 18 years. The restriction coefficients for urban demand ranged from 
0.95 to 1.00. The restriction coefficients for irrigation demand ranged from 0.20 to 0.95.

The results of the simulation with adaptive operating rules with forecast are shown in 
Fig. 4d. The activation thresholds, shown as a black line in the storage plot, are very differ-
ent from the values obtained in the case without forecast. In wet years, restrictions are not 
required, and no activation thresholds are set. However, in dry years, the algorithm adjusts 
the activation thresholds according to the expected flows. The total value of the objective 
function for this simulation is 0.0846  hm3/m. The contribution of urban demand to the 
objective function is 0.0365  hm3/m while the contribution of irrigation demand is 0.0481 
 hm3/m. The reservoirs become empty ten times. Three of these episodes produce deficits in 
urban demands.

4  Discussion

The results obtained in the simulations performed for the Pisuerga-Carrión system in the 
four alternatives considered are summarized in Table 1 and in Figs. 5 and 6. The applica-
tion of adaptive rules reduces the duration of the restrictions. According to static rules, the  
system enters drought condition in 105 months, 15.9% of the period under analysis. This 
figure is reduced to 63 months under adaptive rules (9.5% of the time) and to 70 months 
under adaptive rules with forecast (10.6% of the time). As seen in the upper row of Fig. 5, 
the application of drought operating rules leads to higher storage values, although the 
differences are not very significant. The increase in reservoir storage is greater for static 
rules than for adaptive rules, because static rules lead to larger restrictions overall. The 
differences between adaptive rules with and without forecast were found to be small. This  
emphasis on water conservation is relevant to reduce the number of episodes where the 
reservoirs become empty. The activation thresholds established by adaptive rules are vari-
able. In the case of adaptive rules without forecast, the activation thresholds may be above  
or below the thresholds established for static rules, following the wet and dry cycles of 
streamflow. In general, higher values of reservoir storage led to thresholds above, and 
lower values of reservoir storage led to thresholds below those established for static rules.  
When established, the thresholds for adaptive rules with forecast were higher than the 
thresholds established in the same year for adaptive rules without forecast.

The intensity of the restrictions applied under drought conditions can be seen in the 
upper row of Fig.  6. Under static rules, the same restrictions are applied every drought 
year. Under adaptive rules, the intensity of restrictions is variable depending on the condi-
tions. There are no restrictions for urban demand under static rules. Under adaptive rules, 

(5)Zk
i
=

(

xk
i
+ �j

)

�k
i
+ �k

i
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the restrictions amount to 0.54  hm3. Restrictions for irrigation are stricter under adaptive 
rules, but the duration of the periods under restriction is shorter than in the case of static 
rules and the global value of restricted supply turns out to be lower, as shown in Table 1. 
Under static rules, the restricted supply amounts to 27.50  hm3. The uncontrolled deficit, 
produced when there is no remaining storage in the reservoirs, is 4.18  hm3. The total irriga-
tion deficit is 31.68  hm3. According to adaptive rules, restricted irrigation supply is 20.57 
 hm3. This value is further reduced to 16.34  hm3 when a forecast is available. The uncon-
trolled deficits are higher than in the case of static rules: 5.87  hm3 and 7.50  hm3, respec-
tively. However, adaptive rules manage to reduce total irrigation deficit with respect to that 
of static rules: 26.44  hm3 without forecast (a 16.5% reduction) and 24.14  hm3 with forecast 
(a 23.8% reduction).

The lower row of Fig. 6 shows the evolution of the objective function during the simu-
lation. In the option without rules, deficits are not very frequent, but they imply signifi-
cant jumps in the objective function because the deficits are usually a large fraction of 
the monthly demand. There are 13 episodes of deficit, of which 10 affect urban demand. 
The average urban deficit is 0.37  hm3 per period and the average irrigation deficit is 1.76 
 hm3 per period. Under static rules, there is only one episode of urban deficit, spanning 

Table 1  Simulation results for the Pisuerga-Carrión system in the four alternatives considered

No rules Static rules Adaptive rules Adaptive rules 
with forecast

% months with active rules 0 100 96.4 32.7
% months in drought condition 0.0 15.9 9.5 10.6
Urban supply restrictions  (hm3) 0.00 0.00 0.54 0.54
Urban uncontrolled deficit  (hm3) 3.66 0.49 0.76 0.79
Urban deficit  (hm3) 3.66 0.49 1.30 1.34
Urban objective function from supply restrictions 

 (hm3/m)
0.0000 0.0000 0.0017 0.0017

Urban objective function from uncontrolled 
deficit(hm3/m)

0.1835 0.0218 0.0364 0.0349

Urban objective function  (hm3/m) 0.1835 0.0218 0.0381 0.0365
Irrigation supply restrictions  (hm3) 0.00 27.50 20.57 16.64
Irrigation uncontrolled deficit  (hm3) 22.85 4.18 5.87 7.50
Irrigation deficit  (hm3) 22.85 31.68 26.44 24.14
Irrigation objective function from supply restrictions 

 (hm3/m)
0.0000 0.0341 0.0299 0.0185

Irrigation objective function from uncontrolled 
deficit(hm3/m)

0.0644 0.0144 0.0263 0.0296

Irrigation objective function  (hm3/m) 0.0644 0.0485 0.0563 0.0481
Total supply restrictions  (hm3/m) 0.00 27.50 21.11 17.18
Total uncontrolled deficit  (hm3/m) 26.51 4.67 6.63 8.29
Total deficit  (hm3/m) 26.51 32.17 27.74 25.48
Total objective function from supply restrictions 

 (hm3/m)
0.0000 0.0341 0.0316 0.0202

Total objective function from uncontrolled 
deficit(hm3/m)

0.2479 0.0362 0.0628 0.0645

Total objective function  (hm3/m) 0.2479 0.0703 0.0943 0.0846
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a three-month period and totalling 0.49  hm3. However, the number of periods of irriga-
tion deficit increases to 19, with an average value of 1.67  hm3 per period. This suggests 
that restrictions were applied when they were not really needed, given the actual inflow 
received in the period. The restrictions imposed by static rules led to deficits that were 
harmful. However, the application of rules is beneficial throughout the analysis period 
because the total accumulated value of the objective function is less than in the option 
without rules. The application of adaptive rules leads to even more frequent deficits. There 

Fig. 5  Time evolution of storage variables for the simulation of the Pisuerga-Carrión system. Upper row: 
reservoir storage (a: actual values; b: changes with respect to the simulation with no rules; c: cumulative 
values of changes). Lower row: activation thresholds (d: actual values; e: changes with respect to the simu-
lation with static rules; f: cumulative values of changes)

Fig. 6  Time evolution of demand variables for the simulation of the Pisuerga-Carrión system. a) Simulation 
without rules. b) Simulation with static rules. c) Simulation with adaptive rules without forecast. d) Simula-
tion with adaptive rules with forecast. Upper row: supply restriction coefficients. Centre row: cumulative 
value of the supply deficit. Lower row: cumulative value of the objective function
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are 20 periods of deficit for urban demand and 22 for irrigation demand for adaptive rules 
without forecast. The frequent deficits due to restrictions in urban supply have very little 
effect on the objective function, because deficits due to restrictions are a small fraction of 
the monthly demand. However, there are three episodes where urban deficit is not due to 
water conservation measures but to lack of water availability. These three episodes produce 
a much larger impact on the objective function. The application of adaptive rules leads to 
more frequent restrictions, but it has the beneficial effect of reducing the total deficit.

The best overall behaviour of the objective function is presented by the option of static 
rules. Without rules, the total value of the objective function was 0.2479  hm3/m. With 
static rules, this value was reduced to 0.0703  hm3/m. Adaptive rules lead to a final value 
of 0.0943  hm3/m, that was reduced to 0.0846  hm3/m assuming an adequate inflow forecast. 
At first glance, this may be surprising, since the option of static rules does not consider the 
state of the reservoir at the beginning of each cycle. However, there are two circumstances 
that explain this behaviour. First, the algorithm that was used to define the static rules 
optimized the same objective function that was used for the evaluation. Adaptive options, 
however, perform a partial optimization in each cycle and are later evaluated on their per-
formance over the entire period of analysis. Second, and more important, the static option 
was able to define the operating rules knowing exactly the series of inflows that enter the 
reservoirs of the system. The validation of the rules thus defined was done with the same 
inflow series that were used in rule definition, which constitutes a situation of comparative 
advantage for static rules.

A numerical experiment was carried out to analyse this point. The system was simulated 
without rules and with static rules, but with a set of 10,000 random series of inflows. Ran-
dom inflows were generated from the historical series, but changing the actual sequence 
of the hydrological years. Under the hypothesis of stationarity, these random series can be 
considered representative of future inflows because the autocorrelation of annual series is 
very low. Figure 7 shows the results of these simulations. The plots of the cumulative val-
ues of the objective function are shown in the upper row. Plot a corresponds to the simula-
tion without rules and plot b corresponds to the simulation with static rules. In the lower 
row, plot c shows the comparison of the empirical probability distribution of the final value 
of the objective function for the simulations without rules and with static rules. The cumu-
lative values of the objective function corresponding to the historical time series have been 
highlighted in all three plots, together with the average value of the 10,000 series. As can 
be seen in the plots, the objective value obtained for the historical time series (0.2479) is 
close to the average value for the simulation without rules (0.2732). However, for the simu-
lation with static rules, the objective value obtained for the historical time series (0.0703) 
is much lower than the average value (0.1290). The value obtained for the simulation with 
the historical time series is less than 86% of the 10,000 random series analysed.

The reference for comparison with adaptive rules should be the average value of the 
objective function with random time series. This comparison is shown in plot d of Fig. 7. 
It shows the cumulative value of the objective function obtained for the four cases ana-
lysed with historical series (no rules, static rules, adaptive rules, and adaptive rules with 
forecast) and the average values of the cumulative function in the two cases analysed with 
random series (no rules, static rules). The behaviour of adaptive rules with the historical 
series (0.0943  hm3/m without forecast and 0.0846  hm3/m with forecast) is clearly better 
than the expected value of the static rules for random series (0.1290  hm3/m). The reduction 
in objective function is 26.9% for adaptive rules without forecast and 34.4% for adaptive 
rules with forecast.
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The above analyses were carried out assuming constant demand values over time. In prac-
tice, demand values are known to vary over time. They may increase, in response to population 
growth in cities or the development of new irrigated areas, or they may decrease, because of the 
implementation of water saving measures. The possibility of changing demands makes adap-
tive models more attractive. If demands are expected to change, adaptive rules can react to the 
evolution of demands and help maximize system performance. The methodology presented in 
this work may be easily modified to accommodate time variant demands. In each rule definition 
cycle, the simulations could be performed with the expected values of urban supply and irriga-
tion demands for the near future. The case where future demands are uncertain could be treated 
in a similar way as streamflow forecasts. The simulations could be performed with an ensem-
ble of forecasted demands to obtain the rule parameters that minimize the expected value of 
the objective function over the ensemble of forecasted demands. The performance of the system 
under the derived rules would, obviously, depend on the accuracy of the demand forecast.

5  Conclusions

In this work, a methodology has been proposed for the determination of optimal rules for 
the operation of reservoir systems from a given initial state. These rules can be applied in 
a system to support decisions for managing the reservoir system under drought conditions. 

Fig. 7  Results of the simulation of the Pisuerga-Carrión System with random streamflow series. Upper row: 
Evolution of the objective function for the 10,000 random series (a: no rules; b: static rules). Lower row, c: 
probability distribution of the final value of the objective function; d: evolution of the objective function for 
all alternatives
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The methodology consists of simulating the behaviour of the reservoir system during 
a period of analysis from its initial state, subjected to random hydrological forcing. An 
objective function is used to compare and select alternatives. The optimal rules consist of 
a set of thresholds to trigger management actions and coefficients to restrict supply to the 
demands present in the system.

The main result of the research is the development of a general methodology for the 
definition of adaptive rules that provides a satisfactory solution in an acceptable computing 
time. With the proposed methodology, the optimal operating rules of reservoir systems can 
be obtained for any system with available data.

The methodology was applied to the Pisuerga-Carrión system, in the Duero-Douro 
basin. Adaptive rules were defined on an annual cycle stating on the month of October, 
at the beginning of the hydrological year. The specific operating rules for each cycle were 
determined in two working hypotheses: with no hydrological forecast and assuming that 
a hydrological forecast is available. Different activation thresholds and restriction coeffi-
cients are produced for each year. The values obtained depend mainly on the initial state of 
the reservoir at the beginning of the cycle and the availability of forecasts.

The results obtained were compared with the operation without rules and with the appli-
cation of static rules valid for the entire analysis period. Adaptive rules were found to not 
improve the behaviour of static rules when applied to the same historical series that was 
used to determine them. However, if random inflow series were considered, the adaptive 
rules would lead to lower values of the objective function compared to the expected value 
obtained with static rules. The application of dynamic rules was also found to reduce the 
duration of periods under restrictions and the overall supply deficit.
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