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Abstract
The forecast analysis of the exposure to the contamination risk in a water distribution 
network requires increasing the quality of the applied input/outputs modeling. This need 
involves using non-traditional models responding to the increasingly high computation 
requirements. In this scenario, the Cellular Automata paradigm represents a new frontier 
with considerable potential. Specifically, this paper describes the Eulerian Water quAl-
ity Modeling—Cellular Automata (EWAM-CA) model, aimed at simulating the sodium 
hypochlorite (chlorine) injection, transport, and reaction phase in a medium-sized drinking 
water network. The EWAM-CA accuracy was compared with the Epanet software on a 
Fossolo water network, in Bologna town (Italy), considering a constant and an impulsive 
input respectively. Due to CA’s intrinsic aptitude for parallel computing, a parallel version 
of EWAM-CA was developed. Moreover, using the capability of the cellular automata to 
manage the modeling asynchronously, improving the computational efficiency, we propose 
a novel approach based on activation/deactivation asynchronous rules, avoiding unneces-
sary calculations in nodes or pipes where no pollution occurs. The different EWAM-CA 
versions were compared for the case study, and the parallel EWAM-CA approach coupled 
with asynchronous functionality significantly improved computational performance.
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1  Introduction

The problems related to managing drinking water distribution networks (WDN), together 
with their interdependence with other technological infrastructures, require in-depth analy-
sis, mainly when sensitive aspects affect their functioning. Furthermore, the interest related 
to the management of WDNs depends on the status of Critical Infrastructures (Adedoja 
et  al. 2018) because the alteration of the correct functioning determines considerable 
impacts on the population’s well-being (Johansen and Tien 2018), not only in terms of 
distributed resource but mainly on the quality of the same. Therefore, it is a priority to have 
tools capable of estimating the level of exposure to the risks associated with their optimal 
management to make it sustainable.

In this context, sustainable management models must be based on accurate planning 
of the entire life cycle of the network, with a short and long-term vision and considering 
the possible objectives to be achieved (Maiolo et al. 2020). These aspects, linked to quan-
titative and qualitative assessments, represent the input data for the management models. 
Expressly, the quality of the water resource assumes a priority role, ensuring compliance 
with internationally regulated qualitative parameters (e.g., 2000/60/EC) and sustainability 
requirements and protecting against the risk of contamination.

Identifying sources of contamination in a WDN represents a literary trend that has 
developed over time. The literature offers different models for estimating quality, pre-
diction, and monitoring (Capano et al. 2019). Generally, it is impossible to disregard the 
analysis of the context related to modeling the movement and reactions of contaminants 
within a WDN. The studies of particle transport in computational fluid dynamics mainly 
show two approaches, the Lagrangian and the Eulerian, respectively (Zhang and Chen 
2007). The Lagrangian approach describes the phenomena focusing on the particles that 
are chased in motion. The Eulerian approach describes phenomena from a specific point 
in space through which the particles transit. Both methods presuppose the previous knowl-
edge of the WDN hydraulic operating (pipe flow direction and value) throughout the simu-
lated period.

In general, modeling the quality of the resource in a drinking water network requires 
the calculation of three primary parameters: the position of the source, the concentration, 
and the intrusion time of the contaminant. The literature identifies different modeling and 
problem-solving approaches. Sun et al. (2019) analyzes the spatial–temporal characteristics 
of user alerts during a contaminant intrusion event, proposing a new analysis methodol-
ogy aimed at reducing the arrival times of reports based on the Convolution Neural Net-
work (CNN). Capano et al. (2019) presented a quick procedure for identifying one or more 
sensitive nodes in a network using a mainly topological approach called Identification of 
Contamination Potential Source (ICPS). Benamar et al. (2020) presented a study to obtain 
detailed information on global changes in Physico-chemical parameters at different sam-
pling points. Ortega et al. (2020) use a Bayesian approach for the source of contamination 
determination, using an algorithm that reports the probability that each node is the source 
to explain the correlations between the sampling positions, defining a classification. Grbčić 
et  al. (2021) present a complete framework for identifying the source of contamination 
(with a machine learning algorithm), the contamination times (with a stochastic fireworks 
optimization algorithm), and the injected contaminant concentration (through optimization 
and Random Forest algorithm).

However, the modeling and technological advancement required using forecast analyses 
point out that traditional models appear unsuitable for the scope. For example, in many 
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cases present in the literature, the analysis of water systems is based only on optimiza-
tion models of hydraulic properties (velocity, pressure, length of pipelines) (Hassanvand 
et al. 2021). These represent the input of models with different analytical characteristics, 
including the Neural Network and the Fuzzy approach, which, through Artificial Intel-
ligence (Salimi et al. 2020), increase the complexity of traditional modeling approaches. 
This aspect is a priority for the frequent use of management tools, such as the Decision 
Support System (DSS) (Grimaldi et al. 2020; Pagano et al. 2021), which require accurate 
and reliable estimates of the parameters.

In his attempt to understand the fundamental mechanisms behind self-reproduction, the 
Cellular Automata (CA) (Neumann and Burks 1966) are considered a new approach to 
treating some complex systems whose behavior may be expressed in terms of local laws. 
The system’s complexity emerges from the interactions of its elementary (cellular) units by 
applying relatively simple local rules. Hence, it can be considered an alternative approach 
to differential equations and a general formalism that can represent and solve numerical 
methods. CA has been used to simulate many natural complex phenomena. In particular, 
Extended Cellular Automata (XCA), which is an extension of the original CA computa-
tional paradigm, have proven to be suitable for simulating complex natural phenomena like 
unsaturated water flow (Mendicino et al. 2006; De Rango et al. 2021), lava flows (Spataro 
et al. 2017), forest fires (Avolio et al. 2014).

Moreover, another type of CA exists, the Graph-based CA (Wu and Rosenfeld 1979), 
which has been widely used (Małecki et al. 2019). The principal difference from the classi-
cal CA is the definition of the neighborhood modeled as a directed graph.

CA-based models provide other opportunities besides their natural predisposition to 
parallel computing, which can exploit to improve further computational speed. Specifi-
cally, asynchronous functionality optimization can be developed, allowing additional com-
putation speed.

In this paper, the definition of asynchronous functionality is similar to that of Furnari 
et al. (2021), where a rule is imposed to allow only a part of the domain (called active cells 
or automata) to evolve step by step to the next state and keep quiescent (i.e., remaining in 
the same state) the residual part (called non-active cells or automata). From a computa-
tional point of view, this functionality avoids unnecessary calculations related to non-active 
parts of the domain which does not change their state during the simulation execution.

For WDNs the use of classical CA-based models is limited. This aspect is mainly 
related to the not fixed neighborhood since a WDN is not a classical regular grid. In 
Keedwell and Khu (2006), one of the first applications of CA to a WDN is proposed. 
This study introduces the CA approach in the context of optimal design in WDN, 
developing a direct performance comparison with genetic algorithms (GA). Guo et al. 
(2007), following the comparative approach between CA and GA, present a structured 
model with CA, which guarantees better performance than multi-objective genetic algo-
rithms in terms of optimization efficiency. From a qualitative point of view, interest in 
the combination of CA and water quality modeling has been developing in recent years. 
Afshar and Hajiabadi (2018) propose a CA approach based on Parallel Cellular Autom-
ata (PCA) for multi-objective reservoir operation optimization. In Abhijith and Mohan 
(2020), the CA approach is used to predict chlorine’s temporal and spatial variations in 
a WDN, using stochastic Lagrangian techniques to represent advection and dispersion 
processes. Abhijith and Mohan (2021) use a CA approach to model microbial growth 
and trihalomethane formation in chlorinated water distribution systems.

In this paper, we propose an Eulerian Water quAlity Modeling—Cellular Automata 
(EWAM-CA), based on a finite volume forecasting model formalized in the Graph-based 
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XCA approach in the water resource quality modeling proposed in Rossman et al. (1993). 
EWAM-CA enables the modeling of the transport and reaction of a chemical substance 
mixed with water within pipelines of a drinking water network. The model’s potential is 
evaluated in the application by simulating chlorine injection in a medium-sized network 
with a steady-state hydraulic simulation. The model is structured to adapt to unsteady-state 
hydraulic simulations and model different reaction mechanisms of the transported sub-
stances. In detail, the EWAM-CA model performs a discretization of volumes, according 
to Rossman et al. (1994). Each pipeline is divided into a defined number of sub-volumes 
compatible with the hydraulic operating regime of the network. The chemical substance in 
each sub-volume is routed downstream, updating the states of the automata representing 
the network nodes.

The parallel implementation of the EWAM-CA model, together with the application of 
a new asynchronism rule, is applied on a Fossolo network (Bragalli et al. 2008; Meirelles 
et al. 2018). This network, single source, includes 36 nodes, 58 pipes that extend for about 
8.4 km. For quality simulation a sodium hypochlorite is chosen as input substance, with a 
constant and an impulsive input, useful to comparing the result compared with the Epanet 
software. The main aim is to evaluate the potential of the EWAM-CA parallel implementa-
tion coupled with the asynchronous functionality in terms of computational efficiency.

Then, in Sect. 2 the criteria relating to the hydraulic modeling of the water network and 
the modeling with CA are detailed, including a case study presentation. In the Sect. 3 the 
results of the EWAN-CA application and the relative computational performances are pre-
sented. The conclusions are explained in Sect. 4.

2 � Materials and Methods

2.1 � Water Quality Modeling in an Urban Network

The hydraulic simulation aims to model the WDN operating regime starting from known 
data. On the other hand, the quality simulation goal is the knowledge of how chemical 
substances move and react in the network. Quality models use as input the hydraulic oper-
ating regime of and the characteristics of the introduced substances (diffusivity, solubility, 
concentration). Rossman et  al. (1993) present a solution approach using a finite volume 
Eulerian scheme. The method assumes that the pipes are divided into equally sized volume 
segments once a temporal discretization is defined. The volumes composing each pipe are 
considered thoroughly mixed, limiting the numerical diffusion.

The authors, in this paper, propose a computation method based on the Eulerian finite 
volume method presented in Rossman et al. (1993). The model uses the operator splitting 
technique on the advective flow equation.

The tubes are divided into sub-volumes depending on the quality time step chosen. 
For each quality time interval, each volume element undergoes the reaction and disper-
sion (Eq. (1)) and is subsequently transported (Eq. (2)) following the hydraulic operating 
regime.

(1)�C

�t
− D

�2C

�2x
+ kbC = 0
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In which: C is the concentration of the chemical substance along the pipe, u is the flow 
average velocity, x represent the position in the i-st pipe ( x = 0 pipe start, x = Li pipe end, 
Li is the i-st pipe length), D is the diffusion, kb represent the reaction rate coefficient.

Rossman et al. (1993) use a criterion for dividing pipes into elements based on the pipe 
travel time:

where � is the quality simulation time interval, i is the index pipes, Vi is the total volume, 
Qi is the flow rate, �∗

i
 is the non-integer number of finite sub-elements, vi is the volume of 

the �i sub-elements. To assess the effectiveness of the EWAM-CA to model the introduc-
tion and transport of a chemical substance model, we compare the results obtained with the 
Epanet software, characterized by a Lagrangian solution approach (Liou and Kroon 1987). 
Epanet (Rossman 2000) is a software developed by the USEPA (the United States Environ-
mental Protection Agency). It is one of the most known software for WDN hydraulic simu-
lation. It allows performing hydraulic simulations of chemicals within a WDN.

Herein we chose sodium hypochlorite as the input chemical substance. This substance 
is commonly used for water disinfection because the reaction kinetics are well known. 
This substance, used for water disinfection, undergoes a decay process in the network. The 
sodium hypochlorite decay process releases free chlorine, which functions well in water 
quality control. In additions, its systematic determination allows recognizing degradative 
processes in progress in the network, providing important information on the disinfection 
process.

There are many chlorine decay analysis models. Most of these models refer to the one 
proposed by Rossman et al. (1994), which laid the content foundations for the quality sim-
ulation criteria setting in Epanet 2 (Rossman 2000). EWAM-CA simulates chlorine con-
centration decay using the one-dimensional conservation of mass equation for a dilute con-
centration of total free chlorine in water flowing through a section, proposed in Rossman 
et al. (1994) to use the Eq. (1):

where C is the chlorine concentration in the bulk flow, u is the flow average velocity, kb 
is the bulk flow decay rate, Cw chlorine concentration at pipe wall and r is the hydraulic 
radius.

Equation (6) excludes the dispersion term, considered negligible compared to the others. 
The decision to neglect kw depends on the variability of this parameter, linked to the tem-
perature of the water, and the actual conditions of the pipe material. It is usually determined 

(2)
�C

�t
+ u

�C

�x
= 0

(3)� = min

(
Vi

Qi

)

(4)�∗
i
=

(
Vi

�Qi

)

(5)vi =
Vi

nearest integer(�∗
i
)

(6)�C

�t
= −u

�C

�x
− kbC −

kw
(
C − Cw

)

r
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during the calibration phase of the model. According to Eq. (6) the concentration depends 
on three terms. The first term considers the advection due to the water flow, while the sec-
ond and third represent the decay in the bulk flow and on the pipe wall, respectively. In the 
often recurring hypothesis of considering the total chlorine decay mechanism within the 
bulk flow, Eqs. (1) and (2) can be rewritten as follows:

in which

where kB represents the total bulk decay rate.

2.2 � Cellular Automata Water Quality Modeling

CA can be considered a time/space discrete model where space is represented by a 
d-dimensional (i.e., 1D, 2D, 3D, …) structured grid of cells. At the beginning of the simu-
lation, cells are in an arbitrary state, and the CA evolves by changing the states of the cells 
in discrete time steps by applying the same evolution law to each of them simultaneously. 
The evolution law can also consider the states of neighboring cells, defined by neighobor-
hood conditions, a geometrical pattern invariant in time and space. Despite their simple 
definition, CA may give rise to highly complex behavior at a macroscopic level. Even if the 
local laws that regulate the system’s dynamics are known, the system’s global behavior can 
be tough to predict. In general, CA is formally identified by a quadruple which describes 
its fundamental characteristics. The quadruple is composed of: cellular space, in which the 
automata can evolve (e.g., one-, two-, three-dimensional); the pattern of the neighborhood, 
which identifies the spatial correlation between the cells in the computational domain and 
cannot change over time (e.g., Von Neumann or Moore neighborhood); the finite set of the 
cells states; the deterministic transition function, which allows evolving the cellular autom-
ata over time. It is simultaneously applied to each cell of the CA, and according to the 
neighborhood pattern, the cell changes its state. Moreover, the keys properties of the CA 
are: parallelism the state of each cell is updated independently from the others; locality, the 
new state of the cell depends only on its old state and the state of the neighborhood; homo-
geneity, the same deterministic transition function is applied to each cell of the domain.

Many different CA-based methods can be found in the literature to simulate many natu-
ral phenomena. XCA (Di Gregorio and Serra 1999) represent an extension of the original 
CA computational paradigm. The XCA formalism introduces some extensions concerning 
the classical CA. Major novelties regard the possibility of decomposing the state of the 
cells in substates (i.e., chemical concentration, total water volume, etc.) related to the phe-
nomenon to be modeled. The cell state thus belongs to the Cartesian product of the consid-
ered substates. Phenomenon parameter behaviors, such as total bulk decay rate, can also be 
considered. In addition, the state transition function is divided into elementary processes, 
describing particular aspects of the supposed phenomenon.

A Graph-based XCA has been here considered as an explicit solver. The Graph-based 
XCA preserves all fundamental characteristics of the XCA. Nevertheless, the condition 

(7)
�C

�t
= −kBC

(8)
�C

�t
+ u

�C

�x
= 0

(9)C(t) = C(t − Δt)e−kBΔt
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of the neighborhood has been relaxed to be considered as a directed graph. The choice 
of the Graph-based XCA was dictated by the context of WDN in which a topological 
position describes the relationship between the various nodes of the network.

The formal definition of the Graph-based XCA is described by the following 
formulation:

where:
D = [0, n − 1] ⊂ ℤ is the one-dimensional discrete computational domain, with n rep-

resenting the number of cells.
G is a directed graph G = (V ,E), which is defined by a set of nodes V(G) , set of 

edges E(G) . Each vertex vi corresponds to one automaton cell and identifies a set of 
elements such as tanks, reservoirs, and junctions, while the edge represents the longi-
tudinal elements such as pipes and valves. The neighborhood of the vertex vi ∈ V(G) 
is the set of vertices X

(
vi
)
= Xin

(
vi
)
∪ Xout

(
vi
)
 , in which Xin

(
vi
)
= {vj|vjvi ∈ E(G)} and 

Xout

(
vi
)
= {vj|vivj ∈ E(G)}.

In particular, the edge between a generic node vi and node vj is modeled to be sub-
divided into �ij equal size volume elements, which identify the discrete mass value over 
the pipe, and are calculated by Eqs. (3) and (4).

S is the set of finite states of the cell that is defined as:

where Sc[Mg∕l] identifies the chemical concentration of the node, while the states 
Sf [l∕s]  represent the neighborhood relationship with the other automata, S|X(vi)|

f
 is the flow 

referring to the pipes connecting to the vertex vi , S
�i1
m × ... × S

�i|X(vi)|
m  and S�i1c × ... × S

�i|X(vi)|
c  

are the mass of the chemical and the concentration referring to pipes connecting the vertex 
vi and the vertex vj and subdivided into �ij sections.

P = {kb} is the set of parameters identified, where kb is the total bulk decay rate.
� = {�1, �2, �3, �4} is the deterministic transition function. It is composed of the fol-

lowing elementary processes, listed below in the same order as they are applied.
It allows to define the state of the automaton at time t + 1 and depends on the state of 

its neighborhood at time t :

�1 allows calculating the mass of chemicals by considering the elements inside the 
edge between node vi and node vj by applying the following equation:

where mk
ij
 is the chemical mass in the k-st element in the pipe between a generic node vi and 

node vj before reaction and m′k
ij

 is the new value after the reaction.

�2 updates the chemical concentration within the cell as:

(10)EWAM-CA =< D,G, S,P, 𝜎 >

(11)Svi = Sc × S
|X(vi)|
f

× S�i1
m

× ... × S
�i|X(vi)|
m × S�i1

c
× ... × S

�i|X(vi)|
c

(12)�1 ∶ S�i1
m

× ... × S
�i|X(vi)|
m → S�i1

m
× ... × S

�i|X(vi)|
m

(13)m
�k
ij
= mk

ij
ekb� ∀k ∈

{
1, .., �ij

}

(14)�2 ∶ S�i1
m

× ... × S
�i|X(vi)|
m × S

|X(vi)|
f

→ Sc
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where Mvi
 is the total mass of the chemical entering the i-st vertex, m�ij

ji
 is the mass of the 

chemical in the last sub-element ( �ji ) in the pipe between a generic node vi and node vj , Vvi
 

is the total water volume entering the i-st node, and Cin
j

 is the chemical concentration in the 
i-st node.

�3 defines the update the mass and the concentration using the following equation:

where mk
ij
 identifies the kth mass element in the pipe between the generic node vi and vj.

�4 allows to calculate the mass by using the following equation:

Where m1

ij
 identifies the first mass element in the pipe between a generic node vi and node 

vj and Cvi
,Qvi

 and � correspond to the concentration, the discharge, and the time interval, 
respectively.

Figure 1 illustrates, as pseudo-code, the primary simulation process of the EWAM-CA. 
The EWAM-CA was developed in C++. At the beginning of the process, the init() function 
allows the loading the computational domain by defining the relation between the cells of 
the Graph-based XCA. The main cycle, lines 7–14, permits the evolution of the EWAM-CA 
model by applying at each cell the set of the transition function. Finally, lines 11–12 allow 
updating the set of the state of the cellular space.

2.3 � Making Cellular Automata Parallel and Asynchronous

The OpenMP API was considered to exploit the CA intrinsic parallelism property, support-
ing multi-platform shared-memory parallel programming in C/C++. This choice is mainly 
related to OpenMP portability, a simple and flexible interface that can exploit parallel com-
putation from a workstation to supercomputer architectures.

The asynchronous functionality permits narrowing the computation only to the set of 
active nodes, allowing to skip the not active nodes, meaning that not only the transition 
function is not computed, but also that the not active cells are entirely skipped. At the 

(15)Mvi
=

|Xin(vi)|∑

j

m
nji−1

ji

(16)Vvi
=

|Xin(vi)|∑

j

�Qvj

(17)C�
vi
=

Mvi

Vvi

(18)�3 ∶ S�i1
m

× ... × S
�i|X(vi)|
m → S�i1

m
× ... × S

�i|X(vi)|
m

(19)mk+1
ij

= mk
ij
∀k ∈

{
1, .., �ij − 1

}

(20)�4 ∶ S�i1
m

× ... × S
�i|X(vi)|
m × S

|X(vi)|
f

→ S�i1
m

× ... × S
�i|X(vi)|
m

(21)m1

ij
= Cvi

Qvi
�
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beginning of the computation, all the node state is set to non-active unless for the source 
node. During the simulation, a node can set to active one of the neighborhood nodes by 
considering the following rule:

A node can change its state to non-active using the following rule:

More in detail, a node activates a neighborhood node if the chemical mass of the last 
element of the pipe is greater than zero. Instead, a node deactivates itself if its concentra-
tion is zero, the sum of all chemical mass in its outgoing pipe is zero, and the sum of all 
chemical mass in its incoming pipe is zero.

Applying the above rules allows skipping the non-active node’s �1, �2, �3, and �4 deter-
ministic transition functions computation altogether. Since the transport of a chemical 
substance does not necessarily and immediately involve all the network nodes, an asyn-
chronous implementation deactivates the automata that do not participate in the chemical 
transport, leading to an increase in computational performance.

2.4 � Case Study

The chosen case study is a network presented in Bragalli et al. (2008) and Meirelles et al. 
(2018) (Fig. 2). The network supplies water to a District Metered Area (DMA) in the city 
of Bologna. The DMA extends over 0.5 square kilometers.

The WDN counts 36 nodes, an average altitude of 64.3 a.s.l., and 58 pipes extending 
for about 8.4 km. The network has a single source modelled by a reservoir (tank of infinite 
volume) with a fixed hydraulic head of 121 a.s.l., which provides a flow of 33.9 l/s to the 
served area.

3 � Results

The comparison between the Epanet solution model and the EWAM-CA concerns a steady 
flow hydraulic simulation. The simulation duration covers a total period of 1 h. The limited 
simulation duration is due to the small size of the network. The topologically farthest node 
from the reservoir has a water age of 18.6 min. The quality simulation models two sce-
narios. The first considers as input a constant amount of chlorine for the whole simulation 
period. The second one considers as inputs the same chemical concentration for a shorter 
period (10 min).

The chemical input affects node "1", located immediately downstream of the reservoir 
the chemical input is modeled by setting the concentration of each flow, leaving the node to 
the chosen value (500 µg/l). This chemical input corresponds to the setpoint booster source 
in the Epanet quality simulation module.

(22)active if ∃ i ∈ [1, ...,
|||Xin

(
vc
)|||]| m

𝜂ic−1

ic
> 0

(23)

nonactive if Cvc
= 0 ∧ ∀ i [1, ...,

|||Xout

(
vc
)|||]|

�ci∑

k=0

mk
ci

= 0 ∧ ∀ i [1, ...,
|||Xin

(
vc
)|||]|

�ic∑

k=0

mk
ic
= 0
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The limited simulation duration imposes short time-steps. Epanet hydraulic simula-
tion is set to 5 min. Fossolo network is characterized by variable travel times ranging from 
18.5 s to more than 40 min. According to what is reported in Rossman et al. (1993), the 
quality time-step must be at most equal to the shortest pipe time travel in the network (Eqs. 
(3), (4), and (5)) to ensure that water is not transported beyond its downstream boundary 
node. Therefore, for both the presented scenarios a time-steps of 10 s is used.

Figures  3 and 4 show a comparison between the results of the models for both sce-
narios. As seen from the figures, the behavior of the applied model is very similar to that 

Fig. 2   Fossolo plan view. Google “Satellite” background

Fig. 3   Comparison between the simulation results with the Δt = 10 s and a constant input
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of Epanet. The EWAM-CA model is characterized by the arrival times of the contaminant 
slightly lower than those of Epanet. This is due to the time shift error that characterizes 
EWAM-CA. As shown, the model is suscetible to choosing the quality timestep.

3.1 � Computational Performance

The performance of EWAM-CA implementation is evaluated by considering the execu-
tion on a cluster node equipped with Intel(R) Xeon(R) Gold 6128 CPU @ 3.40 GHz with 
64 GB of RAM. Two variants of the algorithm were tested for the above mentioned scenar-
ios. The first former is based only on the Parallel Implementation, called hereafter PI. The 
second one is based on the Parallel and the Asynchronism Implementation, called hereaf-
ter PAI. The automata in the PAI are initially inactive and activated when the movement 
involves the automata connected to them. The automata are kept deactivated if they do not 
participate in the transport.

To evaluate the performance improvement of the PA and PAI with respect to the serial 
algorithm (i.e., Not parallelized), the use of the speedup is introduced. The speedup allows 
to characterize the performance improvement of a parallelized algorithm. The speedup is 
the ratio of the running time of the serial algorithm of its parallelized variant. The higher 
the speedup value, the better the performance gain due to parallelization.

The first series of experiments are shown in Fig. 5. The PAI version achieved the best 
speedup, approximately 3.2, with eight cores. The PAI demonstrated higher computa-
tional performance in all experiments than the PI implementation. Figure 5b shows the 
number of active nodes during the simulation. Since a constant injection rate is consid-
ered, the number of active nodes never decreases and reaches the total number of nodes 
approximately after 1000 s.

The second series of experiments are shown in Fig.  6. Again, the PAI version 
achieved the best speedup, approximately 4.2, with eight cores. The PAI demonstrated 
higher computational performance in all experiments than the PI implementation. 

Fig. 4   Comparison between the simulation results with the Δt = 10 s and an impulsive input
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Figure 5b shows the number of active nodes during the simulation. Since an impulsive 
input is considered, the number of active nodes increases and decreases, reaching a peak 
approximately at the 500 s. Moreover, the gap between the two implementations is more 
noticeable in the first series of experiments. This trend is related to the asynchronous 
functionality, which can significantly improve the performance when only some of the 
nodes are involved in the contaminant propagation.

The PAI version achieved better speedup in all experiments, mainly concerning the 
impulsive injection scenario. While the performance gain is reduced, considering a con-
stant input. This latter scenario is configured as the worst case since the input reaches all 
the network nodes, and being constant prevents the cells from changing their state to non-
active. Otherwise, considering an impulsive injection, the performance gain is mainly due 
to the deactivation of the cells, which are not involved in the propagation process, as seen 
in Fig. 6.

Fig. 5   a shows the speedup achieved by the PI and PAI versions. b illustrates the number of the active 
nodes in the system during the simulation for the PAI implementation

Fig. 6   a shows the speedup achieved by the PI and PAI versions. b illustrates the number of the active 
nodes in the system during the simulation for the PAI implementation
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Further remarkable optimization can be achieved considering a constant source rate 
injection not located in the upper part of the network. The pollutant propagation process 
will probably not affect some network nodes that will never be activated by the model. 
Injecting a substance in a network-internal node reduces the maximum number of cells 
activated during a simulation.

4 � Conclusions

Identifying a criterion to define the level of contamination risk in a water network requires 
increasingly sophisticated models and novel and performing computational tools. The pro-
posed EWAM-CA interprets this need and declines it by integrating the CA paradigm in a 
non-continuous domain, such as a drinking water network, requiring the formalization of a 
Graph-based XCA approach.

The EWAM-CA simulation results have shown very similar behavior to the Epanet 
ones, confirming the reliability of the proposed model. Furthermore, the EWAM-CA com-
putational efficiency has been improved by considering parallelization and asynchronous 
functionality. In particular, the introduction of the new asynchronous rules, which allows 
for locally managing the activation/deactivation of the automata, together with an efficient 
parallel implementation of the EWAM-CA, increased the computational simulation per-
formance significantly. This aspect is crucial, especially when hundreds or thousands of 
simulations are in demand for real-time problems, such as contaminant-source detection.

Future developments are oriented to employ EWAM-CA model as an efficient simula-
tion tool for a contaminant-source identification system. This latter will use a large batch 
of simulations over the domain by changing the source input for each network node with 
different source types and characteristics. Furthermore, the use of CA allows for building 
local rules that can be used to describe specific phenomena regarding the chemical trans-
port and reactions within the networks, which is also suitable for emergency management.
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