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Abstract
Urban river not only has the important function in urban hydrological environment, but 
also is an area for entertainment. Water quality assessment is the core technique in water 
resource management. As the typical urban river, water samples were collected at 5 sam‑
pling points in Xi’an moat from January 2018 to December 2020, and 10 physicochemical 
parameters were analyzed. In this paper, a comprehensive water quality index (WQI) is 
designed based on the criterion of water quality classes and entropy weight method firstly. 
Secondly, the crucial water quality parameters is determined by using mutual information, 
coefficient of variation and the water quality difference. Finally, an enhanced beetle anten‑
nae search algorithm is proposed to optimize the weight values of the crucial parameters 
in the range 0 to 1, which represent the ratio of the crucial parameter in the minimum WQI 
(WQImin) model. The WQImin models with different number of crucial water quality 
parameters are implemented for water quality assessment. The effectiveness and superior‑
ity of the proposed enhanced beetle antennae search algorithm are validated in comparison 
with other evolutionary algorithms. The results show that the proposed WQImin model can 
assess the water quality accurately.

Keywords Water quality index · Mutual information · Coefficient of variation · Beetle 
antennae search algorithm

1 Introduction

Urban river plays a crucial role in city development and in the ecological environ‑
ment maintenance (Zhang et al. 2022). With the increase of urbanization levels, urban 
river is highly affected by human interference (Zhang et al. 2021). Human activity will 
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deteriorate the water quality of urban river. Meanwhile, the water quality of urban river 
in turn influences city life (Yu et al. 2021). As a large developing country, Chinese cities 
have a salient contradiction between water quality conservation and urban development, 
especially in the northwest cities with the limited water resources. To realize sustainable 
and coordinated development of water resources, it is urgent to carry out scientific and 
comprehensive water quality assessment, and provide insights for subsequent pollution 
control (Tang et al. 2022).

Water quality index (WQI) is an effective manner to depict the state of water quality 
and to estimate water quality classes (Vijay and Kamaraj 2021). Chinese Environmental 
Quality Standards for Surface Water listed 24 physicochemical parameters, and defined 
different thresholds to divide each physicochemical parameter into 6 six water quality 
classes (Xu 2005a). Staff can choose any number of the physicochemical parameters 
to assess the water quality in application, and the worst assessment of these selected 
physicochemical parameters is generally used to represent the water quality (Yan et al. 
2005). Obviously, only using the worst assessment to represent the water quality is strict 
and harsh, and neglects the effect of other parameters. So, Xu (2005b) proposed a com‑
prehensive WQI for urban river water quality assessment by using 5 physicochemical 
parameters listed in the Chinese Environmental Quality Standards for Surface Water. 
Different from using the Chinese standard, Wu et  al. (2021a) built a comprehensive 
WQI in the range of 0 to 100 by using 15 physicochemical parameters and empirical 
weights. Amiri et al. (2021) designed a WQI in the range of 0 to 300 by using 16 param‑
eters and the empirical weights. Although some studies unified the WQIs within the 
range of 0 to 100, these WQIs still set different thresholds to determine the water quality 
classes (Uddin et al. 2021).

Different thresholds, various water quality parameters and manual weights are the 
main factors restricting the application of these WQIs. Therefore, these WQIs only can 
be used to assess the water quality in a certain environment (Gupta and Gupta 2021). 
To overcome the defect of manual weights, some studies used the ratio of the measured 
value to standard value to determine the weights of different parameters (Chakravarty 
and Gupta 2021). Since the standard value is decided subjectively, many researches 
adopted the entropy weight method to assign the weights to various water quality 
parameters automatically (Wang et al. 2021a).

To assess the water quality easily, many researches focus on developing WQImin 
model which only consists of few crucial water quality parameters. In (Nong et al. 2020; 
Wang et al. 2021b), the crucial parameters were selected from heterogeneous water qual‑
ity parameters to build WQImin by using stepwise multiple linear regression analysis. In 
(Kim et  al. 2021), artificial neural network was applied to construct the WQI for water 
quality assessment. The results show that stepwise multiple linear regression analysis and 
artificial neural network can build an accurate WQI by using few water quality parameters 
(Gebler et al. 2018; Kadkhodazadeh and Farzin 2021). However, these methods will assign 
the negative weight or the extreme weight to the water quality parameter, which will lose 
the physical meaning, lead to overfitting problem and show low generalization ability.

To address the aforementioned problem, this paper proposes an enhanced beetle 
antennae search algorithm based comprehensive water quality index for urban river 
water quality assessment. The main contributions are as follows.

1. This paper developed a comprehensive WQI to assess the water quality of urban river 
by using entropy weight and water quality classes.
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2. An objective function with minimized mutual information, maximum coefficient of 
variation and maximum water quality difference is developed to select the crucial water 
quality parameters

3. An enhanced beetle antennae search (BAS) algorithm is proposed to build the WQImin 
model with excellent generalization ability, by optimizing the weights of the crucial 
parameters under the constraints with certain physical meaning.

The rests of this paper are organized as follows. Section  2 introduces the study area 
and the data source. Section  3 details the proposed methodology for building WQI and 
WQImin. Section 4 presents experimental results and discussion. The conclusion is sum‑
marized in Sect. 5.

2  Study Area and Materials

2.1  Study Area

This paper focuses on the urban river water quality assessment. Xi’an (107.4 ~ 109.49°E, 
33.42 ~ 34.45°N) is the largest city in northwest China and is located in the center of the 
Guanzhong plain to the south of the Qinling mountains, as shown in Fig. 1. Xi’an moat is a 
typical urban river which not only has the function of interception, storage, drainage func‑
tions, but also is a place for people’s living. The weather is temperate semi humid continen‑
tal monsoon climate. It is hot and rainy in summer, while cold and dry in winter. Annual 
precipitation is 522.4 mm ~ 719.5 mm. The rainfall is the highest in July, and September is 
another rainy month. The total length of Xi’an moat is 14.7 km, and its storage capacity is 
1.27 million  m3 approximately.

2.2  Data Source

With the rapid urbanization of Xi’an city, this development has had dramatic effects on the 
water environment (Yang et  al. 2019). Xi’an moat experienced 3 environmental govern‑
ance from 1998 to 2009, but it still exists environmental problems. As Fig. 1 shows, two 
water supply sources for Xi’an moat are near to sampling point 1 (from Dayu reservoir) 
and sampling point 4 (from reclaimed waterworks) respectively. The river flows from sam‑
pling point 1 through sampling point 2, sampling point 3, and sampling point 4 to sampling 
point 5.

Water samples were collected into brown sterile glass bottles from 0.5  m below a 
water level and were used to physicochemical characteristics analysis. This paper collects 
10 physicochemical parameters, which are temperature (T), pH, dissolved oxygen (DO), 
total nitrogen (TN), ammonia nitrogen  (NH3‑N), total phosphorus (TP), chemical oxygen 
demand (COD), Turbidity (Tur), Chlorophyll‑a (Chl‑a) and Secchi Disk depth (SD) respec‑
tively, at 5 sampling points from January 2018 to December 2020. The methods for sample 
analysis are based on the standard methods for the examination of water and wastewater 
(APHA (American Public Health Association) 2017). The water samples were only col‑
lected 2 times from December 2019 to April 2020 due to the impact of COVID‑19. In the 
rest of the time, the water samples were collected every half a month. The statistical char‑
acteristics of these physicochemical parameters are summarized in Table 1.
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As Table 1 shows, the water of Xi’an moat presents alkaline and the contents of TN 
is high in general.  NH3‑N, TP and Chl‑a show the large standard deviation (SD) result‑
ing from existing some extreme values.

3  The Proposed WQI and WQImin Model

3.1  Comprehensive WQI

To evaluate the water quality classes, this paper employs the thresholds of pH, DO, TN, 
NH3‑N, TP and COD published in Chinese environmental quality standards for surface 
water. Meanwhile, this paper adopts the thresholds of Tur, Chl‑a and SD, which are 

Fig. 1  The sampling points in Xi’an moat
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defined based on the Chinese standards and listed in Kocer and Sevgili (2014); Wu et al. 
(2021b). Table 2 presents the classification criteria of different water quality parameters.

In this paper, the water quality parameter T is set to class IV, which satisfies the 
requirement of the common process water and the human body non‑direct contact enter‑
tainment water. In terms of the ith parameter, the measured value is defined as Xi. In 
the light of the classification criteria, the water quality index of the ith physicochemical 
parameter can be formulated as follows.

where Ci1 = {1, 2, 3, 4, 5} implies the water quality class of the ith parameter. In terms 
of the water quality class Ci1, the range of measured value is from Siu-1 to Siu, which can 
be obtained from Table 2. Therefore, Ci2 = (Xi—Siu-1)/( Siu—Siu-1) indicates the location of 
water quality within the class Ci1 (Liu et al. 2021). If the classification of water quality is 
inferior to Class V, WQIi can be defined as follows under the condition that threshold is 
monotonic increasing.

Otherwise,

WQIi = Ci1 + Ci2

WQIi = 6 +
Xi − Si5

Si5

Table 1  Statistical characteristics Parameters Min. Max. Mean SD

pH 4.2 31 19.86 7.27
DO (mg/L) 6.8 9.6 8.2 0.58
TN (mg/L) 4.38 9.6 8.2 0.58
NH3‑N (mg/L) 6.8 9.6 8.2 0.58
TP (mg/L) 4.38 12.91 8.11 1.51
COD (mg/L) 0.95 10.72 4.02 1.55
Tur (NTU) 2.39 15.82 7.30 2.56
Chl‑a (ug/L) 10.4 194.28 51.21 35.96
SD (m) 0.445 1.623 0.93 0.20

Table 2  The classification criteria

Parameters Class I Class II Class III Class IV Class V

pH 6–8 8–9 or 5–6 9–10 or 4–5 10–11 or 3–4 11–13 or 2–3
DO (mg/L)  ≥ 7.5  ≥ 6  ≥ 5  ≥ 3  ≥ 2
TN (mg/L)  ≤ 0.2  ≤ 0.5  ≤ 1.0  ≤ 1.5  ≤ 2.0
NH3‑N (mg/L)  ≤ 0.15  ≤ 0.5  ≤ 1.0  ≤ 1.5  ≤ 2.0
TP (mg/L)  ≤ 0.02  ≤ 0.1  ≤ 0.2  ≤ 0.3  ≤ 0.4
COD (mg/L)  < 15  ≤ 15  ≤ 20  ≤ 30  ≤ 40
Tur (NTU)  < 10  < 20  < 30  < 60  < 100
Chl‑a (ug/L)  ≤ 1  ≤ 10  ≤ 15  ≤ 40  ≤ 50
SD (m)  ≥ 3  ≥ 2  ≥ 1  ≥ 0.6  ≥ 0.4
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where Si5 refers to the threshold of Class V. Obviously, WQIi can describe the hazard 
degree of the overproof parameter. Then, the proposed comprehensive WQI is designed as 
follows.

where Wi is the weight for WQIi and is determined by entropy weight method (Ye 2010).

where M and n are the number of physicochemical parameters and number of samples 
respectively. Ei is the entropy of the WQIi, and Pik implies the probability of the kth sample 
in WQIi.

WQIi can reflect the water quality of these physicochemical parameters, and the entropy 
weights express the information quantity of these parameters. Under such a scenario, the 
comprehensive WQI can reveal the water quality reasonably.

3.2  Crucial Parameters Selection Strategy

To assess the water quality of urban river easily, this paper establishes the WQImin model 
by using the crucial water quality parameters. The crucial water quality parameters should 
have the following characteristics. Firstly, the crucial parameters should possess vis‑
ible fluctuation, which can express the temporal variability. Secondly, the physicochemi‑
cal parameter with inferior water quality class or superior water quality class should be 
selected as the crucial parameters. Thirdly, the selected crucial parameters should have 
minimum information redundancy. Therefore, this paper designs a score V for crucial 
parameter selection and can be formulated as follows.

where V1 =
�i

�i

 is the coefficient of variation depicted the temporal variability of the meas‑

ured value Xi (Jalilibal et al. 2021); V2 =
�����

1

4

n∑

k=1

WQIi − 1
�����
 is the water quality difference, 

which can describe the inferior and superior water quality class of the ith parameters in 
comparison with the water quality of class IV. V3 is the average mutual information 
between the measured value Xi of ith parameter and other parameters, and can be formu‑
lated as follows (Gao et al. 2022).

WQIi = 6 +
Si5 − Xi

Si5

WQI =

M∑

i=1

Wi ⋅WQIi

Wi=
1 − Ei

M −
∑M

i=1
Ei

Ei = −
1

ln n

n�

k=1

pik lnpik

arg maxV = V1 + V2 − V3

V3 =
1

M − 1

∑

i≠j

[
∑∑

P
(
Xi,Xj

)
log

(
P
(
Xi,Xj

)

P
(
Xi

)
P
(
Xj

)

)]
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3.3  Enhanced BAS Based WQImin

After crucial parameter selection, an enhanced BAS is proposed to optimize the weight for 
building the WQImin model. BAS is a global optimization method inspired by the foraging 
behavior of longhorn beetles. Different from the classic particle swarm optimization (PSO) 
(Liang et al. 2021) and gravitational search algorithm (GSA) (Gao et al. 2021a), BAS algo‑
rithm can converge to the global optimization solution by only using one particle, which 
makes BAS simple and fast as well as easy to implement (Li et  al. 2020). The basic BAS 
defines the position of the beetle as a vector xt at the epoch t. The searching behavior of bee‑
tle can be depicted as a random unit vector ��⃗D . The positions of the right antenna xt

r
 and left 

antenna xt
l
 can be calculated as follows

where dt = t∕R is the distance between two antennas, and R is a constant. Then, xt
r
 and xt

l
 

are fed into the fitness function f(x) to figure out the next position according to the follow‑
ing formulas.

where �t represents the step size of each iteration; � is the decay rate and is set to 0.95 
generally.

The random unit vector ��⃗D enables BAS to possess the global optimization performance, 
but it affects the searching efficiency as well. Therefore, this paper proposed an enhanced 
BAS to improve the searching efficiency. A variable xbest representing the position with the 
best fitness is added to the enhanced BAS, which can help BAS achieve a better direction and 
improve the convergence rate. If f (xt) < f

(
xbest

)
 , xt is assigned to xbest . The formulation for 

update the position is defined as follows.

in which the step size �t is modified as follows.

where �0 is the initial step size. �t will decrease with the epoch, and it will increase depend‑
ing on probability � , contributing to jump out of local optimal position.

To obtain a reliable WQImin model, the proposed enhanced BAS is applied to figure out 
the weight. The objective function and constraints are defined as follows.

xt
r
= xt + dt ��⃗D

xt
l
= xt − dt ��⃗D

xt+1 = xt − 𝛿t ⋅ ��⃗D ⋅ sign
[
f
(
xt
r

)
− f

(
xt
l

)]

𝛿t = 𝛿t−1 ⋅ 𝜂

xt+1 = xt − 𝛿t ⋅

[

��⃗D ⋅ sign
(
f
(
xt
r

)
− f

(
xt
l

))
−

(
xbest − xt

)

‖‖xbest − xt
‖‖

]

𝛿t =

{
𝛿0 ⋅ e

(𝜂−1)t∕10, rand < 𝜂

𝛿0 ⋅ e
(𝜂−1)t∕10 +

𝛿0

10t
, rand ≥ 𝜂

J = min
1

n

n∑

k=1

(WQI −WQImin)2 +
1

2
p
�∑

�i − 1
�2

s.t.

�
�i − 1 ≤ 0, i − 1, 2, ...

�i ≥ 0, i = 1, 2, ...
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where 1
n

n∑

k=1

(WQI −WQImin)2 is the mean square error (MSE). �i is the weight for the ith 

crucial parameter, and WQImin=
∑

i �i ⋅WQIi . 
1

2

�∑
�i − 1

�2 denotes the sum of the weights 
should be 1, and p is the penalty factor. The constraint term implies that �i ∈ [0, 1].

3.4  Procedure for Water Quality Assessment

This paper proposes a novel method for urban river water quality assessment. The gen‑
eral procedures are summarized as follows and the flowchart is shown in Fig. 2.

Step 1. Collect the water and measure the physicochemical parameters.
Step 2. Calculate the comprehensive WQI based on the classification criteria.
Step 3. Select the crucial parameters according to coefficient of variation, water quality 
difference and mutual information.
Step 4. Design the constraints with certain physical meaning and optimize the weights 
of the WQImin model by using the enhanced BAS algorithm.
Step 5. Assess the water quality and report the results.

To report the results, all the WQImin models are estimated based on the criterion of 
the Pearson correlation coefficient (PCC), MSE, and mean absolute percentage error 
(MAPE) (Guo et al. 2021; Gao et al. 2021b). These formulas are defined as follows.

Fig. 2  The procedure for water quality assessment
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where n is the number of samples.

4  Results and Discussion

4.1  Water Quality Assessment Using Comprehensive WQI

To reveal the urban river water quality, the comprehensive WQI is applied to Xi’an moat. 
The water quality index of parameter temperature (T) is set to 4 in this paper. Figure  3 
shows the WQIi of different water quality parameters.

As Fig. 3 shows, the concentrations of TN, TP, COD and Chl‑a exceed the water quality 
threshold of Class IV in the most cases. It is strict and inaccurate to assess the water quality 
as inferior Class V by only using the worst assessment of the physicochemical parameters 
to represent the water quality (Ban et  al. 2014). Hence, this paper designs the compre‑
hensive WQI for water quality assessment. WQI of Chl‑a and WQI of DO manifest sig‑
nificant seasonal variation resulting from the changes of temperature and sunlight intensity 

PCC =
Cov(WQI,WQImin)

√
var(WQI)var(WQImin)

MSE =
1

n

n∑

k=1

(WQI −WQImin)2

MAPE =
1

n

n∑

k=1

���
WQI−WQImin

WQI

���
× 100%

Fig. 3  WQIi of different parameters
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(Asgari et al. 2021; Bajany et al. 2021). Meanwhile, the WQI of pH and the WQI of turbid‑
ity reflect the excellent water quality. Figure 4 is the statistical WQIi of these parameters.

As Fig.  4 shows, the WQI of parameter pH ranges from 0.97 to 4.60. The WQI of 
parameter DO ranges from 0.28 to 4.31. The WQI of parameter TN ranges from 3.9 to 
10.36. The WQI of parameter  NH3‑N ranges from 0.07 to 6.78. The WQI of parameter TP 
ranges from 2 to 10.6. The WQI of parameter COD ranges from 0.47 to 8.40. The WQI of 
parameter Turbidity ranges from 0.24 to 2.58. The WQI of parameter Chl‑a ranges from 
3.08 to 8.89. The WQI of parameter SD ranges from 3.38 to 5.78. WQI of  NH3‑N and WQI 
of TP exist many extreme values may due to human interference. In terms of TN, TP, Tur‑
bidity, Chl‑a and SD, the WQI values before and after sampling point 4 show significant 
difference resulting from the inflow of reclaimed water. All the WQIi manifest significant 
changing tendency resulting from the flow direction and the input water quality of Xi’an 
moat.

To assess the water quality from a system perspective, Fig. 5 displays the comprehen‑
sive WQI of Xi’an moat. The comprehensive WQI shows significant periodic changes and 
seasonal difference. The water quality of Xi’an moat is getting better gradually due to the 
environmental governance. The average value of the comprehensive WQI is 3.54. The 
maximum value and the minimum value are 4.76 and 2.56 respectively. The comprehen‑
sive WQI indicates that the water quality is in the range of Class II to Class IV. Hence, this 
urban river water quality is suitable for the requirement of the common process water and 
the human body non‑direct contact entertainment water. The comprehensive WQI indicates 
that water in sampling point 1 has the best quality, resulting from the inflow of reservoir 
water. The comprehensive WQI of sampling point 4 exhibits worst water quality resulting 
from the winding watercourse and the inflow of waste water.

Fig. 4  The statistical WQIi
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To further reveal the water quality, Figs. 6 and 7 present the spatial distribution and the 
temporal variation of the comprehensive WQI respectively. In terms of Xi’an city, spring 
consists of March, Aril and May, summer implies the periods of June to August, autumn 
means the periods of September to November, and winter refers to December, January and 
February.

As Fig.  6 shows, the comprehensive WQI indicates that sampling point 1 possesses 
the best water quality. Sampling point 4 shows the worst water quality, resulting from the 
inflow of reclaimed water and the geometry of the watercourse. Figure 7 demonstrates that 
Xi’an moat performs the best quality in autumn, and performs inferior quality in spring. 
This phenomenon may due to the plenty of rainfall in autumn and the severe air pollution 
in winter and spring. Xi’an city employs coal as the major energy source for urban heat‑
ing in winter and spring, which will lead to severe air pollution. Due to the less windy in 
winter and spring, the atmospheric deposition will pollute the urban river. Besides, lots of 
pollutions will flow into Xi’an moat due to the most rainfall in summer and the frequent 
human activities.

4.2  Crucial Parameters in Xi’an Moat

In this paper, the crucial water quality parameters in different sampling points are selected 
independently. In terms of the sampling points, the average classes of different water 

Fig. 5  The comprehensive WQI

Fig. 6  The spatial distribution of 
the comprehensive WQI
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quality parameters are figured out according to the classification criteria listed in Table 2. 
Then, the score V of every water quality parameters is calculated according to the designed 
strategy. Table 3 lists the score V in different sampling points.

As listed in Table 3, the physicochemical parameters  NH3‑N, Tur, TN, Chl‑a, TP and 
DO are the six crucial parameters, whichever the sampling point is monitored.  NH3‑N 
plays the most important role in explaining WQI, followed by turbidity, TN and so on.

4.3  The Performance of the Enhanced BAS Based WQImin

In this paper, the proposed enhanced BAS method is employed to optimize the weights of 
the crucial water quality parameters. To validate the effectiveness and superiority of the 
proposed method, the WQImin with different number of the crucial water quality parame‑
ters are established according to the order of the water quality parameters listed in Table 3.

Figure 8 displays the WQImin models with different number of the crucial water quality 
parameters at 5 sampling points. The WQImin3, WQImin4, WQImin5, WQImin6 refer to 
the WQImin with the first 3 parameters, first 4 parameters, the first 5 parameters and the 
first 6 parameters, respectively.

As Fig. 8 shows, all the WQImin models can reflect the changing tendency of water 
quality, whichever the sampling point is selected. The WQImin model with 3 crucial 
water quality parameters can not express the water quality accurately in some cases. The 
assessment of WQImin model with 6 crucial water quality parameters is similar to that 
of the comprehensive WQI. The results confirm that WQImin6 model is an excellent 
and convenient manner with great generalization capability for urban river water quality 

Fig. 7  The temporal variation of 
the comprehensive WQI

Table 3  The score V 

Score V in descending order

sampling point 1 NH3‑N Tur TN DO TP Chl‑a COD SD pH T
sampling point 2 NH3‑N Tur TN Chl‑a DO TP COD pH SD T
sampling point 3 NH3‑N Tur TN TP Chl‑a DO SD COD pH T
sampling point 4 NH3‑N Chl‑a TN Tur TP DO COD pH SD T
sampling point 5 NH3‑N TN TP Chl‑a Tur DO COD pH SD T
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assessment. In order to display the performance clearly, Table 4 lists the MSE, MAPE 
and the PCC between the WQImin model and the comprehensive WQI.

As Table 4 listed, the WQImin model with more crucial parameters will exhibit bet‑
ter performance. The PCC values between the WQImin with 6 crucial water quality 

Fig. 8  The WQImin models

Table 4  The performance of the 
WQImin models

WQImin3 WQImin4 WQImin5 WQImin6

Sampling
Point 1

MSE 0.1085 0.0845 0.0576 0.0273
MAPE 0.0812 0.0723 0.0620 0.0431
PCC 0.5180 0.6374 0.7657 0.9069

Sampling
Point 2

MSE 0.1242 0.0591 0.0556 0.0187
MAPE 0.0848 0.0595 0.0580 0.0328
PCC 0.5869 0.8188 0.8306 0.9466

Sampling
Point 3

MSE 0.1341 0.0838 0.0303 0.0219
MAPE 0.0845 0.0674 0.0427 0.0359
PCC 0.4826 0.7323 0.9081 0.9343

Sampling
Point 4

MSE 0.0995 0.0926 0.0565 0.0450
MAPE 0.0706 0.0655 0.0466 0.0421
PCC 0.7700 0.7729 0.888 0.9074

Sampling
Point 5

MSE 0.2305 0.0457 0.0417 0.0390
MAPE 0.1181 0.0492 0.0455 0.0442
PCC 0.6339 0.9083 0.9181 0.9274
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parameters and the comprehensive WQI are all beyond 0.9, which illustrates effective‑
ness and superiority of the WQImin model. Besides the WQImin6 model, WQImin5 
and WQImin4 can assess the water quality effectively as well. Meanwhile, the weights 
of WQImin model are optimized in a reasonable range due to the defined objective func‑
tion and constraints. Table 5 and Fig.  9 lists the optimized weights of these WQImin 
models.

Obviously, the weights of these WQImin models are all below to 1, and the sum of 
the weights is approximately equal to 1. Under such a scenario, the weight represents 
the ratio of different parameters in the WQImin model and the ratio of different param‑
eters for water quality assessment. In view of the above results, it can be known that 
the proposed enhanced BAS based WQImin model is an effective manner with certain 
physical meaning for water quality assessment.

To validate the performance, the proposed enhanced BAS is compared with standard 
BAS, PSO and GSA. Figure  10 shows the convergence rates of these algorithms for 
building WQImin models on sampling point 1.

As Fig. 10 shows, all these 4 algorithms can achieve the optimal results in the end. 
However, the convergence rates manifest significant difference. In terms of WQImin3 
and WQImin5, the convergence rates of the proposed enhanced BAS are slightly 
faster as compared with other algorithms. From the convergence rates of WQImin4 
and WQImin6, it can be known that the proposed enhanced BAS can use less iteration 
than other algorithms to figure out the optimal results. The proposed enhanced BAS 
has a remarkable promotion in comparison with the standard BAS algorithm, since the 
evolved direction and the modified step size can improve the performance of BAS.

As shown in Figs. 8, 9 and 10, Tables 4 and 5, the proposed enhanced BAS can optimize 
the weights of WQImin models with a fast convergence rate. The values of the optimized 
weights range from 0 to 1, expressing the ratio of each crucial water quality parameters in 

Fig. 9  The optimized weights
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the WQImin models. All the results demonstrate that the proposed enhanced BAS based 
WQImin model is an effective, accurate and convenient approach for urban river water 
quality assessment.

5  Conclusion

This paper focuses on the water quality assessment of urban river. The water samples col‑
lected from Xi’an moat and 10 water quality parameters were measured. On the basis of 
Chinese published standard, the classification criteria are designed to determine the water 
quality classes of different water quality parameters. The developed comprehensive WQI 
can assess the water quality from system point of view, resulting from the combination of 
the water quality classes and entropy weights. The proposed selection strategy can obtain 
the crucial water quality parameters automatically. The selection illustrates that  NH3‑N, 
Tur, TN, Chl‑a, TP and DO are the crucial parameters of Xi’ an moat, and most important 
parameter is  NH3‑N. The enhanced BAS is proposed to optimize the weights of the cru‑
cial parameters within 0 to 1, which can reveal the ratio of the crucial parameters in the 
WQImin model. As compared with standard BAS, POS and GSA, the convergence rates 
confirm the excellent performance of the proposed enhanced BAS. The WQImin model 
with few crucial parameters is a simple and convenient manner for urban river water qual‑
ity assessment. The WQImin model with 6 crucial parameters is a precise and superior 
approach for urban river water quality assessment. All the results demonstrate the enhanced 
BAS based WQImin model can assess the urban river water quality effectively.

Fig. 10  The convergence rates
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