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Abstract
The atmospheric circulation can be recognized as one of the causes of severe rainfall
events occurrence. Such events, especially when are characterized by short durations and
high intensities, result in flood events in the Mediterranean area. It is very important to
understand how these heavy rainfall events, which can be usually identified with
convective rainfall, are related to the different types of atmospheric circulation. In order
to do this, some weather circulation patterns (WPs), which have been derived for the
Europe, have been first connected with the rainfall annual maxima (AMAX) recorded
over the Sicily. The analyses allowed to identify those WPs that are more likely to result
into the occurrence of the AMAX. Secondly, two ERA-Interim reanalysis indexes have
been used to define a criterion to distinguish those AMAX mainly due to a convective
component from those more related to a stratiform precipitation, also detecting a
transient zone between these two types of events. Finally, the main results have been
connected together with the aim to define a set of triggering factors of extreme rainfall
events.

Keywords Weather circulation patterns . Rainfall AMAX . Convective precipitation . Stratiform
precipitation .Mediterranean . Sicily

1 Introduction

Since the impacts of climate change on the environment have been constantly rising over the
last decades, scientists have paid much attention to understand the effects of this phenomenon
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(Kunkel et al. 1999). Climate change leads to different kinds of extremes (Hegerl et al. 2014),
such as heavy rainfall events and droughts, which may cause several damages such as loss of
human lives and economic damages. Dai (2011) presented a review of the recent scientific
literature about drought, affirming that global warming has contributed to the enhancement of
the atmospheric water demand and to the increase of the expected arid areas for the twenty-first
century in several continents. Aronica et al. (2002) and Arnone et al. (2013) studied the
changes in rainfall statistics over Sicily (Italy) finding out an increasing trend in the occurrence
of shortest-duration rainfall events. Furthermore, many other studies demonstrated that ex-
tremes are tending to increase their frequency of occurrence and intensity (Collins et al. 2013;
Field et al. 2012). In order to determine the response of precipitation extremes to global
warming, the INTElligent use of climate models for adaptioN to non-Stationary hydrological
Extremes (INTENSE) project aimed to figure out the relationship between large-scale
warming, atmospheric circulation, and short-duration extreme rainfall events (Blenkinsop
et al. 2018). To achieve this goal, the INTENSE project based on a huge database of sub-
daily rainfall observations at the global scale. The dataset, along with advanced climate
models, has been employed to better understand which are the drivers of extreme rainfall
events and look at the influence of large-scale atmospheric circulation and local thermody-
namics on the extremes.

With regard to the broad-scale atmospheric circulation, Neal et al. (2016) presented some
weather circulation patterns (WPs) derived by theUK-Met Office. Each WP was representative
of a specific type of atmospheric circulation over Europe for each day ranging between 1850
and 2016. Starting from the daily Mean Sea Level Pressure (MSLP) data of the European and
North Atlantic Daily to Multidecadal Climate Variability (EMULATE) database, Fereday
et al. (2017) analyzed how the atmospheric circulation influences the trends in regional
precipitation by applying a cluster analysis to the data. This analysis highlighted that the
circulation variability is one of the drivers of a great part of the changes in European
precipitation. Richardson et al. (2018) connected the WPs with daily precipitation and with
some indexes related to drought, such as the Standardized Precipitation Index (SPI) and the
Drought Severity Index (DSI), for the UK, distinguishing between WPs linked to precipitation
and WPs connected with drought.

When heavy rainfall events present high intensity and short duration they can be often
associated with convective events. Due to their characteristics, especially when they hit small
catchments with low times of concentration, they can result in flash floods (Forestieri et al.
2016; Noto and La Loggia 2009) and cause economic damages and, more relevantly, human
lives losses. The occurrence of these kinds of phenomena in many areas of Europe over the last
few years, has contributed to raising the importance of understanding which factors could be
recognized as drivers of these events. Gabriele and Chiaravalloti (2013) set up a method to
distinguish between convective and stratiform rainfall events, by using two different reanalysis
indexes, the Convective Available Potential Energy (CAPE) and the divergence of moisture
flux, named Q vector Divergence (QD). In their work, the authors performed a regionalization
on the base of the daily rainfall data recorded by several gauges located throughout Italy. By
defining a joined condition with the CAPE and QD, they were able to distinguish between
regions characterized by the occurrence of convective rainfall and regions mainly affected by
stratiform rainfall events. By associating some indexes with these rainfall events, the authors
found that high values of CAPE correspond to strong convective events that they called
tornado-like events. Iturrioz et al. (2007) computed the QD from the geopotential height and
temperature and analyzed some recorded precipitation data for some gauges across Spain,
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finding out that the dynamic instability, and thus the occurrence of stratiform rainfall events, is
connected with negative values of QD.

Despite advances made in recent years, the distinction between convective and stratiform
precipitation is not trivial and still today a challenge (Llasat et al. 2005), since it is connected
with the characteristics of rainfall events, such as the rain rate and duration, which are usually
different for a convective and a stratiform precipitation (Gaál et al. 2014). While some studies
tried to establish a criterion to make a net distinction between convective and stratiform rainfall
events (Gabriele and Chiaravalloti 2013; Lang et al. 2003; Tremblay 2005), some others affirm
that a so clear-cut separation in only two classes is improper (Houze 1997; Kyselý et al. 2016).
With this regard, Houze (1997) affirmed that, in some cases, convective phenomena are
embedded in the same stratiform regions. This happens in the older convection regions, where
the humid air moves slower upwards than in the younger convective regions. In this case, the
radar echoes are similar to those of a stratiform precipitation, even though they also present a
convective component. In this respect, Rulfova and Kyselý (2013) introduced a class of mixed\
unresolved events to take into account all those events that, according to their algorithm, could
be classified as both convective and stratiform events or do not have a sufficiently clear
distinction between those two classes.

In this work, extreme precipitation events for the Sicily (Italy) have been connected with
some UK centered WPs to answer the following research questions: can the atmospheric
circulation be recognized as a driver of severe rainfall events? Since even the Sicily has been
experimenting heavy rainfall events and consequent flash floods in the last years, is it possible
to define some specific schemes of UK centered WPs that are responsible for leading to the
occurrence of AMAX in Sicily? Is it possible to identify an AMAX seasonality and relate it
with some WPs? Finally, is it possible to involve some reanalysis data, such as the CAPE and
the Vertical Integral of Divergence of Moisture Flux (VIDMF) in the assessment of convective
and stratiform AMAX?

In order to answer these questions, WPs have been used as precursors of heavy rainfall
events (i.e., AMAX). A novel criterion, based on a fuzzy approach, valid for different
geographical areas of Sicily, is here presented to distinguish convective from stratiform and
mixed\unresolved rainfall AMAX and connect them to their seasonality. This criterion could
be, if well calibrated, extended to other regions of the globe and used as a tool to predict
potentially heavy rainfall events.

2 Material

2.1 Study Area

Sicily (Italy) is the largest island of the Mediterranean Sea and covers an area of about
25,000 km2. The elevation ranges from 0 m a.s.l. along the coast to more than 3000 m a.s.l.
at the volcano Etna.

Precipitation has a high spatial and temporal variability. Mean annual precipitation
(MAP) ranges between about 360 mm in the southeastern part of the island and about
1900 mm in the northeast of the region (Caracciolo et al. 2018; Di Piazza et al. 2011) with
an overall mean of about 700 mm. With reference to the temporal variability, instead,
rainfall is mostly concentrated in winter, whilst the summer season (i.e., June, July, and
August) is usually rainless.
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2.2 Precipitation Dataset

An extensive database of rainfall Annual MAXima (AMAX) for the entire Sicily and at the
duration of 1, 3, 6, 12, and 24 h has been provided by the Autorità di Bacino - Regione
Siciliana. For each rain gauge of the network, the database consists in a time series of
AMAX and the corresponding day of the occurrence. The database has 394 gauges
dislocated throughout the Sicily and provides data between 1928 and 2016. In order to
ensure a reasonable statistical analysis at the rain gauge level, 114 rain gauges with less than
ten years of AMAX have been discarded from the original database. Figure 1 shows the
spatial distribution of the rain gauge network over Sicily with the circles size providing an
indication of the number of available AMAX for each rain gauge. Most of the rain gauges
considered provides a number of rainfall AMAX varying between 20 and 60 years.

2.3 Weather Circulation Patterns (WPs) Dataset

The database of the weather circulation patterns (WPs) was developed by the UK-Met
Office and presented by Neal et al. (2016). In particular, for all the days in between 1850 and
2016, WPs represent the type of atmospheric circulation that occurred on that specific day
over a European domain centered in the UK. In Neal et al. (2016), a set of 30 WPs was
initially derived and thereafter aggregated in a database containing only 8 WPs on the base
of the spatial correlation among WPs centroids, thus considering the similarity of the WPs.
Hereafter, the WPs belonging to the simplified ensemble will be denoted as WP8,x, while
the original one will be indicated as WP30,y, where x and y range between 1 and 8 and
between 1 and 30, respectively. With reference to the only WP8,1 and WP8,2, which have the

Fig. 1 Spatial distribution of rain gauges and sample size (i.e., number of AMAX) for each rain gauge overlaid
on the Digital Elevation Model (DEM) of Sicily. The six rain gauges used to perform a classification of rainfall
AMAX are highlighted with a blue circle
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highest frequencies of occurrence, it is possible to notice that WP8,1 presents positive Mean
Sea Level Pressure (MSLP) anomalies in the northern part of Europe and negative MSLP
anomalies in the Southern Europe, where Sicily is located, whilst WP8,2 shows the opposite
spatial pattern even though lower values of MSLP. For more details on WPs and an
extensive description of the MSLP anomalies under the other WPs the reader is referred
to Neal et al. (2016).

2.4 Reanalysis Dataset

The reanalyzed meteorological database of the ERA-Interim Archive has been here used to
extract the spatially distributed time series of CAPE and VIDMF for Sicily. The CAPE is
defined as the amount of the buoyant energy that is available for a particle to speed up its
upward movement (Gabriele and Chiaravalloti 2013; Moncrieff and Green 1972; Moncrieff
and Miller 1976). It is calculated as:

CAPE ¼ g∫ELLFC
Tp−Te

Te
dz; ð1Þ

where g is the gravitational acceleration, LFC and EL are the levels of free convection and
equilibrium, respectively, Tp and Te are the virtual temperatures of the lifting parcel and of the
environment, respectively. High values of CAPE may cause strong thermodynamic instability
and are usually related to convective rainfall events.

The VIDMF is the Vertical Integral (VI) of the Divergence of Moisture Flux (DMF). In
many studies, such as Rasmusson (1971), Mariotti et al. (2002), Gabriele and Chiaravalloti
(2013), DMF is presented as a very powerful index to describe frontal rainfall events
associated with stratiform precipitation. Since the divergence of moisture flux data were not
available in the ERA-Interim Archive, the VIDMF was used as a proxy of the DMF to detect
the stratiform precipitation. The VIDMF can be expressed as:

VIDMF ¼ ∇
1

g
∫l0vq

∂p
∂η

� �
dη ð2Þ

In Eq. (2) the term v is the wind velocity, q is the atmospheric specific humidity, and p is the
atmospheric pressure. The integral is performed from the surface (level 0) to the top of the
atmosphere (level l) with respect to the vertical coordinate (η).

The database, which is provided by the European Centre for Medium-Range Weather
Forecast (ECMWF, https://www.ecmwf.int/), provides the reanalysis data at the global scale
from 1979 up to day as analysis and forecast data. The analysis data come from observations
and are used to produce a realistic state estimate of the atmosphere; they are updated every six
hours (00:00, 06:00, 12:00, and 18:00 UTC). Forecasts, instead, which mostly rely on models,
project the atmospheric state to the future and are used to provide valuable background
information to the system for the next analysis cycle. In particular, forecast surface
parameters, such as CAPE, are available at four time steps (3, 6, 9, and 12 h) from 00 and
12 UTC, while the VIDMF, which is an analysis parameter, is available only at 00:00, 06:00,
12:00, and 18:00 UTC each day.

The daily spatial distributions of CAPE and VIDMF, at the spatial resolution of 0.125° ×
0.125° and for the period 1979–2016, have been retrieved for an area covering all the Sicily.
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3 Methodology and Results

3.1 Frequencies of Occurrence of AMAX under Different WPs

In order to better understand how theWPs may influence the occurrence of AMAX, the pooled
AMAX from all the gauges, for each of the available durations, have been first associated with
one of the WP8,x, on the base of the day of occurrence. This allowed to calculate the frequency
of occurrence of AMAX for each duration and each WP8,x (Fig. 2a). The same procedure has
been applied to the subset of AMAX higher than the median value R-Med (Fig. 2b). Figure 2c
shows the differences between the two previous results.

In both cases, Fig. 2a and b highlight the noticeable contribution of WP8,1 to the occurrence
of AMAX for all the durations. Figure 2b shows an increasing pattern of the frequency of
occurrence with the duration for the WP8,2 that in Fig. 2a stops with the duration of 12 h.
However, even if in WP8,3 and WP8,6 it is possible to observe an increasing pattern of the
differences with the duration, the negligible differences shown in Fig. 2c (between about ∓1%)
lead to conclude that the two samples of AMAX are characterized by the same behavior under
all the WP8,x.

The results of the analysis extended to the WP30,y, which are reported in Section S.1 of the
supplementary material, reveal that many WP30,y contribute to the occurrence of AMAX with
an almost constant contribution. This is most likely due to the small extension of the region,

Fig. 2 WP8,x frequency histograms for (a) all the pooled AMAX, (b) the AMAX greater than R-Med and c the
differences between the frequencies of occurrence shown in (a) and (b)
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which involves a small variability in terms of atmospheric circulation that leads to the AMAX
occurrence. For this reason, the subsequent analyses have been performed considering only the
WP8,x.

3.2 Frequencies of Occurrence of Extreme AMAX under Different WPs

In order to investigate the behavior of the most severe AMAX under the WP8,x, the occurrence
frequencies of all the AMAX higher than the 75th, 90th, and 99th percentiles have been
calculated (Fig. 3). With particular attention to the 99th percentile (Fig. 3c), which represents
the most extreme events, the analysis highlights that, for the WP8,1, the occurrence frequencies
increase considerably as compared to the other WP8,x. A similar behavior is recognizable for
the 24-h AMAX under WP8,4.

In any case, to be fair, it is not easy to detect a pattern of the occurrence frequency with the
duration, under each WP, with such an analysis because of the small dataset resulting from
AMAX greater than the 99th percentile (about twenty values per duration). In the same
manner, the small dimension of the dataset also affects the results of all the analyses conducted
with reference to the other percentiles.

Fig. 3 Frequency histogram under the WP8,x related to all the AMAX higher than (a) 75th percentile, (b) 95th
percentile and (c) 99th percentile. The differences between the frequency of occurrence of pooled AMAX (Fig.
2a) and the frequency of occurrence of the AMAX greater than their (d) 75th, (e) 95th and (f) 99th percentile are
also displayed. The legend is the same as that in Fig. 2
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3.3 Conditional Probability of AMAX for Given WPs

In order to define the probability of occurrence of an AMAX for a given duration, once a
specific WP occurs, the Bayes’ theorem has been used. In general, the Bayesian approach
defines the cause-effect relationship between two variables. In this case, it has been used to
assess the probability that, for a given duration, a certain WP8,x causes an AMAX.

P WP8;xjAMAX
� � ¼ P AMAXjWP8;x

� �
⋅P WP8;x
� �

∑8
x¼1P AMAXjWP8;x

� �
⋅P WP8;x
� � ð3Þ

The Eq. (3) provides the factor P(WP8, x| AMAX), which stands for the probability that a
certain WP8,x has resulted in a given AMAX. The factor P(AMAX| WP8, x) is the proba-
bility of an AMAX, better known as the likelihood, given the occurrence of a certain WP8,x.
This term is different from the output of Eq. (3); in fact, for the assessment of P(WP8, x|
AMAX) we took into consideration the frequency of occurrence of all the WP8,x that could
result in the AMAX considered, namely P(WP8, x), while the factor P(AMAX| WP8, x) can
be assessed as the frequency of occurrence of a certain-duration AMAX under a single
WP8,x.

Equation (3) was applied to the ensemble of the pooled AMAX of all the rain gauges for a
fixed duration. Results, which are shown in Section S.2 of the supplementary material, reveal
that AMAX, for any duration, are mostly caused by the occurrence of WP8,1 (with an almost
constant frequency value at all the durations considered), WP8,2 (especially at the longest
duration), and WP8,4. In particular, the WP8,2 is the only one to show a significant increasing
pattern of the conditional probability with the duration.

3.4 Seasonality in the Occurrence of AMAX

With the purpose to investigate the presence of a seasonality in the occurrence of AMAX, the
previous analyses have been reiterated for two datasets including the AMAX occurred
between May and October (namely the summer period) and between November and April
(namely the winter period). A first analysis highlighted that the percentage of AMAX occurred
during the summer period decreases as the duration increases, whereas the winter period has
the opposite behavior (Fig. 4). With reference to Fig. 4, the hourly AMAX occur in about 65%
of the cases during the summer period and the 35% in the winter period. Regarding the 24-h
AMAX rainfall, instead, the 60% of them occurs in the winter period and the 40% during the
summer period. This result, despite the simplicity of the analysis, shows that the greatest part
of the rainfall events occurring during the summer period are characterized by short durations
and high intensities, whilst the winter period presents longer duration precipitation events with
low intensities. Many studies recognize in these elements the typical characteristics of the
convective (Gaál et al. 2014; Gabriele and Chiaravalloti 2013; Llasat et al. 2005) and
stratiform (Gaál et al. 2014; Gabriele and Chiaravalloti 2013; Llasat et al. 2005) precipitation,
respectively.

In order to replicate the analyses made on the entire dataset, the frequency histograms for
the WP8,x occurred in the summer (Fig. 5a) and winter (Fig. 5b) and their differences (Fig. 5c)
have been first set up. Each AMAX has been then linked to the corresponding WP8,x, for the
assessment of the frequency histograms of the AMAX under each WP8,x (Fig. 5d and e refer to
summer and winter period, respectively) and their differences (Fig. 5f). Finally, through the
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application of Eq. (3), the conditional probability histograms for the summer (Fig. 5g) and
winter (Fig. 5h) periods and their differences have been evaluated (Fig. 5i).

As previously highlighted, the conditional probabilities of AMAX stress the importance of
WP8,1 for any duration, since very low differences (about 2%) between the values related to the
summer and the winter period have been obtained (Fig. 5i). In particular, the relevance of
WP8,1 is more emphasized during the summer period, where the difference between the
conditional probabilities under WP8,1 and the other WP8,x is much greater than in the case
of the winter period. On the other hand, by observing Fig. 5i, it is possible to notice that in the
winter period there is an increase of about 8% in the conditional probability under WP8,2 at all
the durations, prevalently due to the higher frequency of occurrence of this WP in the winter
period (negative value under WP8,2 in Fig. 5c), which depends on a NAO+ pattern. In
conclusion, although the WP8,1 causes the greatest part of any duration AMAX during both
the summer and winter period (Fig. 5g and h, respectively), the contribution of WP8,2 to the
occurrence of the AMAX during the winter period (Fig. 5h) increases significantly, as
compared to the summer period (Fig. 5g). This happens because WP8,2 has a higher frequency
of occurrence in the winter (Fig. 5b) than in the summer period (Fig. 5a), even though the
predominance of the AMAX occurred under the WP8,1 also in the winter period is still
maintained.

3.5 Using Reanalysis Indexes for AMAX Classification

Since the analyses carried out in section 3.4 highlighted the presence of a seasonality in the
rainfall AMAX, probably due to different generation mechanisms of precipitation (i.e.,
stratiform and convective), an attempt to classify rainfall AMAX through two reanalysis
indexes is here provided.

Analyses have been carried out for six different rain gauges (i.e., Montalbano Elicona,
Palermo Osservatorio Astronomico, Trapani, Sciacca, Enna, and Ragusa – blue circles in Fig.
1) and for the AMAX in between 1979 and 2016, since the ERA-Interim Archive starts on
1979. The number of AMAX collected for the period and the rain gauges considered is equal

Fig. 4 Percentage of the pooled rainfall AMAX occurred during the summer (red asterisks) and winter period
(blue asterisks) as a function of the duration
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to 33 for Montalbano Elicona, 28 for Palermo Osservatorio Astronomico, 26 for Trapani, 31
for Sciacca, 25 for Enna, and 31 for Ragusa.

Starting from Gabriele and Chiaravalloti (2013), which relate high values of CAPE and low
values of DMF to the occurrence of convective and stratiform precipitation, respectively, for
each station we considered the maximum value of CAPE and the minimum value of VIDMF
at each day. This operation of data selection allowed to create a database of CAPE and
VIDMF for each rain gauge from 1979 onwards only for the days with an AMAX.

A first classification of AMAX into convective, stratiform and mixed\unresolved events has
been set up through a traditional approach consisting in identifying a fixed threshold for the
two reanalysis indexes. In order to find the thresholds of CAPE and VIDMF for the rain
gauges considered, we used a subjective criterion that takes into account the similarities among
rain gauges, both in terms of spatial location and mean values of daily maximum CAPE and
daily minimum VIDMF.

With this regard, it has been noticed that the rain gauges Montalbano Elicona and Enna,
which are located in the North-West/Centre of Sicily, present the highest value of mean daily
maximum CAPE and mean daily minimum VIDMF for the period 1979–2016. On the
opposite, the rain gauges Sciacca and Ragusa, in the south of the region, are those with the
lowest values. Finally, the rain gauges Palermo Osservatorio Astronomico and Trapani,

Fig. 5 Frequency histograms of the WP8,x occurred during (a) summer and (b) winter period and their
differences (c), frequency histograms of the AMAX at all durations occurred in (d) summer and (e) winter
period and their differences (f) and conditional probability histogram of the AMAX related to the (g) summer and
(h) winter period and their differences (i)
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situated in the North-West of the region, show intermediate values. On the base of these
similarities, following Costa et al. (2001) and Gabriele and Chiaravalloti (2013), for each of
the previous couples of rain gauge stations, we set the thresholds for CAPE and VIDMF equal
to the values of mean daily maximum CAPE and mean daily minimum VIDMF observed
between 1979 and 2016 at those stations (Table 1). The values of both the thresholds are
consistent with those indicated in Costa et al. (2001) and Gabriele and Chiaravalloti (2013) for
the discrimination between convective and stratiform rainfall in Italy.

Once defined the thresholds of CAPE and VIDMF, a joined condition has been used to
classify AMAX; in particular, for a given AMAX, if both the CAPE and the VIDMF are
higher (lower) than their respective thresholds, then that AMAX is classified as a convective
(stratiform) rainfall event, otherwise it is classified as a mixed\unresolved event.

The results of this classification are represented as a polar plot for each duration, where each
AMAX is defined through an angle and a radius, representing the Julian day of occurrence and
the depth (i.e., amount) of the AMAX, respectively. Following Bayliss and Jones (1993), Burn
(1997), and Cunderlik and Ouarda (2009), the Julian day of occurrence of an annual hydro-
logic event i can be transformed, through a simple linear scaling procedure, to a directional
statistic: θi = 2π(Julian day)/365, where θi is the angular value (in radians).

The Fig. 6 shows the polar plots for the rain gauge of Ragusa for all the durations. The
same figure shows the percentages of convective, stratiform, and mixed\unresolved events
along with the ratio between the percentages of stratiform and convective AMAX as well
(lower-right panel). For the sake of brevity, the plots for the remaining rain gauges are reported
in Section S.3 of the supplementary material.

The main limitation of such an approach is related to the arbitrary definition of the
thresholds for the CAPE and the VIDMF, whose definition impacts in a very important way
on the classification.

In order to overcome this drawback, we carried out another classification using a fuzzy
logic approach. The fuzzy logic is based on the fuzzy inference, which is a method that
interprets the values in the input variable and, based on some set of rules, assigns values to the
output variable. The fuzzy logic starts with the concept of a fuzzy set (Zadeh 1965), which is a
set without a crisp, clearly defined boundary. A fuzzy set is a combination of elements having
a changing degree of membership in the set. Therefore, the membership of the elements to a
specific class is measured with a membership function that defines, on the base of a set of
rules, the degree of membership (ranging between 0 and 1) of each element to a specific class.

In particular, for each reanalysis index (i.e., CAPE and VIDMF) we defined a couple of
membership functions that allow to determine the degree of membership of that index to the
convective (dconv) or stratiform (dstrat) class. Figure 7 shows the membership function curves
for the CAPE and the VIDMF.

The shape of the membership functions is defined by Eqs. (4) and (5), where the variable x
can be both CAPE and VIDMF and the parameters a and b change depending on the reanalysis
index considered. In particular, following Costa et al. (2001) and Gabriele and Chiaravalloti

Table 1 CAPE [J/kg] and VIDMF [kg m−2 s−1] thresholds defined through a traditional approach for the six rain
gauges considered

Sciacca and Ragusa Palermo Osserv. Astron. and Trapani Montalbano Elicona and Enna

CAPE 700 CAPE 800 CAPE 900
VIDMF −3.60E-04 VIDMF −3.10E-04 VIDMF −2.50E-04
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(2013), the parameters a and b were set equal to 150 and 1000 J/kg, respectively, for the
CAPE, and equal to −6.0 E-04 and 0 kg m-2 s−1, respectively, for the VIDMF.

dconv x; a; bð Þ ¼

0 for x≤a

2⋅
x−a
b−a

� �2
for a < x≤

aþ b
2

1−2⋅
x−b
b−a

� �2

for
aþ b
2

< x≤b

1 for x > b

8>>>>><
>>>>>:

ð4Þ

dstrat x; a; bð Þ ¼

1 for x≤a

1−2⋅
x−a
b−a

� �2
for a < x≤

aþ b
2

2⋅
x−b
b−a

� �2

for
aþ b
2

< x≤b

0 for x > b

8>>>>><
>>>>>:

ð5Þ

The type of the two membership functions (4) and (5), S-shaped in any case, was chosen in
order to have a gradual and smooth pattern of the degree of membership under both the two
classes of events, which is not achievable with other types of membership functions, such as
the trapezoidal or the triangular one.

The two couples of membership functions allow to assess the degree of membership of
CAPE and VIDMF values to a class (i.e., convective or stratiform). The membership of a
certain event to the convective (or stratiform) class is defined considering the minimum value

Fig. 6 Polar plots resulted from the traditional approach and representation of the percentage of convective,
stratiform and mixed\unresolved AMAX and of the ratio between the percentages of stratiform and convective
events (lower-right panel), for the rain gauge Ragusa
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(i.e., logic AND operator) between the degrees of membership of the related CAPE and
VIDMF to that class and comparing it with a cut-off threshold. The logic AND operator has
been used to guarantee that both the degrees of membership related to the CAPE and VIDMF,
for a given event, are higher than the cut-off threshold, thus falling within the same class (i.e.,
convective or stratiform). The AMAX not belonging to the convective or stratiform classes are
assigned to the mixed\unresolved class. In order to switch from the fuzzy sets, related to the
convective and stratiform classes, to a sharper distinction of these two types of events, different
cut-off thresholds for the degree of membership have been defined, ranging between 0.1 and
0.9. The choice of the most suitable threshold is not trivial, since it would require the correct
identification of the mechanism that generated the AMAX, which is a not available informa-
tion. Moreover, as already said in the Introduction, the convective and stratiform regimes are
not independent or excluded one from another (Houze 1997). From this point of view, the goal
is not to identify the pure convective component (or the pure stratiform one) of the AMAX but
to identify the mechanism that mainly characterizes AMAX rainfall. For this reason, informa-
tion available in scientific literature for the Mediterranean area (Feloni et al. 2019; Ruiz-Leo
et al. 2013) have been exploited to come out with a value for the cut-off threshold that provides
a result consistent with such works. In this perspective, these above-mentioned works pre-
sented an algorithm aimed to discriminate between events associated to convective or strati-
form mechanisms valid for the two Mediterranean regions of Levante (Spain) and Attica
(Greece). The developed algorithm identifies a critical intensity threshold, Rc, which separates
convective rainfalls (intensity higher than Rc) from stratiform ones (intensity lower than Rc).
Starting from these thresholds, the value of our cut-off threshold has been fixed in order to
provide similar percentages of convective and stratiform events to those obtained with the Rc

approach. In this context, the best result was obtained with a threshold equal to 0.2.
The Fig. 8 shows the same plots as the Fig. 6 and for the same rain gauge station (i.e.,

Ragusa) but obtained with the fuzzy approach and a cut-off threshold equal to 0.2. Even in this
case, for the sake of brevity, all the other plots have been reported in Section S.4 of the
supplementary material.

Comparing Figs. 6 and 8, the first thing worth noting is that the fuzzy logic approach
provides always a lower number of events classified as mixed-unresolved. With reference
to the lower durations (i.e., 1 and 3 h), there is a prevalence of convective over the stratiform
and mixed\unresolved AMAX, that is more emphasized in the case of the fuzzy logic
approach, which involves a low ratio between stratiform and convective events. Besides,
the convective hourly AMAX mostly occur during the summer period (polar plot between
150° and 330°). On the opposite side, at the higher durations (i.e., 12 and 24 h) the

Fig. 7 Membership functions of CAPE (left panel) and VIDMF (right panel) relating to the convective and
stratiform classes of events
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stratiform AMAX tends to prevail over the convective ones, especially in the case of the
fuzzy logic approach, where there are almost the double cases of stratiform over convective
events (Fig. 8). At these durations, while in the traditional approach, the mixed\unresolved
events prevail over the other two classes of events (Fig. 6), in the fuzzy logic approach they
slightly prevail only on the convective AMAX (Fig. 8). Moreover, the stratiform AMAX
tend to occur during the winter period, which is the complementary part of the summer
period in the polar plot. These results confirm and explain those shown in Fig. 4, where the
AMAX occurring during the summer are mainly at the 1-h aggregation, while those
occurring during the winter are mainly at the 24-h duration. Similar considerations for
the other five gauges are reported in Section S.4 of the supplementary material where the
same increasing pattern of the ratio between the occurrence of stratiform and convective
AMAXwith duration can be observed for the remaining rain gauge stations; in all the cases,
this pattern is more evident in the fuzzy logic approach, than the one related to the
traditional approach. Such a generalized result confirms that 1) as the duration increases
the stratiform component of rainfall becomes more relevant (Feloni et al. 2019) and 2) the
seasonality of convective and stratiform AMAX is confirmed, with convective events that
tend to occur during the summer period and stratiform AMAX that mainly occur during the
winter period, thus confirming the results achieved by Ruiz-Leo et al. (2013).

4 Conclusions

A connection between rainfall AMAX and the circulation WPs derived by Neal et al. (2016)
for Sicily is here presented.

Fig. 8 Polar plots resulted from the fuzzy logic approach (t = 0.2) and representation of the percentage of
convective, stratiform and mixed\unresolved AMAX and of the ratio between the percentages of stratiform and
convective events (lower-right panel), for the rain gauge Ragusa
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The analyses carried out on the whole sample of the pooled AMAX and on the WP8,x
highlighted the major contribution of WP8,1 to the occurrence of all the pooled AMAX at all
durations. This result is confirmed by the Bayesian approach, which recognizes WP8,1 as the
one that leads to the occurrence of most of the AMAX for the different durations.

A further analysis made by splitting the year into two periods showed that the percentage of
AMAX occurred during the summer period decreases as the duration increases with the highest
value reached at the 1-h duration, while the percentage of AMAX occurred in the winter period
has an increasing pattern with the duration and reaches the maximum at 24-h duration. In spite of
this, for both the summer and winter periods, WP8,1 leads to most of the AMAX at all durations,
even though the contribution of WP8,2 to the AMAX occurrence in the winter period becomes
relevant as well. In Neal et al. (2016), WP8,1 is classified as a NAO- (negative North Atlantic
Oscillation) pattern, in which Sicily is located in correspondence of a negative MSLP. This
pattern results in a displacement of air mass from the North Atlantic Ocean to the south of Europe,
where Sicily is located, bringingwarm and humid air that probably causes high intensity and short
duration rainfall events. Furthermore, WP8,1 is the most frequent pattern interesting Europe in the
period from 1850 to 2016 and, for this reason, it matches the occurrence of most of the AMAX.
As opposite to WP8,1, WP8,2 is classified as a NAO+ (positive North Atlantic Oscillation) pattern,
which leads to cold and dry weather conditions in Sicily because of the humid and wet airflow
blowing towards the North-East of Europe.

A criterion to distinguish convective from stratiform and mixed\unresolved components of
AMAX, performed through a traditional and a fuzzy logic approach, by using two reanalysis
indexes demonstrated a predominance of hourly convective AMAX for all the gauges
considered, over the stratiform events, for the summer period, thus reflecting the characteristics
of the Mediterranean climate. As the rainfall duration increases, the number of stratiform
AMAX events increases, especially in the gauges located in the East of Sicily, even if all the
gauges present a high percentage of mixed\unresolved events. Compared to the traditional
approach, which led to different threshold values between the six gauges considered, the fuzzy
logic is a more flexible approach, since the defined membership functions are valid for all the
rain gauges considered. This approach can be extended to the whole island and, if well
calibrated, to other areas of the world.

We found that the most severe hourly AMAX are prevalently caused by the WP8,1 during
the summer period and the greatest part of them was classified as convective because of their
high values of CAPE and VIDMF. This confirms the effects of WP8,1 on the Mediterranean
area, namely the transport of warm and humid air, resulting in convective precipitation events,
characterized by short duration and high intensity.

In conclusion, if well calibrated for a given area/region, the approach developed could be
helpful to forecast the occurrence of severe rainfall events by simply monitoring the atmo-
spheric circulation patterns and the two reanalysis indexes here taken into account.
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