Skip to main content
Log in

Large-Scale Climate Variability Patterns and Drought: A Case of Study in South – America

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Droughts are complex phenomena that can affect highly the development of a region due to the reduction of the availability of water with various degrees of severity, duration, and extent. Large-scale climatic variability patterns such as El Niño South Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) can trigger droughts as they alter normal precipitation patterns. Drought indices simplify the analysis of the complex interrelationships between the different climatic parameters that influence the occurrence of droughts, allowing the quantitative evaluation of anomalies in terms of intensity, duration, frequency, and spatial extent. The Standard Precipitation Index (SPI) is one of the most used for its simplicity and accuracy. The aim of this paper is to study the possible teleconnections between ENSO, AMO and PDO and the occurrence of droughts in Ecuador - South America, a very poorly studied area of the world, and to contribute to planning and decision making in the management of water resources in this country in a short and long term. The SPI was calculated for each month (monthly scale) for a period of 44 years and spatialized by Kriging interpolation to later be related to the ONI, AMO and PDO indices using a one-way ANOVA test. It was determined that there is a greater occurrence of droughts when the PDO is in the negative phase. The occurrence of droughts is also significant when the ENSO, in the neutral phase, and the PDO, in the negative phase, take place simultaneously. The AMO showed an insignificant influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abiy AZ, Melesse AM, Abtew W (2019) Teleconnection of regional drought to ENSO, PDO, and AMO: southern Florida and the Everglades. Atmosphere 10(295). https://doi.org/10.3390/atmos10060295

    Google Scholar 

  • Alexakis D, Tsakiris G (2010) Drought impacts on karstic spring annual water potential. Application on Almyros (Crete) brackish spring. Desalin Water Treat 16(1–3):229–237

    Google Scholar 

  • Andreoli RV, Kayano MT (2005) ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold pacific decadal oscillation regimes. Int J Climatol 25:2017–2030

    Google Scholar 

  • Angelidis P, Maris F, Kotsovinos N, Hrissanthou V (2012) Computation of drought index SPI with alternative distribution functions. Water Resour Manag 26(9):2453–2473

    Google Scholar 

  • Bocanegra EJ (2009). Estudio de la variabilidad climática de la precipitación en Colombia asociada a procesos oceánicos y atmosféricos de meso y gran escala (In Spanish). IDEAM, Bogotá

  • Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2(1):115–143

    Google Scholar 

  • Edossa DC, Babel MS, Das Gupta A (2010) Drought analysis in the Awash River basin Ethiopia. Water Resour Manag 24:1441–1442

    Google Scholar 

  • Enfield D, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28(10):2077–2080

    Google Scholar 

  • Fu C, Ji Z, Wei Z (2017) Spatial patterns of ENSO's interannual influences on lilacs vary with time and periodicity. Atmos Res 186:95–106

    Google Scholar 

  • Glantz MH, Katz RW, Nicholls N (1991) Teleconnections linking worldwide climate anomalies. Cambridge University Press, Cambridge

    Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228(1–2):113–129. https://doi.org/10.1016/S0022-1694(00)00144-X

    Article  Google Scholar 

  • Guevara-Guillén C, Shirasago-Germán B, Pérez-Lezama EL (2015) The influence of large-scale phenomena on La Paz Bay hydrographic variability. Open Journal of Marine Science 5:146–157

    Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. BAMS 80(3):429–438

    Google Scholar 

  • Hoerling M, Kumar A, Zhong M (1997) El Niño La Niña and the nonlinearity of their Teleconnections. J Clim 10:1769–1786

    Google Scholar 

  • IICA (1980) El sector agropecuario del Ecuador, resumen del diagnóstico preliminar y estrategia global (in Spanish). Instituto Interamericano de Ciencias Agrícolas. Quito, Ecuador

    Google Scholar 

  • INOCAR (2012) CAPÍTULO I: Información General de la República del Ecuador (In Spanish). Instituto Oceanográfico de la Armada. Guayaquil, Ecuador

    Google Scholar 

  • Kam J, Sheffield J, Wood EF (2014) Changes in drought risk over the contiguous United States (1901–2012): the influence of the Pacific and Atlantic oceans. Geophys Res Lett 41:5897–5903. https://doi.org/10.1002/2014GL060973

    Article  Google Scholar 

  • Karavitis CA, Alexandris SG, Tsesmelis DE, Athanasopoulos G (2011) Application of the Standardized Precipitation Index (SPI) in Greece. Water 3(3):787–805

    Google Scholar 

  • Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362(9394):1481–1489

    Google Scholar 

  • Livada I, Assimakopoulos VD (2007) Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI). Theor Appl Climatol 89(3–4):143–153

    Google Scholar 

  • Maleski JJ, Martinez CJ (2018) Coupled impacts of ENSO AMO and PDO on temperature and precipitation in the Alabama-Coosa-Tallapoosa and Apalachicola-Chattahoochee-Flint river basins. International Journal of Climatology 38:E717–E728

    Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific Interdecadal climate oscillation with impacts on Salmon production. BAMS 78:1069–1080

    Google Scholar 

  • Mccabe GJ, Palecki MA, Betancourt J (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. PNAS 101(12):4136–4141

    Google Scholar 

  • Mckee TB, Doesken N, Kleist J (1993) The relationship of drought frequency and duration to time scales. AMS 8th conference on applied climatology (January), Anaheim, California

  • McPhaden MJ (2004) Evolution of the 2002 / 03 El Niño. BAMS 85(5):677–695

    Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745

    Google Scholar 

  • McPhaden M, Timmermann A, Widlansky M, Balmaseda M, Stockdale T (2015) The curious case of the El Niño that never happened. BAMS 96:1647–1665

    Google Scholar 

  • Mishra AK, Singh VP (2011) Drought modeling - A review. Journal of Hydrology 403:157–175

    Google Scholar 

  • Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23:881–897

    Google Scholar 

  • Niedzielski T (2014) El Niño / southern oscillation and selected environmental consequences. Institute of Geography and Regional Development Advances in Geophysics 55:77–122

    Google Scholar 

  • NOAA (2019a) Historical El Nino / La Nina episodes (1950-present). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Accessed February 2019

  • NOAA (2019b) Climate Timeseries AMO (Atlantic multidecadal oscillation) Index https://www.esrl.noaa.gov/psd/data/timeseries/AMO/. Accessed February 2019

  • NOAA (2019c) Pacific Decadal Oscillation (PDO) https://www.ncdc.noaa.gov/teleconnections/pdo/.

  • Oh K, Yu I, Kim H, Kim S, Kim L, Jeong S (2015) Drought assessment based on real-time drought index. Desalin Water Treat 3994:37–41

    Google Scholar 

  • Oliveira-Junior JF, de Gois G, Terassi PMD, da Silva CA, Blanco CJC, Sobral BS, Gasparini KAC (2018) Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions north and northwest of the state of Rio de Janeiro - Brazil. Atmos Res 212:91–105

    Google Scholar 

  • Oñate-Valdivieso F, Fries A, Mendoza K, Gonzalez-Jaramillo VH, Pucha-Cofrep F, Rollenbeck R, Bendix J (2018) Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using Lawr weather radar. Meteorog Atmos Phys 130:473–484

    Google Scholar 

  • Palmer WC (1965) Meteorological drought. U.S. Weather Bureau Res. Pap. No. 45. https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf. Accessed October 2018

  • Quintana JM, Aceituno P (2012) Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30-43° S. Atmosfera 25(1):1–22

    Google Scholar 

  • Randolph KA, Myers LL (2013) Basic statistics in multivariate analysis. Oxford University Press, Oxford

    Google Scholar 

  • Schneider N, Cornuelle B (2005) The forcing of the Pacific decadal oscillation. J Clim 18:4355–4373

    Google Scholar 

  • SENAGUA (2016) Plan Nacional de la gestión integrada e integral de los recursos hídricos de las cuencas y microcuencas hidrográficas de Ecuador. (In Spanish) Changjiang Institute of Survey Planning Desing and Research. Quito-Ecuador

  • Sobral BS, Oliveira-Júnior JF, Gois G, Pereira-Júnior ER (2018) Spatial variability of SPI and RDIst drought indices applied to intense episodes of drought occurred in Rio de Janeiro state Brazil. Int J Climatol 30(10):3896–3916

    Google Scholar 

  • Sönmez FK, Komuscu AU, Erkan A, Turgu E (2005) An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Nat Hazards 35(2):243–264

    Google Scholar 

  • Svoboda M, Hayes M, Wood D (2012) Standardized precipitation index user guide (WMO-no 1090). Geneva, Switzerland, World Meteorological Organization

    Google Scholar 

  • Teodoro PE, Correa CCG, Torres FE, Oliveira-Júnior JF, Silva Junior CA, Gois G, Delgado RC (2015) Analysis of the occurrence of wet and drought periods using standardized precipitation index in Mato Grosso do Sul state. Brazil J Agr 14:80–86

    Google Scholar 

  • Torres-Valcárcel AR (2018) Teleconnections between ENSO and rainfall and drought in Puerto Rico. Int J Climatol 38:e1190–e1204. https://doi.org/10.1002/joc.5444

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. https://doi.org/10.1029/2006GL026894

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research 103(7):291–324

    Google Scholar 

  • Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño- Southern Oscillation and global atmospheric surface temperatures. Journal of Geophysical Reserch 107(D8):AAC5–1–AAC5–17

    Google Scholar 

  • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21:821–822

    Google Scholar 

  • Valdéz-Pineda R, Cañón J, Valdéz JB (2017) Multi-decadal 40- to 60-year cycles of precipitation variability in Chile (South America) and their relationship to the AMO and PDO signals. J Hydrol 556:1153–1170

  • Wen C, Feng J, Wu R (2013) Roles of ENSO and PDO in the link of the east Asian winter monsoon to the following summer monsoon. J Clim 26:622–634

    Google Scholar 

  • Weston A, Seagera R, Baethgen W, Canea M (2018) Trans-Pacific ENSO teleconnections pose a correlated risk to agriculture. Agric For Meteorol 262:298–309

    Google Scholar 

  • Wilhite DA (2000) Drought as a natural hazard: concepts and definitions. DigitalCommons@University of Nebraska-Lincoln Chapter, 1, 1–18. https://pdfs.semanticscholar.org/978b/179885ad9cd08da8ef466ca717425a4eb82c.pdf.

  • Wolter K, Timlin MS (2011) El Niño / southern oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index. Int J Climatol 32(7):1074–1087

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the “Instituto Nacional de Meteorología e Hidrología del Ecuador” (INAMHI) for facilitating the climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Oñate-Valdivieso.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oñate-Valdivieso, F., Uchuari, V. & Oñate-Paladines, A. Large-Scale Climate Variability Patterns and Drought: A Case of Study in South – America. Water Resour Manage 34, 2061–2079 (2020). https://doi.org/10.1007/s11269-020-02549-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-020-02549-w

Keywords

Navigation