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Abstract
Various methods are used in the literature for calibration of conceptual rainfall-runoff models.
However, very rarely the question on the relation between the number of model runs (or
function calls) and the quality of solutions found is asked. In this study two lumped conceptual
rainfall-runoff models (HBV and GR4J with added snow module) are calibrated for five
catchments, located in temperate climate zones of USA and Poland, by means of three modern
variants of Evolutionary Computation and Swarm Intelligence optimization algorithms with
four different maximum numbers of function calls set to 1000, 3000, 10,000 and 30,000. At
the calibration stage, whenmore than 10,000 function calls is used, only marginal improvement
in model performance has been found, irrespective of the catchment or calibration algorithm.
For validation data, the relation between the number of function calls andmodel performance is
even weaker, in some cases the longer calibration, the poorer modelling performance. It is also
shown that the opinion on the model performance based on different popular hydrological
criteria, like the Nash-Sutcliffe coefficient or the Persistence Index, may be misleading. This is
because very similar, largely positive values of Nash-Sutcliffe coefficient obtained on different
catchments may be accompanied by contradictory values of the Persistence Index.

Keywords Rainfall-runoff modelling . HBV.GR4J .Model calibration . Differential Evolution .

Particle swarm optimization

1 Introduction

Although relations between elements of the hydrological cycle are well understood, their
quantitative description is still a challenge. Many hydrologists are interested in processes that
describe a relation between precipitation and runoff at the catchment scale. However, depending
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onmanymeteorological, land cover and soil-related factors that are variable at small spatial and
temporal scales, the quantitative description of the processes that relates precipitation to runoff
at the catchment is difficult. It is frequently assumed that models which could be used in
practice cannot be too detailed (Bergström 1991) and must roughly approximate many physical
processes that occur in the catchment-scale environment – such models are frequently called
Bconceptual^ rainfall-runoff models. If the models simplify all processes at the catchment scale,
they are called Blumped^. It turns out that for rainfall-runoff modelling lumped conceptual
models are considered to perform not worse than more complex distributed models
(Vansteenkiste et al. 2014; Lobligeois et al. 2014), even though they are vulnerable to temporal
resolution (Jie et al. 2018) and variability of hydro-meteorological conditions (Poncelet et al.
2017). Although conceptual models are much simpler and require much less information than
physical ones, they still have some theoretical background, contrary to purely data based-
models like artificial neural networks, stochastic transfer functions or nearest neighbourhood
search approaches (Pechlivanidis et al. 2011). However, irrespective of which model is used, it
needs to be calibrated. Even if model parameters have a physical representation, they almost
never can be precisely measured (Beven 2012). The problem of rainfall-runoff model calibra-
tion, considering various sources of uncertainty or not, has been discussed in various reviews
(Beven 2012; Refsgaard 1997). In this study, attention is focused on single-objective automatic
Swarm Intelligence or EvolutionaryAlgorithms that aim at finding the best set of parameters for
a given model and catchment and become very popular in water-related studies (Tayfur 2017).
Even though it is well known that due to the concept of equifinality (Beven 2012) the solution
found would strongly depend on the model representation, objective function or data, and
would not have Bgeneral^meaning (Vrugt et al. 2008;Merz et al. 2011; Osuch et al. 2015), such
approach to model calibration remains widespread, as discussed below.

During the last decade a number of papers aimed at comparison among optimization algorithms
applied to rainfall-runoff model calibration have been published (Goswami and O’Connor 2007;
Arsenault et al. 2014, Piotrowski et al. 2017a). Such studies generally showed thatmany algorithms
perform similarly well and no best method may be determined. However, the performance of
optimization algorithm depends largely on the number of allowed function calls (or model runs).
The number of function calls is ameasure of method’s computational time independent of the code,
computer or language used. As shown in two recent methodological papers (Posik et al. 2012;
Piotrowski et al. 2017b) the ranking of optimization algorithms highly depends on the number of
available function calls. This is inevitably linked with the problem of computational efficiency.
Unfortunately, in hydrologicalmodelling the problem of proper setting the number of function calls
is rarely discussed. Inmany papers, the number ofmodel runs used by calibration procedure is even
not clearly stated. If the number of function calls is given in the paper, values used may vary
severely. For example, a million function calls were used to calibrate air-to-stream temperature
models with four to eight parameters by means of Particle Swarm Optimization (PSO) in Toffolon
and Piccolroaz (2015), what seems a large exaggeration. As many as five million function calls are
used in Bi et al. (2016) for water distribution system optimization problems, however, this time
such large number could be justified by the fact that even 1000-dimensional problems were
tackled. On the other hand, Wang et al. (2010) set the number of function calls to only 100 when
using a simple Genetic Algorithm and Shuffled Complex Evolution (SCE-UA) method for
calibration of grid-based distributed rainfall–runoff model with four parameters. Such examples
show how large differences may be spotted in the literature, often without any justification.

In some hydrological studies, the relation between the performance of the conceptual
rainfall-runoff model and the number of function calls is considered, often referring to the

20 Piotrowski A.P. et al.



graphically-illustrated convergence speed (Tolson and Shoemaker 2007; Arsenault et al. 2014;
Piotrowski et al. 2017a). In such figures the relation between the quality measure of the best
solution found so far is plotted against the already performed number of function calls.
However, from such illustrations published in various studies aiming at rainfall-runoff model-
ing different conclusions could be drawn. From Arsenault et al. (2014) one may learn that
some algorithms initially converge quicker than the others, but such methods often perform
worse than the best ones at the end of the search. A similar result was obtained by Jeon et al.
(2014), but for another goal, namely calibration of long-term hydrologic impact assessment
model. On the contrary, although in Tolson and Shoemaker (2007) and Piotrowski et al.
(2017a) also differences in convergence speed between various algorithms applied for cali-
bration of conceptual rainfall-runoff models are noted, finally vast majority of methods reach
almost equal performance. This may suggest that most Bgood^ methods may lead to the
solutions of equal quality if the number of function calls is large enough, what again puts
attention to both the concepts of equifinality (Beven 2012) and algorithm efficiency.

In Arsenault et al. (2014) study one may also find another approach to this topic. It shows
after how many function calls the particular algorithm on average reaches the 95% of the best
value of the Nash-Sutcliffe coefficient (Nash and Sutcliffe 1970) found during the whole
search (e.g. 25,000 function calls). It turns out that such close-to-the-best results are often
found during the first half of the search, and in about 50% of cases – during the first 5000
function calls. Hence, is the longer search just a waste of time?

Studies discussed above addressed the problem of how fast the particular method converges
when the predefined number of allowed function calls is preset and anyway used. Would such
results be similar to those obtained when different maximum numbers of function calls are
assumed? For example, when setting the maximum number of function calls to 20,000, Jeon
et al. (2014) found that the variant of Genetic Algorithm they apply perform better than SCE-
UA method (Duan et al. 1992) until 5150 function evaluations is used, but SCE-UA is better
afterwards. Does it means that when one sets the maximum number of function calls to 5000,
Genetic Algorithm would still perform better? Here two points have to be addressed.

First, best solution found so far by the algorithm cannot deteriorate during a run. However,
if a number of runs is performed with some number of function calls, and then the same
number of runs is repeated independently with a larger number of function calls, during
repeated runs better solution may be found sooner, or only worse solutions may be found.
Hence, if someone performs 100 runs for, say, 10,000 function calls, never the average
performance after 5000 calls would be better than those after 10,000 calls (and almost always
solutions found after 10,000 calls will be better). However, if one performs 100 runs with 5000
function calls each, and then independently performs 100 runs with 10,000 function calls each,
it may happen that the average performance found when 5000 function calls were allowed
turns out better than in the case when the number of function calls was set to 10,000. This may
even be not rare for problems on which algorithms are easily trapped in a local optimum, hence
additional function calls are simply wasted.

Second, if the optimization algorithm is developed in a Bsmart^ way, its behaviour at
a particular stage of the run would differ, depending on the remaining computational budget.
Such algorithms search differently when the number of allowed function calls is low then
when it is high. For example, in variants of PSO with inertia weight (Shi and Eberhart 1998),
the inertia weight is decreasing linearly with time such that the lower the maximum number of
function calls is, the quicker the decrease of inertia weight. In Successful-history based
Differential Evolution with linear population size reduction (L-SHADE, Tanabe and Fukunaga
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2014), a winner of IEEE Conference on Evolutionary Computation (IEEE CEC) in 2014,
population size is linearly reduced with the number of function calls from 18∙D (where D is the
problem dimensionality) at the beginning to just four individuals at the end of the search. Also,
Dynamically Dimensioned Search (Tolson and Shoemaker 2007), developed for hydrological
applications, has been designed in order to quicken the search when the computational budget
is low and performs more explorations when it is high. It results in different behavior, and
hence relatively small differences in final results achieved, when the preset number of function
calls varied between 200 and 2000 (see Tolson and Shoemaker 2007).

Hence, to verify how many function calls are needed to solve efficiently the problem of
conceptual rainfall-runoff calibration when advanced Evolutionary Algorithms are used, instead
of referring to plots showing convergence speed, independent tests must be performed with
different numbers of function calls. Moreover, it needs to be verified whether any relation found
between the number of function calls used and the model performance holds not only for the data
used for calibration but also for validation ones. This is the main goal of the present study, in
which two lumped conceptual rainfall-runoff models, HBV (Bergström 1976; Lindström et al.
1997) andGR4J (Perrin et al. 2003) with snowmodule (Piotrowski et al. 2017a), are calibrated by
means of three optimization algorithms with four different maximum numbers of function calls,
set to 1000, 3000, 10,000 and 30,000 (each about three times larger than the previous one). The
aim of this paper is to find a relationship between the modeling performance and the number of
function calls when the advanced optimization procedures are used.

In addition to the main goal, differences between the perception of the same results
depending on the hydrological criterion used are emphasized. Among a few criteria applied
in the paper, we put attention to two specific ones, namely Persistence Index (PI) (Kitanidis
and Bras 1980) and Nash-Sutcliff coefficient (NSC) (Nash and Sutcliffe 1970). According to
both PI and NSC criteria, the best fit is obtained when NSC or PI = 1. However, each criterion
measures something else. Using the model is a better choice than assuming that the forecasted
runoff will be the same as the recent observation in the case of PI, or the same as long-term
mean in the case of NSC, as long as the value of the criterion is above 0. As both criteria are
frequently used, this paper researches how much they may differ in practice.

2 Models, Study Sites, Data and Methods

In this study two lumped conceptual rainfall-runoff models, HBVand GR4J, are used. For the
description of both models, see main source papers: Bergström (1976) and Lindström et al.
(1997) in case of the HBV and Perrin et al. (2003) in case of the GR4J. A specific version of
the HBV (with 13 parameters) and the GR4J with snow module (with seven parameters, four
from the basic GR4J and three from snow module) that are used in this study are discussed in
Piotrowski et al. (2017a). Both models have found numerous practical applications (Lindström
et al. 1997; Beven 2012; Tian et al. 2013).

Both models are applied at the daily time scale. The river runoff (yt + 1) at time t + 1 is
simulated based on the precipitation (Rt), air temperature (Tt) and evapotranspiration (Et)
(related to air temperature according to Hamon’s (1961) method) data from previous day t.
Hydrological data are always collected from the single gauge station in this study, but,
depending on the catchment considered, the meteorological data may come from a single
meteorological station located within the catchment, or a few different stations located within,
or close to the catchment. Time series from each catchment are divided into the calibration and
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the validation sets. Calibration set, composed of roughly 70% of available data, is used during
model optimization; the validation set is used only to verify the quality of calibrated models on
the independent data. However, the first year (365 days) of the calibration data is considered as
a warm-up period and is not used to compute the value of the objective function.

In this study, runoff values simulated by HBV or GR4J models are either considered
directly (such results are called Braw^ further in the paper), or after applying error correction
procedure (Refsgaard 1997; Madsen and Skotner 2005; Liu et al. 2016). In the second case,
after termination of the calibration procedure, the raw results from the HBV and the GR4J
models are updated by means of linear regression with exogenous inputs; in this version, the
past forecasts from the raw HBVor the raw GR4J predictions are added as exogenous inputs to
the linear regression error model:

εstþ1 ¼ f εst ; ε
s
t−1;…; εst−δþ1; y

m
tþ1; y

m
t ;…; ymt−δ

� � ð1Þ

where m (model) denotes the HBV or the GR4J and εst ¼ yt−ymt is the prediction error. The
final simulated runoff is calculated as ystþ1 ¼ ymtþ1 þ εstþ1. Here δ is set to 3 days for both the
HBV and the GR4J.

Five catchments are considered in this study: the lowland Suprasl (Poland) and the Irondequoit
Creek (New York state, USA), the hilly Fanno Creek (Oregon, USA), and the mountainous Biala
Tarnowska (Poland) and the Cedar River (Washington state, USA). Their basic characteristics and
descriptions are given in Table 1 (data sources for USA catchments are: US Geological Survey
(USGS) and National Centers for Environmental Information, National Oceanic andAtmospheric
Administration (NOAA); for Polish catchments: Institute ofMeteorology andWaterManagement
(IMGW)). Table 1 also includes detailed, site-specific information on data sets used, gaps in data,
and splitting observation series into the calibration and validation sets.

In case of the Biala Tarnowska and the Cedar River catchments, the lumped precipitation and
air temperature data series are obtained by Thiessen Polygons (Thiessen and Alter 1911) method
from measurements collected at three and five stations, respectively (see Table 1). In case of the
Suprasl River, the air temperature data come from Bialystok station only, but lumped precipi-
tation data set is based on measurements from five meteorological stations. For the Fanno Creek
and the Irondequoit Creek, all meteorological data come from a single meteorological station.

Using just one calibration method could bias the results. Hence, calibration of each model
for every catchment and with each considered number of function calls is performed by three
optimization algorithms: Modified Differential Evolution with p-best crossover (MDE_pBX,
Islam et al. 2012), Successful parents selecting L-SHADE with eigenvector-based crossover
(SPS-L-SHADE-EIG, Guo et al. 2015) and Genetic Learning Particle Swarm Optimization
(GLPSO, Gong et al. 2016). Control parameters of all three optimization algorithms are set as
suggested in the source papers (in the case of SPS-L-SHADE-EIG, the so called Bdefault^
variant of control parameter settings has been used, see Guo et al. 2015). Population size has
been set to 100 for MDE_pBX (Islam et al. 2012; Piotrowski 2017), 50 for GLPSO (Gong
et al. 2016) and follows linear reduction scheme from 19D (where D is a problem dimension-
ality; D = 13 for the HBV and 7 for the GR4J) to 4 in SPS-L-SHADE-EIG (Guo et al. 2015).
Note that in SPS-L-SHADE-EIG algorithm the values of population size are related to the
computational budget, hence the method will behave differently when large and small numbers
of maximum function calls are preset.

To verify the impact of the number of allowed function calls, all calibration experiments are
repeated with four different values of function calls, set to 1000, 3000, 10,000 and 30,000. The
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idea is that in various tests the numbers of function calls differ roughly by a factor of three.
Tests are independent, what is especially important for SPS-L-SHADE-EIG that scale popu-
lation size with the remaining number of function calls.

In this study, all tests are repeated 30 times, each time with different, randomly generated
initial populations. This gives a sample of 30 solutions for each considered variant (Bvariant^
means, for example, calibration of the raw HBV model by means of GLPSO for the Cedar
River with the maximum number of function calls set to 30,000). The total number of variants
considered in this paper is 240: 2 models × 2 error correction procedure (used or not) × 3
optimization algorithms × 4 maximum numbers of function calls × 5 catchments.

Three criteria are considered in this study:

– MSE: mean square error (being the objective function used for calibration):

MSE ¼ 1

N
∑
N

t¼1
yt−y

s
t

� �2 ð2Þ

where yst is a simulated runoff for time t, yt is a measured value of runoff, and N is the number
of daily data in the particular data set (calibration or validation) for particular catchment;

– NSC: the Nash-Sutcliffe coefficient (Nash and Sutcliffe 1970):

NSC ¼ 1−
∑
N

t¼1
yt−yst
� �2

∑
N

t¼1
yt−yt

� �2
ð3Þ

where yt is a mean of N measured runoff values;

– Persistence Index coefficient (Kitanidis and Bras 1980):

PI ¼ 1−
∑
N

t¼Lþ1
yt−yst
� �2

∑
N

t¼Lþ1
yt−yt−Lð Þ2

ð4Þ

where L is a lead time, set to 1 in this study.
To compare the results the 30-runs mean values of every criterion for each variant are

computed, together with associated standard deviations. The MSE is used for calibration as
the objective function, NCS and PI are computed after each model is calibrated.

3 Results

Detailed results, including 30-run mean and standard deviation values of MSE, PI and NSC
criteria for all tested variants, are given in Supplementary Tables 1–10 that are available online
as Supplementary Material. To facilitate reading, the relation between the number of function
calls and the model performance is presented in Figs. 1, 2, 3, 4 and 5, where values ofMSE, PI,
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and NSC obtained for both the calibration and the validation data are shown. Due to space
limitation, the results obtained with the use of error correction procedure are illustrated

Fig. 1 Relation between the performance of HBV (left two columns) and GR4J (right two columns) models
(vertical axis) without (upper three rows) and with (lower three rows) error correction procedure for Fanno Creek,
Oregon, USA, and the maximum number of function calls used during calibration (horizontal axis). MSE (mean
square error), PI (persistence index) and NSC (Nash-Sutcliffe coefficient) obtained when the maximum numbers
of function calls were set to 1000, 3000, 10.000 and 30.000 (experiments were performed independently). Each
experiment was repeated 30 times; 30-runs average values are shown
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graphically only for two selected catchments (Fanno Creek, Fig. 1, and Irondequoit Creek,
Fig. 2); results for all catchments are given in Supplementary Tables 1–10.

Fig. 2 Relation between the performance of HBV (left two columns) and GR4J (right two columns) models
(vertical axis) without (upper three rows) and with (lower three rows) error correction procedure for Irondequoit
River, New York, USA, and the maximum number of function calls used during calibration (horizontal axis).
MSE (mean square error), PI (persistence index) and NSC (Nash-Sutcliffe coefficient) obtained when the
maximum numbers of function calls were set to 1000, 3000, 10.000 and 30.000 (experiments were performed
independently). Each experiment was repeated 30 times; 30-runs average values are shown

30 Piotrowski A.P. et al.



Fig. 3 Relation between the performance of raw HBV (left two columns) and GR4J (right two columns) models
(vertical axis) and the maximum number of function calls used during calibration (horizontal axis). Results for the Biala
Tarnowska catchment obtainedwhen themaximumnumbers of function calls were set to 1000, 3000, 10.000 and 30.000
(experimentswere performed independently). Each experimentwas repeated 30 times; 30-runs average values are shown

Fig. 4 Relation between the performance of raw HBV (left two columns) and GR4J (right two columns) models
(vertical axis) and themaximumnumber of function calls used during calibration (horizontal axis). Results for the Suprasl
catchment obtained when the maximum numbers of function calls were set to 1000, 3000, 10.000 and 30.000
(experimentswere performed independently). Each experimentwas repeated 30 times; 30-runs average values are shown
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3.1 Number of Function Calls Versus Model Performance

Anyone who expects that the longer conceptual model is calibrated, the better results are
obtained may be disappointed by our results. Based on performed experiments, this is not true
for the independent data, even if often holds for the calibration ones.

In the case of the Fanno Creek (OR, USA) results much differ for the calibration and the
validation data sets (see Fig. 1 and Suppl. Tables 1–2). At calibration stage, the performance of
the HBV and the GR4J models, both raw and with error correction procedure, is better when
10,000 function calls were allowed than when their values were limited to 1000 or 3000. These
results rather do not depend on the calibration algorithm. However, using 30,000 function calls
do not improve results for the calibration data when GLPSO or MDE_pBX calibration
methods are used. SPS-L-SHADE-EIG is able to take advantage of additional time, but the
improvement is observed only for the raw HBVor the raw GR4J models.

The picture gets worse during model validation (see Fig. 1 and Suppl. Tables 1–2).
Depending on the model, calibration algorithm, and whether the error correction procedure
is applied or not, any number of function calls may turn out the best choice for validation data
(even just 1000, as in the case of the HBV with error correction procedure and SPS-L-
SHADE-EIG used as calibration method, see the second column from the left in lower part
of Fig. 1).

The possible explanation is that there are large differences between hydro-meteorological
conditions during calibration and validation periods. Hence, too long calibration of rainfall-
runoff models by means of a good method leads to a kind of overfitting – a term well known

Fig. 5 Relation between the performance of raw HBV (left two columns) and GR4J (right two columns) models
(vertical axis) and the maximum number of function calls used during calibration (horizontal axis). Results for the
Cedar River catchment obtained when the maximum numbers of function calls were set to 1000, 3000, 10.000
and 30.000 (experiments were performed independently). Each experiment was repeated 30 times; 30-runs
average values are shown
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from artificial neural networks (Geman et al. 1992), where it means fitting the models that are
general approximators (Hornik et al. 1989) not only to the signal, but also to a noise present in
a data sample. Although conceptual rainfall-runoff models are not general approximators, if
calibration takes long enough, their parameters may be fitted to the noise achieving good
performance for calibration, but much poorer for validation data.

Results obtained for the Irondequoit River (NY, USA) are much simpler (see Fig. 2 and
Suppl. Tables 3–4). For both calibration and validation data 10,000 function calls are the best
choice, irrespective of the model, calibration algorithm or error correction procedure. Using
30,000 function calls do not improve results for the calibration data, and slightly deteriorates
performance on validation data, what may again point out at some form of overfitting.

In the case of the Biala Tarnowska River catchment (Fig. 3, Suppl. Tables 5–6) impact of
the maximum number of function calls on the performance depends on the model. In case of
the HBV model the results show a relatively simple pattern: when SPS-L-SHADE-EIG or
GLPSO are used for calibration and error correction procedure is not applied, setting
the number of function calls to 30,000 is the best choice, both for calibration and validation
data. The differences inMSE, PI or NSC when the number of function calls is set to 10,000 or
30,000 are marginal. If error correction procedure is used, or if MDE_pBX algorithm is
applied, 10,000 function calls may perform better. In case of the GR4J model, results are
similar in most cases, but with notable exceptions. As seen in the last column of Fig. 3, when
GLPSO or SPS-L-SHADE-EIG algorithms are used and error correction procedures are not
applied, setting the maximum number of function calls to only 1000 may be the best choice for
validation data. Longer calibration may lead to a quick decrease in model performance on
the validation set. If error correction procedure is applied, 1000 function calls may still be the
best choice for validation data, but only when GLPSO is used for calibration of the GR4J
model (see Suppl. Table 6). Hence, results obtained for the Biala Tarnowska River confirm
non-intuitive findings discussed earlier for the Fanno Creek that in some circumstances the
shorter calibration time is, the better performance on independent data may be achieved.

In the case of the Suprasl River (see Fig. 4 and Suppl. Tables 7–8) the longer
optimization, the better results for calibration period, but worse for validation one. This
means that for this flat catchment the parameters calibrated on one period may hardly
be representative for the other one.

In case of the Cedar River (WA, USA) results are inconclusive, especially for the validation
data (Fig. 5, Suppl. Tables 9–10). Any number of function calls between 1000 and 30,000 may
lead to the best results for the validation set, depending on the methodological variant
considered. For the calibration data, there is only a marginal difference between the final
performance of models calibrated for 10,000 and 30,000 function calls, and not much worse
results are obtained when the number of function calls equals 3000.

Overall, according to both criteria which are comparable among catchments (NSC and PI), the
worst results for validation data are obtained for flat, snow-fed Suprasl catchment; the best results
are obtained for mountainous and relatively climatically homogenous Biala Tarnowska catchment.

The above discussion may lead to three relatively general conclusions:

1. Although in this study five daily time series (14–39 years long) are used, the modelling
performances for calibration and validation data are often highly uneven. The differences
in MSE, NSC and PI values for calibration and validation data are especially high for the
Fanno Creek (OR, USA), the Biala Tarnowska and the Suprasl Rivers (Poland), to
a smaller degree in case of the Cedar River (WA, USA).
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2. For the vast majority of tested variants, the more function calls are available, the better
results are obtained for the calibration data. As experiments with different numbers of
function calls are independent, obtaining worse results after longer calibration for the
calibration data set is possible, and indeed occasionally observed. However, almost always
the differences between results obtained in experiments with the maximum numbers of
function calls set to 10,000 and 30,000 are marginal. In many cases, 3000 function calls
may be sufficient for calibration data, but this is not a rule.

3. Even though for calibration data better results may be obtained whenmore function calls are
used, this does not result in better performance for validation data. Depending on the
catchment and various details of modelling methodology used, the best results for validation
data may be obtained when the number of function calls is set to any considered value
(1000, 3000, 10,000 or 30,000). No general relation has been found between the perfor-
mance of the rainfall-runoff model on validation data and the number of function calls. This
is a very unfortunate conclusion that may, however, at least partly suggest why in the
literature some hydrological models are being calibrated by hundreds, others by millions of
function calls. This conclusion is different frommuchmore optimistic one found for various
tests in Evolutionary Computation-related literature (Posik et al. 2012; Piotrowski et al.
2017b), as here the performance of the specific model on validation data that come from
environmental measurements is considered, what was not the case in that two papers.

3.2 Performance measures: Persistence Index versus Nash-Sutcliffe Coefficient

In hydrological literature frequently various criteria are used to evaluate the performance of
a rainfall-runoff model. However, two popular ones, NSC or PI, are rarely used together. Both
PI and NSC are maximization criteria, with the optimum equal to 1. Both allow negative
values. However, in PI negative value means that it is a better choice to use current flow as the
future one than using the model, in NSC negative value means that it is better to set long-term
averaged flow value than using the model (Schaefli and Gupta 2007). As both criteria leave the
reader with an impression that the positive values indicate the usefulness of the model,
contrary to the negative, and that the values close to 1 indicate that the model is successful,
it may be interesting to compare them side by side.

As may be seen from Figs. 1, 2, 3, 4 and 5 and Suppl. Tables 1–10,NSC is almost always much
higher thanPI. It is easier towin the comparison against an average flow than against themost recent
observation.However, in some cases, the differencesmay be substantial andmislead the readers. For
example, consider situations in Fig. 5. For both the HBVand the GR4J models applied to the Cedar
River without error correction procedure NSC values are highly positive (0.68–0.80), but PI values
are highly negative, showing that both models have no predictive skills.

As seen in Fig. 3, the values of NSC similar to those found for the Cedar River are obtained
for the Biala Tarnowska River (0.73–0.81). However, for this catchment PI values are not only
nonnegative, but also well above 0.6. Hence, the information from both PI and NSC criteria
leads to fully contradictory impression for the Biala Tarnowska River and the Cedar River:
NSC suggests equally good performance on both catchments, according to PI models perform
well on Biala Tarnowska catchment, but very poorly on Cedar River catchment. This may be
the effect of climatic non-homogeneities within the Cedar River catchment, which is divided
into two much different parts: very mild, flat, lowland west which generally lacks snowy and
frosty conditions in winter, and mountainous east, with frequent snow and frost.
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The above discussion should be seen as a warning to not overestimate the importance of
NSC or PI values. Especially NSC seems to be a doubtful criterion, as it frequently suggests
that the model with little predictive skills leads to respectful results, what has been observed
also in McCuen et al. (2006), Jain and Sudheer (2008) and Lin et al. (2017).

4 Conclusions

This paper aims at studying the impact of the assumed number of function calls to be used
during calibration of the lumped conceptual rainfall-runoff model on the final performance.
Tests with different numbers of function calls (1000, 3000, 10,000 and 30,000) are performed
independently, hence longer calibration does not necessarily imply better results. Two models
are tested (HBVand GR4J), each applied with or without error correction procedure (Madsen
and Skotner 2005), and with three calibration procedures (GLPSO, MDE_pBX and SPS-L-
SHADE-EIG) at five catchments (the mountainous Biala Tarnowska, Poland and Cedar River,
WA, USA; the hilly Fanno Creek, OR, USA; the lowland Irondequoit Creek, NY, USA and
Suprasl, Poland) located in temperate climatic conditions. Research is based on 14–39 years
long daily data that are divided into calibration and validation parts.

For various catchments, substantial differences in modelling performances for the calibration
and the validation data may be observed, what is in agreement withMerz et al. (2011) and Osuch
et al. (2015). Such results have large implication for the number of function calls that should
efficiently be used during conceptual rainfall-runoff model calibration. For the calibration data
set, often the more function calls are used, the better results are obtained. However, differences
between results obtained when 10,000 and 30,000 function calls are used are often meaningless.
For validation data, this is often not the case. Depending on the catchment and methodological
details, the best results for validation data may be obtained with any considered number of
function calls, from 1000 to 30,000. Sometimes the longer optimization is, the better results are
obtained for the calibration set, but the poorer for the validation one.

Such lack of consistent relation between the rainfall-runoff model performance and the
length of model calibration may clarify the total mess in the hydrological literature, where
some models are calibrated for hundreds, other for millions of function calls. As no rules may
be observed, each time practitioners must look for the best setting for their specific application.
Hence, when calibrating conceptual rainfall-runoff models for practical applications, tests with
at least two different numbers of function calls, one very small and one moderate (e.g. 1000
and 10,000) are advised, to see if the choice affect the results; in each case calibration should
be performed at least a few times to verify consistency of the results.

In the future, it is recommended to verify how the choice of the stopping conditions of
Markov Chain Monte Carlo (MCMC) methods (see Vrugt et al. 2008) affects the distributions
of found solutions for conceptual rainfall-runoff models.

The intuitive opinion on the model performance is frequently based on the hydrological
criteria like the Nash-Sutcliffe coefficient (NSC) or the Persistence Index (PI). Although such
indexes measure something else, both are maximized, both have the maximum in 1 and both
suggest that model is Buseful^ if its value is positive (higher than 0). In this paper, it is found
that the opinion on model performance based on the two criteria may be misleading, as similar
largely positive values of NSC (≈0.7) observed on two different catchments may be accom-
panied by very contradictory PI values (≈0.6 at one catchment and highly negative at the
other).
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