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Abstract This paper presents an integrated economic model which is able to explicitly
address both water quantity and quality. We use a welfare program to maximize social
welfare subject to the economic and ecological constraints, where interactions, emissions
and environmental impacts are incorporated. Such a welfare program can provide the
marginal values of commodities and therefore can price water by means of shadow pricing.
The optimal solution to a specified program provides the optimal response strategies, i.e. the
efficient allocation of resources in the economy including water use and the efficient level of
water quality. We illustrate the mechanism in a numerical example and show, as an example,
how we can achieve efficiency by reserving water in the high season for times of high
demand in the low season and by introducing price differentiation between the two seasons.

Keywords Water management . Economic models . Welfare program .Water pricing .Water
reservation . Efficiency

1 Introduction

The world is facing serious water shortages and millions in the world are suffering from
water pollution with large health risk, particularly for the poor and for children (Shaw 2005).
In the future these problems will be aggravated by population growth, more economic
activity and increasing demand for water. The problems will become even more serious
due to global change, including deterioration of ecosystems and climatic change.

To solve these water problems, different options have been identified. Among all,
Integrated Water Resources Management (IWRM) proposed by the Technical Advisory
Committee of Global Water Partnership has become the most cited option, which promotes
the co-ordinated development and management of water, land and related resources in order
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to maximize the resultant economic and social welfare in an equitable manner without
compromising the sustainability of vital ecosystems (GWP-TAC 2000).

Integrated resources management implies that we should consider the complexity of human-
environment systems and understand the feedback effects, non-linearities, time delays and
changes in human behaviour as a consequence of policy interventions (Pahl-Wostl 2004).
Integrated water management, which aims to maximize economic and social welfare, aims at
optimality or efficiency. However, efficient allocation requires clear insight in water use rights
and proper pricing of water (Dinar and Letey 1991). The amount of water allocated to meet
basic human and environmental needs depends on biological, ecological but also socio-political
considerations (Kemper 1996; Olmstead 2010). Water issues can no longer be separated from
energy, food and environmental issues (Hellegers et al. 2008). Hence, we need to understand the
functioning of the water system and the economic context in which water is used. This would
enable us to identify solutions that keep rivers flowing, and prevent deterioration of flora and
fauna, i.e. to assure the functioning and productivity of aquatic and terrestrial ecosystems.

Economic models can support water policies aiming at sustainable allocation and quality
conservation of water (see e.g. Braden and van Ierland 1999; Olmstead 2010). Europe’s
Water Framework Directive (WFD) recommends applying economic methods to support the
identification of measures to achieve the environmental objectives. It calls for a wider
consideration of economic instruments (e.g. water pricing, charges and taxes) to provide
adequate incentives for reducing pressures exerted on water resources. In the literature of
economic analysis of water, there are at least four strands of economic models or methods: i)
game theoretical models (e.g. Loehman and Dinar 1994; Ansink and Ruijs 2008); ii) valuation
methods (Viscusi et al. 2008); iii) optimization models (e.g. Yaron 1979; Chakravorty et al.
1995; Babel et al. 2005; Qureshi et al. 2008; Fisher 2008); and iv) integrated hydro-economic
models (Rosegrant et al. 2000; Cai et al. 2003; Heinz et al. 2007; Koch and Grünewald 2009;
Prodanovic and Simonovic 2010). These models deal with water issues from different per-
spectives. Game theoretical approaches are mainly used for establishing inter-regional or
international water allocation agreements. Valuation methods are usually used in cost-benefit
analysis of water projects. Optimization models maximize total benefits from water and thus
allocate the available water efficiently. Particularly, hydro-economic models represent spatially
distributed water resource systems, infrastructure, management options and economic values in
an integrated manner (Harou et al. 2009). They integrate the economic processes with the
hydrological processes and maximise the economic benefit from water supply and hydroelec-
tricity generation to examine some specific “what-if” scenarios. They are becoming more and
more important in water management.

However, important feedback effects from the water system to the economy and from the
economy to the water system are often missing in existing economic models (Brouwer and
Hofkes 2008). Batten (2007) identified the following challenges for economists. First, envi-
ronmental costs and other externalities must be incorporated into water pricing regimes.
Second, we must develop ecological sustainable water trading regimes that facilitate efficient
allocation of water for all uses (including ecosystem services). Third, we must address the issue
of qualitative changes in the long run. New tools and approaches are therefore needed.

The economic literature provides only few examples of well-integrated water manage-
ment models. For example, Keyzer (2000) developed a theoretical model framework which
adapts capital theory to value the stocks and flows of water with specific consideration of the
water regeneration process and its sustainable use in a river basin system. The model is
written in a welfare program with the characteristics of an economic general equilibrium and
deals with water quantity issues. It is applied to the Upper-Zambezi river (Albersen et al.
2003). However, water quality issues are not explicitly considered.
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Our objective in this paper is to develop an integrated economic model which is able to
address both water quantity and quality explicitly. Particularly, we capture the interactions
between the economic and the water system considering the feedback effects, the economic
functions of water as inputs and amenity services, and the environmental services in a welfare
program. This allows us to explicitly consider water quantity and quality in a general equilib-
rium setting. The objective function of the welfare program is to maximize the social welfare
subject to the economic andwater quantity and quality constraints. Solving the welfare program
leads to the most efficient allocation of water quantity and the efficient level of water quality as
well as optimal water prices.1We contribute to the literature on integrated water management by
presenting a model framework that consistently and simultaneously deals with quantity allo-
cation and water quality, through pricing water by Lagrange multipliers (i.e. shadow pricing)
and by determining compensation rules for relevant externalities.

The organization of the paper is as follows. Section 2 discusses the economic functions of
water and their special features (e.g. rivalry/non-rivalry and excludability/non-excludability).
This prepares us to address the economic mechanisms of dealing with water use efficiency and
water quality in different situations. Section 3 explores the economic mechanisms of managing
water quantity as a rivalrous good (e.g. a private good, or a common-pool resource) and water
quality as a non-rivalrous good (e.g. a public good). Section 3 also elaborates on the economic
instruments of dealing with water quality issues, including how pollution compensation or a tax
should be determined. Section 4 illustrates how to work with the model framework in an
example, including the model specification and how to solve the program. It also discusses
policy implications. Section 5 concludes.

2 Special Features of Water

2.1 Water as an Economic Good and a Natural Resource

Water is part of the environmental resource systems. There are two primary types of fresh
water in the natural environment: surface water consisting of rivers, lakes and oceans and
underground water beneath the earth’s surface in soils or rocks. In literature, the functions of
water are classified in different ways (see e.g. Briscoe 2005; Young 2005). Briscoe (2005)
classified five types of values of water: irrigation for agriculture, hydropower generation,
household purposes, industrial purposes and environmental purposes. Obviously, the first
four values are directly related to the economic activities and therefore can be treated as
direct input to economic system, while the last (environmental purposes) is related to the
maintenance of wetlands, wildlife support and river flows and therefore can be treated as the
environmental services function. Water provides environmental services including support
of, and habitat for aquatic life, animals and plants in riparian areas, and birds that feed on
aquatic life. Humans sometimes just enjoy simply looking at, or being near, a water body.
These activities are referred to as water’s service flows to humans (due to the amenity value
of water). Thus, the economic functions of water can basically be interpreted as the input
function (e.g. in production and consumption) and the environmental and human services
(e.g. providing regeneration of the natural resources and amenity values to human beings).
This is consistent with the Dublin statement “water has an economic value in all its
competing use and should be recognized as an economic good.”

1 Although derived from a central planner’s problem, such a solution can be decentralized in the competitive
market under the condition of convex production set, and continuous and concave utility function (Negishi 1960).
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2.2 Rivalry/Non-rivalry and Excludability/Non-excludability

Although water can be treated as an economic good, we have to understand its characteristics as
water is part of the environmental resource systems. Due to the physical attributes, natural water
often has specific characteristics related to the questions of whether it is rivalrous or non-
rivalrous and whether users of water are excludable or non-excludable from its use. Non-rivalry
refers to a situation in which the consumption of water by one individual does not reduce the
availability of consumption by another. Non-excludability refers to the property that it is
impossible to exclude people from consumption in a physical or legal sense. According to
the different levels of involvement of non-rivalry and non-excludability, we may classify water
as different types of good (or bad) in economic terms (Grafton et al. 2004):

& Water is a private good if it is both rivalrous and excludable;
& Water is a public good if it is both non-rivalrous, and non-excludable (or if exclusion

costs are very high);
& Water is a common-pool resource (or open access resource) if it is rivalrous but non-

excludable (or if exclusion costs are very high);
& Water is a club good if it is non-rivalrous (at least to some extent), but excludable.

According to these classifications, we may find many examples for different types of water: a
private good, a public good, a common-pool resource, or a club good. Firstly, typical water such
as drinking water, agricultural and industrial water is a private good. This kind of water use is
competing; water used for one purposemakes it unavailable for the other purposes. It is exclusive
because one can exclude the others using water e.g. by piping the water to a specific location.

Secondly, flood-control projects are public goods because the benefits of projects can be
enjoyed by anybody, whereas there is no opportunity in the market to charge for the extra costs
(they are non-rivalrous and non-excludable). Water that is causing a flood is a public bad
because nobody in the flooding area can be excluded and the fact that one person suffers from
the troubles of flooding does not reduce the suffering of other people. A beautiful stream for
recreation can be viewed as a public good because your enjoyment of the beauty of the stream
does not reduce the possibility of other people enjoying it (non-rivalry) before congestion
occurs, and the exclusion cost (such as building a wall or a fence around the stream) is too high.

Thirdly, groundwater (or water in a local lake) has been a common-pool resource in many
regions of the world, because its use is rivalrous and the exclusion costs can be very high. On
the one hand, groundwater is rivalrous, because your extraction will reduce the groundwater
table (there is a limited volume of water under ground or a limited flow of groundwater) and
the extraction possibility of other people will thus be reduced. On the other hand, the
exclusion costs of using groundwater are very high. You can only stop people extracting
water either by physical means such as setting monitoring equipment in many locations, or
through laws, which incur high transaction costs or monitoring costs.

Finally, water for fishing can be a club good if fishermen have to pay for fishing (using of
water for fishing), and if it is to some extent non-rivalrous because many people can go
fishing at the same time and location, as long as no congestion occurs. In this case, the
exclusion costs are low; simply introducing the fishing license or asking fishing men to pay
the membership fee can exclude fishing for free.

2.3 Causes of Water Scarcity and Water Pollution

Water quantity is closely related to water scarcity. Water scarcity can be caused by the natural
environment or by human activities. Earth water balance follows the hydrologic cycle.
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Precipitation, evaporation and runoff determine the water availability in the different seasons at
various locations of the globe. In some areas water is abundant; while in other regions absolute
water scarcity occurs. The patterns of precipitation and evaporation show huge variations over
the seasons and over the years, which always has led to periods of drought and incidental floods
in many areas.

Water quality issue is closely related to water pollution. Water pollution can be caused by
human activities directly, but the environmental processes can also contribute to water
pollution following the bio-physical laws. For example, climate change can worsen water
quality due to a higher temperature. Managing water quality therefore needs understanding
of the impacts on water quality of both the economic system and the environmental system.

3 An Economic Framework for Water Quantity and Quality Management

3.1 Theoretical Background

Economically, the efficiency of water allocation can be achieved through the first welfare
theorem. The objective of the society according to this theorem is to maximise the social
welfare subject to the economic constraints. Under very specific circumstances (e.g. absence
of externalities and perfect competition), it can be shown that for given ownership of
endowments, the resulting equilibrium allocation of the welfare program reflecting the
social objective is Pareto-efficient2 (see Ginsburgh and Keyzer 2002).

However, the resulting allocation may be considered to be unacceptable from an equity
perspective. A very careful design of the institutions is required to arrive at socially desirable
outcomes that consider both allocative efficiency and distributional aspects. The potential
compensation criterion is useful in separating efficiency and equity. This is addressed in the
second welfare theorem. For the equity concern, the distributional goal can be achieved
through transfers, in a setting which is also Pareto-efficient (Ginsburgh and Keyzer 2002). If
the gains outweigh the losses, it would be possible for the gainers to compensate fully the
losers with money transfers and still be better off with the policy.

In literature, environmental problems including amenity service of the environment have
been represented in a welfare program (see e.g. Gerlagh and Keyzer 2003 and 2004; Zhu and
van Ierland 2005). The welfare theorems indicate that Pareto-efficiency is achieved when the
marginal benefits of using a good or service are equal to the marginal costs of supplying the
good. In welfare economics, the shadow prices are determined by the marginal value of the
resources (e.g. water).

Welfare economics found its application in water resource management already in early
years (Krutilla 1981). Welfare economic theory provides a basis for economic valuations of
water use because water is an input to economic activities. The value of water reflects its
marginal contribution to the objective, i.e. by how much the value of the objective function
increases if one more unit of water would be available. This is called the shadow price of
water. The way of determining the value of water in a welfare program is called shadow
pricing. Because of its economic value to the water users, shadow pricing of water can
determine the willingness to pay of the users in the absence of markets. A shadow price, as

2 A resource allocation is Pareto-efficient when it is impossible to reallocate resources to make an economic
agent better off without making at least one economic agent worse off. In a welfare program, values of stock
variables (shadow prices) are calculated according to capital theory, which can also be used for calculating the
shadow price of accumulative pollution (see Keyzer 2000 for further information).
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the accounting price, therefore reflects the economic value of water. The advantage of using
a welfare program is that the optimal solution can be decentralised in the competitive market
(Ginsburgh and Keyzer 2002).

3.2 Economic Models for Water

In our economic analysis, we distinguish two characteristics of water in terms of its
economic functions and special features, i.e. water quantity as a rivalrous good, and water
quality considering pollution as a non-rivalrous good. They are represented in two types of
models. The first type of model considers the input function of water in the production and
consumption process and thus it is rivalrous. The second type considers both input and
service (amenity) function, where water quality is influenced by the emissions from eco-
nomic activities and has impacts on the utility of consumer utility and the production of
producers. In this way, feedback effects of both water quantity and water quality are
captured.

3.2.1 Rivalrous Water as an Input to Economic Activities

If water is a private good (i.e. rivalrous and excludable), the efficient allocation can be
realised by a welfare program with a water market. If water is a common-pool resource, it is
rivalrous but non-excludable. The non-excludability of water is caused by the fact that there
are no clearly defined property rights. To achieve the optimal allocation of a common-pool
resource, we can define a property right and establish a (pseudo-)market for it. Since the
welfare optimum is equivalent to the equilibrium in a competitive market (i.e. utility
maximization and profit maximization), an economic general equilibrium model can be
represented as a welfare program. With clearly defined property rights and the establishment
of a market for water, a welfare program can deal with different types of commodities
distinguished by location and time dimension and can thus incorporate the spatial differen-
tiation and seasonality of water. Particularly, in a welfare program we can determine the
optimal allocation of a rivalrous good (e.g. private or common-pool water resource) and the
shadow price of water.

Let us consider an economy with r commodities indexed by k01, 2, …, r. The commod-
ity space is an r-dimensional space, denoted by Rr. The rivalrous water used as input for
production or as final use for consumption in different seasons belong to this space. There
are two types of agents who make decisions: producers (firms) and consumers. There are n
producers, indexed by j01, 2, …, n. Each producer j is endowed with a technology,
represented by a set Yj, which belongs to Rr. Let yj be the production plan with a vector of
outputs and inputs (including water) of producer j, and the outputs of production carry a
positive sign and inputs a negative sign. The feasible production plan is expressed as:yj 2 Yj
. The producer chooses from the set of feasible production plans such that it maximises his/
her profit, defined as pyj, where p is the price vector. The problem of the producers can be
described as:Π jðpÞ ¼ maxyj pyj

��yj 2 Yj
� �

, where Π jðpÞ is the resulting maximal profit.
There are m consumers, indexed by i01, 2, …, m. Every consumer is endowed with

commodity endowments including water resource wi for sale and sets his or her consumption
plan such that his/her utility is maximized. The consumption of any commodity including
water cannot be negative: x 2 Rr

þ . Each consumer is also faced with a budget constraint:
pxi � hi , where hi is the income of consumer i. The income consists of two parts: the
proceeds pwi of selling the endowment wi and the distributed profits

P
j θijΠ jðpÞ , expressed
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as: hi ¼ pwi þ
P

j θijΠ jðpÞ , where θij is consumer i’s non-negative share in firm j. All

profits are distributed so that
P

i θij ¼ 1 for producer j. The welfare program where water is
a rivalrous good or common-pool resource reads:

W að Þ ¼ max
P

i aiui xið Þ
xi � 0; all i; yj; all j

ð1Þ

subject to P
i xi �

P
j yj þ

P
i wi ðpÞ;

yj 2 Yj; for all j;

where xi is the vector of consumption goods (including water) of consumer i, yj is the vector
of outputs and inputs (including water) of producer j, ω is the vector of initial endowments
(including water resource). Parameter in bracket (p) gives the vector of shadow prices of the
rivalrous goods (including water), αi is the welfare weight of consumer i and is chosen such
that his/her budget constraint holds,

pxi ¼ pwi þ
X

j
θijΠ jðpÞ:

By solving such a welfare program, the resulting solution shows the optimal allocation of
goods including water with rivalry in production and/or consumption and their optimal
shadow prices (p).

For dealing with the competing use of water, the social objective is to achieve efficiency
and equity of water allocation. The input function of water is valued by shadow prices in a
market or pseudo-market in a welfare context. This welfare program sets up the mechanism
of water quantity management based on economic efficiency. For the concern of equity,
direct transfers can be made e.g. from the rich to the poor, which can be incorporated in the
budget constraints. The framework proposed here is consistent with the hydro-economic
modelling framework, because water regeneration (element of ω) follows the hydrological
process model.

3.2.2 Non-rivalrous Water Quality as a Public Good

Water pollution is to a large extent non-rivalrous because the negative impacts on one part of
the environmental and economic system does not reduce the negative impacts on the other
parts. For water quality management, we need to reduce its negative impacts on the
environment and humans. Poor water quality has negative impacts on the economic activ-
ities of human beings because of the decreased capacity for life support and reduced water
quantity caused by the regeneration process following hydrological processes. For example,
lower water quality can have negative effects on crop growth or fish production.

Economically how can we solve the water quality problem (or improve the water quality)
efficiently? Water quality has impacts on utility because of the health effects and amenity
services, and it has impacts on production because of its input function. Therefore, it is
necessary to include water quality, and its impacts on utility and the production function, in
an economic model. Considering the non-rivalry of water quality, a welfare program can be
used because it can accommodate different types of commodities including rivalrous and

Economic Modelling for Water Quantity and Quality Management 2497



non-rivalrous goods (Ginsburgh and Keyzer 2002). Since water pollution is caused
externally by emissions and water quality also depends on the water quantity avail-
able, water quality is actually a function of concentration of pollutants in a water
body. Therefore, we can introduce a water quality function, which is a function of
emissions and water quantity. Since there exists a threshold for concentration of
pollutants in water, we can restrict the concentration to its threshold or safety
standard. Because emissions result from economic activities, we can consider com-
pensation by means of the ‘polluters pay principle’ and thus include ‘externalities’ in
the welfare program. As such, the welfare program, which includes the water quality
function, the non-rivalry of water quality, the impacts of water quality on utility and
production, and the compensation for the caused pollution, can be stated as:

max
X

i
aiui xi; gið Þ

xi � 0; gi � 0 all i; yj all j; y
þ
w
� 0;

ð2Þ

subject to

X
i
xi �

X
j
yj þ

X
i
wi ðpÞ;

Fj yj; gj; ej
� � � 0;

gi ¼ yþw fið Þ; for all i;

gj ¼ yþw fj
� �

; for all j;

e ¼ P
j ej � e yð Þ;

Fg yþ
w
; e

� �
� 0;

where xi is the vector of consumption goods (including water) of consumer i, Fj is the
transformation function of producer j representing the production process according to a certain
technology, which gives the relation between inputs including water and outputs (yj) and water
quality gj as well as emissions ej. Water quality yþw is “produced” according to a transformation
function Fg, which is mainly determined by the total emissions (e) and the hydrological process
(which determines the available water quantity) as well as the biogeochemical circumstances.
The non-rivalry of water quality is captured by gi ¼ yþw , which means every consumer i faces
the same water quality yþw . When water quality has an impact on production, the non-rivalry of
water quality also applies to the producer, which means that producer j faces the same water
quality as well, i.e. gj ¼ yþw . Parameters ϕi and ϕj indicate the shadow prices of water quality,
implying the willingness to pay of each consumer i or the costs of each producer jwho is willing
to pay for improving the water quality by one unit. Restricting the concentration of a pollutant in
water to its threshold or safety standard is equivalent to limiting the total emissions to an
emission bound e , which can then determine the shadow price of emission (y). This y can be
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used as an emission tax or the compensation that the polluter has to pay. The welfare weight (αi)
is chosen such that his budget constraint holds,

pxi þ figi ¼ pwi þ
X

j
θijΠ j p; fj

� �
:

This welfare program can be applied for dealing with water allocation, the industrial
pollution problem, trans-boundary water management, upstream and downstream interaction
and pollution compensation and charges.

This framework is consistent with a hydro-economic model, as water quantity endow-
ment is determined by the hydrological cycle. Moreover, it extends a hydro-economic model
in that water quality is included and the process of water quality transformation follows a
biophysical process model. In addition, feedbacks from water quality to the economic
system (e.g. on the utility and production) are also explicitly considered.3

4 An Illustration for Seasonal Water Management in a Numerical Example

The economic principles discussed in Section 3 can be applied to real world cases. By
specifying the welfare programs we may discuss how water systems in specific settings can
be managed in an economically efficient way. Policy insights may be obtained from the
results of well-designed integrated models. In this section we illustrate how to manage water
by applying a welfare program and finding the policy implications of water management in
the case of a local water system.

4.1 Specification of the Welfare Program

Consider an economy in which water use relies on a local water system (e.g. a river or a
lake). In the economic system, the economic process follows given production technologies
for production and given consumer preferences for consumption. In this system, there is
water demand. Different users use water as a consumption good4 (e.g. drinking and bathing
water for households) or an input e.g. irrigation for agricultural production, or cooling for
industrial production. In the water system, water is supplied according to the hydrological
cycle with precipitation, evaporation and runoff. Following this cycle, water quantity (i.e.
availability) fluctuates over seasons. For simplicity, we distinguish a high and low season in
a year according to the hydrological cycle. In the high season, there is higher precipitation,
while in the low season, there is lower precipitation and possibly droughts. Water quality is
determined, following the biophysical process, by the total emissions from production,
which are released into water, and the water quantity. That is, water quality is a function
of concentration of pollutants in water. The higher the emission level, the lower the water
quality. The lower the water quantity, the lower the water quality, ceteris paribus.

A planner (water manager) wants to make the best use of the water system in order to
achieve the sustainable economic development in the local economy. Particularly, the water
manager aims to provide sufficient water for economic activity in the low season and sufficient
water quality for sustaining the economy. The manager knows that he has two options for

3 For simplicity, we have not explicitly included the time dimension in the theoretical framework. However, it
can easily be modified to a dynamic setting if a time subscript is added to each variable and parameter in the
model. In the specified model in Section 4 we have included two seasons.
4 For simplicity we do not include a water utility for producing “tap” water in this model. Water is directly
used by consumers and producers.
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managing water quantity. One is to reserve water in the high season for use in the low season.
The other is to introduce different prices for water in different seasons because of the different
demand. For managing water quality, he can charge an emission tax to those who release
emissions into the water body, such that the pollutant concentration in water will be below the
local threshold. Therefore the manager’s problem is to determine the allocation of water over
two seasons among different users, and the different prices in different seasons, as well as the
emission charges. This problem can be solved by solving a specified welfare program.

For this problem, we need to specify the number of consumers and producers involved in
this economy. We consider one aggregate representative consumer for households, and two
production sectors that produce agricultural and industrial goods in this model economy. The
utility of the consumer depends on the consumption of agricultural and industrial goods,
water quantity and quality. Water is an input for both sectors and the two sectors also emit
pollutants to the river at different levels. Agricultural production is influenced not only by
the quantity of water, but also by the water quality. We specify the welfare program (2) for
this problem, which is included in the Appendix.

4.2 Solution to the Model and Policy Implications

This is an optimization model with equality and inequality constraints. Obviously, it is very
difficult to solve this model analytically, even though it is only a small-scale model with
limited number of commodities, a simplified hydrological process for water quantity and a
simplified biophysical process for water quality. Nevertheless, we can solve the model
numerically, with the parameter values for the production and utility functions, the hydro-
logical cycles and the biophysical processes from empirics, using optimization algorithms.
We use the given parameters and exogenous variables5 in Table 1 to illustrate how to solve
such a model. The software used is GAMS.6

We then numerically determine all the variables such as production and consumption of
agricultural and industrial goods, water use of the consumer and producers, water reservation,
and water quality. Shadow prices of all commodities are determined as the Lagrange multipliers
during the optimization process. Since the model outcome is the solution to a planner’s problem
whose objective is to maximize the social welfare, it is efficient. Besides, this solution is
decentralisable through markets because of the convexity of the used transformation functions
(combination of Leontief, Cobb-Douglas and CES) and the concavity of the utility functions
(Cobb-Douglas). Table 2 provides the results on allocation of water among different users over
two seasons, emissions and factor uses. Table 3 shows their relative prices.7

Table 2 shows that 39 % (235 out of 600 km3) of water in the high season will be reserved
for use in the low season. The economy will allocate 10 % of capital (i.e. 5 from 50 K€) and
5 % of labour (5 from 100 k-hours) for reserving water in order to meet the higher demand in
the low season. The prices8 differ in the two seasons, namely 0.132 €/m3 in the high season
but 0.199 €/m3 in the low season to achieve the best use of water. This is, water is about

8 Please note that in Table 3 relative prices are reported, which gives the total income (GDP) 408€. For
interpretation of the results, we rescale prices based on the total income of 408 K€.

7 For the focus on water pricing in different seasons, we assume the same production levels of industrial and
agricultural goods in both seasons and thus the same emissions. Therefore, there is no seasonal differentiation
for emission prices.

6 GAMS refers to General Algebraic Mathematical System. It is used for solving constrained optimization
problems. See Rosenthal (2007) for details.

5 Many settings could be specified using this program. Our focus is on the illustration of how the model can be
applied in a specific case.
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40 % more expensive in the low season than in the high season (see Table 3). The house-
holds have the incentive to pay such a higher price because they value the water higher in
their utility in the low season (for example, they prefer to use more water in the summer).
The total consumption of water by production and consumption in the low season (e.g. dry
summer) is 335 km3, while in the high season (e.g. winter) is 315 km3.

The water quality is determined by the concentration of pollutants in water relative to the
local threshold (i.e. the ecological condition). An emission permit is set in order to meet the
ecological bound. Since managers can expect different water amount in the low season from
reserving or not reserving water, they should set different emission targets corresponding to
the local threshold (50 mg/m3 in the numerical example).9 When no water is reserved (for
example, if reservation technology is not available, or too expensive), the emission level
reaches to 15,000 kg (for which the concentration reaches its threshold) such that the water
quality in the low season reaches its lowest level (100). When 235 km3 water is reserved, the
concentration in the low season decreases and water quality improves. If we restrict the
concentration below the same threshold, more emissions are allowed and the emission level
reaches 21,800 kg. The agricultural producer emits 5,400 kg and industrial producer
16,400 kg. If an emission tax should be levied, a producer would pay 940€/tonne.

In order to obtain the insights of seasonal water pricing and water allocation by water
reservation as illustrated in this example, we compare the consumer welfare level with that in

Table 1 Exogenous variables and given parameters

Variables and parameters Units Values

Exogenous variables

Capital K k€ 50

Labour L k-hours 100

Water volume in the high season wH km3 600

Water volume in the low season wL km3 150

Water for ecological requirement W km3 50

Threshold concentration of pollutants c mg/m3 50

Given parameters

Utility functions

Water quantity share in high season ρH 0.2

Water quantity share in low season ρL 0.25

Water quantity share σ 0.1

Consumption share of agricultural goods ζ 0.4

Production functions

Substitution elasticity for agricultural goods σ1 0.85

Substitution elasticity for industrial goods σ2 0.5

Cost share of water quality for agricultural goods δ 0.05

Emission coefficient for agricultural production c1 100 kg/unit 25

Emission coefficient for industrial production c2 100 kg/unit 10

Reserving water

Capital parameter for reserving water ck €/m3 0.02

Labour parameter for reserving water cl hours/m3 0.02

9 See (A22 and A23) of the Appendix.
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the no-water-reservation case. The same model is applied to the latter case. The comparison
shows that if we invest some capital and labour for water reservation and introduce the low-
high season prices for water use, the total welfare of the consumer is increased from 29 to 35.
This result indicates that proper water management can achieve a higher welfare level, and
low-high season water pricing makes water use more efficiently.

Table 2 Optimal allocation of water quantity, quality, emissions and production factors

High season Low season Yearly

Water quantity (km3)

Agricultural producer W1 11 11 22

Industrial producer W2 41 41 82

Consumer xwH, xwL 263 283 546

Total water use 315 335 650

Ecological requirement W 50 50 100

Reserved water WR 235 -235 0

Endowment wH and wL 600 150 750

Water quality g 164 121

Emissions (100 kg)

Agricultural producer e1 27 27 54

Industrial producer e2 82 82 164

Total emissions e 109 109 218

Factors

Capital (k€)

Agricultural producer K1 14 14 28

Industrial producer K2 8.5 8.5 17

Reserving water KR 5 5

Total capital use 27.5 22.5 50

Labour (k- hours)

Agricultural producer L1 33 33 66

Industrial producer L2 14.5 14.5 29

Reserving water LR 5 5

Total labour use 52.5 47.5 100

Number in Italics are the direct values of the variables in the first column.

Table 3 Prices for water quantity, water quality, emissions, production factors, agricultural and industrial
goods

High season Low season Low-high ratio

Water quantity price 0.131 0.185 1.41

Water quality price 0.132 0.199 1.51

Emissions price 0.094 0.094 1.00

Capital price 2.774 2.774 1.00

Labour price 1.000 1.000 1.00

Agricultural goods price 74.133 74.133 1.00

Industrial goods price 6.464 6.464 1.00
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Of course, how much water to reserve and how to differentiate prices for seasonal water
depends crucially on the reservation technology and other parameters in the model. In our
example, we have so far set the reservation cost parameters to 0.02 €/m3 for capital and 0.02 h/
m3 for labour. If we use a wide range for the values of the reservation cost parameters in the
model, we can obtain a clear picture of how reservation technology and its related costs can
influence our decisions. Figure 1 shows the relation between the values of reservation cost
parameters and the quantities of reserved water and the low-high price ratios. As the value of
parameters for reserving water goes up, less water will be reserved and higher prices in the low
season should be charged relative to the high season. This example clearly shows the two
possibilities for policy instruments of managing water. On one hand, we can use reservation
technology to allocate water. In this sense, technological progress or the setting of standards
(corresponding to low reservation cost parameter values) can stimulate water conservation
(Olmstead 2010), because more water can be reserved with better technology. On the other
hand, we can rely on economic instruments (in this example, to introduce a higher price in the
low season) to achieve the efficient use of water if we have seasonal water supply and demand.
When there is no reservation possibility (e.g. if it is too expensive), we can only rely on pricing.
Then the price ratio for low-high season becomes 7.05. This also indicates although both water
reservation technology and water pricing can be used, we may choose one or both instruments
depending on the reservation technology. If the reservation technology is expensive, we may
use only differential prices, while when reservation technology becomes cheaper we may
reserve more water, thus less differentiation of prices is required.

We have shown in this example that we can achieve an efficient allocation of water and
simultaneously a desirable level of water quality through reservation and pricing. The
important policy implication is how to achieve the decentralisation of the efficient allocation
and implementation of water pricing. As long as relevant institutions are provided (property
rights of water are defined, water markets are established and every water user agrees to pay
for the use of water), an efficient allocation can be achieved in a decentralised manner.
Therefore, the policy implication is to ensure such an institutional arrangement.
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5 Conclusions

The objective of this study is to present an integrated modelling framework that can deal
with efficient allocation and management of water quantity and quality. We started with a
discussion on the special features of water regarding the rivalry/non-rivalry and excludabil-
ity/non-excludability of water resources. Next, the economic mechanisms were explored in
welfare programs of managing the water quantity as a rivalrous good (i.e. a private good or a
common-pool resource) and water quality as a non-rivalrous good (i.e. a public good).

This paper elaborated on the economic instruments of dealing with water quantity and
quality issues, including to what extent water can be reserved and how much pollution
compensation (or tax) should be paid. We illustrated how to manage seasonal water for a local
economy using the theoretical framework in a numerical example and discussed the policy
implications. By solving the model in an a numerical example, it was shown how much water
could be reserved in the high season for the use in the low season, given reservation technology,
when there were seasonal differences inwater availability. Differentiated prices were introduced
based on the concept of shadow pricing because of different demands in different seasons. Price
differentiation in different seasons can achieve a higher total welfare, thus it is a Pareto-
improvement. Moreover, the level of the emission tax could be charged to the polluter for a
certain water quality target determined by the local threshold.

In this study we have discussed two policy instruments, i.e. reservation technology and
pricing. The policy implications are as follows. First, quantity management is closely related
to water scarcity. It is worthwhile to invest on the reservation technology to decrease the
factor (e.g. capital and labour) input in reserving water, because the amount of water
reserved is limited due to limited availability of production factors. Only if feasible reserving
technology is available, is there a possibility to reserve water, for example, in the high season
for the high demand in the low season.

Second, it is important to use the pricing instrument and institutional arrangement for
water quantity management. Management of water quantity requires us to understand the
causes of the scarcity and the involved properties such as rivalry. Scarcity can be linked to
the rivalry characteristic of water, because rivalry causes the competing use of water.
Particularly, for rivalrous water (i.e. a private good and a common-pool resource) such as
drinking water, agricultural and industrial water, the existing markets can be used to achieve
economic efficiency. For example, households pay the water bill to the water company for
the consumption of the drinking water in a price which in most cases is supposed to reflect
the market price. In the case of different seasonal water availability and demand, it is
recommended to introduce differentiate prices, for example, using higher price in the low
season than in the high season as shown in our numerical example. But if water is un-priced
or underpriced, for instance, in agriculture due to undefined property rights (e.g. common-
pool water resources such as groundwater), it is useful to define the water rights first and
then price water properly according to its scarcity or marginal value (i.e. shadow pricing). If
water is a non-rivalrous good (i.e. a public good such as a beautiful water resort), the policy
requirement is to exclude the “free-riders” by institutional arrangements (e.g. by law) or by
physical exclusion or simply decide to provide the non-rivalrous good by a public authority
for the sake of the public. In the latter case the costs need to be covered by tax payments.

Third, as far as water quality is concerned, it is important to improve water quality
because of its impact on economic activities and environmental services. The causes of
water pollution are mainly the emissions from economic activities. From the perspective of
policy making, it is thus important to implement proper measures, particularly economic
instruments to reduce emissions, based on principles such as the ‘polluters pay principle’.
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Institutional arrangement such as levying pollution taxes may be needed for such policies.
Similarly, the pollution tax can be determined by the marginal value of the emission permit,
based on shadow pricing in a welfare program. Besides, a decrease in water quality also
contributes to the reduction of water quantity because less clean water is available in the case
of lower water quality. In this case, we may consider, for example, the reuse of ‘waste’ water.

The exercise we conducted in this paper is only an attempt to tackle the water management
problem by consistent economic modelling of the economic aspects of water in its various uses.
Much more further work is needed. As competing demands for water exceed supply in more
andmore regions of the world, economics clearly has much to contribute to the design of policy.
An important task for modelling water resource problems is to improve the representation of the
hydrological cycle of water quantity and the biophysical process of water quality in economic
models. Spatial and temporal dimensions appear to be particularly important for water demand.
As Harou et al. (2009) point out, the variation of water values in time and space will
increasingly motivate efforts to address water scarcity and reduce water conflicts. In the case
of environmental change, the interaction between the economic and the environmental system
and the related environmental processes deserve more attention. In the perspective of climate
change, economic modelling should consider the impacts of climate change on the hydrological
cycle, which affects the quantitative and qualitative status of the water resources. Feedbacks and
interactions between economic andwater system should be carefully incorporated in the model,
which helps identify the ‘best’ policy options.
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Appendix Model specification

Utility and Objective Function

Since there is different demand by the households in different seasons, there are different
parameter values in utility functions in different seasons. For example, water is demanded
more in the low season (e.g. watering gardens and bathing due to hot weather) than in the
high season, so there is a higher expenditure share. The utility function for the high and low
season can be written as:

uH ¼ xwH
ρH gσ x1

zx2
1�z

	 
1�σ
n o1�ρH ðA1Þ

uL ¼ xwL
ρL gσ x1

zx2
1�z

	 
1�σ
n o1�ρL

; ðA2Þ

where ρH, ρL is the expenditure share of water in the high and low season respectively, but
ρH � ρL because the consumer is willing to spend more on water in the low season than in
the high season.
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The objective of the water manager is to maximize the sum of the consumer utility in the
high and low season, by allocating water in the high and low season and introducing
different prices, subject to the economic constraint (e.g. limited production factors, given
production technology) and ecological constraint (e.g. water availability), which leads to the
highest welfare in the year. That is:

max uL þ uHð Þ; ðA3Þ
subject to the transformation functions and balance equations of commodities such that the
budget constraint of the consumer is fulfilled.

Transformation Functions of Agricultural Good, Industrial Good, Water Quantity
and Quality

Transformation function of agricultural and industrial goods can be written in the Leontief
form due to the non-substitutability between water input and factor inputs.

F1 ¼ y1 �min W1;Ag
d CES K1; L1;σ1ð Þ½ �1�d

n o
� 0; ðA4Þ

F2 ¼ y2 �min W2; CES K2; L2;σ2ð Þf g � 0; ðA5Þ
where y1,y2 are the production quantity for agricultural and industrial goods respectively, K,
L are capital and labour input in production, σ is the substitution parameter between capital
and labour, and W is the water input. Subscripts 1 and 2 refer to agricultural and industrial
production. It is assumed that water quality g influences the agricultural production due to
irrigation but not the industrial production because water is used for cleaning purpose only,
and parameter δ is the Cobb-Douglas exponent for water quality.

As we have mentioned, water supply (i.e. water endowment) in the river in the high and
low season follows the hydrological cycles of precipitation, evaporation and runoff, i.e.:

wH ¼ PRH � EVH � RFH ðA6Þ

wL ¼ PRL � EVL � RFL; ðA7Þ
where w is the water endowment, PR, EV and RF are the precipitation, evaporation and run-
off in the local river, with subscripts H and L for the high and low season respectively. We
also have the following relations: PRH>PRL, EVH>EVL and RFH>RFL. That is, we have:
wH>wL. For simplicity, in the numerical example we assume wH0600, and wL0150.

Transformation function of water quality follows the biophysical process, and we assume
that water quality is determined by the emissions of pollutants and water quantity. We use
the following relationship:

FgH ¼ yþwH � 100 2� eH=wH

c

� �
� 0; ðA8Þ

FgL ¼ yþwL � 100 2� eL=wL

c

� �
� 0; ðA9Þ

where yþw is the water quality indicator, e is the emissions from the economic system, e/w is
the concentration of pollutants with subscripts H and L for the high and low season
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respectively and c is the threshold of water contamination reflecting the ecological limit,
which depends on the local circumstances. For example, the water concentration of nitrate
for EU water-bodies is, for safety reasons, restricted to 50 mg/L. Seasonal water quality will
be further specified later when emissions are presented.

Balance Functions of Commodities (Agricultural and Industrial Good, Water Quantity,
Production Factors, Water Quality and Emissions)

Agricultural and industrial goods are subject to:

xj � yj � 0; pj
� �

; ðA10Þ
where j01 and 2 refer to the agricultural and industrial good respectively, with x for the
consumption, y for the production quantity and p for the shadow prices.

For representing the balance function of water quantity, we have defined the water supply
(A6 and A7). We now determine the water demand, and then the balance equation. Water
demand include the water quantity used by the consumer and the producers. We consider
that only the consumer uses different amount of water in the different seasons (for example,
a higher preference for frequent bathing and gardening in the summer) but there are no
seasonal differences for the producers (for continuous production with the same production
technology in different seasons) in this model. Thus the total levels of water consumption
(demand) in the high and low season are respectively:

WH ¼ 1

2
W1 þW2ð Þ þ xwH ðA11Þ

WL ¼ 1

2
W1 þW2ð Þ þ xwL; ðA12Þ

whereW1 andW2 are the water quantity used for agricultural and industrial production in the
whole year, xwH and xwL are the water quantity used by the consumer in the high and low
season.

The other use of water is to ensure that there is sufficient water in the river in both seasons
(e.g. for fish) as the ecological requirement, and probably reserve a certain amount of water
in the high season for the later use in the low season. All the water use should not exceed the
water supply, i.e. the water balance should be fulfilled:

WH þW þWR � wH pwHð Þ ðA13Þ

WL þW � wL þWR pwLð Þ; ðA14Þ
where W is the minimum amount of water in the river, which is determined by the
ecological requirement, and WR is the amount of water that can be stored in a reservoir
(i.e. water reservation) in the high season with WR≥0, which can be used in the low season.
Parameters in brackets are the shadow prices of water in the high and low season.

The reservation of water uses capital and labour (i.e. there is a water reserving sector to
produce reserved water using the production function f(K,L)). Assuming that reserving one
unit of water needs ck of capital and cl of labour, the labour and capital used for water
reservation WR is: KR ¼ ckWR , and LR ¼ clWR . Labour and capital used in production of
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agricultural and industrial goods and in reserving water should not exceed the initial
endowments. Their balance equations are:

L1 þ L2 þ LR � L ðwÞ ðA15Þ

K1 þ K2 þ KR � K ðrÞ; ðA16Þ
where L1,L2 is the labour input and K1,K2 is the capital input for agricultural and industrial
production, L , K is the labour and capital endowment, w is the wage for labour and r is the
rent for capital.

Due to the different seasonal water quantities and the possible reserved water which is
used in the low season, we expect different quality in the two seasons as well. (A8) and (A9)
can thus be expressed as:

yþwH � 100 2� cH
c

� �
; ðA17Þ

yþwL � 100 2� cL
c

� �
; ðA18Þ

where cH and cL are the concentrations of pollutants in water in the high and low season
respectively. They are calculated as:

cH ¼ eH wH= ; ðA19Þ

cL ¼
eH
wH

WR þ eL

wL þWRð Þ ; ðA20Þ

where eH and eL are the emission pollutants in the high and low season. Yearly emissions of
pollutants from the agricultural and industrial production are e1,e2, which are calculated by
the emission coefficients of the producers, i.e. e1 ¼ c1y1 and e2 ¼ c2y2 . The total yearly
emissions to water are thus: e ¼ e1 þ e2 . Since emissions are the flows of pollutants to the
water body, we assume that pollutants enter to water at the same rates in the high and low
season. Thus,

eH ¼ eL ¼ 1

2
e: ðA21Þ

The emission level should be constrained by the threshold of the water contamination,
which ensures a certain level of water quality. That is, the concentrations in both seasons are
limited to the threshold:

cH � c zHð Þ; ðA22Þ

cL � c zLð Þ: ðA23Þ
where ζH and ζL are the shadow prices of pollution concentration in water in the high and
low season, implying the marginal costs of reducing the concentrations of pollutants.
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Emission bound e is the lowest emission level fulfilling the two conditions (A22 and
A23). Emissions should be priced according to:

e � e yð Þ: ðA24Þ

A producer should pay for his pollution or buy a permit for releasing pollutants.
Parameter y in (A24) is the shadow price of emission, or the pollution tax.

Water quality is non-rivalrous for the consumer and the agricultural producer, so an
equality is used for the balance equation:

gH ¼ yþwH fHð Þ ðA25Þ

gL ¼ yþwL fLð Þ ðA26Þ

where parameter ϕ is the price of water quality.
In this model, parameters in brackets of all the commodity balances (A10, A13, A14,

A15, A16, A22, A23, A24, A25 and A26) are the Lagrange multipliers, which are the
shadow prices of the corresponding commodities. They can be determined in the numerical
solution. The price of water in the high and low season is determined by pwH and pwL,
reflecting the different values of water in the two seasons. The shadow price of water quality
(ϕ) reflects the willingness to pay of the consumer or the producer if water quality is
improved by one unit. It is also easy to see that the producer has to pay the emission charge
y for per unit of emissions.

Now everything is priced, so the consumer has to pay for the consumption of agricultural
and industrial goods, water quantity and the enjoyment of water quality. Thus the following
budget constraints for the consumer in both seasons can be formulated:

p1x1 þ p2x2ð Þ=2þ pwHxwH þ fHgH � IH ðA27Þ

p1x1 þ p2x2ð Þ=2þ pwLxwL þ fLgL � IL ðA28Þ

where IH and IL are the consumer budget in the high and low season when water is priced.
Using the standard economic mechanism, the consumer owns all the endowments so that

all the revenues are attributed to the consumer. The consumer will receive the remuneration
of labour and capital, the water revenue, the remuneration of water quality as well as the
revenue of emission taxes paid by the producers. The following two formula give the income
in the high and low season respectively.

IH ¼ rK þ wL
� �

=2þ pwH wH �WR �Wð Þ þ fHy
þ
wH þ ye=2; ðA29Þ

IL ¼ rK þ wL
� �

=2þ pwL wL þWR �Wð Þ þ fLy
þ
wL þ ye=2: ðA30Þ

This completes the whole model, which consists of one objective function (A3) and 27
constraints (A1–A30 excluding A3, A8 and A9).
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