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Abstract This study is focused on water quality of Melen River (Turkey) and
evaluation of 26 physical and chemical pollution data obtained five monitoring
stations during the period 1995–2006. It presents the application of multivariate
statistical methods to the data set, namely, principal component and factor analysis
(PCA/FA), multiple regression analysis (MRA) and discriminant analysis (DA).
The PCA/FA was employed to evaluate the high–low flow periods correlations of
water quality parameters, while the principal factor analysis technique was used to
extract the parameters that are most important in assessing high–low flow periods
variations of river water quality. Latent factors were identified as responsible for
data structure explaining 72–97% of the total variance of the each data sets. PCA/FA
was supported with multiple regression analysis to determine the most important
parameter in each factor. It examines the relation between a single dependent
variable and a set of independent variables to best represent the relation in the each
factor. Obtained important parameters provided us to determine the major pollution
sources in Melen River Basin. So factors are conditionally named soil structure and
erosion, domestic, municipal and industrial effluents, agricultural activities (fertilizer,
irrigation water and livestock wastes), atmospheric deposition and seasonal effects
factors. DA applied the data set to obtain the parameters responsible for temporal
and spatial variations. Assessment of high–low flow period changes in surface water
quality is an important aspect for evaluating temporal and spatial variations of
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river pollution. The aim of this study is illustration the usefulness of multivariate
statistical analysis for evaluation of complex data sets, in Melen River water quality
assessment identification of factors and pollution sources, for effective water quali-
ty management determination the spatial and temporal variations in water quality.

Keywords Surface water quality · Multivariate statistical analysis ·
Parameter reduction · Melen River

1 Introduction

The surface water quality is a matter of serious concern today. Rivers due to their role
in carrying off the municipal and industrial wastewater and run-off from agricultural
land in their vast drainage basins are among the most vulnerable water bodies to
pollution (Singh et al. 2005). Flow in rivers is a function of many factors including
precipitation, surface runoff, interflow, groundwater flow and pumped inflow and
outflow. Seasonal variations of these factors have a strong effect on flow rates and
hence on the concentration of pollutants in the river water (Vega et al. 1998).
It is imperative to prevent and control the rivers pollution and to have reliable
information on the quality of water for effective management (Singh et al. 2005).
For effective pollution control and water resource management, it is required to
interpreting a large number of water quality data. Results in a huge and complex data
matrix comprised of a large number of physico-chemical parameters, which are often
difficult to interpret and draw meaningful conclusions (Dixon and Chiswell 1996).

Factor analysis, which includes principal component analysis (PCA) is a very
powerful technique applied to reduce the dimensionality of a data set consisting of
a large number of inter-related variables, while remaining as much as possible the
variability present in data set. This reduction is achieved by transforming the data
set into a new set of variables, the principal components (PCs), which are orthogonal
(non-correlated) and are arranged in decreasing order of importance (Panda et al.
2006).

Principal component analysis provides information on the most meaningful para-
meters, which describe whole data set rendering data reduction with minimum loss
of original information (Singh et al. 2004). PCA has allowed the identification of
a reduced number of latent factors with pollution sources such as spatial (pollution
from anthropogenic origin) and temporal (seasonal and climatic) sources of variation
affecting quality and hydrochemistry of river water have been differentiated and
assigned to polluting sources (Shrestha and Kazama 2007; Simeonov et al. 2003;
Kowalkowski et al. 2006; Pekey et al. 2004; Vega et al. 1998). At the same time PCA
has allowed the explaining of related parameters by only one factor (Boyacıoğlu and
Boyacıoğlu 2006; Kannel et al. 2007; Kottı et al. 2005; Kowalkowski et al. 2006;
Sengörür and İsa 2001; Singh et al. 2004) and exposing of the important factor
responsible for seasonal changes in river water quality (Ouyang 2005; Ouyang et al.
2006).

Multiple Regression examines the relation between a single dependent variable
and a set of independent variables to best represent the relation in the population.
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It was used to investigate relationships between water quality parameters (physico-
chemical and biological) and landscape characteristics (Amiri and Nakane 2009; Sliva
and Williams 2001; Wang 2001; Singh et al. 2005) and to investigate between water
quality and pathogen indicators (Mallin et al. 2000; Crowther et al. 2001).

Discriminant Analysis is a statistical method which obtains to discriminate
variables between two or more naturally occurring groups. DA was used for
identification of water quality variables responsible for spatial and temporal
variations in river water quality (Shrestha and Kazama 2007; Singh et al. 2004, 2005).
Kowalkowski et al. (2006) used DA to classify and, thus, to confirm the groups found
by means of the cluster analysis.

In the present study, a large data matrix, obtained during an 11-year (1995–2006)
monitoring program, is subjected to PCA/FA, MRA and DA techniques. The aims
of this study are to demonstrate the application of the data reduction techniques
(PCA/FA) to evaluate the importance of various water quality parameters, regres-
sion techniques (MRA) to determine the most meaningful parameters responsible
for water quality and discriminant techniques (DA) identification of water quality
variables responsible for spatial and temporal variations in river water quality.

2 Materials and Methods

2.1 Study Area

The Melen River is in the north of the Turkey which has got a complex river system
that supports a variety of uses, including irrigation systems in agricultural lands,
drinking water and several different industries wastewater. The return flow from
all these users is directly discharged into the river. The Big Melen River receives
some tributary streams, Aksu Stream, Ugur Stream, the Small Melen River and Asar
Stream. Aksu Stream, Ugur Stream and Asar Stream contribute the Small Melen
River and then, the Small Melen River converges with Big Melen River a derivation
canal before discharging into Efteni Lake. River System calls the Big Melen River
after Efteni Lake. The Melen River Basin covers about 2,317 km2. It flows into the
Black Sea with 48.2 m3/s average flow according to measurement results between
1995–2006. Düzce City (Turkey) is the biggest urban settlement in the Melen River
Basin. Important pollution sources in basin are domestic, industrial wastewater
and agricultural run-off. The Melen River is also affected by non-point sources
of pollution including fertilizers from farm effluents, livestock wastes and septic
tanks effluents or point sources of pollution including domestic, some industries
wastewater discharges and treatment plant effluents. Asar Stream drainage basin has
intensive industrial activities and daily residence plants effluents. The Small Melen
River receives sewage wastewater discharges from Düzce City after wastewater is
treated, livestock wastes and run-off from dumps. The other towns in the basin have
no sewage treatment plant. Basin has density agricultural activity and also intensive
forest cover (at high regions). Therefore, mineral concentration comes from the
alluvion soil structure (gravel, sand, clay, silt) (Düzce Environment State Report
2007).
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The Melen River System Drainage Basin and Sample Points are shown in
Fig. 1. The data for five sample points were obtained from monitoring programs of
Government Water Association in Ankara, Turkey.

2.2 Measurement Stations and Parameters

River water data were obtained at high and low flow periods from at three different
sites on river and at two different sites on its tributaries, namely Small Melen
Pasakonagi (1KMP), Big Melen Pakmaya (2BMP), Big Melen Aydogan (3BMA)
and Aksu Stream (4AC), Ugur Stream (5US) (Fig. 1) once 2–3 month during a period
of 11 years (1995–2006).

The data were obtained from by analyzing of Government Water Associa-
tion monitoring program. pH, temperatures (T, ◦C), electrical conductivity (EC,
mohm/cm), Suspended Solids (SS, mg L−1), turbidity (turb, NTU), flow (Q, m3 sn−1),
total alkalinity (M-Alk, mg L−1), total hardness (T-Hard, mg L−1), total dissolved
solids (TDS, mg L−1), dissolved oxygen (DO, mg L−1), 5-days biochemical oxygen
demand (BOD5, mg L−1), chemical oxygen demand (COD, mg L−1), ammonium
nitrogen (NH4–N, mg L−1), nitrate nitrogen (NO3–N, mg L−1), nitrite nitrogen
(NO2–N, mg L−1), chloride (Cl−, mg L−1), sulphate (SO 2−

4 , mgL−1), phosphate
(PO 3−

4 , mg L−1), sodium (Na+, mg L−1), potassium (K+, mg L−1), calcium (Ca2+,

Fig. 1 Big Melen River system drainage basin and sample points
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mg L−1), magnesium (Mg2+, mg L−1), boron (B3+, mg L−1), ferrous (Fe2+, mg L−1),
manganese (Mn2+, mg L−1) and fecal streptococcus (F-Strip, MPN/100 mL) and total
coliform (T-Coli, MPN/100 mL), Escherichia coliform (E-Coli, MPN/100 mL) were
analyzed by laboratory of Government Water Association using standard methods
(APHA-AWWA-WPCF 1999). The basic statistics of the 11 years data set on river
water quality is summarized Tables 1 and 2.

2.3 Data Analysis and Statistical Methods

In this study, the water quality parameters were grouped in two different periods
(wet and dry season) by investigating the months of rainy–dry and high–low flow.
They were analyzed and their mean values and standard deviations are summarized
in Tables 1 and 2. Before the applying of the multivariate statistical techniques,
experimental data were normalized within the range 0.1 to 0.9 in order to avoid
misclassification due to wide differences in data dimensionality. tends to minimize
the influence of difference of variance of variables and eliminates the influence of
different units of measurement and renders the data dimensionless.

xi = 0.8
(x − xmin)

(xmax − xmin)
+ 0.1 (1)

where xi is the normalized value of a certain parameter, x is the measured value for
this parameter, xmin and xmax are the minimum and maximum values in the database
for this parameter, respectively (Dogan et al. 2009).

The water quality data were subjected to different multivariate statistical tech-
niques to explore the parameters which were responsible of the water quality
variation in different season. PCA/FA was applied to the normalized data of each
station for two periods. Varimax rotating method was used for applying PCA/FA.
Corresponding fHij (f: Factor; H: High flow period; i: Station number; j: Factor
number) and fLij (f: Factor; L: Low flow period; i: Station number; j: Factor number),
variable loadings and explained variance are determined. Liu et al. (2003) classified
the factor loadings as ‘strong’, ‘moderate’ and ‘weak, corresponding to absolute
loading values of >0.75, 0.75–0.50 and 0.50–0.30, respectively. FA/PCA results were
exposed to MRA. Multiple regression analysis examines the relation between a
single dependent variable and a set of independent variables to best represent the
relation in the each factor. MRA models were used to determine the most meaningful
parameters responsible for the water quality. DA was used for identification of
water quality variables responsible for spatial and temporal variations in river water
quality. Discriminant functions related to the parameters of temporal and spatial
variations were obtained. All the mathematical and statistical computations were
made using Excel 2003 and SPSS 13.0.

2.3.1 Factor Analysis/Principal Component Analysis (FA/PCA)

Principal Component Analysis is a data analysis method focused on a particular
collection of variables. Consider the form of the first principal component. The
score for individual i on component, ci1, uses weights w11,. . . . . . .,wp1 in the linear
combination

ci1 = yi1w11 + yi2w22 + · · · + yipwp1 (2)
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This linear combination is chosen so that the sum of squares of c1 is as large
as possible subject to the condition that w2

11 + . . . . . . . . . + w2
p1 = 1. The second

principal component is another linear combination of y j

ci2 = yi1w12 + yi2w22 + · · · + yipwp2 (3)

where the variance c2 is the maximal, subject to the conditions that corr(c1, c2) = 0
and that w2

12 + . . . . . . . . . + w2
p2 = 1. The criterion of summarizing the information

in p variables by a few components is valuable as a means of reducing the number of
variables needed in an analysis (Tinsley and Brown 2000).

FA follows PCA. The main purpose of FA is to reduce the contribution of less
significant variables to simplify even more of the data structure coming from PCA.
This purpose can be achieved by rotating the axis defined by PCA, according to
well established rules, and constructing new variables, also called varifactors (VF).
PCA of the normalized variables was performed to extract significant PCs and to
further reduce the contribution of variables with minor significance; these PCs were
subjected to varimax rotation (raw) generating VFs (Brumelis et al. 2000; Singh et al.
2004, 2005).

The FA can be expressed as:

y ji = f j1zi1 + f j2zi2 + · · · + f jmzim + eij (4)

where y is the measured variable, f is the factor loading, z is the factor score, e the
residual term accounting for errors or other source of variation, i the sample number
and m the total number of factors (Tinsley and Brown 2000).

2.3.2 Multiple Regression Analysis (MRA)

Multiple regression analysis is a statistical tool for understanding the relationship
between two or more variables. Multiple regression examines the relation between
a single dependent variable and a set of independent variables to best represent the
relation in the population. The technique is used for both predictive and explanatory
purposes within experimental or nonexperimental designs (Tinsley and Brown 2000).
When there are an arbitrary number of explanatory variables, the linear regression
model takes the following form:

Y = β0 + β1.X1 + β2.X2 + . . . . . . . . . . + βm.Xm + eij (5)

where Y represents the dependent variable and X1. . . Xm represent the different
independent variables, β0,. . . .. . . ..,βm represent the regression coefficient and e
represents the random error (Freund and Wilson 1998). The error term e represents
the collective unobservable influence of any omitted variables. In a linear regression
each of the terms being added involves unknown parameters, which are estimated by
“fitting” the equation to the data using least-squares.

2.3.3 Discriminant Analysis (DA)

Discriminant Analysis is a statistical method which obtains to discriminate variables
between two or more naturally occurring groups. It calculates mathematical weights
for scores on each discriminator variable that reflect the degree to which scores
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on that variable differ among the groups being discriminated. It forms one or
more weighted linear combinations of discriminator variables called discriminant
functions. Each discriminant function has the general form:

D = a + b1.X1 + b2.X2 + . . . . . . . . . . + bP.XP (6)

where D is the discriminant score (z score), a is the Y-intercept of the regression line,
b is the discriminant function coefficient, X is the discriminator variable raw score,
and p is the number of discriminator variable (Tinsley and Brown 2000).

3 Results and Discussions

3.1 High Flow Period

PCA of the 26 parameters constituted seven PCs explaining about 85.05% of the
total variance at the 1KMP Station water quality data set for high flow period as seen
in Table 3. fH11 has strong positive loadings on Ca2+, M-Al, TH, EC, TDS; negative
loadings on Q and moderate negative loadings on Fe2+, COD and positive loadings
on E-Coli. It was formed 25.84% of total variance. Flow must be measured in water
quality monitoring program. fH12 accounting for 12.95% of total variance has strong
positive loadings on K+, F-Strip, o-PO 3+

4 and moderate loadings on B3+, SO 2−
4 and

weak loadings on Na according to PCA results. fH13 accounting for 10.05% of total
variance has strong positive loadings on NO2–N, NO3–N and moderate loadings on
BOD5; weak loadings on T-Coli, NH4–N according to PCA results. Whereas, fourth,
fifth, sixth and seventh factors accounted for the total variance of 10.80%; 8.761%;
8.936% and 7.692%, were correlated with DO and T; pH and SS; Mg2+ and Mn2+
respectively.

When FA/PCA and MRA were investigated together, TH 98% or TDS and
COD, E-Coli could explain the fH11. This factor represents soil structure and
subsequent run-off which can be interpreted as a mineral component of the river
and anthropogenic facilities. This clustering of variables points to a common ori-
gin for these minerals likely from dissolution of limestone and gypsum soils (Vega
et al. 1998). It may be noted that gypsum is widely used as soil modifier in the
river catchments (Singh et al. 2004). MRA was applied the data, 66% of parameters
in fH12 were classified correctly by using o-PO 3−

4 . We say that o-PO 3−
4 , SO 2−

4 and
F-Strip could explain the fH12 which can be interpreted as agricultural activities such
as livestock waste and atmospheric deposition in basin. 55% of parameters in fH13

were classified correctly by using NO2–N and NH4–N which can be interpreted as
organic contamination mainly from domestic wastewater and run-off from dump.
NO2–N is usually associated with active biological process influenced by organic
pollution. DO 61% and T explain the fH14 as a seasonal factor; pH and SS explain
the fH15 which describes industrial activities; Mg2+ and Mn2+ explain the fH16 and
fH17 factor.

PCA of the 28 parameters constituted five PCs explaining about 85.2% of the total
variance at the 2BMP Station water quality data set for high flow period as seen in
Table 3. fH21 explained 30.81% of total variance and was strong positively contributed
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by TH, EC, TDS, M-Al, Ca2+, Na+, SO 2−
4 ; moderate positively contributed by Cl−

and negatively contributed by COD. fH22 explained 17.9% of total variance and
was strong positively contributed by T-Coli, E-Coli, SS, BOD5, Mn2+; moderate
positively contributed by F-Strip. fH23 explained 16.8% of total variance and strong
correlated with o-PO 3−

4 , B3+, K+, pV; moderate correlated with Fe2+. fH24 formed
11.48% of total variance and strong positively correlated with NO2–N, T; negatively
correlated with DO and moderate negatively correlated with pH. fH25 accounted
for the total variance of 8.1% and was strong positively contributed by NO3–N;
moderate negatively contributed by Mg2+; moderate positively contributed by NH4–
N and weak negatively contributed by Q.

FA/PCA and MRA were investigated together and Ca 95.6% and COD, Na+,
TDS could explain the fH21. This factor represents soil structure which can be
interpreted as a mineral component of the river and urban run-off such as industrial,
commercial, residential. MRA was applied the data, 86,7% of parameters in fH22

were classified correctly by using T-Coli and SS. fH22 represents the bacteriological
and anthropogenic pollution such as municipal wastewater and agricultural activities
such as livestock wastes. 55.5% of parameters in fH23 were classified correctly by
using o-PO 3−

4 which can be interpreted as diffuse agricultural activities and point
sewage treatment work. Phosphorus absorbs strongly onto soil particles, most of
the diffuse load enters the river during run-off events in autumn and winter, under
conditions of high river flow (Mainstone and Parr 2002). Fe2+and pV can be added
the measurement program. 73.6% of parameters in fH24 were classified correctly
by using DO and pH. This factor represents the industrial discharges. fH25 was
explained by NO3–N, Mg2+, NH4–N, Q according to MRA and this factor represents
agricultural activities and atmospheric deposition. Nitrate is more associated with
the use of organic and inorganic fertilizers (Maillard and Santos 2008; Vega et al.

1998).
PCA of the 29 parameters constituted eight PCs explaining about 85.46% of the

total variance at the 3BMA Station water quality data set for high flow period as
seen in Table 3. fH31 has strong positive loadings on Cl−, EC, Na+, TDS, M-Al, TH,
NO3–N, Ca2+ and moderate loadings on NO2–N, Mg2+, SO 2+

4 , o-PO 3−
4 , K+. It was

formed 25.95% of total variance. fH32 accounting for 12.18% of total variance has
strong positive loadings on SS, Fe2+, Turb; moderate positive loadings on Q and weak
negative loadings on pH according to PCA results. fH33 accounting for 10,58% of
total variance has strong positive loadings on BOD5, pV; moderate positive loadings
on COD, Mn2+. Whereas, fourth, fifth, sixth, seventh and eight factors accounted for
the total variance of 8.87%; 7.42%; 5.76%; 6.56% and 5.11%, were strong correlated
with DO and T; F-Strip, E-Coli; T-Coli; B3+; NH4–N respectively.

FA/PCA and MRA were investigated together and Ca2+ 99% and SO 2−
4 , NO2–N,

o-PO 3−
4 could explain the fH31. This factor represents soil structure and agricultural

activities such as fertilizer. MRA was applied the data, 92% of parameters in fH32

were classified correctly by using Turb. and Q. This factor explains the erosion from
upland areas during rainfall events (Shrestha and Kazama 2007). fH33 were classified
correctly by using BOD5, pV, COD, Mn2+ which can be interpreted as industrial
discharge to the river. 56% of parameters in fH34 were classified correctly by using
DO and T as a seasonal factor. fH35 were classified correctly by using F-Strip and
E-Coli which sources are domestic wastewater. fH36, fH37 and fH38 were explained by
T-Coli, B, NH4–N respectively according to MRA.
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3.2 Low Flow Period

PCA of the 26 parameters constituted six PCs explaining about 88.96% of the total
variance at the 1KMP Station water quality data set for low flow period as seen
in Table 4. fL11 has strong positive loadings on TH, EC, M-Al, SO 2−

4 , Ca2+, Na+,
TDS, o-PO 3−

4 , NH4–N, Mg2+ and strong negative loadings on DO; moderate positive
loadings on NO2–N and weak positive loadings on K. It was formed 38.7% of total
variance. fL12 accounting for 20.28% of total variance has strong positive loadings
on F-Strip, E-Coli, T-Coli, COD, SS, Fe2+ according to PCA results. Whereas, third,
fourth, fifth and sixth factors accounted for the total variance of 9.68%; 7.99%; 7.13%
and 5.16%, were correlated with NO3–N and Q; B3+ and T; BOD5 and Mn2+; pH
respectively.

When FA/PCA and MRA were investigated together, TS 99% and DO, K, NO2–
N, SO 2−

4 could explain the f1. This factor represents soil structure which can be
interpreted as a mineral component of the river. MRA was applied the data and
94% of parameters in fL12 were classified correctly by using SS and COD, F-Strip.
We say that fL12 can be represents bacteriological and anthropogenic pollution such
as municipal wastewater discharge and agricultural activities such as livestock wastes.
NO3–N and Q constituted fL13 which can be interpreted as agricultural activities such
as fertilizer. B3+, T explains the fL14 as soil erosion and seasonal factor; BOD5 and
Mn2+ explain the fL15 which describes the domestic wastewater factor; pH explains
the fL16.

PCA of the 28 parameters constituted five PCs explaining about 97.73% of the
total variance at the 2BMP Station water quality data set for low flow period as
seen in Table 4. fL21 explained 40.35% of total variance and was strong positively
contributed by TH, M-Al, EC, SS, Mg2+, Ca2+, TDS, Na+, NO2–N, o-PO 3−

4 , Cl−,
T and moderate positively contributed by NH4–N. fL22 explained 17.29% of total
variance and was strong positively contributed by COD, Mn2+, F-Strip, Fe2+. fL23

explained 10.99% of total variance and strong positively correlated with B, K and
moderate positively correlated by NO3–N. fL24 formed 9.78% of total variance and
positive correlated with BOD5, pV; negative correlated with DO,. fL25 accounted for
the total variance of 9.55% and was contributed by pH, SO 2−

4 , Q, E-Coli. fL26 was
represented by T-Coli with forming 9.13% of total variance.

FA/PCA and LRA were investigated together and Ca 99% and SS, T, NH4–N,
o-PO 3−

4 could explain the fL21. This factor represents soil structure which can be
interpreted as a mineral component of the river. MRA was applied the data and
93% of parameters in fL22 were classified correctly by using COD and Fe. This factor
could explain anthropogenic pollution such as industrial wastewater discharge. B3+,
K+ and NO3–N constituted fL23 which can be interpreted as agricultural activities
such as irrigation water. BOD5, pV and DO explain the fL24 as domestic wastewater;
pH, SO 2−

4 , Q and E-Coli explain the fL25 which describes the anthropogenic factor
such as municipal wastewater discharge; T-Coli explains the fL26.

PCA of the 28 parameters constituted seven PCs explaining about 72.0% of the
total variance at the 3BMA Station water quality data set for low flow period as
seen in Table 4. fL31 has strong positive loadings on TH, EC, M-Al, Ca2+, Na+, Cl−
and negative loadings on Q; moderate positive loadings on NO3–N, Mg2+, SO 2−

4
and moderate negative loadings on Fe. It was formed 29.026% of total variance.
fL32 accounting for 10.53% of total variance has strong positive loadings on BOD5,
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Table 6 Water quality parameters explained the factors

Station 1KMP Station 2BMP Station 3BMA
factor factor factor

High flow period
fH11 98% TH and TDS, fH21 95.6% Ca and fH31 99% Ca and SO4,

COD, E-Coli COD, Na, TDS NO2–N, o-PO4

fH12 66% o-PO4 and fH22 86.7% T-Coli fH32 92% Turb. and Q
F-Strip, SO4 and SS

fH13 55% NO2–N fH23 55.5% o-PO4 fH33 BOD5, COD,
and NH4–N and Fe, pV pV, Mn

fH14 61% DO and T fH24 73.6% DO fH34 56% DO and T
and pH

fH15 pH and SS fH25 NO3–N, NH4–N, fH35 F-Strip and E-Coli
Mg and Q

fH16 Mg fH36 T-Coli
fH17 Mn fH37 B

fH38 NH4–N
Low flow period

fL11 99% TH and CO, K, fL21 99% Ca and SS, T, fL31 97% M-Al
NO2–N, SO4 NH4–N, o-PO4 and Fe, Q

fL12 94% SS and fL22 93% COD and Fe fL32 54% BOD5

COD, F-Strip and T, CO
fL13 NO3–N and Q fL23 B, K, NO3–N fL33 E-Coli, T-Coli,

F-Strip and SS
fL14 B, T fL24 BOD5, DO, pV fL34 TDS and COD
fL15 BOD5 and Mn fL25 E-Coli, pH, fL35 B and NO2–N

SO4 and Q
fL16 pH fL26 T-Coli fL36 pH and Mn

fL37 K and o-PO4

NH4–N and strong negative loadings on T; moderate positive loadings on DO, pV
according to PCA results. fL33 accounting for 8.26% of total variance has strong
positive loadings on F-Strip, E-Coli; moderate positive loadings on SS, T-Coli.
Whereas, fourth, fifth, sixth and seventh factors accounted for the total variance of
6.84%; 6.18%; 5.63% and 4.89% were correlated with COD and TDS; B3+ and NO2–
N; Mn2+ and pH; PO 3−

4 and K respectively.
FA/PCA and MRA were investigated together and M-Al 97% and Fe2+, Q

could explain the fL31. This factor represents soil structure which can be interpreted
as a mineral component of the river. MRA was applied the data and 54% of
parameters in fL32 were classified correctly by using BOD5, DO and T. This factor
could explain organic pollution such as municipal wastewater. F-Strip, E-Coli, SS
and T-Coli constituted fL33 which can be interpreted as domestic wastewater and
agricultural activities such as livestock wastes. COD and TDS could explain the fL34

as an anthropogenic factor such as industrial wastewater discharge; B3+ and NO2–
N explain the fL35 which describes the soil erosion and agricultural activities such
as irrigation water; Mn2+ and pH explain the fL36 as industrial wastewater. K+ and
o-PO 3−

4 explain the fL37 as domestic wastewater (Tables 5, 6, and 7).
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Table 7 Pollution sources according to factors

Station 1KMP Station 2BMP Station 3BMA
factor factor factor

High flow period
fH11 Soil structure fH21 Soil structure fH31 Soil structure-

agricultural
fH12 Agricultural- fH22 Municipal– fH32 Soil erosion

atmospheric agricultural
(livestock)

fH13 Domestic-dump fH23 Agricultural fH33 Industrial
run-off

fH14 Seasonal fH24 Industrial fH34 Seasonal
fH15 Industrial fH25 Agricultural- fH35 Domestic

atmospheric
fH16 Mg fH36 T-Coli
fH17 Mn fH37 B

fH38 NH4–N
Low flow period

fL11 Soil structure fL21 Soil structure- fL31 Soil structure
soil erosion

fL12 Municipal– fL22 Industrial fL32 Municipal
agricultural
(livestock)

fL13 Agricultural fL23 Agricultural fL33 Domestic–
(irrigation (irrigation agricultural
water) water) (livestock)

fL14 Soil erosion- fL24 Domestic fL34 Industrial
seasonal

fL15 Domestic fL25 Municipal fL35 Soil erosion-
agricultural
(irrigation
water)

fL16 pH fL26 T-Coli fL36 Industrial
fL37 Domestic

Table 8 Temporal variation
discriminant function
coefficients

Period

High flow Low flow

DO 14.098 9.993
EC 1.818 −15.808
F-Strip 4.172 0.362
K 4.197 10.421
Mal 6.983 13.308
Mn 8.002 3.587
NH4–N 11.035 7.205
NO3–N 0.123 3.135
pH 6.748 3.213
SO4 −5.980 −0.118
TDS 6.405 14.786
(Constant) −12.997 −10.422
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Table 9 Temporal variation
classification matrix for
discriminant analysis

Stepwise DA mode

% Correct Period assigned by DA

High flow Low flow

High flow 89.5 145 37
Low flow 74.7 17 109
Total 82.5 162 146

3.3 Discriminant Functions

Temporal variations in water quality were investigated through DA. Temporal
DA was performed on standardized data by dividing the data set into two period
groups (high–low flow period) at each stations. Discriminant functions obtained from
stepwise mode of DA are shown in Table 8. Variables were added step by step
in stepwise mode with the more significant until no significant changes and results
were obtained. Stepwise mode discriminant functions using 11 discriminant variables
presented the classification matrices separating 82.5% cases correctly as seen in Table
9. Stepwise DA shows that DO, EC, F-Strip, K+, M-Al, Mn2+, NH4–N, NO3N, pH,
SO 2−

4 , TDS are the most significant parameters to discriminate between the two
different periods. These parameters are responsible for the temporal variations in
water quality.

zT = β0 + β1.DO + β2.EC + β3.F-Strip + β4.K + β5.M-Al

+β6.Mn + β7.NH4 − N + β8.NO3 N + β.pH+β10.SO4+β11.TDS (7)

Spatial DA was performed on standardized data by dividing the data set into
five site groups (1KMP, 2BMP, 3BMA, 4AC, 5US). Discriminant functions obtained
from stepwise mode of DA are shown in Table 8. Variables were added step by

Table 10 Spatial variation discriminant function coefficients

Stations

1KMP 2BMP 3BMA 4AC 5US

BOD5 12.233 19.294 21.947 11.239 3.466
Ca 94.876 134.563 71.048 174.739 100.029
DO 90.623 73.136 110.210 90.354 91.382
EC −17.169 −5.531 17.836 46.814 67.959
E-Coli 7.813 −2.860 7.384 −1.459 2.608
M-Al 37.030 −5.877 61.332 −34.262 23.901
Mg 45.316 65.452 26.595 83.391 46.275
Mn 26.075 14.135 24.839 17.258 21.134
Na 5.143 −2.516 8.682 14.858 5.428
NH4–N 23.066 17.531 21.523 35.615 22.453
NO3–N 23.853 27.381 7.040 24.608 18.037
pH 14.842 27.167 0.139 20.641 14.781
SO4 −2.305 8.104 −19.662 −24.611 −7.051
T 60.526 52.130 69.626 60.003 57.131
TH −125.494 −152.035 −126.528 −213.181 −186.061
(Constant) −66.974 −60.726 −78.843 −75.190 −68.376
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Table 11 Spatial variation
classification matrix for
discriminant analysis

Stepwise DA mode

% Correct Period assigned by DA

1KMP 2BMP 3BMA 4AC 5US

1KMP 91.7 44 2 2 1 3
2BMP 77.1 2 37 1 1 1
3BMA 97.0 0 0 128 0 0
4AC 83.3 1 9 1 40 0
5US 91.7 1 0 0 6 44
Total 90.4 48 48 132 48 48

step in stepwise mode with the more significant until no significant changes and
results were obtained. Stepwise mode discriminant functions using 14 discriminant
variables presented the classification matrices separating 90,4% cases correctly as
seen in Table 9. Stepwise DA shows that BOD5, Ca2+, DO, E-Coli, M-Al, Mg2+,
Mn2+, Na+, NH4–N, NO3N, pH, SO 2−

4 , T, TH are the most significant parameters
to discriminate between the two different periods. These parameters are responsible
for the spatial variations in water quality (Tables 10 and 11).

zS = β0 + β1.BOİ5 + β2.Ca + β3.ÇO + β4.EC + β5.E-Coli + β6.M − Al

+β7.Mg + β8.Mn + β9.Na + β10.NH4 − N + β11.NO3 N + β12.pH

+β13.SO4 + β14.T + β15.T S (8)

Classification function coefficients for each groups of temporal and spatial DA are
given in Tables 8 and 10 respectively. Discriminant coefficients are converted to
z scores to eliminate scaling differences among the discriminator variables. These
functions can be used to calculate real estimate model (z scores) which may be used
for classification of new samples. Among z scores of new sample measurement, the z
score which is largest than zero will give us the group which its belongs to.

4 Conclusions

In this study, different multivariate statistical methods were used to investigate the
Melen River complex data set obtained during 11 years. FA/PCA, MRA and DA
applied the each data set of sample points and results were investigated. FA/PCA
identified factors which are responsible for the data structure of each station at
high and low flow periods. MRA identified the important and effective parameters
according to relation between parameters in factors First factors for each station
are explained with soil structure which comes from the dissolution of soil-rock by
weathering. All stations are affected the agricultural and industrial pollution due to
the intensive agricultural activities such as fertilizer, livestock waste and industrial
areas near the river channel in basin. Especially at low flow period, impact of agri-
cultural irrigation water is shown clearly. At rural areas and some cities in basin have
no treatment plant for domestic and municipal wastewater. Septic tanks using for
domestic wastewater and direct discharge of municipal wastewater are determined
at all stations. Wild dump of Düzce city contribution is seen at 1KMP station. DA
gave the best results both temporal and spatial analysis. It allowed a determining an
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indicator parameters responsible for large variations in water quality. DA showed
that the most significant parameters for temporal variations are DO, EC, F-Strip,
K+, M-Al, Mn2+, NH4–N, NO3–N, pH, SO 2−

4 , TDS and for spatial variations are
BOD5, Ca2+, DO, E-Coli, M-Al, Mg2+, Mn2+, Na+, NH4–N, NO3–N, pH, SO 2−

4 , T,
TH. A few indicator parameters responsible for the spatial and temporal variations
are found out by using DA. Melen River water quality assessment, pollution sources
and parameters responsible for the spatial–temporal variations can be identified.
And so this study provides the reduction in dimensionality of large data set. In this
connection, less data set in monitoring program can be used for identification of
water quality because of the measurement cost.

Acknowledgements This study was performed by using water quality data obtained from monitor-
ing programs of Government Water Association in Ankara, Turkey.
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