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Abstract
The impact of quantization in Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANNs) is presented in this paper.
In this architecture, the constant increase in size and the demand to decrease bit precision are two factors that contribute to the
significant enlargement of quantization errors. We introduce an analytical tool that models the propagation of Quantization
Noise Power (QNP) in floating-point MLP ANNs. Contrary to the state-of-the-art approach, which compares the exact
and quantized data experimentally, the proposed algorithm can predict the QNP theoretically when the effect of operation
quantization and Coefficient Quantization Error (CQE) are considered. This supports decisions in determining the required
precision during the hardware design. The algorithm is flexible in handling MLP ANNs of user-defined parameters, such as
size and type of activation function. Additionally, a simulation environment is built that can perform each operation on an
adjustable bit precision. The accuracy of the QNP calculation is verified with two publicly available benchmarked datasets,
using the default precision simulation environment as a reference.

Keywords Numerical accuracy · Artificial Neural Networks · Quantization noise · Coefficient quantization · Floating-Point
arithmetic

1 Introduction

In the last couple of decades, Artificial Neural Networks
(ANNs) have been playing an increasingly important role in
solving digital signal processing tasks. They are nonlinear
statistical data models that replicate the role of biologi-
cal neural networks [1]. As ANNs show considerably high
performance, besides conventional model-based methods,
they have become obvious candidates for solving problems,
among other applications, in the area of image processing
[1, 2], regression [3–5], classification [6], and time series
prediction [7–9].

During the hardware design step of ANNs, the main
applied optimization criteria are accuracy, size, and speed.
The number of bits representing each signal and each oper-
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ation in ANNs critically affects these properties. From the
introduction of the Floating-Point Double-Precision using
64-bit (FP64) number representation [10], until recently, the
effect of quantization error was neglected in most cases.
However, decreasing bit precision has become of increased
importance in hardware design to obtain cheap and/or fast
solutions [11]. Recent hardware platforms are aiming to use
reduced-precision arithmetic, simplifying the data path and
reducing memory storage, bandwidth, and energy require-
ments [9]. In parallel with this tendency, the size of ANNs
is continuously growing to achieve high learning rates. The
network architectures consist of hundreds or even thousands
of neurons arranged in several layers [12].

Both the reduction of precision and the increase in size
contribute to the phenomenon that the effect of quantiza-
tion has become more significant. This makes the analysis
of quantization noise a state-of-the-art issue again, which
yields the motivation of this paper. In particular, we focus
on Floating-Point (FP) evaluation, considering the follow-
ing. Compared to the fixed-point number representation, FP
is often advantageous due to the wide range it can cover.
Furthermore, as FP calculations become faster and less
expensive to implement, the trend toward using FP num-
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bers is accelerating [3]. However, the analysis of quantization
noise is not straightforward, as it will be demonstrated in the
following sections.

There are few studies in the literature showing the quanti-
zation error effect. It was investigated extensively for systems
such as the fast Fourier transform in [13], the sine-fitting algo-
rithms for analog-to-digital converter testing in [14], and the
filter-bankmulticarrier transmitters in [15]. However, there is
an obvious gap in the area of Multi-Layer Perceptron (MLP)
ANNs. In this study,MLPANNswill be investigated in detail
from this point of view.

This paper deals with two types of errors: The Quanti-
zation Noise Power (QNP) and the Coefficient Quantization
Error (CQE). The QNP is generated due to the quantiza-
tion of each operation. On the other hand, the CQE yields
when quantizing the constants. Both types will be thoroughly
described and analyzed in Sections 3, 4, and 5. Themain con-
tributions of this study can be summarized by the following:

1. A thorough FP quantization analysis of MLP ANNs is
presented.

2. A generic tool is coded capable of estimating the quan-
tization error before the hardware implementation phase
with user-defined parameters.

3. precisely calculating and compensating the CQE to
achieve accurate QNP estimation.

4. The presented procedure of evaluating the QNP and the
CQE can be used for other nonlinear systems.

In order to provide a concise overview of the novelty
of this work, we offer an in-depth theoretical examina-
tion that delves into each operation within the network,
specifically focusing on the generation and propagation of
quantization error. Existing literature primarily concentrates
on experimentally evaluating different quantization schemes
for various neural network architectures. Some of these
schemes employ minimal bit usage, such as binary or ternary
formats [16, 17], while others utilize integer formats [18].
However, it is important to note that, to the best of our knowl-
edge, the proposed analysis and methods have not yet been
explored. In other words, none of the previous methods have
theoretically investigated the phenomenon of quantization
across a wide range of FP resolutions.

It is important to highlight that the proposed algorithm
yields a theoretical bound on the quantization errors, contrary
to the experimental approach of state-of-the-art solutions, as
highlighted in the following.

Recently, there has been a growing interest in the per-
formance of ANNs with respect to the applied bit resolu-
tion. Shah et al. [12] designed an MLP ANN for speech
recognition applications using five- and six-bit fixed-point
representation. After training the models using FP represen-

tation, they used a Post-TrainingQuantization (PTQ) scheme
for the implementation. They experimentally observed the
weight sensitivity and operation output range to decide the
resolution of each weight and operation. Kristian et al. [19]
implemented an MLP ANN on Field Programmable Gate
Array (FPGA) using the 32-bit Single-Precision Floating-
Point (FP32) representation. The implemented model was
compared to a 16-bit fixed-point implementation in terms
of quantization error. It was concluded that the fixed-point
implementation was thirteen times smaller in logic size than
the FP32 implementation. Peric et al. [20] presented a CQE
analysis by comparing the FP32 and the 32-bit fixed-point
number representations for the weights of the MLP ANN
implementations. It was shown that both number representa-
tions yield the same quantization error. Huang et al. [5] used
the 32-bit fixed-point representation to implement an MLP
ANNon FPGA for a tomography application. They observed
from their experiments that the fixed-point implementation
slightly affects the performance of their system.

There are also studies improving quantized ANNs by per-
forming the quantization before and during the training [21].
In our study, we perform the analysis after training the net-
work with full resolution; that is, we face PTQ.

A quantization error analysis for a small MLP ANN
containing three neurons with TanSig Activation Functions
(AFs) in a single layer was presented in [22]. Only the
FP32 representation was considered in that study. It was con-
cluded that the FP32 representation is valid for the presented
application, but it is not a general conclusion. The idea of
generalizing this approach and creating a generic tool for
arbitrary MLP ANN size and precision with different AFs
has motivated us for this study.

It is essential to mention that we are analyzing MLP neu-
ral networks in this paper. Though the presented ideas can be
applied to other network structures like deep convolutional
neural networks and recurrent neural networks, this exten-
sion exceeds the limits of this paper and is a topic of future
investigation.

The remainder of this paper is organized as follows. Sec-
tion2gives a brief theoretical backgroundonMLPANNsand
quantization noise. Section3 introduces a simulation envi-
ronment so that the quantization error is simulated step by
step along the evaluation of network calculations on limited
FPprecision. Section4 explains the proposedmethod to com-
pute the approximated QNP theoretically. The CQE analysis
is given in Section 5. Section6 presents the verification of the
method through the comparison of the simulated quantiza-
tion error and the theoretically predicted quantization noise.
This is performed on two case studies: a regression predic-
tion model of a weather station and a classification model in
cancer diagnosis. Finally, Section7 concludes the paper.
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2 Theoretical Background

This section gives a brief overview of the MLP ANNs and
the quantization theorem that is necessary to characterize the
QNP of the investigated networks.

2.1 Multi-Layer Perceptron (MLP) Artificial
Neural Networks

An MLP ANN architecture consists of an input layer, an
output layer, and hidden layers, which are fully connected.
Each layer contains neurons that are inspired by the structure
of the human brain [12]. A neuron is the core object in the
architecture that weights the incoming inputs from a previous
layer and sums the resulting weighted products. The sum of
products is biased and passed to anAF as an argument to give
the neuron output [23]. The AF is a critical part of the ANN
becauseof its enormous impact on the trainingoperation [24].
The neuron can be best described by the following equation:

y = F

(
b +

m∑
j=1

w j · x j
)

, (1)

where F denotes the AF, b is the bias, x j is the input of the
neuron,w j is the corresponding weight, andm is the number
of inputs [25].

2.2 Quantization Error

Quantization is the process of approximating a continuous
signal by a set of discrete symbols or integer values. Physi-
cal quantities have infinite precision, but when digitized and
inserted into a computer or a digital system, they are rounded
to the nearest representable value. This process introduces a
quantization error. The nearest representable value is defined
by the type of the number representation. The FP representa-
tion has been commonly used for decades. It has been issued
by the IEEE standard-754 [10]. An FP representation defines
a value with a bit vector containing three parts: sign, expo-
nent, and mantissa. The FP number resolution is defined by
the precision, which is the number of mantissa bits, while the
exponent defines the range [26].

The rounding of the FP arithmetic is considered to be an
operation that follows the infinitely precise operation. The
quantization error can be described with the following dif-
ference [13]:

ν = Q(y) − y , (2)

where ν denotes the quantization error, and Q(.) is the quan-
tization function, hence Q(y) is the quantized value of the
operation output. As the equation shows, quantization is a

deterministic process. However, after the operation, the orig-
inal value cannot be retrieved anymore. Consequently, the
exact quantization error remains unknown, as well.

To characterize the process, [13] suggested a model that
describes quantization error as an additive noise source. This
source adds a uniformly distributed quantization noise to
the exact value. The width of the uniform distribution is
determined by the quantizer. For the FP representation, the
noise level depends on the corresponding QNP, which can be
approximated as follows [13]:

E{ν2FP} = 0.18 · 2−2p · E{y2} , (3)

where E{ν2FP} is the expected value of the squared quanti-
zation error, that is, the QNP of the FP quantizer, E{y2} is
the signal power at the quantizer input, and p is the preci-
sion, which is the mantissa bits. For instance, p = 24 for
the single-precision format. It follows that having one hid-
den mantissa bit in the representation, the significand is 23-
bit [10].

This approximation becomes handy since it is a continu-
ous function of the input level, contrary to the exact value,
which is a staircase function. During the analysis, we, there-
fore, apply this approximation. A comparison between the
approximate and the exact characteristics is shown in Fig. 1.
Since the quantization noise is modeled as a random vari-
able, we will perform statistical analysis to determine the
QNP. Based on this result, error bounds will be presented to
characterize output inaccuracy.

Figure 1 A comparison between the approximated and the exact char-
acteristics of the QNP in the FP representation with p = 24.
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Figure 2 Block diagram of the
proposed method simulation.

It is important to mention here that it is not possible to
change the precision of an FP number representation using
the built-in MATLAB toolbox, so we used the toolbox pro-
vided in [13] for the FP quantization with variable precision.
The quantizer resolution is basically defined by the precision,
while the exponent does not affect the quantization error in
the case of no overflow; therefore, the exponent only defines
the range. The rounding direction used in this work is the
default round to the nearest method. Besides the proposed
method being the default setting for most practical appli-
cations, analyzing other rounding techniques, like rounding
towards infinity or towards zero, would also require new
quantization approximations, other than (3). This exceeds
the limits of this study.

3 Computation of Quantization Noise
in MLP ANNs

After the brief theoretical overview, the QNP in MLP ANNs
is simulated in this section. Our aim is to provide a flexible
solution that can handle MLP models with different sizes,
precisions, and AFs. As we have described in Section2, this
exact value is not available in quantized systems due to the
irreversible nature of quantization. However, during simula-
tions, FP64 arithmetics can be applied as a reference, and
we can follow the propagation of the error in the system by
comparing the FP64 (exact) and limited precision results.

The block diagram of the proposed algorithm is depicted
in Fig. 2. It can be seen that three main stages are to be per-
formed, which are the input process, processing of layers,
and output process. The input process is a normalization step
that maps the input dataset I to normalized values IN of the
range [−1;+1] as follows:

IN =
[
(I − Imin) · 2

Imax − Imin

]
− 1 , (4)

where Imax and Imin represent the range of the input training
dataset I .

The output process has the same operations in the reverse
order that denormalizes the data back to the original range.
By this means, the parameters and operations between the
input/output process blocks are not restricted to the normal-
ization range. However, after normalization, the values may
increase depending on the parameters but will not increase
massively as the input values are normalized.

In between these processes, the values of the exact and
quantized neuron outputs are calculated and saved to the next
layer. By this means, we obtain the final network quantized
and exact outputs, and the difference between them is the
quantization error. The square of that error is the simulated
QNP to be compared with the theoretical approximation pre-
sented in Section4.

Figure3 shows how each operation in the single-neuron
block is quantized, where Q-denoted blocks represent the
quantization function described in (2). Similarly, all other
operations in the model are quantized. By this means, the
algorithm can be used generically to simulate and analyze
MLP networks with an arbitrary size. The simulated quan-
tization error of a neuron is computed by performing the
following actions.

Figure 3 Single-neuron block diagram showing the quantization pro-
cess after each operation.
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Table 1 List of AFs included in
this study and the corresponding
number of quantizers.

Activation function Explanation of abbreviation Number of quantizers

TanSig Hyperbolic Tangent Sigmoid 4

LogSig Log Sigmoid 3

RadBas Radial Basis 2

TriBas Triangular Basis 1

PureLin Linear 0

SatLin Saturating Linear 0

SatLins Symmetric Saturating Linear 0

PosLin Positive Linear (ReLU) 0

HardLim Hard Limit 0

HardLims Symmetric Hard Limit 0

First, we retrieve characteristic data of the network, and
we quantize the coefficients of the network to the investi-
gated precision. The CQE is a rather different type of error
that will be investigated in Section5. Then, in two embedded
cycles, neurons are processed layer by layer. In accordance
with (1), the inputs are weighted, and the weighted sum is
calculated and added to the bias. Finally, the result is led
through an AF. After each operation, the result is quantized
to the targeted precision. In parallel, the operations are also
performed on FP64 as a reference. By this means, we gain
control of the quantization error so that we will be able to
verify the effectiveness of the theoretical approximation that
will be provided in Section4.

During the simulation, the algorithm can handle ten com-
monly usedAFs delineated inTable 1. The table also includes
the number of quantization operations needed to simulate the
behavior of the network on a limited precision. It is important
to mention that the Rectified Linear Unit (ReLU) AF is, by
definition, a PosLin AF. The block diagrams of three differ-
ent AFs are depicted in Fig. 4. Since the other AFs havemuch
simpler diagrams which are mostly saturation operations, we
did not present them in this figure. Note that the number of
blocks might be higher than the corresponding number of
quantizers. For instance, the TanSig function consists of six
blocks.Among these, themultiplicationby±2does not inject
an extra QNP since these operations only affect the exponent
and the sign of the FP number. This decreases the number
of needed quantizers to four. However, these two blocks also
contribute to the propagation of quantization errors. As a
part of the theoretical QNP analysis, this will be discussed
in detail in Section4.

4 Theoretical Analysis of QNP

In this section, we analyze the QNP of an MLP network
from a theoretical point of view. To this aim, the QNP is
computed after each operation as a sum of two noise sources.

Thefirst noise source originates from theQNPof the previous
operations. This source is shaped by the actual operation. In
other words, it is propagated. It will be discussed in more
detail later in this section.

The second noise sourcemodels the quantization behavior
of the current operation as a uniformly distributed random
variable, as discussed in Section2. During the analysis, as the
quantization noise variables are independent of one another,
the variance after each operation can be determined as the
sum of the variances of these two sources.

Since the quantization noise is zero-mean, after each oper-
ation, the expected value will be the true value. Due to this
property, the variance of the quantization noise and the QNP,
which is the squared expected value, also coincide. If we
propagate all the quantization noise sources through the net-
work, at the output, we will obtain the cumulative QNP. This
is beneficial since wewill be able to define an error bound for

Figure 4 Block diagrams of a. TanSig, b. LogSig and c. RadBas AFs,
where u represents an input of the corresponding operation.
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the quantized network output that was computed in Section3,
considering the following. As we have several operations
in the network, we can assume that the resulting QNP will
follow Gaussian distribution according to the Central Limit
Theorem. The standard deviation equals the square root of
the QNP. With this assumption, we can claim with 99.7%
confidence that the exact output is in the ±3

√
QNP range of

the quantized output.
In the calculations, the QNP injected by the current quan-

tizer is approximated by (3). This is the first noise source.
As described above, the QNP of the previous operations
is shaped by the current operation, which is the second
source. In order to calculate the propagated quantization
noise through the network, let a general function G be a
function of input u. With the operating point linearization
[27, 28], we have that

�G(u) ≈ ∂G(u)

∂u
· �u . (5)

In our case, u is a random variable with an expected
value of the true value and an additive quantization noise
from previous stages. Let us denote the standard deviation of
this noise by σu . As the linear assumption applies, the stan-
dard deviation of G(u) will also be in a linear relationship
with the standard deviation of the input, and accordingly, the
variance is

σ 2
G(u) ≈

(
∂G(u)

∂u

)2

· σ 2
u . (6)

Utilizing this approach, the variance propagation formulas
are derived for the used operations in this study, and they are
listed in Table 2.

To demonstrate the calculation of the QNP at the output
of the network, let us investigate the computation steps for a
single neuron. For the needed operations, we refer to (1) and
Fig. 2. The evaluation steps are as follows:

1. Variance after weighting. Since the neuron receives
inputs from either a previous layer or from the normaliza-

Table 2 List of operations along with the corresponding propagation
formula.

Operation Variance Propagation Formula

G(u) = constant σ 2
G(u) = 0

G(u) = u + constant σ 2
G(u) = σ 2

u

G(u) = u · constant σ 2
G(u) = (constant)2 · σ 2

u

G(u) = u2 σ 2
G(u) = 4G(u) · σ 2

u

G(u) = eu σ 2
G(u) = G2(u) · σ 2

u

G(u) = 1/u σ 2
G(u) = G4(u) · σ 2

u

tion stage, propagated error variances are obtained, and
we propagate the error according to the multiplication
propagation formula. The output variance is computed
as the sum of the variance due to error propagation and
the variance due to the quantization after multiplication.
This variance is propagated to step 2.

2. Variance after summation. For every operand to be
summed, we obtain the variance from step 1 and prop-
agate the error according to the addition propagation
formula. Furthermore, after each addition, the variance
due to quantization is added. The resulting accumulated
variance is propagated to step 3.

3. Variance after adding the bias. We obtain the variance
from step 2 and propagate the error according to the addi-
tion propagation formula. Variance due to quantization is
added, and the resulting accumulated variance is propa-
gated to step 4.

4. Variance after the AF. We obtain the variance from step
3 and lead it to the input of the first block of the AF.
We propagate the error through this block with the corre-
sponding error propagation formula in Table 2. Variance
due to quantization is added, and the resulting accumu-
lated variance is propagated to the next block in the AF.
This is repeated until the last block is evaluated. The accu-
mulated variance is propagated to the next layer and will
be an input for step 1.

Following these steps, the computations can also be
demonstratedusingmathematical equations.Referring to (3),
Fig. 3, and Table 2, the theoretical estimation of the QNP can
be computed for the neuron. Let the outputs of the first three
stages be; out1,i , out2 and out3 respectively, then the QNP is
propagated as follows:

QNP1,i = w2
i · QNPx,i + 0.18 · 2−2p · E{out21,i } (7)

QNP2 =
m∑
i=1

QNP1,i + 0.18 · 2−2p · E{out22 } (8)

QNP3 = QNP2 + 0.18 · 2−2p · E{out23 } (9)

where m is the number of inputs to this neuron, hence the
number of multiplications.

It can be seen from (8) that the summation operation pro-
duces a quantization error only once at the final result of the
summation, but this depends on the type of the accumulator.
Some accumulators in different micro-controllers accumu-
late the summation step by step. Because ANNs are mostly
implemented in parallel hardware platforms like FPGAs, we
assume it to be a parallel accumulator. However, the anal-
ysis and derivation of the QNP can be performed using the
sequential accumulator.
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For the fourth stage in the neuron, the AF is a generic
block. Let us assume that it is a LogSig AF, referring to
Fig. 4b, let the outputs of theAF operations be AFop1, AFop2,
AFop3, and AFop4, then the QNP is propagated through the
AF respectively as follows:

QNPLogSig,1 = QNP3 (10)

QNPLogSig,2 = QNPLogSig,1 · AF2
op2

+ 0.18 · 2−2p · E{AF2
op2}.

(11)

QNPLogSig,3 = QNPLogSig,2

+ 0.18 · 2−2p · E{AF2
op3}

(12)

QNPLogSig,4 = QNPLogSig,3 · AF4
op4

+ 0.18 · 2−2p · E{AF2
op4}

(13)

It should be mentioned that due to the error propagation,
the QNP is not necessarily growing after every operation. On
the one hand, there are steps that keep the accumulated QNP
constant. These are the error propagation due to multiplica-
tion by ±1 and when the AF is linear. On the other hand, the
QNP due to error propagation can decrease, as well, depend-
ing on the input operand. For instance, multiplication by a
constant with an absolute value below one will decrease the
accumulated QNP. Additionally, the QNP at the output of an
AF can be zero when the AF has constant output or, in other
words, saturated. Namely, the derivative of a constant is zero.

5 Coefficient Quantization Error Analysis

The QNP was analyzed and approximated in the previous
sections, yet the impact of the coefficient errors was never
properly addressed. This section delves into the CQE; hence,
a method of calculating and neutralizing that error will be
presented.

This type of error contributes to the total error at the out-
put by shifting or biasing each sample. This biasing behavior
happens due to the nature of the CQE; that is, the error
between the coefficient exact and quantized values is fixed
when different input samples are introduced. These small
biasing errors are accumulated and propagated to the output
from each coefficient in the model. By this means, each sam-
ple at the model output is biased. It is crucial to preserve the
sign of that biasing so that this phenomenon can be compen-
sated. As described in the literature, this type of error can not
be approximated theoretically for nonlinear systems and can
only be calculated using simulation [13].

To calculate the CQE, a model has been configured so
that only the coefficients are quantized while operations are
performed in default resolution (FP64). By this means, the

output of this model can be compared to the exact model, and
the difference is simply the CQE. Unfortunately, this method
can not be used when operation quantization is considered,
but it is still useful to verify the next method.

A more systematic and general method is presented in
this paper. Each coefficient generates a CQE that propagates
through different operations to affect the final output. It is
required to compute the propagated CQE after each opera-
tion; hence, error propagation formulas are derived for all
operations used in this study, and they are presented in Table
3. The first three formulas in the table are special propagation
formulas that apply only to quantization error propaga-
tion [13], while the rest of the formulas are derived using
(5) [27, 28].

To verify the formulas derived in Table 3, the results from
the two methods are compared, and the error between them
is negligible, as can be seen in Fig. 5. The CQE for the two
methods in this experiment is in the range of 10−4, while
the difference between them for all samples is in the range
of 10−7. Hence, the accuracy is 99.99%, which has been
achieved in all performed experiments with different simula-
tion parameters. This observation confirms the applicability
of the general method with high accuracy.

The general method presented has been used when fully
quantizedMLPANNs are analyzed. By this means, the CQE
at the output is known; hence, it can be compensated at the
model output.

After discussing the QNP and the CQE, part of the code
for the RadBas AF is shown in Fig. 6 to demonstrate how
the algorithm works. There are three operations in this AF
presented in Fig. 4c. For each operation, the quantized out-

Table 3 Error Propagation formulas used in the CQE calculation.

Operation Error propagation

G(u) = ±u ± constant(c) σG(u) = ±σu ± σc

G(u) = ±u1 ± u2 ± ... σG(u) = ±σu1 ± σu2 ± ...

G(u) = u · constant(c) σG(u) = (c · σu) + (u · σc)

G(u) = eu σG(u) = G(u) · σu

G(u) = u2 σG(u) = 2 · G(u) · (σu/u)

G(u) = 1/u σG(u) = −1 · (σu/u2)
G(u) = |u| σG(u) = σu ,when(u > 0)

σG(u) = −σu ,when(u < 0)

G(u) = PosLin(u) σG(u) = σu ,when(u > 0)

σG(u) = 0,when(u < 0)

G(u) = Sat Lin(u) σG(u) = σu ,when(0 < u < 1)

σG(u) = 0,Otherwise

G(u) = Sat Lins(u) σG(u) = σu ,when(|u| < 1)

σG(u) = 0,Otherwise

G(u) = HardLim(u) σG(u) = 0

G(u) = HardLims(u) σG(u) = 0
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Figure 5 The difference between the calculated CQE based on FP64
operations and the proposed error propagation.

put is calculated then the QNP is estimated along with the
CQE calculation. By this means, the values are saved to the
next layer.

6 Case Studies

In this section, the proposed analysis will be carried out on
two publicly available datasets. To verify the applicability of
the method, the results of the theoretical analysis, described
in Section4 will be compared to the simulated quantization
errors, as it was demonstrated in Section3. For this com-
parison, the CQE, which was presented in Section5, is also
considered.

6.1 Case Study 1: Weather Station

The first dataset is taken from ThingSpeak™ channel 12397
of a weather station in Natick, Massachusetts, USA. As this
channel stores new readings every day, we used the data
stored for one week, starting from (Jul 1, 2023) to (Jul 8,
2023). The data can be accessed using MATLAB’s "thingS-
peakRead" command, specifying the channel ID, duration,
and attributes. In this dataset, the humidity, temperature,
atmospheric pressure, and wind speed are the attributes used
to calculate the dew point [29].

DifferentMLPANN training setup experiments have been
used for this analysis, including the number of neurons, the
number of layers, and the type of AF in each layer. The
objective is to monitor the behavior of quantization noise
for different MLP structures. So, at first, a small network

was trained that has ten neurons in one hidden layer with a
LogSig AF, in addition to the default output layer of a single
neuron with PureLin AF.

The dataset consists of 8000 samples. It has been divided
into two equal parts: the first half was used for training,
validation, and test purposes with (80,10,10) percentages,
respectively. The second half was kept for the quantization
error analysis. FP quantization has been carried out with the
single-precision, that is, with 24-bit precision, 8-bit expo-
nent, and the default rounding to the nearest method. The
theoretical and simulatedQNPmean values at the finalmodel
output are 2.8 · 10−11 and 2.95 · 10−11, respectively.

More illustration of the quantization behavior can be seen
from the histograms shown in Fig. 7. The figure plots two his-
tograms for the number of occurrences of the mean square of
the quantization error as a function of the theoretical standard
deviation. To interpret the results, let us recall the assump-
tion that the quantization noise at the output is of Gaussian
distribution with zero means. For each input instance, the
quantization error at the output (ν) is normalized by the stan-
dard deviation of the Gaussian random variable (

√
QNP). In

other words, the random variables are standardized. The first
histogram, with the circle marker, is plotted when the CQE is
neutralized. The figure shows that the actual errors aremostly
in the (±3 · ν/

√
QNP) range, and the shape of the curve is

Gaussian with a mean around zero. On the other hand, the
second histogram is presented to emphasize the impact of
the CQE, where it can be seen that the histogram is shifted
due to the CQE at each output sample. For this reason, it is
crucial to compensate for that phenomenon.

To observe the effect of the precision on theQNP, the same
trained ANN has been simulated with different precisions
from 3 to 52 bits shown in Fig. 8. Recall that FP64, which
has 53-bit precision, is used as a reference. Thus, for p = 53,
the error would be exactly 0. At each precision, the means
of the actual and approximated QNPs are shown. As a side
note, we can observe that, as expected, the QNP decreases to
the fourth of the original value if the precision is increased
by one. This is a natural consequence of the properties of
quantization. As the vertical scale is logarithmic, the QNP,
as a function of p, can be characterized by a straight line.

In order to address the effect of quantization in a large
MLP ANN, a model with nine layers was trained using the
same dataset. By definition, this is a deep model in which
each layer contains neurons organized as follows: (5, 10,
20, 40, 30, 20, 10, 5, 3) respectively, and all of these layers
have TanSig AFs. This model has been simulated with the
half-precision FP representation that has 11-bit precision,
including the hidden bit, and themean values of the simulated
and estimated QNP are both equal to 1.27 · 10−2.

The relation between the number of layers and quantiza-
tion error can not be exactly calculated because many other
parameters influence the quantization phenomena, like the
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Figure 6 Part of the algorithm
code showing the calculation of
the two cycles, the approximated
QNP, and the calculation of the
CQE, for the RadBas AF.

% Definitions:

% The (q) letter denotes the quantizaed cycle.

% Input(q) / Output(q) are AF terminals.

% QNPin and CQEin are from previous operations.

% roundq is the quantizer function.

% j is the neuron index in the layer loop.

% Q is the predefined quantizer of:

% p is Targeted reduced precision.

% Cycle 1: Defult bit resolution (FP64)

op1  = Input.^2;

op2  = (-1)*op1;

op3  = exp(op2);

Output(j,:) = op3; % Saving neuron output to next layer.

% Cycle 2: Reduced bit resolution

op1q  = Inputq.^2;  % First RadBas operation.

QNP1 = (4.*op1q.*QNPin) + 0.18*(2^(-2*p))*((op1q.^2));

CQE1 = 2*op1q.*(CQEin./Inputq);

op1q  = roundq(op1q,Q);

op2q  = (-1)*op1q;   % Second RadBas operation.

CQE2 = CQE1.*(-1);

op3q  = exp(op2q);  % Third RadBas operation.

QNP3 = QNP1.*((op3q.^2)) + 0.18*(2^(-2*p))*((op3q.^2));

CQE3 = op3q.*CQE2;

op3q  = roundq(op3q,Q);

Outputq(j,:) = op3q;  % Saving neuron output, QNP

QNPout(j,:) = QNP3;  % and CQE to next layer.

CQEout(j,:) = CQE3;

number of neurons, the values of the coefficients, and the
type of AF. Using the proposed method can be quite benefi-
cial because it can characterize the QNP of the investigated
network structure precisely.

6.2 Case Study 2: Cancer Diagnosis

The second dataset was collected to perform classification
in cancer diagnosis. Nine input parameters (size, shape, etc.)
and two classes embedded in one output, which decides if the
case is a benign or malignant type of cancer, were considered
in this dataset. The measured data is publicly available in
[30]. It contains 698 measured cases divided into two equal
parts, similarly as in Section6.1.

An ANN of ten neurons in one hidden layer with a Tan-
Sig AF was trained to perform the classification. As this case
study deals with a classification problem, it is essential to see
when the ANNmisclassifies the data and gives a faulty diag-
nosis. Figure9 shows the number of faulty diagnosis samples
out of the 349 samples. At 5-bit precision or less, the net-
work misdiagnosed at least one case. Keeping in mind that
the number of exponent bits does not affect the quantization
error as described in Section2, for that reason, we focus only
on the precision. In this experiment, we employed 4-bit for
the exponent, which is sufficient to avoid an overflow while
changing the precision. For example, at three precision bits,
there are two misclassified samples. To explain how these
two samples have been misclassified, Fig. 10 is presented, in
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Figure 7 Weather station case study: Histograms of the mean square
of the exact simulated QNP and the theoretical standard deviation for
two cases with and without the compensation for the CQE.

which the closest four samples to the threshold are observed.
It can be seen that for the second sample, the exact value is
0.4, but due to quantization, it has become 0.5,which is on the
threshold, and in the classification operation, it is rounded up
to one. A similar situation can be seen in the fourth sample,
while the other samples are correctly classified. This demon-
stration clearly shows the importance of the analysis: with
the error bounds, the user can be notified that the result is
prone to classification error just due to quantization.

Figure 8 Weather station case study: The effect of decreasing the pre-
cision on the QNP.

Figure 9 Cancer diagnosis case study: The effect of decreasing the
precision on the classification.

In these two case studies, TanSig, LogSig, RadBas, and
PureLin AFs have been used and analyzed. The other AFs
listed in Table 1 are less involved. Their behavior can be
described as follows. The TriBas has only one addition oper-
ation that yields QNP and propagates errors from previous
stages, but it is saturatedwhen the input exceeds the range±1.

Figure 10 Cancer diagnosis case study: Output response for four
samples to illustrate the quantization error effect on the classification
decision when using three precision bits. The standard deviation error
bar is also shown at each point.
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Hence, at saturation, the QNP at the output of the AF is zero,
asmentioned earlier. The Satlin, SatLins, and PosLin (ReLU)
AFs are linear with saturation. In the saturation phase, they
produce zero quantization error. In the linear phase, they do
not produce any additional quantization error, and only the
input error is propagated. Finally, theHardLimandHardLims
are always at saturation, whichmakes theQNP at their output
zero. These saturation AFs also contribute to the propagation
of the CQE, as listed in Table 3.

7 Conclusions

In this study, MLP ANNs have been analyzed in terms of FP
quantization. The analysis includes a statistical approxima-
tion of the QNP and a precise calculation of the CQE. Hence,
the effect of the CQE can be observed and handled for better
QNP approximation.

A generic algorithm was presented to calculate the QNP
and the CQE of a reduced precision network with FP number
representation. The proposed algorithm covers ten AFs that
are commonly used in recent applications. In operation-wise
computations, the QNP and CQE were propagated through
the model, employing the mentioned necessary formula at
each step.

Two case studies were considered for regression and
classification models. The coded algorithm could precisely
predict theQNP inboth cases in awide rangeof applied preci-
sion bits. In general, MLP networks can show high nonlinear
behavior, which makes it hard to determine the quantization
error at the output of the network. The algorithm described
in this paper aims to facilitate the hardware design in a sense
that, on a given precision, it yields the error bounds of the
output. This can be performed before the actual implemen-
tation. By this means, the hardware designer can select the
sufficient resolution appropriate for the application in the
designing phase.
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