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Abstract
Advances in machine learning coupled with the abundances of training data has facilitated the deep learning era, which has 
demonstrated its ability and effectiveness in solving complex detection and recognition problems. In general application 
areas with elements of machine learning have seen exponential growth with promising new and sophisticated solutions to 
complex learning problems. In computer vision, the challenge related to the detection of known objects in a scene is a thing 
of the past. With the tremendous increase in detection accuracies, some close to that of human detection, there are several 
areas still lagging in computer vision and machine learning where improvements may call for more architectural designs. In 
this paper, we propose a physiologically inspired model for scene understanding that encodes three key components: object 
location, size and category. Our aim is to develop an energy efficient artificial intelligent model for naturalistic scene under-
standing capable of deploying on a low power neuromorphic hardware. We have reviewed recent advances in deep learning 
architecture that have taken inspiration from human or primate learning systems and provided direct to future advancement 
on deep learning with inspiration from physiological experiments. Upon a review of areas that have benefitted from deep 
learning, we provide recommendations for enhancing those areas that might have stalled or grinded to a halt with little or 
no significant improvement.
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1 Introduction

The past decade has seen a revival in the area of Artifi-
cial Intelligence (AI) and machine learning, mainly driven 
by the impressive reported performance of deep learning. 

Computer vision with its sister counterpart natural language 
processing have improved significantly and contributed to 
several key application areas [1]. The likes of Amazon Echo, 
Google Home and various other internet of things devices 
we find around in our homes generate interesting data that 
can be used to train and recognise various activities using 
deep learning.
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Image recognition and classification systems benefit 
enormously from deep learning and have contributed to sev-
eral consumer applications like the Apple photo organiser 
[2], capable of grouping similar pictures with a common 
theme. Facebook’s face recognition [3] system is another 
classical example of how image recognition systems have 
been incorporated into social media. At industrial level, the 
use of AI has contributed in various way. For example, Ama-
zon’s warehouses are heavily reliant on robots for moving 
shelves with load [4]. The robots have sense of coordination 
and can navigate around the warehouse, avoiding collisions 
with other robots as well as many other stationary objects. 
In healthcare, medical image analysis contributes to non-
invasive diagnosis [5, 6]. The number of useful applications 
for AI and computer vision increases on daily basis and it 
is all around us [7–10]. In agriculture, satellite imagery has 
contributed in various ways to estimate crop yield [11–14]; 
in sports like football (or soccer) it has been used in making 
decisions like goal-line technology [15]. Various manufac-
turing companies use computers as part of their production 
line to identify defective items [16]. Similarly, the success 
of driverless cars is heavily reliant on the use of computer 
vision to identify object in the scene [17, 18]. What is really 
missing is the ability for machines (robots) to see, recognise 
and react to their immediate surroundings just like humans 
with their most complicated cognitive ability: vision. Thus, 
the use of perception to generate knowledge.

This work explores the failures in existing machine 
learning models for scene understanding and proposes 
new directions for modelling the scene with inspiration 
from bio-inspired vision as well as experimental results 
to demonstrate the effectiveness of this approach. A key 
contribution in this exploratory work is how attention 
mechanisms studied by psychologist have demonstrated 
improvement in modelling global descriptors to fully 
understand a visual scene.

2  Current State of Affair

Machine learning (a subset of artificial intelligence) has rap-
idly evolved in the past decade and continues to advance. 
Several key areas have seen significant progress and have 
become popular research topics and the very few related to 
this work have been listed below:

• Deep Learning: Deep learning has been at the forefront 
of machine learning advancements. Neural networks with 
multiple layers (deep neural networks) have achieved 
remarkable results in various domains, including image 
recognition, natural language processing, and speech 
synthesis. Techniques such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) 

have been extensively explored and improved upon. In 
[19], deep learning has been used in monitoring a con-
struction site to identify any safety concerns as well as 
worker behaviour.

• Transfer Learning and Pre-trained Models: Transfer 
learning has gained prominence, allowing models to 
take advantage of knowledge from pre-training on large 
datasets. Pre-trained models like Bidirectional Encoder 
Representations from Transformers (BERT) [20], Gener-
ative Pre-trained Transformer (GPT) [21], and ImageNet-
trained CNNs have demonstrated excellent performance 
across various tasks. By fine-tuning these models on 
specific data, researchers have achieved state-of-the-art 
results with smaller labelled datasets. Transfer learning 
has been used effectively in areas like medical imaging 
[22] where labelled data may not be readily available.

• Reinforcement Learning: Reinforcement learning has 
made significant strides, especially in the field of game-
playing agents. Algorithms like Deep Q-Networks 
(DQN) [23], have achieved superhuman performance in 
games like Go, Chess, and Dota 2. Reinforcement learn-
ing has also been applied to robotics, control systems, 
and recommendation systems [24].

2.1  The Key Factors for AI Acceleration

Standard neural networks which would normally consist of 
many simple neurons that may produce a sequence of real-
valued activation have been around for many decades [25]. 
Purely supervised neural networks improved significantly 
during the 1990 s and 2000 s, which has contributed to the 
success of deep learning and artificial intelligence in gen-
eral. Three main factors have contributed to the accelera-
tion of AI, making it possible to incorporate AI into various 
application areas. The key and driving factors for the accel-
eration of AI are three folds: 

1. Better algorithms from supervised and unsupervised 
learning [26, 27]

2. Huge volumes of data available from multiple sources 
on the internet [28–30] and

3. Improved computational power from heterogenous 
architectures [31–34].

We have moved from the days of predefined rules (Expert 
Systems) and have better algorithms that learn from exam-
ples [25]. Neural network and machine learning algorithms 
have contributed to the success of deep learning in various 
ways. Deep learning architecture mainly rely on cascading 
several neural networks with various machine learning based 
classifiers. The inception of internet and social media has 
contributed to the volume of useful data generated every 
second. It is estimated that approximately 300 h of video 
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are uploaded onto YouTube every minute [35]; that contrib-
utes to the number of useful training data. Similarly, a white 
paper published by Facebook reported that its users upload 
approximately 350 million new photos each day [36]. These 
huge volumes of data generated by various people around 
the world have positive impact of datasets needed to train 
supervised learning algorithms like deep learning. This has 
been made possible by the fast internet access we enjoy these 
days and the volume of data is expected to increase with 
ubiquitous internet of things devices [27].

Thanks to Moore’s law, the computing power has con-
stantly been increasing for the past three decades. The abil-
ity to improve the performance with fast processors has 
reduced, making way for processing speed to increase with 
concurrent and parallel execution [37]. The dominance of 
Graphics Processing Units (GPU) and Field Programmable 
Gate Arrays (FPGA) for applications like image processing 
that naturally benefit from parallel execution has also con-
tributed to the AI acceleration [32, 34].

2.2  Current Machine Learning Achievements

There have been significant and key achievements in com-
puter vision that are worth pointing out. The rich nature of 
current computer vision algorithms, thanks to deep learning, 
have made it possible to perform visual recognition with 
accuracies as high as that of humans and even outperform 
humans in certain instances [38]. These accuracies are really 
limited to recognition and detection - perception rather than 
understanding of visual scenes - knowledge. Zhang et al. 
[39] proposed to leverage emerging deep reinforcement 
learning techniques for enabling model-free driverless vehi-
cles control, and present a novel and highly effective control 
framework, which utilises the powerful convolutional neu-
ral network for feature extraction of the necessary informa-
tion (including traffic flow), then makes decisions under 
the guidance of the network. How reinforcement learning 
is deployed in the field of decision making is illustrated in 
these recent works [40, 41]. Tremendous achievements have 
also been made in medical imaging, where deep learning 
approaches have helped with the early detection of tumours 
in images taken from the brain [42].

There have been reported cases of the use of deep learn-
ing for the detection of leakage in 3D blood vessel [42], 
leaks that were missed by medical professions were eas-
ily detected by machine learning based systems. The list in 
medical imaging continues with capabilities of lesion detec-
tion in the eye as well as various cancer cells [42]. Detection 
of known objects in an image has matured to a level that 
computer vision techniques have the capabilities of detecting 
multiple objects in a single image even if they are partially 
occluded, with very high accuracy levels [43]. Work on how 
to construct meaningful sentences from images have also 

produced impressive results [44]. Use of multiple images 
for the reconstruction of 3D environments have also been 
achieved to an acceptable level. The ability to stitch together 
multiple 2D images to form a 3D panoramic view has also 
been reported by Song et al. [45]. He et al. [46] presented 
Mask regional convolutional neural network (R-CNN) which 
is conceptually simple and aims to segment or separate each 
occurrence of any object in an image. Faster R-CNN [43] 
has two outputs for each candidate object, a class label and 
a bounding-box offset; to this, [46] added a third branch that 
outputs the object mask. Mask R-CNN [46] is thus a natural 
and intuitive idea, which basically combines two state-of-
the-art models (a region proposal network and a binary mask 
classifier). But the additional mask output is distinct from 
the class and box outputs, which requires extraction of much 
finer spatial layout of an object, making it possible for such 
a model to be used innovatively in medical imaging.

There are also a number of challenges one would have to 
consider when trying to deploy a deep learning model in a 
real-world application. When the domain of application has 
limited training data available, deep learning may not be 
the best choice. Similarly, the training process makes accu-
rate predictions based on statistical associations and hence 
application that relies heavily on causality rather than cor-
relation may not be the best fit. These are only a few of the 
challenges associated with the deployment of deep learning 
and the next section will further highlight some of these 
problems in the real-world.

2.3  Areas where Boosting would be Needed

The hype around computer vision grows exponentially and it 
is worth pointing out that, even though computer vision and 
AI in general have made significant progress and increas-
ingly solving many complex problems [7–10], there are 
several shortfalls [38]. Thinking of the application areas 
where computer vision can be used, the very few areas that 
they have dominated [1–5] shouldn’t overshadow instances 
where they underperform and would still need significant 
improvement [47]; if not a complete overhauling of the exist-
ing techniques.

In March 18, 2018, Uber’s autonomous car hit and killed 
a 49-year-old as she was walking her bike across the street 
at night in Tempe, Ariz [48, 49]. With its 360-degree cam-
eras and sensors, the car should have been able to detect 
someone crossing in front of it, even at night. Safety reports 
released by Uber in November 2018 said the software that 
detects obstacles on the road and processes that informa-
tion was too slow to act. In the same month, on March 23, 
2018, a Tesla vehicle in the autopilot mode slammed into 
a concrete road divider killing its driver [50]. With all the 
sensors including cameras around today’s autonomous cars, 
one can be fooled in thinking these cars can really operate 
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autonomously. What is really missing is unfamiliar scenes or 
combination of objects that these autonomous cars have not 
been trained with or can’t interpret correctly [48] as well as 
real-time processing needs. There is no doubt that the way 
in which computer vision techniques have been used in these 
systems are novel, but we need to note that, the systems are 
not yet perfect [38].

Another example to support this is the fact that a robot 
trained to open doors struggled to open a significantly differ-
ent door [51]. This goes to confirm that when such systems 
are challenged with very different scenarios their behaviour 
may not necessarily conform to what we expect. In another 
incidence on 12th July 2016, a Stanford mall security robot 
collided with a 16-month old toddler and nearly run him over 
[52]. Programmed to predict crimes in schools, businesses, 
and neighbourhoods, the K5 robot uses video cameras, ther-
mal imaging sensors, a laser range finder, radar, air quality 
sensors and a microphone to detect irregularities in the area. 
If it detects any abnormal noise, temperature change or even 
appearance of known criminals, it will notify authorities. It 
turns out that the robot did not detect the young boy.

To compare systems trained to understand a scene using 
deep learning and what is proposed in this work, we use 
Table 1 to summarise the difference.

3  Unwrapping the Failures

These failures point to the fact that AI and computer vision 
techniques have performed exceptionally in some areas (like 
image categorisation [2] and industrial packaging [4]) but 
doesn’t mean that new and emerging areas (like autonomous 
vehicles [38]) will enjoy the same benefits with simple 
tweaks. For autonomous cars, the state-of-the-art in com-
puter vision is good and provides bounding boxes around 
objects in the scene. But detected objects are normally 
pre-trained and the system manages to recognise variant of 
such objects individually, with a high degree of accuracy. 
What is missing or becomes challenging is putting together 
the individual objects to give a global interpretation of the 
scene. State-of-the-art recognition systems have no contex-
tual understanding of the scene at a global level; hence such 

systems have little ability to make acceptable and reasonable 
scene-level decisions [53].

For example, a navigational robot will generally be able 
to move from one point to the other, avoiding collisions to 
arrive at the destination in the most optimal way [54]. When 
it becomes challenging is when the robot will have to decide 
based on the scene rather than localised objects to take a 
safer route, which might not necessarily be the shortest 
path. Such decisions are made by humans intuitively, as they 
understand how objects interact in a scene [55]. However, in 
the case of a robot the decision taken might be optimal but 
not necessarily feasible or safe. Modelling a crowded scene 
to infer interaction as well as unusual situations with little 
or no data poses minimal problems to humans; but it can be 
incredibly hard for state-of-the-art AI systems to handle. 
Generally, things that humans find intuitive (such as deal-
ing with complex scenes and walking), tend to be very hard 
for artificially modelled systems. This goes a long way to 
explain why machine learning techniques with inspiration 
from biological systems tend to outperform pure statisti-
cal models [56]. Deep learning models like convolutional 
networks used in computer vision and other related applica-
tion areas represent candidate models for the computations 
performed in mammalian visual systems [56]. The convolu-
tion layers found in Convolutional Neural Networks (CNNs) 
mimic the effect of the brain to calculate the information 
from visual inputs. Visual object recognition framework has 
gained renewed interest with the success of deep neural net-
work models trained to "recognise" objects: these hierarchi-
cal feed-forward networks show similarities to human visual 
cortex, including categorical separability [57]. Deep neural 
networks (DNN) like convolutional neural networks and 
recurrent neural networks (RNN) have existed since 1990, 
but only improved to an acceptable performance level in the 
past decade, thanks to all the three factors that have acceler-
ated AI in general [58].

4  Pre‑DNN Detection and Classification

Prior to the huge drive for the use of DNN in computer 
vision, standard feature detectors like scalar-invariant fea-
ture transform (SIFT) [59], histogram of oriented gradients 

Table 1  Some differences between a deep learning trained systems for scene understanding and what this work proposes.

DL-based scene understanding The proposed scene understanding

With minimal training data it fails to understand the scene It is trained to understand what is normal with minimal data
When the new data is significantly different from the training data 

results is unpredictable
The learning is more explainable and expected to handle new data logically

When there are multiple interpretations it is likely to fail Ambiguity is avoided by training to understand the entire scene not just 
combined features
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(HOG) [60] and local binary patterns (LBP) [61] had been 
the dominant hand-crafted features in many computer 
vision tasks and neuroscientific studies [62]. Compared to 
CNN where features are learnt and stacked in a hierarchi-
cal structure, features are hand-crafted in SIFT, LBP and 
HOG. Rather than the use of different algorithms for object 
detection and categorisation, with CNN the same algorithm 
is adapted for the same purpose at the expense of requir-
ing large volume of training data [59]. A standard neural 
network (NN) consists of many simple, connected neurons, 
each producing a sequence of real-valued activations, and 
may suffer from the curse of dimensionality [63] or might 
not scale very well. Input neurons get activated through sen-
sors perceiving the environment, while other neurons get 
activated through weighted connections from previously 
active neurons [25]. Unlike NN or shallow NN [25], deep 
neural networks have three distinguishing factors that make 
it possible to minimise the common problems associated 
with standard neural networks. There are more neurons with 
varying width, height and depth in DNN compared to shal-
low NN. Also, DNNs enforce local connectivity between 
adjacent neurons and replicate each filter across the entire 
visual field to allow translational invariance.

Convolutional neural network was first proposed by 
Kunihiko Fukushima in 1982 [1], whose work was inspired 
by an article published in 1962 by Hubel and Wiesel [64], 
on revealing the mechanism of the visual system. Since 
then, there has been a lot of research in this area with the 
most significant ones being that of LeCun in 1989 [65] 
and Krizhevsky in 2009 [3]. Deep convolutional networks 
became illustrious in 2012 when Krizhevsky et al. [28] 
used CNNs to win the annual computer vision challenge 
with an impressive 15% error rate compared to 26% in 
the previous year. Deep convolutional networks belong 
to a class of deep, feedforward artificial neural networks 
with backpropagation to transmit signals backward for 
training. In CNN, the weights of the convolutional layers 
are used for feature extraction and the weights of the fully-
connected layers are used for classification; these can be 
determined through the training process. The success stories 
about the rise of CNNs and their capabilities of learning 
high-level features in object recognition have increased 
steadily since 2012 [34] and keep increasing due to the 
availability of large datasets like ImageNet [30]. Given 
that deep learning architectures can classify objects in an 
image with near-human-level performance, other studies 
have revealed some of the shortfalls of CNNs in computer 
vision [38, 66]. Nguyen et al. [38] have demonstrated that 
discriminative DNN models are easily fooled to classify 
many unrecognizable images with very high certainty as 
members of a recognisable class.

Here we describe the shortfalls of CNNs using the three 
key stages of their design: training data requirements, the 

actual training process and finally the recognition or test-
ing phase. To properly train a CNN architecture, the train-
ing data is expected to be large enough to cover most vari-
ations. Typically, to train the architecture to detect birds, 
the training data is expected to have all kinds of bird ori-
entations, various image resolutions as well as all possible 
actions that a bird may perform [25]. This is clearly not 
the case for humans as they can easily recognise a bird 
in any state after learning about them in a single state 
[67]. The training phase as well as internal architecture of 
CNNs have long been assumed to be black-boxes, however 
because they are computer programs one can easily step 
through to understand how input images are represented 
in each stage. Turner et al. [68] used various input images 
to visualise the output of every single layer of a CNN 
architecture (Visual Geometry Group VGG-19 network). 
In [68] it becomes clear that the internal output of the 
various layers of a CNN may not necessarily say much 
about the input image. Other forms of visualisations have 
also been used to analyse the internals of CNN architec-
tures, these are the Activation Maximization [66], Network 
Inversion [69], DeconvNet [70] and Network Dissection 
[71]. These visualisation techniques do not only show the 
low-level features but also explain the working mecha-
nisms of CNNs in general. It must be noted that the exist-
ing visualisation tools do have their limitations compared 
to the capabilities of humans as reported by neuroscien-
tists on the mechanisms associated with the visual system 
[72]. Another problem associated with CNN training, is 
the demand for huge computational time and power to 
detect and classify an object [73], compared to the visual 
systems in which an object can be recalled in few seconds 
by using minimal resources in brain [74]. Also, CNN mod-
els require a large search space (including the depth, the 
number of feature maps, interconnection patterns, window 
sizes for convolution and pooling layers), making them 
impractical to discover an optimal network structure with 
any systematic approaches [75].

Finally, the recognition or test phase of CNN still have 
some level of errors, especially in multi-object recogni-
tion and classifying tasks [28]. With all the huge training 
data, CNNs are not able to produce recognition without 
errors. Even though the error rates are very minimal, they 
are still not acceptable for application areas like autono-
mous or driverless cars. Compared to human recognition 
system it would be odd to find a sound and healthy indi-
vidual not being able distinguish between two different 
items like an apples and bananas. The reported accidents 
[48–50] related to self-driving vehicles go a long way 
to confirm that the current state of deep convolutional 
networks aren’t able to handle complex situation or the  
intriguing fact that they can be easily fooled to misinter-
pret unrecognisable object with high confidence [38].
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5  Summary of Recommendations

Some of the problems with current artificial systems have 
been identified and it would take some time to resolve 
[76], if they can ever be solved at all. Computer scientists 
have long been working with other key subject areas like 
physics, engineering and mathematics to solve challeng-
ing computer vision problems. What is missing and might 
be crucial to address most of the challenges in computer 
vision is the combined expertise from biology and psy-
chology. To succeed in taking computer vision to the next 
level of robust scene understanding, the most appropriate 
research direction should be multi-disciplinary involving 
neuroscientists, psychologists, and physiologists. Thus, 
the use of biological and physiological data collected 
from experiments can be used to inform the design of 
models that mimic human vision and interpretation of a 
scene. There have been some successful cross-fertilization 
examples in visual cognitive neuroscience and CNN that 
provide a rationale for multi-disciplinary work for robust 
scene understanding. Greene et al. [77] presented a model 
for visual scene categorisation that reflects functions or 
actions that can be performed within a scene. The model 
in [77] is much closer to human scene categorisation and 
outperformed alternative models like object-based distance 
and visual features from CNN. Another study by Groen 
et al. [78] determined the contributions of the models tested 
in [77] to neural representations in scene-selective cortex 
by disentangling different types of information in the vis-
ual cortex. Besides, how strongly a simple property of the 
visual encoding of an image and its population response 
magnitude correlates with its memorability demonstrate 
how memory is shaped by visual context is presented in 
[79]. It is however worth noting that comparisons of deep 
network models with empirical electrophysiological, func-
tional magnetic resonance imaging, and behavioral data do 
not invariably only show similarities between brains and 
models [80], but also at times discrepancies [76].

The main reason why DNN have managed to achieve 
state of the art performance has been linked to the human 
visual system by way of how they learn uninterpret-
able solutions. This has been reiterated in [75] with the 
development of a CNN model which borrows biological 
guidance from the human visual cortex and capable of 
determining critical design choices with simple calcula-
tions. The model in [75] simulates the V1, V2, V4 and 
inferotemporal cortex (IT) layers of the human ventral 
stream, uses convolutional layers with varied sizes and 
complexities and increased the use of concurrency for 
improved processing speed. The design presented by 
Zhang et al. [75] outperformed seven other CNN tech-
niques to achieve state-of-the-art performances on four 
widely used benchmark datasets: CIFAR-10, CIFAR-100, 

SVHN and MNIST. These views are also advocated by 
others that the brain’s innate structures such as connectiv-
ity and mechanisms will inform deep learning network 
models and steer them toward more authentic human-like 
learning [81]. Rajalingham et al. [76] demonstrate that 
state-of-the-art deep convolutional neural network models 
cannot account for the image-level behavioural patterns 
of primates (humans and macaque monkeys) and made 
a strong case for the design of new models that precisely 
capture the neural mechanisms underlying primate object 
vision. The experiments conducted in [76] confirm that the 
failure of current DNN models to accurately capture the 
image-level signatures of primates cannot easily be recti-
fied by simply modifying the existing architectures, but 
rather a complete overhaul of the models and architectures.

Redmon et al. [82] presented a new approach for object 
detection, based on the fact that humans’ glance at an image 
and instantly know what objects are in the image, where they 
are, and how they interact. The same analogy has been used 
in [76] that primates, including humans, can typically rec-
ognise objects in visual images at a glance despite naturally 
occurring identity-preserving image transformations. The 
model presented in [82] reframe object detection as a single 
regression problem, straight from image pixels to bound-
ing box coordinates and class probabilities. What makes 
the YOLO model [82] different from other DNN models 
is the fact that it does not rely on sliding window but rather 
implicitly encodes contextual information about classes as 
well as their appearance. The model [82] has twice outper-
formed other state-of-the-art DNN models like Deformable 
Part Models (DPM) and Regional CNN using ImageNet and 
COCO datasets; a confirmation of the observations in [76].

5.1  Scene Understanding

To understand the scene, Zhou et al. [71] combined various 
local and global features, used CNN to learn deep features 
from the scene to present categories like humans, with the 
assumption that in an image set, high density is equivalent 
to the fact that images have in general similar neighbours. 
Semantic segmentation is a challenging task in computer 
vision which assigns a category label to each pixel of an 
image; a fundamental but challenging task in computer 
vision research [83]. There are other related feature descrip-
tors that are combined in various ways to model and under-
stand a scene using computer vision techniques. Table 2 
provides a list of some of the common feature descriptors 
used in scene understanding.

There has been great advances in the research into the 
modelling of scenes for segmentation and detection using 
convolutional neural networks [84]. However, similar to [71] 
and related CNN based scene understanding techniques, 
segmentation-based convolutional neural networks require 
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tremendous computational power and are not optimal for 
future autonomous vehicles. To address the scene under-
standing and power consumption, Gaurav et al. [85] pre-
sented a deep spiking neural model that translates a conven-
tional CNN model into it’s spiking equivalence. The work 
demonstrate the capabilities of spiking neural architectures 
as well as the energy efficiency of neuromorphic hardware 
architectures like the Intel’s Loihi [86].

5.2  Object‑Scene Appearance Modelling

The strong need for a more robust scene understanding 
model suitable for application areas like autonomous or self-
driving cars has motivated our proposed model for scene 
understanding with the use of physiological data. Our work 
has been motivated by the conclusions drawn from Eckstein 
et al. [87], which emphasised that missing giant targets is a 
functional brain strategy to discount distractors. The work in 
[87] demonstrates that search is guided toward target sizes 
consistent with the scene and thus, if targets are scaled to 
be larger but inconsistent in size with the scene, it would be 
missed more often during visual search. To utilise the results 
from [87] in our model, we will conduct further experiments 
(cf. [87]) to understand how humans and primates recognise 
key objects in a scene. Rather than using synthetic scenes, 
we will combine natural and synthetic scenes as part of our 
experiments.

Similar to the approach used by Izadinia et al. [88], we 
argue that the type of scene can be determined by the objects 
and their sizes, as well as their distribution. For example, in 
a kitchen we expect to see a worktop, cabinets and possibly 
a kettle or microwave around the worktop. We also aim to 
avoid the place category as in Zhou et al. [89] and provide a 
list of objects in the scene with associated spatial relation-
ships, considering their relative sizes. Deep convolutional 
networks take full advantage of the ubiquitous and improved 
computational power from heterogenous architectures, that 
resource will be utilised in generating our exhaustive list and 
relationship between scene objects. The key is to establish 

how primates, especially humans, use spatial relationships 
between known objects during visual search, beyond those 
attempts relying solely on salience and contextual cues [90]. 
This would also be different from those studies which have 
focused on passive free viewing by humans and monkeys 
[91, 92]. The proposed model will incorporate global and 
local descriptors. The need to build a model that utilises 
spatial relationship between objects, the aspect ratio of the 
objects and a pair-wise relationship between objects is the 
driving factor and novelty behind our model described in the 
following two sections.

5.3  Eye Tracking Paradigm on Humans

This section details an eye tracking paradigm on humans 
that will be used to compare results from our computational 
model. Clues will also be taken from the experimental 
design to inform and make our model more biologically 
inspired. Experimental design: 20 participants will perform 
a search-identification task. The design contains six condi-
tions by crossing two factors: the number of objects (in this 
case 2, 3 or 5) and time limit allowed for targets search/iden-
tification (limited time or self-paced). We will use eye track-
ing to record eye movements throughout the task and the eye 
movement data will be incorporated into the computational 
model. Each trial is composed of three phases (Fig. 1).

In terms of experimental material, we will generate 120 
scenes with a gameplay (The Sims 4, Maxis Software, Elec-
tronic Arts). These scenes are unique and made to depict 
various types of indoor scenes including those of kitchens, 
living rooms, bedrooms, classrooms, and offices. Overall, 
960 objects are extracted from these scenes removing any 
information associated with the original scenes in which 
they have been taken from (8 objects are extracted from each 
scene). The objects are made to be of comparable dimension 
when presented to the participants as part of the trial (second 
phase as shown in Fig. 1). To track and record the eye move-
ment we use EyeLink 1000 Plus [93].

Table 2  Some key scene understanding features and their importance.

Descriptor Importance

Object Detector This involves the identification and classification of various objects in the scene
Semantic Segmentation This divides the image into meaningful regions represents a single entity
Motion Estimator This is the apparent motion of objects in-between two subsequent image frames
Depth Estimator The ability to estimate the distance of an already detected object from the imaging sensor
Local Descriptor These are feature descriptors local and specific to an object like the texture, the edges, 

the corners, shape and orientation
Global Descriptor These are the contextual information relating to the surrounding elements like scene 

geometry and spatial information
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5.4  Eye Tracking Paradigm on Non‑human Primates

In addition to comparison with humans, we provided a fur-
ther example to illustrate how eye tracking could be applied 
on non-human primates. In this study, we trained macaque 
monkeys to view sets of still images and after a delay, to 
choose from three choices the one that they had viewed pre-
viously [94]. In the current context, we would then analyse 

the physiological responses such as saccadic scan-paths, 
fixations, and even pupil dilation when the animals view 
and process these still images [95] and compare with the 
computation model presented in Section 5.5.

An example trial is shown in Fig. 3: the blue trace depicts 
the real saccadic scan-path whereas the yellow trace depicts 
the shortest distance between two fixations. The blue circles 
refer to fixations and their associated numerals represent 

Figure 1  An example trial. Participants initiate self-paced start with a 
central cue. A number of objects (two objects are shown as example) 
will then be presented as search cue. Participants will then search for 

and identify the targets (presented in search cue stage) within a scene 
with both eye-fixation and keyboard-press responses.

Figure 2  Three representative 
scenes (using kitchens as exam-
ple) taken from our simulated 
scenes.

Figure 3  Eye movement tracking for macaque monkeys.
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duration of fixations (in ms). This image in Fig. 3 shows the 
memory test stage for 3-alternative forced choice recognition 
memory of a trial (the encoding stage is not shown here). 
These three test images were created using DreamStudio 
AI [96].

5.5  Computational Model for Scene Category 
Recognition

The pre-processing stages of the model will utilise state-of-
the-art deep neural networks for the target or object detec-
tion, which will be followed by the construction of the three 
unique vectors (spatial, size, pair-wise relationships) that 
will be learned for known scenes. The emphasis here is on 
the use of spiking neuron; much closer to the human visual 
system to take advantage of the minimal power consump-
tion. The proposed model will involve four major activities: 

1. Design of a model that goes beyond object detection and 
identification;

2. the introduction of a real-world and novel dataset that 
can be used to justify the model;

3. comparing human search performance with other deep 
learning approaches trained with large-scale images as 
well as our model for object and scene identification;

4. and finally making the architecture deployable on a low 
power neuromorphic hardware.

5.5.1  Design of a Model that goes Beyond Object Detection 
and Identification

This aspect of our model has four different tasks. The first 
will involve the use of a pre-trained convolutional neural 
network (deep learning) to identify all known objects in a 
scene. The input to the pre-trained CNN model will be series 
of images (scenes) representing normal day environment at 
home (Fig. 2), office and on the streets. The main aim here 
is to identify all known objects in the scene automatically, 
using the deep learning architecture. The second task is to 
group all common objects in the scene. For example, images 
of an office will normally consist of a desk, chairs, a key-
board, a monitor and other related objects. The collection 
of objects in the scene will then be used to form an object-
set, containing all prominent objects commonly found in the 
defined environment. A threshold will be used to classify an 
object as part of the object-set for any given environment; 
thus, an object will have to appear in a specified number 
of scenes to be counted as part of that object-set. The third 
task will use the object-set to generate a vector that repre-
sents the spatial relationship between any two objects. The 
spatial relationship between any two objects will include 
their relative position, distance and orientation. Part of these 
measures will be acquired during the process of object-set 

generation. For every pair of objects in an object-set, a 
three-dimensional vector will be generated to represent the 
extremal as well as the average values. The fourth and final 
task will involve the generation of size relationship. Like 
the spatial relationship this will be generated for each pair 
of objects in each object-set, making use of their combined 
aspect ratio as well as scalar invariant features like Histo-
gram of Oriented Gradients (HOG), Speeded-Up Robust fea-
tures (SURF) and Binary Robust Independent Elementary 
Features (BRIEF).

5.5.2  Introduction of a Real‑World and Novel Dataset 
that can be Used to Justify the Model

This aspect of the model will involve building a database of 
images that will be used to train, test and verify the model. 
The images will include indoor and outdoor scenes with 
typical objects found in that environment. To avoid the 
biases in most of the available datasets like IMAGENET and 
CAFFE, used for training deep CNN architectures, this work 
considers a collection of normal scene images to design a 
data-acquisition protocol for visual scene understanding in 
self-driving and surveillance systems. Synthetic images will 
also be generated to represent atypical scenes for training 
purposes. Like IMAGENET, available images on the inter-
net with common themes to that of scenes being tested in 
this work will also be used.

5.5.3  Architectural Comparison

The last aspect of the model will involve the comparison of 
the model designed in this work with human search capabili-
ties as well as off-the-shelf deep learning models (cafenet, 
VGG-16, GoogleNet, ResNet and Yolo2) trained on off-line 
large-scale images. The comparison is mainly to show how 
humans and deep learning architectures interpret scenes with 
varying objects in terms of size and position. These com-
parisons will also evaluate the global understanding of the 
scene to infer possible actions and identify any anomalies.

5.5.4  Neuromorphic Computing

As a specialised hardware designed mainly to mimic the 
structure and functionality of the human brain, the target 
implementation in this work is to perform task that involve 
processing information in ways similar to the human’s 
brain neural networks function. The human brain is known 
to be highly efficient [97] at processing complex infor-
mation, recognising visual patterns, and adapting to new 
situations. The traditional von Neumann architecture is not 
optimised for recognising or interpreting scenes and can be 
relatively power-hungry and slow when it comes to certain 
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types of computations like pattern recognition and sensory 
processing.

Neuromorphic computing generally aims to address the 
limitations of the von Neumann architecture by designing 
hardware architectures inspired by the brain’s structure and 
functionality. Neuromorphic architectures often involve 
large numbers of simple processing units (neurons) that are 
interconnected and can communicate with each other. The 
connections, similar to synapses in the brain, allow for the 
transmission of signals and the formation of networks that 
can adapt over time based on experience. Such an architec-
ture, efficient in processing visual information is the target 
for the proposed scene understanding system.

6  Concluding Remark

In this paper, we have reviewed recent advances in deep 
learning architecture that have taken inspiration from human 
or primate learning and visual systems, and provided direc-
tion to future advancement on deep learning with inspiration 
from physiological experiments. Upon a review of areas that 
have benefited from deep learning, we specifically outline a 
physiologically inspired model for scene understanding that 
encodes three key components: object location, size and cat-
egory. Human vision understanding can serve as a valuable 
source of inspiration for bio-inspired computer vision and 
for that matter bio-inspired AI. Through an effective emu-
lation of the mechanisms and principles underlying human 
visual perception, bio-inspired computer vision can aim to 
achieve similar levels of performance and robustness as a 
human, when it comes to scene understanding. For example, 
the selective nature of human vision can be incorporated into 
bio-inspired AI to prioritise important features or regions 
in an image and effectively reduce computational cost. 
Similarly, human vision integrates contextual information 
like scene layout, object relationship and semantic context 
to make sense of visual scenes; attributes that can enhance 
scene understanding but hard to model into existing vision 
systems. The model proposed in this work goes beyond sim-
ple object detection and identification, it aims to introduce a 
novel real-world dataset, and ultimately provide a compari-
son between how humans and deep learning architectures 
interpret complex, naturalistic scenes.
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