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Abstract
Noise shaping (NS) filters reduce the quantization noise power in one or more frequency band(s) while amplifying it in 
other bands. Narrow-band noise shaping filters are state of the art in audio signal processing, analog-digital and digital-
analog conversion, direct digital synthesis, and other applications. However, it is much more difficult to design broadband 
NS filters. Since NS filters are used in feedback branches, they must therefore be designed direct path free which imposes 
a constraint on the filter coefficients. This constraint leads to prohibitive large filter coefficients employing state of the art 
filter design techniques.
This paper investigates the theoretical bound for NS filters and shows results about a novel design method for broadband FIR 
and IIR noise shaping filters and its multiplier-less hardware implementation. The method employed is a purely numerical 
approximation technique and leads to filter designs close to the discussed theoretical bound. The quantization of the filter 
coefficients is performed by a Canonical Signed Digit (CSD) representation of the coefficients. Two alternative architectures 
for the implementation of the filters are discussed. The design technique and the CSD quantization are realized in a MATLAB 
toolbox. The filters were moreover implemented in VHDL.

Keywords  Broadband Noise Shaping Filters (NSF) · Multiplier-less NSF · Near-optimal design · Canonical Signed Digit 
(CSD) · VHDL implementation · Seemless design flow

1  Introduction

Noise shaping filters (NSF) are used, e.g., in digital-analog 
and analog-digital conversion. They virtually enlarge the 
wordlength of DACs and ADCs and hence their resolu-
tion. This makes them attractive in a variety of applica-
tions, such as audio signal processing [1–3], delta sigma 
converters [4–8] etc. In audio signal processing psychoa-
coustic noise shaping is widely used, e.g, [1–3], often in 
combination with dithering. These standard designs are 
narrow-band, requiring a large oversampling ratio (OSR). 
The large oversampling ratio however impairs the use of 

NS filters to a broader class of applications. Essentially, 
one trades off bitwidth versus OSR. In [6, 7] the authors 
have proven that 1-bit delta sigma converters are in princi-
ple unperfectible and that distortion, limit cycles, instabil-
ity, and noise modulation can never be totally avoided. The 
out-of-band gain is therefore a critical and limiting factor 
of NSF design for delta sigma converters. Moreover, they 
have shown that these shortcomings can in principle be cir-
cumvented by n-bit delta sigma converts with n > 4 . Since 
n-bit converts are significantly more dfficult to design for 
higher clock rates, broadband noise shaping filters enabling 
much smaller OSR are required.

The state of the art of NSF designs are focused on nar-
row-band filters for 1-bit delta sigma converters. Moreo-
ver, these papers lack of a discussion of implementation 
issues and implementation results. We conclude that there 
exists a shortcoming of design techniques for broadband 
NSFs which are proven to be close to the theoretical 
bounds. This paper deals therefore with the theoretical 
bounds of broadband NSF, their design and implemen-
tation. Toolboxes for a seemless design and hardware 
implementation in VHDL have been developed and will 
be discussed in this paper.
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2 � Noise Shaping Filter Fundamentals

The Fig. 1 shows exemplarily a block diagram of a digital-
analog conversion with noise shaping filter (NSF): the input 
signal x of wordlength Bx is converted to the analog domain 
by a DAC with wordlength By < Bx and sampling rate fs , 
requiring a quantization stage Q. The quantization error gen-
erated by the quantizer Q, e[k] = y[k] − v[k] , also referred 
to as quantization noise, is assumed to be a realization of a 
random white uniformly distributed stochastic process E. 
The noise shaping functionality comprises mainly a feed-
back path and filtering with transfer function G(z) and noise 
transfer function (NTF) H(z) = 1 − G(z) (e.g. [9]). Since 
G(z) = 1 − H(z) must be direct path free, standard design 
techniques for digital filters cannot be applied.

We assume that x[k] is a realization of a random process 
X. Let ΦX

(
ejΩ

)
 be the power spectral density (PSD) of the 

stochastic process X. From the Wiener-Lee theorem the PSD 
of the filtered stochastic process, filtered by the impulse 
response h[k] and transfer function H

(
ejΩ

)
 , is given by

i.e., the noise spectrum is shaped by |||H
(
ejΩ

)|||

2

 . NS filters are 
consequently designed in such a way that the magnitude 
response is small in the frequency bands of interest.

In what follows, we consider IIR noise shaping filters of 
order N with noise transfer function

Let H(z) be the transfer function of a stable and minimal 
phase filter, i.e. all roots of the polynomials of B(z−1) and 

ΦY

(
ejΩ

)
= ΦX

(
ejΩ

) |||
H
(
ejΩ

)|||

2

(1)H(z) =

∑N

m=0
bm z−m

∑N

n=0
an z

−n
=

B(z−1)

A(z−1)

A(z−1) lie within the unit circle, then from Jensen’s formula 
[10] one obtains

Since for noise shaping filters the transfer function G(z) must 
be direct path free, the requirement a0 = b0 must hold for 
the NTF H(z) = 1 − G(z) . W.l.o.g. we impose the constraint 
a0 = b0 = 1 , i.e. monic polynomials A(z−1) and B(z−1).

Hence (2) reads

This theorem implies that the total shaped noise power is 
always larger than the input noise power if the quantization 
noise is a white noise process, since a noise reduction in 
one frequency band trades off for a noise amplification in 
another one on a logarithmic scale.1 The best what can be 
achieved is a piecewise constant absolute value of the trans-
fer function, i.e., a constant reduction of the quantization 
noise power in the passband and a constant amplification in 
the stopbands. This is illustrated in Fig. 2 for a signal band-
width of a quarter of the Nyquist frequency. The out-of-band 
gain is a critical factor for delta sigma converters which must 
be limited to guarantee stability.

This constraint a0 = b0 = 1 leads furthermore to prohibi-
tively large absolute values of the remaining a and b coeffi-
cients employing state of the art filter design techniques when 
large bandwidths are required. Results suggest that absolute 
values of filter coefficients larger than 103 or even 104 occur.

(2)∫
�
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Figure 1   Noise shaping with 
quantizer Q.
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1  A similar result has been obtained in [11] as reported in [2, 7], 
referred to as Gerzon-Craven theorem.
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3 � Related Work

There exist multiplier-less narrow-band NSFs of FIR type, 
which are employed in audio signal processing with noise 
transfer functions H(z) = 1 − z−1 and H(z) = 1 − 2z−1 + z−2 , 
and others. In [12] the former transfer function has been gen-
eralized to a kth order pole, i.e., H(z) = (1 − z−1)k , for use 
in a direct digital frequency synthesizer. This generalization 
leads to a narrow-band NSF too. Figure 3 depicts the mag-
nitude responses. These FIR filters are extremely narrow-
band, requiring a sample rate fs significantly larger than the 
Nyquist rate. Even the k = 4 th pole filter requires an OSR 
of approximately 10 and is therefore constraint efficient for 
the synthesizer architecture described in [12].

Pavan et al. [4], Schreier [13], Schreier et al. [14] devel-
oped a sophisticated MATLAB toolbox [13, 14] for the 
design of NSFs for 1 bit delta sigma modulators. Though 
designed for large over sampling rations, the core functions 
synthesizeNTF and synthesizeChebyshevNTF 
may be used for broadband NSFs has well. The results 
shown below (Figs. 4 and 5) choose an OSR of two, i.e., 
NSFs with a band width of up to half the Nyquist frequency. 

Figure  2   Illustration of the noise shaping theorem: optimal magni-
tude response of the noise shaping filter for a signal bandwidth of a 
quarter of the Nyquist frequency. The integral is constrained to zero.

Figure 3   Magnitude responses 
of a narrow-band NTFs.
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Since the NTF is not optimized outside the passband, one 
obtains an overly large amplification of the total noise 
power. Exemplarily, an N = 14 IIR NTF is depicted in 
Fig. 4, employing the synthesizeNTF function. The 

inband quantization noise reduction is > 32 dB whereas the 
out of band gain is up to about 65 dB. The Chebychev filter 
designed with synthesizeChebyshevNTF as shown in 
Fig. 5 leads to an improved design: larger than 36 dB inband 
noise reduction and about 52 dB outband noise amplifica-
tion. Nevertheless, both design methods are far from opti-
mality as discussed in the previous section. Clearly, these 
functions are developed for delta sigma ADCs and DACs 
with large OSR.

Wannamaker [2] proposed a design method for psychoa-
custically optimized FIR NS filters. Firstly, the NSF with 
magnitude response ||

|
H
(
ejΩ

)|
|
|

2

 is designed from the inverse 
of the psychoacustically devised weighting function, fulfill-
ing the Gerzon-Craven theorem [11]. Then a minimum 
phase filter H

(
ejΩ

)
 is calculated from the squared magnitude 

response and finally the impulse response evaluated by an 
inverse FFT. The bottleneck of this technique is of course 
the numerical calculation of the minimal phase filter from 
the given magnitude response.

As noted in the previous section, the out-of-band gain 
is a critical factor for the stability of delta sigma convert-
ers and must be incoporated in the design process. This 
leads to a constraint optimization. In [5, 8, 15] the Kalman-
Yakubovich-Popov (KYP) lemma has been used to this 
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Figure 4   Magnitude response of a broadband N = 14 NTF according 
to [4] employing synthesizeNTF. 

Figure 5   Magnitude response 
of a broadband N = 10 Cheby-
chev type NTF according to [4] 
employing synthesizeChe-
byshevNTF. 
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end applying the H∞ norm. The constraint optimization 
problem has been recast into a symmetric eigenvalue prob-
lem which is iteratively solved using interior point meth-
ods. These standard designs are narrow-band, requiring a 
large oversampling ratio (OSR). The large oversampling 
ratio however impairs the use of NS filters to a broader 
class of applications. Nagahara and Yamamoto [8] provide 
the function NTF_MINMAX for solving the min-max less 
resulting from the KYP method. The Fig. 6 shows results 
for an OSR of two, employing an N = 32 FIR filter. The 
noise reduction is of about 24 dB and the out of band gain 
about 33 dB. Interestingly the algorithm performs worse 
for larger N and higher noise suppressions could not be 
achieved by parameter variations. We conclude that the 
design method employing the KYP lemma results also in 
suboptimal filter designs.

The challenges addressed in this paper are therefore 

1.	 designing broadband noise shaping filters of a low filter 
order N,

2.	 applicable for n ≥ 4 bit delta sigma converters with mod-
erate OSR,

3.	 with filter coefficients a, b being preferably single-digit 
decimal numbers, i.e. in [−10, 10],

4.	 minimization of the overall noise growth ouside the frequency 
band of interest, in view of the optimality constraint (3),

5.	 robust designs w.r.t. quantization of the filter coefficients,
6.	 hardware efficient multiplier-less implementation for 

high-speed signal processing.

This paper shows results of a novel design technique 
for broadband IIR NSF with minimal phase, which fulfills 
(3) and nearly piecewise constant noise transfer function. 
They are therefore close to the theoretical limit. Their fil-
ter coefficients are single-digit decimal numbers in most 
cases and therefore well suited for digital hardware imple-
mentation. The quantization is performed employing the 
Canonical Signed Digit representation [16] of the filter 
coefficients for a multiplier-less implementation of the 
filters. The signals are represented in a standard way by 
two’s complement. Two alternative architectures for their 
hardware implementation are discussed. Special care has 
been taken for avoiding limit cycles of IIR filters using 
results from [17, 18].

Figure 6   Magnitude response of 
a broadband N = 32 FIR filter 
[8] employing NTF_MINMAX. 
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4 � Canonical Signed Digit Implementation

The filter coefficients are quantized employing the Canoni-
cal Signed Digit representation [16]. Firstly, the transfer 
function H(z) is reformulated as a cascade of 1st and 2nd 
order filters in a standard manner, i.e.

where H̃p(z) is either

The 1st order rational polynomial is used when the pole and 
zero is on the real axis and the 2nd order rational polyno-
mial otherwise in case of conjugate complex pairs. Alter-
natively, one may employ a parallel realization of the NTF, 
using partial fraction expansion. On the one hand, a paral-
lel realization is less sensitive w.r.t. rounding errors due to 
quantization, on the other hand more operations are required 
compared with a cascade realization.

Quantization is most often done by using the two’s com-
plement. Filter coefficients in [−1, 1[ are quantized by

where a0 is the sign bit and B the word length. The CSD 
representation instead quantizes the coefficients in the form

H(z) =

P∏

p=1

H̃p(z)

H̃p(z) =
1 + b1z

−1

1 + a1z
−1
, 1st order

or H̃p(z) =
1 + b1z

−1 + b2z
−2

1 + a1z
−1 + a2z

−2
, 2nd order

a = −a0 +

B−1∑

i=1

ai 2
−i, ai ∈ {0, 1}

(4)a =

B∑

i=1

ai 2
−i, ai ∈ {0, ±1}

The CSD represenation is of advantage for a multiplier-less 
implementation of the filter, since in practical cases the 
number of nonzero digits is less compared with the two’s 
complement while fulfilling the design constraints. The 
second order sections of the architectures proposed in the 
next Section have been implemented using a minimum norm 
realization (e.g. [17]) and afterwards, the coefficients of the 
minimum norm realizations have been quantized using the 
CSD representation.

5 � Broadband Noise Shaping Filters—
Implementation

We propose below two alternative architectures of the NSF. 
Note that G(z) = 1 − H(z) is direct path free and imple-
mented in the feedback path of Fig. 1.

5.1 � 1st NSF Architecture

The NS filters are implemented in cascades of 1st and 2nd 
order blocks. To this end, we define

1
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Figure 7   Signal flow graph of a 2 nd order block — 1st realization 
(P-block).
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Figure 8   Signal flow graph of a 2 nd order block — 2nd realization 
(H-block).

Figure 9   2nd NSF architecture [19].
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where H(z) ≡ HN(z) , G(z) ≡ −QN(z) and P
�
(z) = 1 − H̃

�
(z).

We suggest alternatively the two 2-term recursions

(5)Hi(z) ∶=

i∏

�=1

(1 + P
�
(z)) =∶ 1 + Qi(z), i = 1,… ,N

The signal flow graph for (6), referred to as P-block, is 
depicted in Fig. 7 and for (7), referred to as H-block, in 
Fig. 8. The realization by an H-block (7) is unlike (6) not 
direct path free, therefore at least one stage in the cascade 
must be a realization of a P-block (6), since a direct path 
free feedback loop is required.

5.2 � 2nd NSF Architecture

We consider the multiple feedback NSF architecture 
depicted in Fig. 9 [19]. By inspection, we have the recur-
sive calculations

(6)Qi(z) = Qi−1(z) + Pi(z)Hi−1(z)

(7)Qi(z) = (1 + Pi(z)) (1 + Qi−1(z)) − 1

(8)

Y = VN + E

VN = VN−1 + PN (z) (Y − VN ) = VN−1 + PN (z)E

Y = VN−1 + (1 + PN (z))E

VN−1 = VN−2 + PN−1(z) (Y − VN−1)

= VN−2 + PN−1(z) (1 + PN (z))E

Y = VN−2 + (1 + PN−1(z)) (1 + PN (z))E

VN−2 = VN−3 + PN−2(z) (Y − VN−2)

= VN−3 + PN−2(z) (1 + PN−1(z)) (1 + PN (z))E

Y = VN−3 + (1 + PN−2(z)) (1 + PN−1(z)) (1 + PN (z))E

…
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Figure  10   Pole-zero plot of NTF H(z) with order N = 4 with float 
(blue) and CSD coefficients (red).

Figure 11   Transfer function of 
NSF H(z) with order N = 4 in 
float representation and quan-
tized using CSD representation.
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which implements recursively (5).

6 � Broadband Noise Shaping Filters—Results

6.1 � Implementation

The NSF architectures have been implemented in VHDL. 
Whereas the filter coefficients are quantized in the CSD 
representation, the signals instead in the two’s comple-
ment with b integer and B decimal bits in a standard man-
ner. The second order systems Pi(z) in Fig. 7 have been 
realized using a minimum norm realization (e.g. [17]) 
and the multiplication results are quantized with round-
ing to zero in order to avoid limit cycles [18]. The filters 
have been simulated with ModelSim - Intel FPGA Starter 
Edition 10.5b. The test signal is a frequency modulated 

(9)Y = X(z) + E

N∏

�=1

(1 + P
�
(z))

Chirp signal. The synthesis for the Intel Cyclone V FPGA 
5CSEMA5F31C6 has been performed with Intel Quartus 
Prime Version 18.1.0 SJ Lite Edition. In the following 
sections, example filters including simulation and syn-
thesis results are presented.

Figure 12   PSD of the filtered 
quantization noise of NSF archi-
tectures with order N = 4.
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Table 1   Synthesis results of NSF architectures with order N = 4 for 
the Intel Cyclone V FPGA.

Architecture ALM ALUT Registers fmax [MHz]

Cascade structure 493 948 64 61.47
Multiple feedback 492 939 64 72.18
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Figure  13   Pole-zero plot of NTF H(z) with order N = 8 with float 
(blue) and CSD coefficients (red).
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6.2 � Noise Shaping Filter with Order N = 4

In the following, simulation and synthesis results of a 4th order 
IIR NSF are presented. The pole-zero plot of the NS filter is 

Figure 14   Transfer function of 
NSF with order N = 8 in float 
representation and quantized 
using CSD representation.
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Figure 15   PSD of the filtered 
quantization noise of NSF archi-
tectures with order N = 8.
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depicted in Fig. 10 and the NTF in Fig. 11. For the quantiza-
tion of the signals in two’s complement, one integer bit and 
fifteen decimal bits have been used. The PSDs of the filtered 
quantization noise in the hardware simulation is depicted in 
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Fig. 12. The Table 1 depicts the maximum clock frequency 
and the resource utilization of adaptive logic modules (ALM), 
adaptive look-up tables (ALUT) and registers for the discussed 
architectures. The noise suppression operates for a bandwidth 

of about B = �∕4 , which is 25% of the total bandwidth. Com-
paring Fig. 11 with the optimal filter Fig. 2 one can see the 
excellent match despite the very low filter order.

6.3 � Noise Shaping Filter with Order N = 8

In this Section, simulation and synthesis results of an 8th 
order NSF are presented. The pole-zero plot of the noise 
transfer function is depicted in Fig. 13 and the NTF in 
Fig. 14. As for the 4th order NSF, one integer bit and fifteen 
decimal bits have been used for the quantization of the sig-
nals. The PSD of the filtered quantization noise in the hard-
ware simulation is depicted in Fig. 15 and Table 2 depicts 
the synthesis results. The noise suppression operates for a 
bandwidth of about B = �∕2 (halfband).

6.4 � Noise Shaping Filter with Order N = 10

In this Section, simulation and synthesis results of a 10th 
order NSF are presented. The pole-zero plot of the noise 

Table 2   Synthesis results of NSF architectures with order N = 8 for 
the Intel Cyclone V FPGA.

Architecture ALM ALUT Registers fmax [MHz]

Cascade structure 1063 2031 128 51.05
Multiple feedback 1075 2000 128 58.87
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Figure 16   Pole-zero plot of NTF H(z) with order N = 10 with float 
(blue) and CSD coefficients (red).

Figure 17   Transfer function of 
NSF with order N = 10 in float 
representation and quantized 
using CSD representation.
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transfer function is depicted in Fig. 16 and the NTF in 
Fig. 17. For the quantization of the signals in two’s comple-
ment, four integer bits and fifteen decimal bits have been 
used. The PSD of the filtered quantization noise in the hard-
ware simulation is depicted in Fig. 18 and Table 3 depicts  
the synthesis results. The noise suppression operates for a 
bandwidth of about B = 3�∕4 , which is 75% of the total 
bandwidth. The transfer function Fig. 17 matches the opti-
mallity constraint for minimal phase NSFs nearly perfectly.

7 � Conclusion

In this paper a seamless design flow for broadband noise 
shaping IIR filters has been described. The novel design 
technique features a near optimium transfer characteristic, 
i.e. adjustable noise suppression in the frequency range of 
interest and simultaneously low noise growth in the remain-
ing frequency bands. The filters are close to the theoreti-
cal bound as discussed in this paper. The filter coefficients 

of the transfer function are typically single digit decimal 
numbers and hence well suited for a realization in a digital 
circuit. The filters are moreover implemented multiplier-
less. Two alternative architectures have been discussed in 
detail. The filter coefficients are quantized employing the 
Canonical Signed Digit (CSD) representation. CSD leads 
in practical cases to less nonzero digits compared with the 
usual two’s complement, enabling less hardware resources, 
less power consumption and higher clock rates.

The design flow comprises a toolbox for the design of the 
filter, quantization of the filter coeffcients in the cost-efficient 
CSD format and an automated generation of a VHDL package 
containing the filter parameters.

The noise shaping filters can be realized for low- and 
highpass, bandpass and bandstop signals. In this paper only 
cases for lowpass signals have been discussed. Alternatively, 
a design technique for FIR noise shaping filters has been 
developed. Results on their multirate implementation will 
be considered in another paper.
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Figure 18   PSD of the filtered 
quantization noise of NSF archi-
tectures with order N = 10.
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Table 3   Synthesis results of NSF architectures with order N = 10 for 
the Intel Cyclone V FPGA.

Architecture ALM ALUT Registers fmax [MHz]

Cascade structure 1514 2927 190 46.98
Multiple feedback 1558 2874 190 51.41
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