
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1115–1126
https://doi.org/10.1007/s11265-023-01869-5

Accelerating image processing using reduced precision calculation
convolution engines

Narayan Pokhrel1  · Sakari Snäll1 · Olli I. Heimo1,2  · Uruj Sarwar1 · Antti Airola1  · Tero Säntti1

Received: 1 April 2021 / Revised: 13 March 2023 / Accepted: 11 April 2023 / Published online: 9 May 2023
© The Author(s) 2023

Abstract
In this paper a method of accelerating image processing using convolution engines with reduced precision calculation is
presented. The convolution engines are designed to be used with the Pulpissimo platform with RISC-V System-on-Chip.
The aim is to move the calculation to the edge. The proposed linear convolution engines operate on 8-bit data set and the
logarithmic convolution engine operates on 4-bit reduced precision data. The data reduction is done by using a logarithmic
number space. Diminishing the size of the data to be processed reduces the amount of required memory, requirement for
memory bandwidth, required computation, and required hardware area while simultaneously increasing the performance.
This performance could benefit modern AI and image processing applications, especially in mobile and other battery-operated
devices. The results show that the computation in the linear convolution engine is 91 times faster and computation in the
logarithmic convolution engine is 122 times faster than in the RISC-V core with plain RISC-V instructions.

Keywords  Convolution Engine · Image Processing · Reduced Precision Calculation · FPGA · System-on-Chip · Artificial
Intelligence

1  Introduction

Technological development requires a constant increase in
both speed and efficiency, combined with diminished costs,
power consumption, and use of space. As physics gives
us some limits, the mathematical models combined with
embedded design can give us answers. The problem comes
easiest in image processing where a human can easily iden-
tify a cat apart from a bear or a traffic light from a lorry,
whereas a computer yet this day requires a lot of data to
make such distinctions [1].

Yet, if the calculation of the simplest of analysis is done
in the edge, this analysis might have an advantage against the
human eye. As the eye of the beholder is indeed digital and
turned towards the task ahead, the effectivity – as shown in
this paper – can also be increased not only in benefit of the

digital system, but also in benefit of the embedded design
of the eye itself [2].

Machines equipped with a general-purpose processor
(GPP) can handle a wide range of computations, ranging
from simple embedded control to large-scale server work-
loads. The programming and running of an application in
this kind of platform are relatively straightforward because
of well-developed development tools and programming
abstractions [3]. The general-purpose nature of a GPP makes
them rather efficient for any task, but the specialized nature
of a dedicated hardware accelerator allows focusing on only
one task and thus increases the efficiency in that task. The
execution of any kind of algorithms in GPP is far slower than
the dedicated hardware accelerators. The hardware accel-
erators use a smaller area in the chip and can deliver high
performance [4].

Most computer vision applications and real-time com-
putation require complex computation by a processor. The
GPP could not provide the computation needed for real-time
processing. The convolution algorithm needs a relatively
large amount of processing capacity, as each pixel is pro-
cessed many times in several computation units to get the
result. The proposed convolution engine is a dedicated hard-
ware accelerator, which implements an image convolution

 *	 Olli I. Heimo
	 olli.heimo@utu.fi

1	 Department of Computing, University of Turku, Turku,
Finland

2	 Turku School of Economics, University of Turku, Turku,
Finland

http://orcid.org/0000-0002-4753-1621
http://orcid.org/0000-0001-9412-0393
http://orcid.org/0000-0002-1010-4386
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01869-5&domain=pdf

1116	 Journal of Signal Processing Systems (2023) 95:1115–1126

1 3

algorithm and delivers high performance in computer vision,
videography, and photography. The proposed convolution
engine reduces the memory read and write overhead by
reutilizing pixel data from the previous computations. The
computation for one image pixel by a 3 × 3 filter kernel needs
a 3 × 3 image pixel window and arithmetic operations of 9
multiplications and 8 additions. The GPP needs many clock
cycles to perform this computation, but a dedicated convolu-
tion engine can perform this operation in one clock cycle. A
high-performance convolution engine contains many multi-
plication and addition units in parallel to increase through-
put. The number of clock cycles for a GPP to complete the
computation depends on the architecture of the processor
and programming model. Typically, all of the separate mul-
tiplications and additions are executed sequentially in a GPP
[4].

Processing images with convolution is hardly a new inno-
vation. However, it is still a costly function when run with
traditional methods of calculation and thus for the technol-
ogy to evolve, a more efficient method should be found [5].
As the power consumption and calculation effectivity come
into question – common cases in embedded systems – one
is at crossroads. Whereas the standing solutions for different
CPUs (Central Processing Units) offer different prizes (prize
set at power consumption, heat production, and monetary
prize), some graphics processing unit (GPU) additions give
a flexible yet usually more monetarily increased prize yet
being rather general purpose instead of dedicated accelera-
tor sharing the problems of general-purpose units. Moreo-
ver, if the task is simplified enough, sufficient results can be
implemented in various methods, for example, using only
integer values instead of IEEE 754 [6] floating-point val-
ues. The switch to simpler data types can be done, if higher
performance and/or reduced memory usage is required.
Hence, reducing memory accesses to shared memory is an
improvement, since memory operations are generally slow.
Accessing memory fewer times also releases time for other
components to use the memory bus [7].

Image processing is a digital operation widely used in
various applications, for example pattern recognition or
image classification. There are various ways to process digi-
tal images, such as using point operations, where a function
is applied to each pixel, resulting in each pixel outputting
the applied function [8].

On the other hand, group operations calculate the new
pixel value from both, the original pixel and the neighboring
pixels, making the template convolution a many-to-one func-
tion, where all the end pixels are independently calculated
by the template kernel coefficients. Whereas, the human eye
is rather keen on these kinds of transformations, computer
calculation can suffer from efficiency issues when analyz-
ing these kinds of issues. Moreover, a single bad value in
imagining and thus in mathematical point operation could

have significance in the computational analysis of the image,
as the variations will skew the average differently from the
median [9].

In the proposed engines, we have implemented a con-
volution engine to a RISC-V SoC in the Pulpissimo plat-
form, with the focus on using reduced precision calculation
to enhance the overall effectivity of the image processing.
The convolution engine uses Direct Memory Access [10]
reducing the CPU load. The chip is simulated, prototyped
using FPGA and is ready for the tape-out process, and this
article is being written during this course of time. The main
focus and application domain intended for these engines is
machine learning, and even more specifically performing
it in an edge device. This means that the main objective
is minimizing energy and resource usage while maintain-
ing structural information in the images. Visual quality, as
perceived by a human, is not a major factor. The long-term
target is creating a full set of arithmetic units capable of
using the proposed reduced precision style, allowing full
systems to use the same approach consistently throughout
the pipeline.

2 � Convolution engines

2.1 � Convolution in image processing

Image processing applications have been constantly advanc-
ing, with the advantage of applying operations on image-
based data to extract detailed information. This also involves
using several image acquisition methods for image analysis,
which could differ from application to application. One of
the main methods of image processing can be regarded as
convolution, which is simply a technique of image transfor-
mation by a kernel covering each of the pixel values. This
kernel itself is a matrix that is responsible for performing
convolution in the first place, and it further indicates what
type of image transformation should occur. As many advan-
tages can be observed in image processing, it also comprises
challenges when it comes to increased workloads. This is
why the general-purpose hardware might not be properly
optimized for high data parallelism. In such circumstances,
Single Instruction Multiple Data (SIMD) units and GPUs are
used, but these do require more power. Accelerators based
on Application-Specific Integrated Circuits (ASICs) are also
being developed that are power efficient [11].

2.2 � Convolution engines and GPP

The use of GPP has been diversifying immensely; however,
with this benefit of constantly being advanced and flexible,
they do utilize a higher price, because 99% of the energy is
being wasted, per overhead, in programmability [11]. The

1117Journal of Signal Processing Systems (2023) 95:1115–1126	

1 3

research study performed by Qadeer et al. [11] indicated that
the defined energy waste could be decreased by altering data
storage and designing structures, along with their relation to
data locality and dataflow in algorithmic approaches. This is
why instead of aiming entirely on programmability, major
data flow patterns could be focused in a domain. With such
methods, efficient engines can be designed and used in dif-
ferent applications with respect to the execution domain.

These engines can be further programmed based on the
application. For this purpose, the mentioned study [11]
worked on a Convolution Engine and identified it as a pro-
grammable processor. The engine is used for convolution-
based data flow in the applications of video processing,
computer vision, and computational photography. Convo-
lution engines contribute to energy efficiency by performing
several operations on each memory access, reducing data
transmission overheads, and utilizing data-reuse patterns.
Qadeer et al. [11] established their engine that was targeted
to a factor of 2–3 × of the energy, and also the area effi-
ciency regarding customized units based on a single kernel.
The study further elaborated that by using the convolu-
tion engine, area efficiency, and energy were enhanced by
8–15 × in comparison to SIMD-based engines.

2.3 � Convolution engines in machine learning

In machine learning, convolutional neural networks (CNN)
[12] have become the dominant approach to image analysis.
The convolution kernels allow modeling hierarchical data
representations, where units in the first layers extract sim-
ple shapes such as edges or corners, and subsequent layers
combine these into more high-level abstract patterns. The
weights of the kernels as well as other network parameters
are automatically learned from data typically via stochastic
gradient descent optimization. Advances in training deep
CNN architectures have resulted in state-of-the-art and even
human-level performance in tasks such as object detection
and segmentation, image classification, video processing,
speech recognition, and natural language processing [13].
Yet the cost of these advances has been a steep increase in
computational requirements both for training and deploying
the networks, motivating the need for solutions to improve
efficiency such as specialized GPU, or increasingly also
FPGA and other ASIC-based hardware accelerators [14].

The study performed by Liu et al. [15] presents an FPGA-
based CNN accelerator that provides reduced power con-
sumption, in comparison to GPUs and ASICs. Despite the
advantage of less power consumption, there are still chal-
lenges concerning complex and large computational fea-
tures of CNN and the insufficient resources of FPGA. These
challenges are encountered when designing such hardware
accelerators. The mentioned study [15] demonstrated a CNN
accelerator that enhances the standardized convolution and

also the depth-wise separable convolution. A CNN con-
sists of several layers for processing the input image data.
A specific convolutional layer is also present that is mainly
required to apply convolution calculation on the input data
by using convolution kernels. The designing of convolution
engines is based on an architecture that could contribute
to good performance, efficient power, and the ease of hav-
ing multiple convolution-based algorithms as described in
CNN. This could support handling workloads and enhanc-
ing efficiency in image processing. Another research study
also regarding CNN [16] indicated that reduced precision
data can be utilized within the network layers, as it helps
in decreasing energy and supports better performance. This
further provides the platform for having larger networks in
CNN-based applications. Due to such advantages, another
study [17] developed a CNN accelerator for reducing com-
putation. This accelerator used the method of precision-
cascading (PC).

Beyond standard CNN architectures, convolution accel-
eration could have also a significant impact on the efficiency
of a wide range of other machine-learning approaches that
employ convolutions. These include methods such as convo-
lutional kernel networks based on the theory of reproducing
kernels [18] probabilistic methods such as deep convolu-
tional Gaussian processes [19], as well as various extensions
of CNNs to unsupervised [20] or reinforcement [21] learn-
ing. Since a given application typically has several layers
of CNN, any benefits in the execution are multiplied by the
number of convolution runs. This applies to savings in power
and execution time, and can be further increased by pipelin-
ing accelerators like the ones presented here. This, however,
does fall outside the scope of this paper.

3 � Reducing precision

Approximate computing or reduced precision calculation
is a technique producing deliberately inaccurate results
compared to more precise algorithms. As precision is not
always the ultimate key as different solutions require differ-
ent thresholds, some precision can be sacrificed to gain more
efficiency. For example, every vote counts when calculating
votes from a national election, but when conducting opinion
polls before the actual election, a good estimate is enough.

One technique to gain efficiency from the reduced preci-
sion calculation is reduced memory usage. As the values
being processed require less space, they also produce less
traffic – in addition to other effects such as reduced calcula-
tion time. Another technique is to transform the data into a
different mathematical representation, for example convert
it to logarithmic scale, as presented by Miyashita et al. [22].

An 8-bit integer input can produce a logarithmic output
that can fit into 3 bits. When converted back to linear

1118	 Journal of Signal Processing Systems (2023) 95:1115–1126

1 3

space, it can only represent values ranging from 0 to
128. However, the output requires 4 bits if the rounding
method is used. Yet the 4-bit value can represent the 8-bit
input in full range. In a mathematical sense, the loga-
rithmic space has clear advantages, as the linear space
multiplications are transformed into additions, as shown
in the following equation:

In hardware, addition requires fewer gates than multi-
plication enabling a marginal size reduction in the overall
design.

In recent years, many teams have evaluated the suit-
ability of using logarithmic number precision in accord-
ance with convolutional neural networks [22-24]. The
results indicate that logarithmic representation not only
saves the memory storage and data movement require-
ments, but is also able to preserve the recognition accu-
racy of the CNN as compared to more conventional num-
ber representations.

Using the logarithm numbers in convolutions, also the
arithmetic operations are transformed to more efficient
realizations, where e.g., the bulky digital multiplication
can be avoided.

log(x1 ∗ x2... ∗ xn) = log(x1) + log(x2)... + log(xn)

4 � Design

The proposed convolution engine is implemented into
Pulpissimo as a hardware accelerator. Pulpissimo, an open-
source microcontroller architecture, is developed by ETH
Zurich and the University of Bologna [25]. It allows the
development of customized platforms with a reference
implementation for both single- and multi-core SoC illus-
trated in Fig. 1. The HWPE (Hardware Processing Engine)
contains the integrated convolution engine whereas the
peripheral bus transfers data and interrupts. The engine
is also able to notify the CPU about completed processes
and error messages. Data transfers are done with TCDMI
(Tightly Coupled Data Memory Interconnect) and to accom-
plish data transferring, the convolution engine is connected
to TCDMI with AXI (Advanced eXtensible Interface) bus.

The Pulpissimo platform implements RISC-V, an open-
source ISA, whose specifications are maintained and ratified
by RISC-V international contributing members [26]. The
test programs were made directly with the RISC-V assembly
with C and C +  + support and with GCC [27]. The convolu-
tion engine was designed to be modular and reusable. Fig-
ure 2 illustrates the architecture of the hardware convolution
engine consisting of kernel and linear buffers, in/out fifos,
and multiplication accumulation unit. Every modular unit
contains ready and valid signals known as handshake signals

Fig. 1   Overview of Pulpissimo
[25]

1119Journal of Signal Processing Systems (2023) 95:1115–1126	

1 3

to communicate when the data is ready to be transferred,
shown as red and green arrows [28].

The communication between the CPU via the AX4-lite
bus and data communication with the memory cluster via
the AXI4 bus are provided by the top-level wrapper. AXI4-
lite bus also delivers the CPU convolution configurations.
The configuration parameters are image data with filter ker-
nel coefficients, Image dimensions, memory address, result
image saving starting memory address, AXI burst size, and
engine start signal. Two separate software resets for the
engine and kernel buffer are used, making running several
convolutions with the same kernel coefficient possible.

The convolution engine receives the image data directly
from the memory (Direct Memory Access, DMA). The
image starting address and output address are sent from
the CPU to the engine, which handles the data reading and

writing. As the CPU has sent all needed data to the engine,
it can send a start signal for the processing to commence.

As both these proposed engines need to send and
receive data from memory and CPU, there is a requirement
for control over how buses are connected. The engines
must be able to both read and write from memory. In AXI
this means the engines are masters and the memory is a
slave. The user must be able to read the engine status and
send control data to it. Therefore, in the AXI-bus the CPU
is the master and the engines are slaves. The crossbar com-
ponent manages the existing connections for the engines,
as illustrated in Fig. 3. The AXI-bus from the CPU has a
32-bit wide data channel with a 64-bit wide memory chan-
nel. The engines receive commands from the CPU with
AXI4-Lite. The 64-bit wide bus to memory can utilize
burst modes from AXI4.

Fig. 2   Engine data flow

Fig. 3   Data paths from convolu-
tion engines

1120	 Journal of Signal Processing Systems (2023) 95:1115–1126

1 3

5 � Results

To measure the performance of the convolution engines
test cases were done. The tests were executed on a software
simulator and on an FPGA. RT-Profiling tool was used to
measure how many cycles the whole process used.

Roughly 60–90 cycles are used to send configuration val-
ues to the engine and to read the status register when the
process is done. Processing 16 × 16 image in the logarithmic
engine takes only 197 cycles which is 182 times less than a
full software implementation.

An image in the logarithmic domain requires 50% less
memory than an image in the linear domain. That is the main
reason why a logarithmic engine uses fewer cycles compared
to a linear engine; it needs to move fewer data around. Con-
verting an image to the logarithmic domain and back to the
linear domain is done in the CPU. 16 × 16 image could be
processed 8 times in the linear, in the time that it takes from
the CPU to do the data conversion both ways. This means
that the logarithmic engine is more suitable in use cases
where the data can be kept in the logarithmic domain or the
memory available is heavily constrained (see Figs. 4, 5).

The total cell count of the logarithmic engine is 70% of
the linear engine. Both of the engines also have 3 row buffers
which are separated from the engine and not counted in the
total cell count of the engine. Those row buffers can be half
the size for a logarithmic engine. Both convolution engines

have four AUs (Arithmetic Unit). A logarithmic AU is 13%
of the size of a linear AU. If the chip were to have multiple
convolution engines, adding new logarithmic engines would
scale better size-wise.

To test the performance and instruction execution, 4 dif-
ferent image data sizes (8 × 8, 16 × 16, 32 × 32, and 64 × 64)
are used. For every image data size, 3 different program
execution methods are used. The methods and process are
explained as follows:

A.	 RI5CY only:
	  The test is run in the RISC-V core only using stand-

ard RISC-V only and standard RISC-V and pulp-specific
instructions.

1.	 Compiling test using standard RISC-V instructions:
	  In this method, the test is compiled using RV32IMC,

which contains the Base integer instructions and, multi-
plication/division and compressed extended instructions.
In this process, instruction size and clock cycles are sig-
nificantly higher than in other methods.

2.	 Compiling test using Standard RISC-V instructions and
Pulp specific ISA extensions:

	  In this method, the test is compiled using RV32IMC
and xpulpv2 (pulp specific ISA extensions). The clock
cycle and instruction size are lower than the standard
RISC-V.

Fig. 4   Cycle counts for various image sizes using linear and logarith-
mic convolution engines including data conversion

Fig. 5   Cycle counts for various image sizes using linear and logarith-
mic convolution engines

1121Journal of Signal Processing Systems (2023) 95:1115–1126	

1 3

B.	 Convolution Engine:
	  The test is run in hardware convolution engine. The

speed of execution does not matter if it complied with
RISC-V only or RISC-V and Pulp specific instructions.
The number of clock cycles, and instructions executed
are lower than the software run methods. In the case
of software computation, the dot product unit (pulp
extended) makes the operation significantly faster than
the standard RISC-V computation. Even though the
PULP compiler itself can produce better results, it can-
not utilize all instructions efficiently. The optimized c
code is written using the GCC build-ins for RISC-V ISA
extensions, which calls pulp specific extended instruc-
tions directly and runs on extended architecture. RI5CY
has the dot product unit which supports 8 bits and 16 bits
vector operands [29]. This dot product unit produces the
result of 4 multiplications and 3 additions in a single
operation. The use of this unit significantly reduces the
number of clock cycles and instruction executions in the
image convolution algorithm.

Figures 6, 7, 8, 9 illustrate the number of clock cycles and
instructions executed in Questasim simulations and FPGA
test runs. The performance comparison graph shows the
performance of the RI5CY core with pulp extensions and
hardware convolution engine.

The number of clock cycles used when running the test
in the convolution engine is very low. The engine is capable
of fetching image pixels from L2 memory and streaming
the result back to L2 memory with the start command by
the RISC-V core after configurations. The hardware convo-
lution engine runs 17 times faster than the RISC-V stand-
ard instructions and enabling the pulp specific instruction
reduces the performance from 17 to 6 times on image data
size 8 × 8. Likewise, the performance gain by the convolu-
tion engine is 91 times than standard RISC-V and 26 times
when enabling pulp specific instructions on image data size
64 × 64. The performance gain increases with image data
size. This is due to initial configurations needed for the
engine, and full utilization of transferred pixels by saving
in line buffer for future image windows and in shift buffer
for the next image window. But in the case of RI5CY, the
pixels are moving from memory to the core register more
than one time.

 In the case of software run, the computation is very com-
plex, instruction fetch, decode, data load, execution, result
write back, all these operations are happening all the time in
pipeline methods. So, each result pixel is produced from the
number of multiplication and addition operations. From the
above results, using dot product unit significantly reduces Fig. 6   Questa simulation result in terms of cycles

Fig. 7   Questa simulation result in terms of instructions

1122	 Journal of Signal Processing Systems (2023) 95:1115–1126

1 3

the active clock cycles. The image convolution algorithm
runs 3 times faster in the RISCY core using pulp specific
extended instructions. Similarly, increasing the size of image
data increases the performance difference between the RISC-
V standard and RISC-V pulp extensions. The slight varia-
tion between the number of clock cycles and the number of
instructions executed is because of load data hazards and
cycles waiting for instruction fetch. In the case of FPGA
testing, load data hazard, cycles waiting for instruction fetch
is zero when running convolution using RI5CY core only
and negligible amount of load data hazards when using pulp
extensions.

The overall result summarises that enabling pulp specific
instruction reduces the program execution time and reduces
the data load from memory. In the case of 3 × 3 convolu-
tion, it is possible to utilize the 6 pixels from the last 3 × 3
image window and load new 3 pixels. The hardware convo-
lution engine runs even faster than pulp specific instructions,
by fully utilizing the transferred pixels by storing them in
line buffers. The hardware convolution engine requires less
memory bandwidth and fewer clock cycles compared to the
RISC-V core.

6 � Quality analysis

Following the results, examining the trade-off needed to
achieve all the benefits is prudent. In this case, the reduced
memory footprint and increased performance are compen-
sated by some loss of visual quality. Mainly this stems from
using fewer bits per pixel. This effect was analyzed with
a set of random images, all featuring outdoor scenes. The
images were first scaled to similar size, so that image size
would not distort the average results. Larger images would
have more samples; thus they would have more weight in the
analysis. The process then converted the images to normal
grayscale. This was considered the ground truth. The com-
parison was done by converting all images to logarithmic
scale, then directly back to grayscale. After that, the sum of
absolute differences in the intensity values of each pixel was
calculated. This sum is presented in the “Sum diff” column
in Table 1. The difference was also divided for all the pixels,
showing the average error in each pixel. This value is pre-
sented in unit [255.0.0], corresponding to normal 8-bit gray-
scale values. Finally, the error is shown also in percentage.

Considering the intended use case, further analysis was
done to assess the impact for machine learning. Here the
assumption was that the structures presented in the images
would remain better intact than visual quality. To show
that in practice, two different analysis sequences were run
on the same images. First, a simple edge detection convo-
lution, with coefficients 8 in the middle and -1 on all of
the neighbors. This kernel was applied to both the normal

Fig. 8   FPGA prototyping result in terms of cycles

Fig. 9   FPGA prototyping result in terms of instructions

1123Journal of Signal Processing Systems (2023) 95:1115–1126	

1 3

grayscale image and the logarithmic version. The results
are shown in Fig. 10. The left-hand side is completely in
the normal binary grayscale domain, while the right-hand
side is processed in the logarithmic domain, and converted
back to binary for visualization after the processing. The
results show some differences, mostly in the way the color
gradients in the sky are handled, but most of the structures
are strikingly similar.

 To show, that other processing is also viable in the loga-
rithmic domain, another test sequence was run. This time the
convolution was used to perform gaussian blur on the subject
image. A typical 3 × 3 kernel was used, with weights 1 for

all corners, 2 for the sides, and 4 for the middle. Finally, the
result was scaled back to the normal range by dividing by
16. This image was then used to find edges, by subtracting
the original from this image. Again, the results are presented
in Fig. 11 in the same order, all left-hand side frames are in
the normal binary grayscale domain, and the right-hand side
is processed in the logarithmic domain. This time there is
more difference between the resulting edges. Again, most of
the differences are in the sky, which had relatively smooth
transitions in the original image. However, the actual struc-
ture is shown identified well, and some might even say the
logarithmic version has less noise in the sky. Fine-tuning of
thresholds could bring the results closer together, but these
are untuned, for the sake of comparison of the numerical
spaces, not optimized for visual quality or similarity. In
Fig. 11, the first row shows the original images, then the next
row shows the results of gaussian smoothing and finally, the
last row shows the edges detected by subtracting the original
from the smoothed image.

After looking at the results of actual operations, it can be
seen that even though there is some degradation in terms of
actual intensity values, it does not translate to major differ-
ences in the processing results. As a result, the techniques
are suitable for the application domain of machine learning,
but maybe not be recommended for domains where visual
quality is of paramount importance. The sample images were
chosen so that they had more intensity errors than average.
This was done to avoid unwarranted optimism in the results.
The test images were acquired from Pixabay, a site that
offers fully free images.

Table 1   Brightness distortion analysis

Image X Y Sum diff Per pixel Relative error

1 320 213 516,801 7,58 2,97%
2 320 213 347,107 5,09 2,00%
3 320 212 791,387 11,67 4,57%
4 320 180 263,241 4,57 1,79%
5 320 207 500,387 7,55 2,96%
6 320 213 821,434 12,05 4,73%
7 320 214 730,949 10,67 4,19%
8 320 196 262,699 4,19 1,64%
9 320 214 641,341 9,37 3,67%
10 320 180 72,018 1,25 0,49%
11 320 213 980,831 14,39 5,64%
12 320 212 571,580 8,43 3,30%
Total 6,499,775 8.23 3.22%

Fig. 10   Results of edge detec-
tion by convolution (image
number 7 in Table 1)

1124	 Journal of Signal Processing Systems (2023) 95:1115–1126

1 3

7 � Conclusions

The hardware accelerator implementation with reduced pre-
cision technique to process images is efficient and effective.
The proposed engine gives a good indication of the pos-
sibilities of using logarithmic data instead of linear data.
The images produced from the logarithmic engine have a
visible quality degradation, but the structure compared to the
precise method was similar which is in line with the results
of Miyashita et al. [22]. More research on how useful the
reduced precision images could be is still required.

The convolution engines proposed in this paper could be
optimized further. As an example, increasing the number of
AUs in the engine should increase the engine performance
with an increased data transfer rate. Also, parallel convolu-
tion engines with DMAs to their own memories and cross-
bars should increase effectivity. These research questions,
however, are left for future study.

However, even the current solution provides results that
clearly show an increase in performance compared to a
linear engine, by reducing 34% of all required cycles with
30% reduction in cell count. The computation in the linear

convolution engine is 91 times faster and computation in
the logarithmic convolution engine is 122 times faster
than in the RISC-V core with plain RISC-V instructions.
Whereas the data conversion in CPU requires irrefutably
more, roughly 100 times more (see Fig. 5), cycles thus
making the linear engine a preferable choice, but with the
hardware accelerator the results justify and promotes the
logarithmic engine. The best advantage is obtained, if all
of the parts in an image processing pipeline use the same
number format, thus avoiding conversions.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11265-​023-​01869-5.

Acknowledgements  This work is part of the FitOptiVis project [30]
funded by the ECSEL Joint Undertaking under grant number H2020-
ECSEL-2017-2-783162. The authors thank Ari Paasio, Jenni Heimo,
Lauri Koskinen, and Jani Silvander for their assistance. Additionally,
Pixabay (https://​pixab​ay.​com/) is gratefully acknowledged for providing
the test images used in the quality analysis.

Funding  Open Access funding provided by University of Turku (UTU)
including Turku University Central Hospital. This work is part of the
FitOptiVis project [30] funded by the ECSEL Joint Undertaking under
grant number H2020-ECSEL-2017–2-783162.

Fig. 11   Convolution applied
for gaussian smoothing and the
edge detection (image number 2
in Table 1)

https://doi.org/10.1007/s11265-023-01869-5
https://pixabay.com/

1125Journal of Signal Processing Systems (2023) 95:1115–1126	

1 3

Data Availability  Two M.Sc. (tech) theses about the subject will be
published on the University of Turku website.

Code Availability  Not applicable.

Declarations 

Conflicts of interest/Competing interests  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Chitradevi, B., & Srimathi, P. (2014). An overview on image
processing techniques. International Journal of Innovative
Research in Computer and Communication Engineering, (2(11),
pp.6466–6472).

	 2.	 Viswanathan, V., & Hussein, R. (2017). Applications of image
processing and real-time embedded systems in autonomous cars:
a short review. International Journal of Image Processing (IJIP),
(11(2), pp. 35).

	 3.	 Cardoso, J. M., Carvalho, T., Coutinho, J. G., Luk, W., Nobre,
R., Diniz, P., & Petrov, Z. (2012). LARA: an aspect-oriented
programming language for embedded systems. In Proceedings
of the 11th annual international conference on Aspect-oriented
Software Development (pp. 179–190). https://​doi.​org/​10.​1145/​
21620​49.​21620​71

	 4.	 Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis,
C., & Horowitz, M. A. (2013). Convolution engine: balancing
efficiency & flexibility in specialized computing. In Proceedings
of the 40th Annual International Symposium on Computer Archi-
tecture (pp. 24–35). https://​doi.​org/​10.​1145/​24859​22.​24859​25

	 5.	 Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Ghola-
minejad, A., Gonzalez, J., & Keutzer, K. (2018). Shift: A zero
flop, zero parameter alternative to spatial convolutions. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 9127–9135).

	 6.	 IEEE (2019). “IEEE standard for floating-point arithmetic”, IEEE
Std 754–2019 (Revision of IEEE 754–2008), pp. 1–84, 2019.
https://​doi.​org/​10.​1109/​IEEES​TD.​2019.​87662​29

	 7.	 Khwa, W.S., Chen, J.J., Li, J.F., Si, X., Yang, E.Y., Sun, X., Liu,
R., Chen, P.Y., Li, Q., Yu, S. & Chang, M.F., 2018, February. A
65nm 4Kb algorithm-dependent computing-in-memory SRAM
unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-
sum operation for binary DNN edge processors. In 2018 IEEE
International Solid-State Circuits Conference-(ISSCC) (pp. 496–
498). https://​doi.​org/​10.​1109/​ISSCC.​2018.​83104​01

	 8.	 Wiercioch-Kuzianik, K., & Bąbel, P. (2019). Color hurts. The
effect of color on pain perception. Pain Medicine, (20(10), pp.
1955–1962). https://​doi.​org/​10.​1093/​pm/​pny285

	 9.	 Nixon, M., & Aguado, A. (2019). Feature extraction and image
processing for computer vision. Academic press.

	10.	 Ma, Y., Suda, N., Cao, Y., Seo, J. S., & Vrudhula, S. (2016). Scal-
able and modularized RTL compilation of convolutional neural
networks onto FPGA. In 2016 26th International Conference on
Field Programmable Logic and Applications (FPL) (pp. 1–8).
IEEE.

	11.	 Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis,
C., & Horowitz, M. A. (2015). Convolution engine: balancing
efficiency and flexibility in specialized computing. In Communi-
cations of the ACM (pp. 85–93). https://​doi.​org/​10.​1145/​27358​41

	12.	 LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to
handwritten zip code recognition. Neural computation, (1(4), pp.
541–551). https://​doi.​org/​10.​1162/​neco.​1989.1.​4.​541

	13.	 Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A
survey of the recent architectures of deep convolutional neural
networks. Artificial Intelligence Review, (53(8), pp. 5455–5516).
https://​doi.​org/​10.​1007/​s10462-​020-​09825-6

	14.	 Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F.
(2020). The computational limits of deep learning. arXiv preprint
arXiv:​2007.​05558.

	15.	 Liu, B., Zou, D., Feng, L., Feng, S., Fu, P., & Li, J. (2019). An
fpga-based cnn accelerator integrating depthwise separable con-
volution. Electronics, (8(3), pp. 281). https://​doi.​org/​10.​3390/​elect​
ronic​s8030​281

	16.	 Judd, P., Albericio, J., Hetherington, T., Aamodt, T., Jerger, N. E.,
Urtasun, R., & Moshovos, A. (2015). Reduced-precision strategies
for bounded memory in deep neural nets. arXiv preprint arXiv:​
1511.​05236.

	17.	 Kim, M. (2019). Energy-Efficient ASIC Accelerators for Machine/
Deep Learning Algorithms (Doctoral dissertation, Arizona State
University).

	18.	 Mairal, J. (2016). End-to-end kernel learning with supervised
convolutional kernel networks. In 30th Conference on Neural
Information Processing Systems (NIPS 2016), (pp. 1–16).

	19.	 Blomqvist, K., Kaski, S., & Heinonen, M. (2019). Deep convo-
lutional Gaussian processes. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (pp.
582–597). Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​030-​
46147-8_​35

	20.	 Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M.,
& Brox, T. (2015). Discriminative unsupervised feature learning
with exemplar convolutional neural networks. IEEE transactions
on pattern analysis and machine intelligence, (38(9), pp. 1734–
1747). https://​doi.​org/​10.​1109/​TPAMI.​2015.​24961​41

	21.	 Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D.
(2015). Human-level control through deep reinforcement learning.
nature, (518(7540), pp. 529–533). https://​doi.​org/​10.​1038/​natur​
e14236

	22.	 Miyashita, D., Lee, E. H., & Murmann, B. (2016). Convolutional
neural networks using logarithmic data representation. arXiv pre-
print arXiv:​1603.​01025.

	23.	 Lee, E. H., Miyashita, D., Chai, E., Murmann, B., & Wong, S.
S. (2017). Lognet: Energy-efficient neural networks using loga-
rithmic computation. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 5900–
5904). IEEE. https://​doi.​org/​10.​1109/​ICASSP.​2017.​79532​88

	24.	 Vogel, S., Liang, M., Guntoro, A., Stechele, W., & Ascheid, G.
(2018). Efficient hardware acceleration of CNNs using logarith-
mic data representation with arbitrary log-base. In Proceedings
of the International Conference on Computer-Aided Design (pp.
1–8). https://​doi.​org/​10.​1145/​32407​65.​32408​03

	25.	 GitHub, Inc. (2021). PULPissimo. Retrieved January 13, 2021,
from https://​github.​com/​pulp-​platf​orm/​pulpi​ssimo

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2162049.2162071
https://doi.org/10.1145/2162049.2162071
https://doi.org/10.1145/2485922.2485925
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/ISSCC.2018.8310401
https://doi.org/10.1093/pm/pny285
https://doi.org/10.1145/2735841
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1007/s10462-020-09825-6
http://arxiv.org/abs/2007.05558
https://doi.org/10.3390/electronics8030281
https://doi.org/10.3390/electronics8030281
http://arxiv.org/abs/1511.05236
http://arxiv.org/abs/1511.05236
https://doi.org/10.1007/978-3-030-46147-8_35
https://doi.org/10.1007/978-3-030-46147-8_35
https://doi.org/10.1109/TPAMI.2015.2496141
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1603.01025
https://doi.org/10.1109/ICASSP.2017.7953288
https://doi.org/10.1145/3240765.3240803
https://github.com/pulp-platform/pulpissimo

1126	 Journal of Signal Processing Systems (2023) 95:1115–1126

1 3

	26.	 Waterman, A., Lee, Y., Patterson, D. A., & Asanovi, K. (2014).
The risc-v instruction set manual. volume 1: User-level isa, ver-
sion 2.0. California Univ Berkeley Dept of Electrical Engineering
and Computer Sciences.

	27.	 Stallman, R. M. (1988). Using the GNU Compiler Collection. For
GCC version, (4(2)). Retrieved January 13, 2021, from https://​gcc.​
gnu.​org/​onlin​edocs/​gcc.​pdf

	28.	 Fletcher C, W. (2009). Interfaces: Fifo (a.k.a. ready/valid).
Retrieved March 3, 2021, from https://​inst.​eecs.​berke​ley.​edu/​
~cs150/​Docum​ents/​Inter​faces.​pdf

	29.	 Gautschi, M., Schiavone, P. D., Traber, A., Loi, I., Pullini, A.,
Rossi, D., Flamand, E., Gürkaynak, F. K., & Benini, L. (2017).
Near-threshold RISC-V core with DSP extensions for scalable

IoT endpoint devices. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, (25(10), pp. 2700–2713). https://​doi.​
org/​10.​1109/​TVLSI.​2017.​26545​06

	30.	 The FitOptiVis ECSEL project: highly efficient distributed embed-
ded image/video processing in cyber-physical systems, ACM Int'l
Conf. on Computing Frontiers, 2019, pp. 333–338, https://​doi.​org/​
10.​1145/​33102​73.​33234​37

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://gcc.gnu.org/onlinedocs/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1145/3310273.3323437
https://doi.org/10.1145/3310273.3323437

	Accelerating image processing using reduced precision calculation convolution engines
	Abstract
	1 Introduction
	2 Convolution engines
	2.1 Convolution in image processing
	2.2 Convolution engines and GPP
	2.3 Convolution engines in machine learning

	3 Reducing precision
	4 Design
	5 Results
	6 Quality analysis
	7 Conclusions
	Anchor 13
	Acknowledgements
	References

