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Abstract
In this paper a method of accelerating image processing using convolution engines with reduced precision calculation is 
presented. The convolution engines are designed to be used with the Pulpissimo platform with RISC-V System-on-Chip. 
The aim is to move the calculation to the edge. The proposed linear convolution engines operate on 8-bit data set and the 
logarithmic convolution engine operates on 4-bit reduced precision data. The data reduction is done by using a logarithmic 
number space. Diminishing the size of the data to be processed reduces the amount of required memory, requirement for 
memory bandwidth, required computation, and required hardware area while simultaneously increasing the performance. 
This performance could benefit modern AI and image processing applications, especially in mobile and other battery-operated 
devices. The results show that the computation in the linear convolution engine is 91 times faster and computation in the 
logarithmic convolution engine is 122 times faster than in the RISC-V core with plain RISC-V instructions.

Keywords  Convolution Engine · Image Processing · Reduced Precision Calculation · FPGA · System-on-Chip · Artificial 
Intelligence

1  Introduction

Technological development requires a constant increase in 
both speed and efficiency, combined with diminished costs, 
power consumption, and use of space. As physics gives 
us some limits, the mathematical models combined with 
embedded design can give us answers. The problem comes 
easiest in image processing where a human can easily iden-
tify a cat apart from a bear or a traffic light from a lorry, 
whereas a computer yet this day requires a lot of data to 
make such distinctions [1].

Yet, if the calculation of the simplest of analysis is done 
in the edge, this analysis might have an advantage against the 
human eye. As the eye of the beholder is indeed digital and 
turned towards the task ahead, the effectivity – as shown in 
this paper – can also be increased not only in benefit of the 

digital system, but also in benefit of the embedded design 
of the eye itself [2].

Machines equipped with a general-purpose processor 
(GPP) can handle a wide range of computations, ranging 
from simple embedded control to large-scale server work-
loads. The programming and running of an application in 
this kind of platform are relatively straightforward because 
of well-developed development tools and programming 
abstractions [3]. The general-purpose nature of a GPP makes 
them rather efficient for any task, but the specialized nature 
of a dedicated hardware accelerator allows focusing on only 
one task and thus increases the efficiency in that task. The 
execution of any kind of algorithms in GPP is far slower than 
the dedicated hardware accelerators. The hardware accel-
erators use a smaller area in the chip and can deliver high 
performance [4].

Most computer vision applications and real-time com-
putation require complex computation by a processor. The 
GPP could not provide the computation needed for real-time 
processing. The convolution algorithm needs a relatively 
large amount of processing capacity, as each pixel is pro-
cessed many times in several computation units to get the 
result. The proposed convolution engine is a dedicated hard-
ware accelerator, which implements an image convolution 
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algorithm and delivers high performance in computer vision, 
videography, and photography. The proposed convolution 
engine reduces the memory read and write overhead by 
reutilizing pixel data from the previous computations. The 
computation for one image pixel by a 3 × 3 filter kernel needs 
a 3 × 3 image pixel window and arithmetic operations of 9 
multiplications and 8 additions. The GPP needs many clock 
cycles to perform this computation, but a dedicated convolu-
tion engine can perform this operation in one clock cycle. A 
high-performance convolution engine contains many multi-
plication and addition units in parallel to increase through-
put. The number of clock cycles for a GPP to complete the 
computation depends on the architecture of the processor 
and programming model. Typically, all of the separate mul-
tiplications and additions are executed sequentially in a GPP 
[4].

Processing images with convolution is hardly a new inno-
vation. However, it is still a costly function when run with 
traditional methods of calculation and thus for the technol-
ogy to evolve, a more efficient method should be found [5]. 
As the power consumption and calculation effectivity come 
into question – common cases in embedded systems – one 
is at crossroads. Whereas the standing solutions for different 
CPUs (Central Processing Units) offer different prizes (prize 
set at power consumption, heat production, and monetary 
prize), some graphics processing unit (GPU) additions give 
a flexible yet usually more monetarily increased prize yet 
being rather general purpose instead of dedicated accelera-
tor sharing the problems of general-purpose units. Moreo-
ver, if the task is simplified enough, sufficient results can be 
implemented in various methods, for example, using only 
integer values instead of IEEE 754 [6] floating-point val-
ues. The switch to simpler data types can be done, if higher 
performance and/or reduced memory usage is required. 
Hence, reducing memory accesses to shared memory is an 
improvement, since memory operations are generally slow. 
Accessing memory fewer times also releases time for other 
components to use the memory bus [7].

Image processing is a digital operation widely used in 
various applications, for example pattern recognition or 
image classification. There are various ways to process digi-
tal images, such as using point operations, where a function 
is applied to each pixel, resulting in each pixel outputting 
the applied function [8].

On the other hand, group operations calculate the new 
pixel value from both, the original pixel and the neighboring 
pixels, making the template convolution a many-to-one func-
tion, where all the end pixels are independently calculated 
by the template kernel coefficients. Whereas, the human eye 
is rather keen on these kinds of transformations, computer 
calculation can suffer from efficiency issues when analyz-
ing these kinds of issues. Moreover, a single bad value in 
imagining and thus in mathematical point operation could 

have significance in the computational analysis of the image, 
as the variations will skew the average differently from the 
median [9].

In the proposed engines, we have implemented a con-
volution engine to a RISC-V SoC in the Pulpissimo plat-
form, with the focus on using reduced precision calculation 
to enhance the overall effectivity of the image processing. 
The convolution engine uses Direct Memory Access [10] 
reducing the CPU load. The chip is simulated, prototyped 
using FPGA and is ready for the tape-out process, and this 
article is being written during this course of time. The main 
focus and application domain intended for these engines is 
machine learning, and even more specifically performing 
it in an edge device. This means that the main objective 
is minimizing energy and resource usage while maintain-
ing structural information in the images. Visual quality, as 
perceived by a human, is not a major factor. The long-term 
target is creating a full set of arithmetic units capable of 
using the proposed reduced precision style, allowing full 
systems to use the same approach consistently throughout 
the pipeline.

2 � Convolution engines

2.1 � Convolution in image processing

Image processing applications have been constantly advanc-
ing, with the advantage of applying operations on image-
based data to extract detailed information. This also involves 
using several image acquisition methods for image analysis, 
which could differ from application to application. One of 
the main methods of image processing can be regarded as 
convolution, which is simply a technique of image transfor-
mation by a kernel covering each of the pixel values. This 
kernel itself is a matrix that is responsible for performing 
convolution in the first place, and it further indicates what 
type of image transformation should occur. As many advan-
tages can be observed in image processing, it also comprises 
challenges when it comes to increased workloads. This is 
why the general-purpose hardware might not be properly 
optimized for high data parallelism. In such circumstances, 
Single Instruction Multiple Data (SIMD) units and GPUs are 
used, but these do require more power. Accelerators based 
on Application-Specific Integrated Circuits (ASICs) are also 
being developed that are power efficient [11].

2.2 � Convolution engines and GPP

The use of GPP has been diversifying immensely; however, 
with this benefit of constantly being advanced and flexible, 
they do utilize a higher price, because 99% of the energy is 
being wasted, per overhead, in programmability [11]. The 
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research study performed by Qadeer et al. [11] indicated that 
the defined energy waste could be decreased by altering data 
storage and designing structures, along with their relation to 
data locality and dataflow in algorithmic approaches. This is 
why instead of aiming entirely on programmability, major 
data flow patterns could be focused in a domain. With such 
methods, efficient engines can be designed and used in dif-
ferent applications with respect to the execution domain.

These engines can be further programmed based on the 
application. For this purpose, the mentioned study [11] 
worked on a Convolution Engine and identified it as a pro-
grammable processor. The engine is used for convolution-
based data flow in the applications of video processing, 
computer vision, and computational photography. Convo-
lution engines contribute to energy efficiency by performing 
several operations on each memory access, reducing data 
transmission overheads, and utilizing data-reuse patterns. 
Qadeer et al. [11] established their engine that was targeted 
to a factor of 2–3 × of the energy, and also the area effi-
ciency regarding customized units based on a single kernel. 
The study further elaborated that by using the convolu-
tion engine, area efficiency, and energy were enhanced by 
8–15 × in comparison to SIMD-based engines.

2.3 � Convolution engines in machine learning

In machine learning, convolutional neural networks (CNN) 
[12] have become the dominant approach to image analysis. 
The convolution kernels allow modeling hierarchical data 
representations, where units in the first layers extract sim-
ple shapes such as edges or corners, and subsequent layers 
combine these into more high-level abstract patterns. The 
weights of the kernels as well as other network parameters 
are automatically learned from data typically via stochastic 
gradient descent optimization. Advances in training deep 
CNN architectures have resulted in state-of-the-art and even 
human-level performance in tasks such as object detection 
and segmentation, image classification, video processing, 
speech recognition, and natural language processing [13]. 
Yet the cost of these advances has been a steep increase in 
computational requirements both for training and deploying 
the networks, motivating the need for solutions to improve 
efficiency such as specialized GPU, or increasingly also 
FPGA and other ASIC-based hardware accelerators [14].

The study performed by Liu et al. [15] presents an FPGA-
based CNN accelerator that provides reduced power con-
sumption, in comparison to GPUs and ASICs. Despite the 
advantage of less power consumption, there are still chal-
lenges concerning complex and large computational fea-
tures of CNN and the insufficient resources of FPGA. These 
challenges are encountered when designing such hardware 
accelerators. The mentioned study [15] demonstrated a CNN 
accelerator that enhances the standardized convolution and 

also the depth-wise separable convolution. A CNN con-
sists of several layers for processing the input image data. 
A specific convolutional layer is also present that is mainly 
required to apply convolution calculation on the input data 
by using convolution kernels. The designing of convolution 
engines is based on an architecture that could contribute 
to good performance, efficient power, and the ease of hav-
ing multiple convolution-based algorithms as described in 
CNN. This could support handling workloads and enhanc-
ing efficiency in image processing. Another research study 
also regarding CNN [16] indicated that reduced precision 
data can be utilized within the network layers, as it helps 
in decreasing energy and supports better performance. This 
further provides the platform for having larger networks in 
CNN-based applications. Due to such advantages, another 
study [17] developed a CNN accelerator for reducing com-
putation. This accelerator used the method of precision-
cascading (PC).

Beyond standard CNN architectures, convolution accel-
eration could have also a significant impact on the efficiency 
of a wide range of other machine-learning approaches that 
employ convolutions. These include methods such as convo-
lutional kernel networks based on the theory of reproducing 
kernels [18] probabilistic methods such as deep convolu-
tional Gaussian processes [19], as well as various extensions 
of CNNs to unsupervised [20] or reinforcement [21] learn-
ing. Since a given application typically has several layers 
of CNN, any benefits in the execution are multiplied by the 
number of convolution runs. This applies to savings in power 
and execution time, and can be further increased by pipelin-
ing accelerators like the ones presented here. This, however, 
does fall outside the scope of this paper.

3 � Reducing precision

Approximate computing or reduced precision calculation 
is a technique producing deliberately inaccurate results 
compared to more precise algorithms. As precision is not 
always the ultimate key as different solutions require differ-
ent thresholds, some precision can be sacrificed to gain more 
efficiency. For example, every vote counts when calculating 
votes from a national election, but when conducting opinion 
polls before the actual election, a good estimate is enough.

One technique to gain efficiency from the reduced preci-
sion calculation is reduced memory usage. As the values 
being processed require less space, they also produce less 
traffic – in addition to other effects such as reduced calcula-
tion time. Another technique is to transform the data into a 
different mathematical representation, for example convert 
it to logarithmic scale, as presented by Miyashita et al. [22].

An 8-bit integer input can produce a logarithmic output 
that can fit into 3 bits. When converted back to linear 
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space, it can only represent values ranging from 0 to 
128. However, the output requires 4 bits if the rounding 
method is used. Yet the 4-bit value can represent the 8-bit 
input in full range. In a mathematical sense, the loga-
rithmic space has clear advantages, as the linear space 
multiplications are transformed into additions, as shown 
in the following equation:

In hardware, addition requires fewer gates than multi-
plication enabling a marginal size reduction in the overall 
design.

In recent years, many teams have evaluated the suit-
ability of using logarithmic number precision in accord-
ance with convolutional neural networks [22-24]. The 
results indicate that logarithmic representation not only 
saves the memory storage and data movement require-
ments, but is also able to preserve the recognition accu-
racy of the CNN as compared to more conventional num-
ber representations.

Using the logarithm numbers in convolutions, also the 
arithmetic operations are transformed to more efficient 
realizations, where e.g., the bulky digital multiplication 
can be avoided.

log(x1 ∗ x2... ∗ xn) = log(x1) + log(x2)... + log(xn)

4 � Design

The proposed convolution engine is implemented into 
Pulpissimo as a hardware accelerator. Pulpissimo, an open-
source microcontroller architecture, is developed by ETH 
Zurich and the University of Bologna [25]. It allows the 
development of customized platforms with a reference 
implementation for both single- and multi-core SoC illus-
trated in Fig. 1. The HWPE (Hardware Processing Engine) 
contains the integrated convolution engine whereas the 
peripheral bus transfers data and interrupts. The engine 
is also able to notify the CPU about completed processes 
and error messages. Data transfers are done with TCDMI 
(Tightly Coupled Data Memory Interconnect) and to accom-
plish data transferring, the convolution engine is connected 
to TCDMI with AXI (Advanced eXtensible Interface) bus.

The Pulpissimo platform implements RISC-V, an open-
source ISA, whose specifications are maintained and ratified 
by RISC-V international contributing members [26]. The 
test programs were made directly with the RISC-V assembly 
with C and C +  + support and with GCC [27]. The convolu-
tion engine was designed to be modular and reusable. Fig-
ure 2 illustrates the architecture of the hardware convolution 
engine consisting of kernel and linear buffers, in/out fifos, 
and multiplication accumulation unit. Every modular unit 
contains ready and valid signals known as handshake signals 

Fig. 1   Overview of Pulpissimo 
[25]
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to communicate when the data is ready to be transferred, 
shown as red and green arrows [28].

The communication between the CPU via the AX4-lite 
bus and data communication with the memory cluster via 
the AXI4 bus are provided by the top-level wrapper. AXI4-
lite bus also delivers the CPU convolution configurations. 
The configuration parameters are image data with filter ker-
nel coefficients, Image dimensions, memory address, result 
image saving starting memory address, AXI burst size, and 
engine start signal. Two separate software resets for the 
engine and kernel buffer are used, making running several 
convolutions with the same kernel coefficient possible. 

The convolution engine receives the image data directly 
from the memory (Direct Memory Access, DMA). The 
image starting address and output address are sent from 
the CPU to the engine, which handles the data reading and 

writing. As the CPU has sent all needed data to the engine, 
it can send a start signal for the processing to commence.

As both these proposed engines need to send and 
receive data from memory and CPU, there is a requirement 
for control over how buses are connected. The engines 
must be able to both read and write from memory. In AXI 
this means the engines are masters and the memory is a 
slave. The user must be able to read the engine status and 
send control data to it. Therefore, in the AXI-bus the CPU 
is the master and the engines are slaves. The crossbar com-
ponent manages the existing connections for the engines, 
as illustrated in Fig. 3. The AXI-bus from the CPU has a 
32-bit wide data channel with a 64-bit wide memory chan-
nel. The engines receive commands from the CPU with 
AXI4-Lite. The 64-bit wide bus to memory can utilize 
burst modes from AXI4.

Fig. 2   Engine data flow

Fig. 3   Data paths from convolu-
tion engines
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5 � Results

To measure the performance of the convolution engines 
test cases were done. The tests were executed on a software 
simulator and on an FPGA. RT-Profiling tool was used to 
measure how many cycles the whole process used.

Roughly 60–90 cycles are used to send configuration val-
ues to the engine and to read the status register when the 
process is done. Processing 16 × 16 image in the logarithmic 
engine takes only 197 cycles which is 182 times less than a 
full software implementation.

An image in the logarithmic domain requires 50% less 
memory than an image in the linear domain. That is the main 
reason why a logarithmic engine uses fewer cycles compared 
to a linear engine; it needs to move fewer data around. Con-
verting an image to the logarithmic domain and back to the 
linear domain is done in the CPU. 16 × 16 image could be 
processed 8 times in the linear, in the time that it takes from 
the CPU to do the data conversion both ways. This means 
that the logarithmic engine is more suitable in use cases 
where the data can be kept in the logarithmic domain or the 
memory available is heavily constrained (see Figs. 4, 5).

The total cell count of the logarithmic engine is 70% of 
the linear engine. Both of the engines also have 3 row buffers 
which are separated from the engine and not counted in the 
total cell count of the engine. Those row buffers can be half 
the size for a logarithmic engine. Both convolution engines 

have four AUs (Arithmetic Unit). A logarithmic AU is 13% 
of the size of a linear AU. If the chip were to have multiple 
convolution engines, adding new logarithmic engines would 
scale better size-wise.

To test the performance and instruction execution, 4 dif-
ferent image data sizes (8 × 8, 16 × 16, 32 × 32, and 64 × 64) 
are used. For every image data size, 3 different program 
execution methods are used. The methods and process are 
explained as follows:

A.	 RI5CY only:
	   The test is run in the RISC-V core only using stand-

ard RISC-V only and standard RISC-V and pulp-specific 
instructions.

1.	 Compiling test using standard RISC-V instructions:
	   In this method, the test is compiled using RV32IMC, 

which contains the Base integer instructions and, multi-
plication/division and compressed extended instructions. 
In this process, instruction size and clock cycles are sig-
nificantly higher than in other methods.

2.	 Compiling test using Standard RISC-V instructions and 
Pulp specific ISA extensions:

	   In this method, the test is compiled using RV32IMC 
and xpulpv2 (pulp specific ISA extensions). The clock 
cycle and instruction size are lower than the standard 
RISC-V.

Fig. 4   Cycle counts for various image sizes using linear and logarith-
mic convolution engines including data conversion

Fig. 5   Cycle counts for various image sizes using linear and logarith-
mic convolution engines
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B.	 Convolution Engine:
	   The test is run in hardware convolution engine. The 

speed of execution does not matter if it complied with 
RISC-V only or RISC-V and Pulp specific instructions. 
The number of clock cycles, and instructions executed 
are lower than the software run methods. In the case 
of software computation, the dot product unit (pulp 
extended) makes the operation significantly faster than 
the standard RISC-V computation. Even though the 
PULP compiler itself can produce better results, it can-
not utilize all instructions efficiently. The optimized c 
code is written using the GCC build-ins for RISC-V ISA 
extensions, which calls pulp specific extended instruc-
tions directly and runs on extended architecture. RI5CY 
has the dot product unit which supports 8 bits and 16 bits 
vector operands [29]. This dot product unit produces the 
result of 4 multiplications and 3 additions in a single 
operation. The use of this unit significantly reduces the 
number of clock cycles and instruction executions in the 
image convolution algorithm.

Figures 6, 7, 8, 9 illustrate the number of clock cycles and 
instructions executed in Questasim simulations and FPGA 
test runs. The performance comparison graph shows the 
performance of the RI5CY core with pulp extensions and 
hardware convolution engine.

The number of clock cycles used when running the test 
in the convolution engine is very low. The engine is capable 
of fetching image pixels from L2 memory and streaming 
the result back to L2 memory with the start command by 
the RISC-V core after configurations. The hardware convo-
lution engine runs 17 times faster than the RISC-V stand-
ard instructions and enabling the pulp specific instruction 
reduces the performance from 17 to 6 times on image data 
size 8 × 8. Likewise, the performance gain by the convolu-
tion engine is 91 times than standard RISC-V and 26 times 
when enabling pulp specific instructions on image data size 
64 × 64. The performance gain increases with image data 
size. This is due to initial configurations needed for the 
engine, and full utilization of transferred pixels by saving 
in line buffer for future image windows and in shift buffer 
for the next image window. But in the case of RI5CY, the 
pixels are moving from memory to the core register more 
than one time. 

 In the case of software run, the computation is very com-
plex, instruction fetch, decode, data load, execution, result 
write back, all these operations are happening all the time in 
pipeline methods. So, each result pixel is produced from the 
number of multiplication and addition operations. From the 
above results, using dot product unit significantly reduces Fig. 6   Questa simulation result in terms of cycles

Fig. 7   Questa simulation result in terms of instructions
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the active clock cycles. The image convolution algorithm 
runs 3 times faster in the RISCY core using pulp specific 
extended instructions. Similarly, increasing the size of image 
data increases the performance difference between the RISC-
V standard and RISC-V pulp extensions. The slight varia-
tion between the number of clock cycles and the number of 
instructions executed is because of load data hazards and 
cycles waiting for instruction fetch. In the case of FPGA 
testing, load data hazard, cycles waiting for instruction fetch 
is zero when running convolution using RI5CY core only 
and negligible amount of load data hazards when using pulp 
extensions.

The overall result summarises that enabling pulp specific 
instruction reduces the program execution time and reduces 
the data load from memory. In the case of 3 × 3 convolu-
tion, it is possible to utilize the 6 pixels from the last 3 × 3 
image window and load new 3 pixels. The hardware convo-
lution engine runs even faster than pulp specific instructions, 
by fully utilizing the transferred pixels by storing them in 
line buffers. The hardware convolution engine requires less 
memory bandwidth and fewer clock cycles compared to the 
RISC-V core.

6 � Quality analysis

Following the results, examining the trade-off needed to 
achieve all the benefits is prudent. In this case, the reduced 
memory footprint and increased performance are compen-
sated by some loss of visual quality. Mainly this stems from 
using fewer bits per pixel. This effect was analyzed with 
a set of random images, all featuring outdoor scenes. The 
images were first scaled to similar size, so that image size 
would not distort the average results. Larger images would 
have more samples; thus they would have more weight in the 
analysis. The process then converted the images to normal 
grayscale. This was considered the ground truth. The com-
parison was done by converting all images to logarithmic 
scale, then directly back to grayscale. After that, the sum of 
absolute differences in the intensity values of each pixel was 
calculated. This sum is presented in the “Sum diff” column 
in Table 1. The difference was also divided for all the pixels, 
showing the average error in each pixel. This value is pre-
sented in unit [255.0.0], corresponding to normal 8-bit gray-
scale values. Finally, the error is shown also in percentage.

Considering the intended use case, further analysis was 
done to assess the impact for machine learning. Here the 
assumption was that the structures presented in the images 
would remain better intact than visual quality. To show 
that in practice, two different analysis sequences were run 
on the same images. First, a simple edge detection convo-
lution, with coefficients 8 in the middle and -1 on all of 
the neighbors. This kernel was applied to both the normal 

Fig. 8   FPGA prototyping result in terms of cycles

Fig. 9   FPGA prototyping result in terms of instructions
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grayscale image and the logarithmic version. The results 
are shown in Fig. 10. The left-hand side is completely in 
the normal binary grayscale domain, while the right-hand 
side is processed in the logarithmic domain, and converted 
back to binary for visualization after the processing. The 
results show some differences, mostly in the way the color 
gradients in the sky are handled, but most of the structures 
are strikingly similar.

 To show, that other processing is also viable in the loga-
rithmic domain, another test sequence was run. This time the 
convolution was used to perform gaussian blur on the subject 
image. A typical 3 × 3 kernel was used, with weights 1 for 

all corners, 2 for the sides, and 4 for the middle. Finally, the 
result was scaled back to the normal range by dividing by 
16. This image was then used to find edges, by subtracting 
the original from this image. Again, the results are presented 
in Fig. 11 in the same order, all left-hand side frames are in 
the normal binary grayscale domain, and the right-hand side 
is processed in the logarithmic domain. This time there is 
more difference between the resulting edges. Again, most of 
the differences are in the sky, which had relatively smooth 
transitions in the original image. However, the actual struc-
ture is shown identified well, and some might even say the 
logarithmic version has less noise in the sky. Fine-tuning of 
thresholds could bring the results closer together, but these 
are untuned, for the sake of comparison of the numerical 
spaces, not optimized for visual quality or similarity. In 
Fig. 11, the first row shows the original images, then the next 
row shows the results of gaussian smoothing and finally, the 
last row shows the edges detected by subtracting the original 
from the smoothed image.

After looking at the results of actual operations, it can be 
seen that even though there is some degradation in terms of 
actual intensity values, it does not translate to major differ-
ences in the processing results. As a result, the techniques 
are suitable for the application domain of machine learning, 
but maybe not be recommended for domains where visual 
quality is of paramount importance. The sample images were 
chosen so that they had more intensity errors than average. 
This was done to avoid unwarranted optimism in the results. 
The test images were acquired from Pixabay, a site that 
offers fully free images.

Table 1   Brightness distortion analysis

Image X Y Sum diff Per pixel Relative error

1 320 213 516,801 7,58 2,97%
2 320 213 347,107 5,09 2,00%
3 320 212 791,387 11,67 4,57%
4 320 180 263,241 4,57 1,79%
5 320 207 500,387 7,55 2,96%
6 320 213 821,434 12,05 4,73%
7 320 214 730,949 10,67 4,19%
8 320 196 262,699 4,19 1,64%
9 320 214 641,341 9,37 3,67%
10 320 180 72,018 1,25 0,49%
11 320 213 980,831 14,39 5,64%
12 320 212 571,580 8,43 3,30%
Total 6,499,775 8.23 3.22%

Fig. 10   Results of edge detec-
tion by convolution (image 
number 7 in Table 1)
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7 � Conclusions

The hardware accelerator implementation with reduced pre-
cision technique to process images is efficient and effective. 
The proposed engine gives a good indication of the pos-
sibilities of using logarithmic data instead of linear data. 
The images produced from the logarithmic engine have a 
visible quality degradation, but the structure compared to the 
precise method was similar which is in line with the results 
of Miyashita et al. [22]. More research on how useful the 
reduced precision images could be is still required.

The convolution engines proposed in this paper could be 
optimized further. As an example, increasing the number of 
AUs in the engine should increase the engine performance 
with an increased data transfer rate. Also, parallel convolu-
tion engines with DMAs to their own memories and cross-
bars should increase effectivity. These research questions, 
however, are left for future study.

However, even the current solution provides results that 
clearly show an increase in performance compared to a 
linear engine, by reducing 34% of all required cycles with 
30% reduction in cell count. The computation in the linear 

convolution engine is 91 times faster and computation in 
the logarithmic convolution engine is 122 times faster 
than in the RISC-V core with plain RISC-V instructions. 
Whereas the data conversion in CPU requires irrefutably 
more, roughly 100 times more (see Fig. 5), cycles thus 
making the linear engine a preferable choice, but with the 
hardware accelerator the results justify and promotes the 
logarithmic engine. The best advantage is obtained, if all 
of the parts in an image processing pipeline use the same 
number format, thus avoiding conversions.
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