
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1079–1090 
https://doi.org/10.1007/s11265-023-01844-0

Computer Vision on the Edge to Reduce Network Bandwidth 
Consumption and Computing Resources in Multi‑view 3D Industrial 
Inspection without Hidden Surfaces

David Millán Escrivá1   · Javier Tendillo Ruiz1 · Pau Garrigues Carbó1 · Andrés Martín Larroza Santacruz1 · 
Guillermo Amat Gomariz1 · Javier Perez Soler1 · Jose Luis Guardiola1 · Juan‑Carlos Perez‑Cortes1

Received: 21 April 2021 / Revised: 13 January 2023 / Accepted: 16 January 2023 / Published online: 14 February 2023 
© The Author(s) 2023

Abstract
Industrial inspection industry requires high precision, fast and reliable systems, where images play a central role. These 
systems are composed by several hardware and also cyber-physical componentes where complexity increases when multiple 
heterogeneous sensor inputs are combined. Our 3D industrial inspection scanner is able to reconstruct complete objects 
without occlusion with use of multiple sensors and actuators using a complex software architecture. Our system allows 
increasing the throughput by removing the bottleneck network issue, decreasing network data transfer using a new edge 
systems architecture that segments and optimizes image transferring. Also, this work presents the results of applying technol-
ogy developed during the FitOptiVis European ECSEL project. FitOptiVis will provide a reference architecture supporting 
composability built on suitable component abstractions and embedded sensing, actuation and processing devices adhering 
to those abstractions. The reference architecture will support design portability, on-line multi-objective quality and resource 
management and run-time adaptation guaranteeing system constraints and requirements based on platform virtualization. 
The FitOptiVis project will be applied to design the new architecture of the new edge components and develop the runtime 
system monitoring.

Keywords  Industrial inspection · 3D scanner · Edge computing · Computer vision · Image processing · FitOptiVis

1  Introduction

Industrial inspection is an important field which requires 
high precision, fast, and reliable systems. 3D metrology 
equipment is usually located in a different place than the 
production floor. Not all the production is usually inspected 
and requires skilled human labour to perform full surface 
checks. This process is time-consuming and the production 
costs increase requiring a specialized person to measure and 
interpret the results obtained. While manufacturing tech-
nologies improve, Computer-Aided Designed (CAD) objects 
become more complex, and the economic margins at the 
same time, decrease due to global competition.

Complex products are often composed of many parts 
that must be assembled, and many measurements must be 
performed to check all the critical points to assure that the 
final product has minimal deviations that do not affect to the 
product quality. The inspection system must be placed in 
line to obtain 100% inspection coverage automatically with 
minimal human interaction.

Nowadays, the typical inspection systems are 2D or 2.5D, 
which are based on frontal, lateral or overhead views, leav-
ing hidden regions that cannot be analyzed. To acquire more 
views or larger portions of the object, it is usually required to 
manipulate the objects during long processes with sequential 
operations using different techniques like stereoscopy, struc-
tured lights or laser beams [1–3]. To avoid manipulation of 
objects, robot arms can be used to move objects in front of 
sensors to capture all object’s sides such as Fei et al. [4] or 
Brosed et al. [5]. Obtaining 3D reconstruction from multiple 
views without manipulation is possible as Perez-Cortes et al. 
[6] show.

 *	 David Millán Escrivá 
	 dmillan@iti.es

1	 Instituto Tecnológico de Informática, Valencia, Spain

http://orcid.org/0000-0003-4224-2334
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01844-0&domain=pdf


1080	 Journal of Signal Processing Systems (2023) 95:1079–1090

1 3

All of the acquisition techniques mentioned before 
require complex architectures and component designs, where 
multiple hardware and software elements are involved and 
interconnected using video-processing pipelines. Also, 
these techniques require advanced image processing that are 
computing-intensive, whereas low latency and high through-
put are required for adequate behaviour. Multiple sensors, 
actuators, boards, etc are involved. Designing and creating 
a good reference architecture composed of a set of compo-
nent abstractions is the key to building a stable and scalable 
system, as FitOptiVis [7] explain as part of the consortium 
of the FitOptiVis project.

The experiments and results presented in this work use 
a 3D acquisition system from Perez-Cortes et al. [6] using 
a ZeroGravity 3D (ZG3D) device [8] as the one shown 
in Fig. 1 in combination with concepts introduced in the 
FitOptiVis project [7] to assist in the design of the new 
components and architecture using a component language 
and toolset for quality and resource management (QRML) 
Berg et al. [9]. QRML enables specifying heterogeneous 
hardware/software systems and their composition and con-
figurations conveniently. The QRML toolset offers language 
support, visualizations, documentation generation, template-
code generation, and constraint-solving support that helps to 
design and develop new Cyber-physical complex systems. In 
addition, a monitoring system has been designed using the 
open-source data visualization and processing framework 
called IVIS by L. Bulej et al. [10] in order to provide a per-
formance visualization of the previously mentioned device.

The work is structured as follows. Section 2 describes 
the current state of the ZG3D industrial inspection system 
and the motivation of this work to avoid the current ZG3D 
limitation. Section 3 describes the new proposed ZG3D 
architecture, component design and monitoring components. 
Experiments and results after new components and architec-
ture proposed are shown in Section 4. Finally, conclusions 
and future work are presented in Section 5.

2 � Motivation

This work starts from ZG3D patented device [8] that is an 
industrial in-line 3D inspection system. ZG3D employs a 
single-shot multi-camera acquisition system, using 16 syn-
chronized cameras distributed in the faces of a polyhedron. 
The object to scan falls through the ZG3D structure and, 
when it is in its center, a synchronized capture is taken. The 
capture is sent to be processed, compute the object metrics 
and generate results, based on which the application auto-
matically decides if the object is flawed or passes the checks. 
A human inspector can also visualize the progress, 3D 
reconstructions and measurements of each object processed.

The entire process is implemented in a well-defined archi-
tecture, that can be seen in Fig. 2, composed by a capturer, 
master, one or more workers, database storage and a web 
interface. The capturer manager is responsible to commu-
nicate and synchronize the 16 cameras which are serving a 
single capture at the same time. The master component man-
ages and orchestrates all devices and software in the archi-
tecture. Workers are responsible to process all the captured 
images and extract surfaces and metrics. The database stores 
all assets and results from workers and capturer. Finally the 
web service provides a user interface to control the process 
and show the results.

Figure 1   Industrial inspection system Zero Gravity 3D (ZG3D). Figure 2   Architecture Zero Gravity 3D.



1081Journal of Signal Processing Systems (2023) 95:1079–1090	

1 3

The 16 cameras with shutter sensors have a resolu-
tion of 2448 x 2048 pixels, 3.45 � m RGB square pixels, 
GigeE Vision interface protocol, lenses with a focal length 
of 50mm. The diaphragms are set to an aperture of F16 to 
obtain an adequate depth of field. This configuration allows 
capturing a maximum object dimension to be inspected of 
30mm with a measurement precision of less than 0.02mm. 
The cameras are connected to a 10Gbps Ethernet switch, 
each of them is connected to a 1Gbps Ethernet link, and two 
of the 10Gbps links are connected to the computer system 
composed of a variable number of high-performance com-
puter nodes. The computation time depends on the complex-
ity of the object, the number of measurements and precision 
required, and is between 1 and 10s. Many objects can be 
processed in parallel to increase the throughput of the sys-
tem. The specifications of the prototype used is presented 
in the Table 1.

To increase the number of objects processed we need 
to improve the latency and/or throughput. Latency is more 
complex to reduce due the limitations related to actuators, 
sensors, and other hardware involved. The throughput can be 
improved using several cores and/or computers in a cluster 
to reconstruct and process the objects.

Actually, the network is the main limitation to increase 
throughput. Each capture, composed by 16 images of 2048 x 
2448 pixels with 3 channels and 8 bits per channel, requires 
1.925 Gbits to transport the capture from the 16 cameras 
to the workers. The cameras use the UDP protocol which 
does not ensure that the image will be transferred correctly. 
Although Gige provides some tools to recover incorrectly 
transmitted packets, we have to ensure that a bottleneck in 
the network will not exist by increasing transmission rates. 
Using a 10Gbps Ethernet switch we can only send 5 cap-
tures per second. In the laboratory, we tested that we can 
only send without any packet loss 4 captures per second, 
since other ZG3D processes are also using the network to 
communicate.

This work will focus on how to solve the above men-
tioned bottleneck problem in our network to increase the 
throughput and minimize the network latency by using 
edge computing near the cameras. A new architecture is 

proposed following the aim of the FitOptiVis project to 
reduce power-consumption while increasing performance 
moving the computation from the cloud to the edge. In this 
use case, computation has been moved from the central-
ized computation unit (cloud) to distributed small com-
ponents near the cameras (edge) reducing latency, saving 
bandwith thus increasing performance.

3 � Architecture, Components Design 
and Monitoring Runtime

ZG3D has a complex architecture where different hardware 
pieces and software components are interconnected, as we can 
see in Fig. 3. Images play the main role in the architecture and 
travel through every component of it. The new architecture 
has to solve the network bottleneck that occurs when the 16 
images per capture, with a resolution of 2448x2048 are simul-
taneously sent to the capturer manager to process them. Before 
this proposed solution the images were sent to the capturer 
with a small delay between images to avoid this issue, but 
this approach decreases the throughput or number of captures 
per second. Analyzing the ZG3D topology, we can observe 
that the 16 cameras are distributed conveniently on the faces 
of a polyhedron pointing to the center of polyhedron, and the 
largest volume that can be captured in the small prototype is a 
30mm diameter object as mentioned in Perez-Cortes et al. [6]. 
This maximum object size mentioned does not fill the entire 
image. Considering the camera focal length, distance to the 
object and the object largest size, the maximum object size 
projected in the camera sensor is 6mm. The square pixel size 
of the cameras used is 3.45 � m then the maximum number 
of pixels of an object in an image is 1740pixels. Therefore, 
the largest possible object covers the 51% of a single image. 
If we remove the non-relevant part of the image and don’t 
send it over the network we can spare at least 49% if network 
bandwidth at each image transfer.

The proposed solution removes the non-relevant area of the 
image by cropping the detected object and thus reducing net-
work band with usage before sending images from a camera 
to the capturer. We use a distributed system, see Fig. 4, where 
each camera is directly attached to an edge device to process 
and resend only the relevant part of an image to the capturer. In 
order to do this, each edge device requires two network inter-
faces, one connected to the camera and another one connected 
to the network switch. With this new proposal, a new architec-
ture is required to include this new edge component.

3.1 � Architecture and Components Definitions

The new architecture requires high optimization and 
fault-tolerant hardware/software. To achieve this goal, we 

Table 1   ZG3D prototype used in the experiments.

Component Specification

Num. Cameras 16
Sensors Sony IMX264 5.1Mp
Sensor size 2448 x 2048
Max object size 30mm
Resolution 1pixel = 20�m
Throughput 4 captures/s
Latency 1-10s



1082	 Journal of Signal Processing Systems (2023) 95:1079–1090

1 3

designed the components involved in solving the bottle-
neck based on the principles of the FitOptiVis project [7]. 
The FitOptiVis project defines a reference architecture that 
captures the diversity of platforms, resources, applications, 
methods, tools and objectives of common projects of image 
or video pipelines for cyber-physical systems (CPS) on a 
heterogeneous network. The reference architecture defined 
by FitOptiVis will be provided as a template of components 
abstraction on top of a virtual platform offering runtime 
optimization support for quality and resource management.

The FitOptiVis reference architecture, the yellow box 
in Fig. 4, takes in consideration a concrete platform and 
application (red and green boxes) and consists in abstract 
applications that are considered as a collection of tasks 
and are reconfigurable depending on the different platform 
that it is running on, and a virtual platform that shares with 
applications the resources and capabilities of the attached 
devices and hardware.

The abstract applications and the abstract virtual plat-
forms are brought together by a resource and quality 

Figure 3   New proposed archi-
tecture Zero Gravity 3D.

Figure 4   Fitoptivis Architec-
ture.



1083Journal of Signal Processing Systems (2023) 95:1079–1090	

1 3

management framework. This framework is responsible 
for finding feasible and optimal combinations of applica-
tions and platforms as well as optimal operating set points 
for the components.

Each component is defined with one input and one out-
put, requires a budget and provides a budget, quality and 
parameters as we can see in the Fig. 5 that is detailed in 
Hendriks et al. [11]. The components in the architecture 
have one or more configurations that may be parameter-
ized. A configuration has an input, an output, a required 
and provided budget and a quality. These parameters allow 
us to define different working points for each component 
and runtime configuration.

To design the new architecture and components we 
use Quality and Resource Management domain-specific 
Language (QRML) van den Berg et al. [9] that defines 
domain specific language for QRM, and also provides an 
accompanying toolset. This toolset allows us to specify 
a QRML model, model visualization and generate C++ 
code templates for system and application monitoring.

3.2 � Use Case Architecture and Components

We designed the new architecture and components using 
QRML and connect to existing capturer manager with small 
modifications to the existing architecture. The main compo-
nent is the whole system called “EdgeSystem” that contains 
the hardware and application components as we can see on 
the Figs. 6 and 7.

The hardware is encapsulated in a virtual component to 
allow abstract to the specific hardware initially. The virtual 
hardware component called “VirtualEdgeBoard”, consists 
of two more components, the board connected to the cam-
era, and the camera itself. The board component defines two 
possible boards, JetsonBoards and RaspberryPi, and each 
one exposes their main component qualities, the amount 
of memory, processing power and if it has GPU capabili-
ties. The camera component defines the required resolution 
parameter to work in our ZG3D, then if a new hardware 
is attached to the camera component, the hardware will be 
discarded if the required resolution requirement is not met.

The application component requires the execution board 
and the image capturer, both components come from board 
and camera hardware components, and provide for the appli-
cation the resources that requires and need as an abstraction 
to hardware. The application component includes two more 
components: segmentation and transfer. The segmentation 
component is the one responsible to retrieve the component 
bugdet provided by board and camera componentes and to 
segment the image, and the transfer component has the role 
to send the image and detect any issue in transferring images 
or bottlenecks in the network to change the segmentation 
parameter if it’s required.

QRML has different tools to export the QRML language 
specification to different visual representations, as a com-
ponents architecture in Fig. 6 and components dependen-
cies in Fig. 7. Also the QRML toolset can export a C++ 
architecture to provide component abstraction, require-
ments, dependencies and IVIS connection for monitoring 
the architecture. These tools allow users focus on develop-
ing the main aspects of the application leaving concepts of 
monitoring and dependencies to the QRML specifications.

3.3 � Runtime Monitoring

When a complex architecture with several hardware and 
sources components are designed, it is imporant to ensure 
that all pieces are working properly and don’t raise any 
defined conflict. A monitoring system can help to meet the 
constraint and notify to users or architecture when a con-
straint is not met. In an industrial process a monitoring sys-
tem is crucial to avoid stopping the production line.

Runtime monitoring can involve monitoring techniques 
at different levels, from cloud to edge. In turn, for each level 
a monitoring technique can span different levels from hard-
ware to software level, albeit mainly requiring the synergy 
of both. This means that the development of monitoring 
systems in FitOptiVis scenarios, and corresponding system-
level services, involves several trade-offs from the architec-
tural point of view.

The 3D Industrial Inspection use case developed by 
ZG3D requires a monitoring system featuring minimal Figure 5   Fitoptivis Component.



1084	 Journal of Signal Processing Systems (2023) 95:1079–1090

1 3

intrusiveness and very small bandwidth consumption. The 
level of intrusiveness depends on the time interval of moni-
toring events, however, even with a small interval, the intru-
siveness should be minimal.

As a general requirement, monitoring must not affect 
memory and timing performance at the edge. In other words, 
this process must not delay in any way the tasks performed 
on the edge capturer. This restriction can be partially avoided 

Figure 6   QRML.

Figure 7   DSL.



1085Journal of Signal Processing Systems (2023) 95:1079–1090	

1 3

dividing the monitoring application into two parts. First, the 
client-side agent which is responsible for pushing events. 
This program accomplishes the minimal and non-intrusive 
requirements. Secondly, the server-side, which can be 
installed on a different dedicated computer that is in charge 
of storing the received data and providing the graphical user 
interface. Regarding the information to be gathered, Zero 
Gravity 3D collects the following data in order to monitor 
its state:

•	 Network bandwidth.
•	 Throughput, measured as parts per minute.
•	 CPU load.
•	 Memory usage.

The new architecture implies the monitoring of sixteen 
edge computer boards connected to the same number of 
cameras. In order to manage the state of this hardware, a 
monitoring system capable of providing realtime monitori-
zation is required. These devices must be monitored in a 
non-intrusive way and all the data produced must be sent 
to a central storage to be interpreted.

We employ IVIS as a monitoring platform featur-
ing storage capability and the creation of visualization 
dashboards from stored data. The monitoring data can 
be viewed under the IVIS platform in panels created for 
each edge board as we can see in Fig. 8. To send data 
to IVIS a RESTful JSon format is employed. In our use 
case we employ Telegraf [12] to retrieve operating sys-
tem data. Telegraf is a monitoring agent that collects data 

from different sources such as services like databases or 
web servers and computer built-in sensors. Using Telegraf 
plugins, data can be filtered, transformed, decorated and 
finally stored on a file or sent to a database or any other 
software. Ideally, the data can be transmitted to a server 
providing storage and computational resources to host an 
application offering a graphical user interface. This agent 
software has been installed on all the sixteen edge boards. 
We created a plugin for sending data to IVIS [10], this 
platform plays the role of the aforementioned storage 
server and graphical user interface. The plugin is based 
on a Telegraf Json serializer so it is consistent with the 
Telegraf architecture and provides the serialization of data 
into a JSON payload which is compatible with IVIS.

3.4 � Runtime Configuration

FitOptiVis also defines a runtime configuration as a part of 
its monitoring system as the set of components a system is 
composed of, their configurations (specified by their param-
eters and set-points), and their compositions. In fact, such 
a composition is another component under the FitOptiVis 
component framework. Subsequently, FitOptiVis defines 
reconfiguration as an action or a set of actions leading to a 
change(s) in system configuration. Therefore, based on the 
impact of actions, we categorize them into three classes as 
follows:

•	 Actions adding/removing components. These actions 
add/remove components to/from the system. These 

Figure 8   IVIS dashboard.



1086	 Journal of Signal Processing Systems (2023) 95:1079–1090

1 3

actions are triggered by users manually, automatically 
by Quality and Resource Management (QRM) compo-
nents, or via custom mechanisms from the applications 
themselves.

•	 Actions changing component configurations. Configu-
rations of components are defined by set-points their 
parameters are set at. These actions are triggered either 
by users, QRM components or applications.

•	 Actions changing component compositions. Composi-
tions are vertical, horizontal, or free. Vertical composi-
tions have to do with budget connections and are either 
deployments (application-to-VEP connections) or host-
ing (EP-to-VEP connections). The actions can establish, 
modify, or stop connections and are triggered by users 
QRM components, or applications.

ZG3D can change its configurations in realtime when the 
throughput decreases or rises over a certain threshold (an 
action of changing component configuration), and when an 
edge board is changed to another board with lower or higher 
capabilities, for example if we change a Jetson Nano board 
with GPU support to a RaspberryPi without GPU support 
and less memory (an action of changing component compo-
sitions). In both cases this change would lead to a decision in 
the edge board of performing or not the image segmentation 
in order to maximize throughput.

4 � Experiments and Results

A smaller prototype of ZG3D was used as we can seen in 
Fig. 9, where 16 jetson boards are connected directly to 
each Gige camera and each board connected to the network 
switch using 1Gbs links. The experiment was done using 2 
different objects to capture, a small cube with a printed “M” 
character and a small sphere to calibrate the system. The 
objective of experiment was to demonstrate that network 
bandwidth is reduced after applying a pre-segmentation on 
the edge. We used the ZG3D software together with the new 
CamEdge component installed in each Jetson board.

The implemented image segmentation in each CamEdge 
component was developed on OpenCV with CUDA optimi-
zation where the input image is upload to the GPU memory 
and after that is converted to RGB and a gaussian filter is 
applied to remove the image noise from the cameras. Finally, 
an absolute difference using the background and a threshold 
have been applied. After that, the big area of white pixels 
is taken as the object in the scene and it is defined as the 
region of interest that is applied to the original image. This 
segmentation process takes 90ms on each Jetson Nano edge 
computing device.

To compare the experiment we use the original ZG3D 
prototype where cameras are directly connected to the switch 

with an UDP protocol, in this case, the object under inspec-
tion is not relevant because no segmentation is being per-
formed (the whole image is sent via the network).

The experiment was executed launching a dice, a capture 
of which can be seen in Fig. 10. The dice projected into 
the cameras fills an area of 7% of the image. We use tcp-
dump to capture all the packets sent among the cameras (for 
original ZG3D) or edge capturer (our prototype) to the cap-
turer. When the capturing process starts we execute tcpdump 
and save all network traces in a pcap file to be analyzed. 
We employ the Wireshark software to filter all packets by 
IP sources exporting only the packets from cameras/edge 
caputers.

The results of the analysis of the network, shown in 
Fig. 11 reduce the bandwidth usage per image, decreasing 
from 15MB/image to 1.2MB/image in our use case. This is 
a reduction of bandwidth consumption of 92% allowing to 
increase the throughput and reduce latency of the system. 
We observe in Fig. 11 that transferring full images requires 
three times more time than sending the cropped images.

Figure 9   Prototype with attached Jetson Nano devices.



1087Journal of Signal Processing Systems (2023) 95:1079–1090	

1 3

The FitOptiVis runtime monitoring system presented in 
the use case tries to ensure a minimum throughput on the 
system. Throughput is monitored inside CamEdge software 
as high-level monitoring, but we compute the latency time 

too, from the receiving trigger of the capture to the last 
network transfer. The latency is employed as a reference 
for changing component configurations. In our FitOptiVis 
use case, we define as a configuration the possibility of 

Figure 10   Object captured by 
16 cameras.

Figure 11   Network bandwidth Comparison.



1088	 Journal of Signal Processing Systems (2023) 95:1079–1090

1 3

preprocessing or not the image and then send a cropped 
region of interest (ROIs) or send the whole image. If the 
latency increases, then the throughput decreases as a con-
sequence. We define a threshold for latency at 150ms. 
If latency exceeds this threshold, automatically the next 
capture image is not preprocessed and segmented, remov-
ing that computation time and reducing the latency. The 
processing time can increase due to multiple factors, a 
common problem can be an overheating of the GPU or a 
process running out of memory. In our experiments, we 
forced hardware fails modifying the max power mode of 
NVidia Jetson Nano that disables 2 CPU cores and deacti-
vates the GPU fan. In Fig. 12 we can see with blue lines the 
GPU usage and with red lines the bandwidth. In the first 
blue block, we monitor a lower latency than the threshold 
defined, where preprocessing consumes less than 90ms. 
In the next red block, we have hardware fail, where the 
preprocessing time increases and raises the threshold, then 
in runtime a reconfiguration of the component is done by 
disabling the preprocessing and segmentation step. In the 

next green block, the new configuration is applied and 
there is no GPU processing and only whole image transfer 
is done. With this reconfiguration the system minimum 
requirements are satisfied.

The reconstruction obtained by the ZG3D software and 
represented in the interface, shown in Fig. 13, presents an 
object captured and pre-segmented by edge devices, obtain-
ing a full reconstruction, useful for applying metrological 
analysis or surface defect detection algorithms without any 
difference respect to the original ZG3D.

Finally, we compared our solution to a common compres-
sion technique. Standard lossy image compression can not 
be used because of the high accuracy requirements of the 
application, then we employ a lossless PNG compression. 
Since the ZG3D cameras cannot perform any image com-
pression, we use the Jetson Nanos as edge computing nodes 
to compress each image. Depending on the noise present and 
the characteristics of the object, the time needed to compress 
each image is 338±71,6ms on average and the final image 
size is 2.2±0.8MB on average.

Figure 12   Runtime reconfiguration.

Table 2   Experiments results. Method Processing time Transferred data Packet  
collission

Total time 
capture 
transfer

ZG3D – 15MB/image Yes 120ms
Edge segmentation 90ms 1.2±0.5MB/image No 120±10ms
Edge compression 338ms 2.2±0.8MB/image No 388±15ms



1089Journal of Signal Processing Systems (2023) 95:1079–1090	

1 3

5 � Conclusion

We presented a FitOptiVis project use case where a new architec-
ture helped to solve the existing bottleneck; in our test case, the 
industrial inspection system ZG3D. FitOptiVis provided a frame-
work to create highly optimized and fault-tolerant hardware/soft-
ware components to attach to the existing ZG3D prototype. The 
new components designed succeeded in providing the required 
flexibility, fault-tolerance and monitoring capabilities required 
for this use case and the system proved to be able to change its 
configuration in the runtime phase depending on its resources.

We compared our proposal to the original ZG3D system 
and a compression lossless on the edge (see Table 2). Our 
system obtains similar results on final transfer time com-
pared with the original system, but our proposal ensures 
packet transfers and reduces the bandwidth. The compres-
sion method requires high computation time and does not 
reduce the image as much as the segmentation proposal.

As a conclusion, the new architecture designed after ana-
lysing the ZG3D issues, helped us to define new procedures 
to avoid network bottleneck using computing on the edge seg-
mentation, attaching Jetson Nano devices or RaspberryPi to 
GiGe cameras and pre-processing and pre-segmenting images 
before sending them to the ZG3D capturer manager reduc-
ing at least 39.61% of the bandwidth per object captured and 
increasing the throughput after solving bottleneck limitations.

Acknowledgements  This work is part of the FitOptiVis project 
[7] funded by the ECSEL Joint Undertaking under grant number 
H2020-ECSEL-2017-2-783162.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Zhang, J., Mai, F., Hung, Y. S., & Chesi, G. (2009). 3d model 
reconstruction from turntable sequence with multiple-view trian-
gulation. In International Symposium on Visual Computing (pp. 
470-479). Springer, Berlin, Heidelberg. 2009

	 2.	 Fremont, V., & Chellali, R. (2004). Turntable-based 3D object 
reconstruction. In IEEE Conference on Cybernetics and Intelligent 
Systems, 2004. (Vol. 2, pp. 1277-1282). IEEE.

	 3.	 Kazó, C., & Hajder, L. (2012). High-quality structured-light scan-
ning of 3D objects using turntable. In 2012 IEEE 3rd Interna-
tional Conference on Cognitive Infocommunications (CogInfo-
Com) (pp. 553-557). IEEE.

	 4.	 Fei, Z., Zhou, X., Gao, X., & Zhang, G. (2017). A flexible 3D laser scan-
ning system using a robotic arm. In Optical Measurement Systems for 
Industrial Inspection X (Vol. 10329, pp. 1190-1195). SPIE.

	 5.	 Brosed, F. J., Aguilar, J. J., Guillomía, D., & Santolaria, J. (2010). 3D 
geometrical inspection of complex geometry parts using a novel laser 
triangulation sensor and a robot. Sensors, 11(1), 90-110.

	 6.	 Perez-Cortes, J. C., Perez, A. J., Saez-Barona, S., Guardiola, J. 
L., & Salvador, I. (2018). A System for In-Line 3D Inspection 
without Hidden Surfaces. Sensors, 18(9), 2993.

Figure 13   System running.

http://creativecommons.org/licenses/by/4.0/


1090	 Journal of Signal Processing Systems (2023) 95:1079–1090

1 3

	 7.	 Al-Ars, Z., Basten, T., Beer, A. D., Geilen, M., Goswami, D. 
Jinen, P. Kadlec, J., de Alejandro, M. M., Palumbo, F., Peeren, 
G., Pomante, L., van der Linden, F., Saarinen, J., Sntti, T., Sau, 
C., & Katiuscia Zedda M. (2019). The FitOptiVis ECSEL project: 
highly efficient distributed embedded image/video processing in 
cyber-physical systems. In Proceedings of the 16th ACM Interna-
tional Conference on Computing Frontiers (CF ’19). Association 
for Computing Machinery, New York, NY, USA, 333-338.

	 8.	 Perez-Cortes, J. -C., & Siez, S. (2014) Barona. Device and method 
for acquisition and reconstruction of objects, August 19 2014. US 
Patent 8, 811,722.

	 9.	 van den Berg, F., Čamra, V., Hendriks, M., Geilen, M., Hnetynka, 
P., Manteca, F., ... & Basten, T. (2020, September). QRML: A 
component language and toolset for quality and resource man-
agement. In 2020 Forum for Specification and Design Languages 
(FDL) (pp. 1-8). IEEE.

	10.	 Bulej, L., Bureš, T., Hnětynka, P., Čamra, V., Siegl, P., & Töpfer, 
M. (2020, August). IVIS: Highly customizable framework for visu-
alization and processing of IoT data. Charles University, Faculty of 
Mathematics and Physics, Prague, Czech Republic.

	11.	 Hendriks, M., Geilen, M., Goossens, K., de Jong, R., & Basten, T. 
(2020). Interface modeling for quality and resource management. 
arXiv preprint arXiv:2002.08181.

	12.	 Wang, S. (2021). Telegraf Open Source Server Agent InfluxData. 
[Online]. Available: https://​www.​influ​xdata.​com/​time-​series-​ 
platf​orm/​teleg​raf/. [Accessed: 16-Feb-2021].

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/

	Computer Vision on the Edge to Reduce Network Bandwidth Consumption and Computing Resources in Multi-view 3D Industrial Inspection without Hidden Surfaces
	Abstract
	1 Introduction
	2 Motivation
	3 Architecture, Components Design and Monitoring Runtime
	3.1 Architecture and Components Definitions
	3.2 Use Case Architecture and Components
	3.3 Runtime Monitoring
	3.4 Runtime Configuration

	4 Experiments and Results
	5 Conclusion
	Acknowledgements 
	References


