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Abstract
The pace of population ageing is increasing and is currently becoming one of the challenges our society faces. The introduc-
tion of Cyber-Physical Systems (CPS) has fostered the development of e-Health solutions that ease the associated economic 
and social burden. In this work, a CPS-based solution is presented to partially tackle the problem: a Deep Multimodal Habit 
Tracking system. The aim is to monitor daily life activities to alert in case of life-threatening situations improving their 
autonomy and supporting healthy lifestyles while living alone at home. Our approach combines video and heart rate cues to 
accurately identify indoor actions, running the processing locally in embedded edge nodes. Local processing provides inherent 
protection of data privacy since no image or vital signs are transmitted to the network, and reduces data bandwidth usage. 
Our solution achieves an accuracy of more than 80% in average, reaching up to a 95% for specific subjects after adapting the 
system. Adding heart-rate information improves F1-score by 2.4%. Additionally, the precision and recall for critical actions 
such as falls reaches up to 93.75%. Critical action detection is crucial due to their dramatic consequences, it helps to reduce 
false alarms, leading to building trust in the system and reducing economic cost. Also, the model is optimized and integrated 
in a Nvidia Jetson Nano embedded device, reaching real-time performance below 3.75 Watts. Finally, a dataset specifically 
designed for indoor action recognition using synchronized video and heart rate pulses has been collected.

Keywords  Cyber-Physical System · e-Health · Multimodal Machine Learning · User-adaptive · Edge computing

1  Introduction

E-Health brings together healthcare and Information and 
Communication Technologies (ICT) to tackle some of the 
most relevant challenges that our society is currently fac-
ing [1, 2]. One of these challenges is our aging population: 

due to the increasing life expectancy, by 2050 25% of the 
population in Europe and North America is expected to be 
over 65 years old [3]. At the same time, there is a growing 
interest for tools that enable users to take active control of 
their well-being by monitoring their lifestyle and health [4]. 
Particularly, Habit Tracking (HT) systems play a crucial role 
in increasing the efficiency of healthcare systems. For exam-
ple, by the early detection of risks such as home accidents, 
contributing to the independent living of the elderly at their 
own homes [5], or by promoting healthier lifestyles [6].

The evolution of the Internet of Things (IoT) and the intro-
duction of Systems-on-a-Chip (SoC) devices have acted as 
catalysts for the development of Cyber-Physical Systems 
(CPS) that provide cost-efficient distributed and scalable 
e-Health solutions for assisting people with needs [7–9]. CPS 
integrate distributed computation at their processing nodes, 
communication and physical processes that respond to their 
environment, potentially with humans in the loop [6, 10]. Par-
ticularly for e-Health, CPS provide distributed solutions for 
remote care and thus, they are the best-suited candidates for 
lifestyle monitoring systems [11].
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The core processing of lifestyle monitoring systems is action 
recognition. HAR (Human Activity Recognition) automatically 
labels human actions from images, videos, or inertial data from 
wearable devices [12]. With the recent exponential develop-
ment of Machine Learning, state-of-the-art solutions address 
action recognition using Deep Learning (DL) models [13, 14]. 
Multimodal DL architectures provide more robust and accurate 
HAR by taking advantage of heterogeneous data sources [15]. 
In particular, previous works have combined video with inertial 
sensors information [16], or audio and video [17].

In our work, two data sources are combined to develop a 
Two-Stream multimodal architecture for action recognition. 
The model integrates two streams from: RGB video and heart 
pulse rate. The video stream analysis is performed using an 
optimized version of the RGBI3D network [18] which is among 
the state-of-the-art works in recognition performance. The sec-
ond stream processes the heart pulse rate information collected 
from a SpO2 telemedicine module from RGB Medical [19]. A 
few works have already described solutions that use heart rate 
data to perform action recognition using Convolutional opera-
tions and Recurrent Neural Networks [20, 21]. However, these 
approaches are limited to ambulatory activities such as walking 
or running. To the best of our knowledge, this work represents 
one of the first approaches that combines these data modalities 
for action recognition.

Furthermore, edge computing has recently gained impor-
tance on distributed CPS [22], specially with the novel edge-
cloud paradigms [23]. Local edge processing enables dis-
tributed computing, reducing network bandwidth usage and 
shortening latency, while inherently ensuring the privacy of sen-
sitive information [24]. Our CPS uses high-performance power-
efficient embedded devices that provide a good performance 

vs power consumption trade-off: Jetson Nano SoMs (System 
on Module) [25, 26]. These cost-optimized embedded devices 
have limitations in terms of computation capabilities compared 
to high-performance workstations, generally used for machine 
learning applications. Therefore, this work proposes optimized 
DL models that reach real-time performance with the limited 
available resources while maintaining good accuracy rates for 
human action recognition tasks.

In this paper, we present an optimized Multimodal DL 
architecture for a CPS that monitors Habit Tracking. Next, 
the contributions of the work are summarized: 1) a custom 
dataset for indoor action monitoring is collected, including 
two modalities namely, video and heart rate data; 2) a novel 
Two-Stream DL architecture for HAR is developed, combin-
ing cues from video and heart rate (see Fig. 1); 3) optimized 
the HAR models for low-power embedded devices that reach 
real-time processing are presented; 4) finally, an optimized 
DL model is described to obtain an enhanced user-adaptive 
system towards the improvement of accuracy, specifically 
for the crucial recognition of critical actions.

2 � Related Methods

In this section, we describe the state-of-the-art for habit track-
ing systems and HAR applications, and methods that use tel-
emedicine modules to monitor vital signs.

Generally speaking, Habit Tracking is a component of 
remote healthcare monitoring systems with a significant socio-
economic impact. HT systems aim at improving the users' qual-
ity of life and it is also able to alert caregivers in case of emer-
gency. Approaches that include Habit Tracking are currently 

Figure 1   Multimodal DL architecture for human action recognition. The 
proposed Two-Stream model combines (top) RGB videos and (bottom) 
heart rate data from a SpO2 monitor (a medical Pulse Oximeter [19] that 

measures pulse rate and oxygen saturation, although the latter is not used in 
this work). The action prediction (inference) takes place in power-efficient 
embedded devices - Nvidia Jetson Nano -, reaching real-time performance.
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of interest for reducing healthcare costs at nursing homes and 
hospitals [27]. Additionally, Habit Tracking applications enable 
the monitoring of people with care needs at their own homes, 
especially relevant for the elderly and people with disabilities 
that live alone [28]. On the one hand, Habit Tracking systems 
help to detect potential risks and consequently to trigger alarms 
[29] offering safety and promoting the user autonomy. On the 
other hand, these systems also foster healthy lifestyle habits and 
are able to detect the progressive deterioration of the users [30], 
a convenient feature for doctors. Regarding some examples of 
the state of the art on habit tracking: in [31] authors focused on 
fall detection, proposing a system that notifies caregivers when 
falls occur using data from inertial sensors; in [32], the work 
is limited to the monitoring of medical parameters; or in [33], 
authors describe a system that uses wireless passive sensors that 
monitor energy consumption, temperature, and motion in order 
to find out about the behavior of the person at home.

2.1 � Human Activity Recognition

Human Activity Recognition (HAR) pursues the analysis and 
recognition of human actions from different data sources [12]. 
Based on the kind of source, HAR systems are split into two 
main categories: 1) systems that recognize human actions from 
data collected from smartphones, accelerometers in wrist-worn 
smart devices, or other wearable devices [21, 34]; 2) video-
based systems [35]. Both alternatives offer good results in 
terms of recognition performance using Deep Learning [34, 
36]. However, video-based HAR is a less intrusive approach 
since it merely analyzes video streams from cameras, avoiding 
the need to wear any device. It also represents an important 
advantage when considering the reluctance of some users to 
wearable devices [37].

Regarding the wearable sensors approach, CNNs (Convo-
lutional Neural Networks) and RNNs (Recurrent Neural Net-
works) are two of the most effective approaches when analyz-
ing signals [38]. Concretely, [39] proposes a model based on 
RNN layers such as LSTM (Long short-term memory) [40] 
to extract the temporal patterns of the signals retrieved from 
body-worn sensors such as accelerometers and gyroscopes to 
identify daily activities. Moreover, in [41] authors use CNN 
to extract the salient patterns of signals obtained from body-
worn and ambient sensors to identify human actions.

Regarding video-based approaches, the introduction of 
the 3D Convolutional networks for video processing boosted 
action recognition performance in terms of accuracy [42]. 3D 
Convolutional operations simultaneously allow extracting spa-
tial and temporal information from video streams. However, 
this comes with a high cost in terms of computational require-
ments compared to conventional 2D Convolutions, more 
common for single image frame analysis. In particular, action 
recognition based on 3D convolutions has been addressed 
through: 3D Residual Network [43] that proposed a 3D ResNet 

model [44] improving the state of the art for general action 
recognition; Temporal 3D ConvNet [45] that incorporated 3D 
filters to a modified DenseNet [46] architecture focusing on the 
only-temporal cues more than the traditional spatio-temporal 
approaches; or RGBI3D network [18] that inflates the Incep-
tion [47] network with 3D operations. Concretely, the RGBI3D 
network [18] is a very interesting approach that achieves high 
accuracy at a reasonable computational budget for the Kinet-
ics [48] dataset, a widely used dataset for action recognition. 
Conveniently, the pre-trained weights of the RGBI3D model 
for the Kinetics dataset are publicly available. The availability 
of the pre-trained model enables boosting the performance of 
action recognition on smaller datasets through Transfer Learn-
ing, also benefiting generalization [49].

2.2 � Telemedicine Modules

Telemedicine modules such as electrocardiograms (ECG) or 
pulse oximeters ( SpO2 ) contribute to decentralize patient care, 
moving it outside the hospital, favoring the decrease of hos-
pitalization costs, and increasing equality of care for people 
that live in isolated environments through e-Health [50, 51].

Our paper describes a solution with a pulse oximeter [19], 
a module that monitors the heart rate and oxygen saturation 
of patients through pulse oximetry [52]. Pulse oximetry is 
a non-invasive technique used to continuously measure the 
arterial oxygen saturation of the patient [53]. This measure-
ment is performed via photoplethysmography: since arte-
rial blood contains basically two main oxygen absorbents 
(oxyhemoglobin and reduced hemoglobin), this method uses 
light emitters with two different wavelengths (red and infra-
red) to capture the changes of arterial blood volume and 
to obtain the oxygen saturation and heart rate information 
[54]. The set of signal data obtained through this method is 
called a photoplethysmogram (PPG) or pulse rate signal. In 
summary, PPG signals provide information related to cardio-
pulmonary system [53].

The information extracted by PPG sensors can be analyzed 
through Deep Learning for a wide variety of applications 
such as: in [55, 56], authors analyze pulse rate signal to pro-
vide a precise heart rate estimation; biometric identification 
[57]; emotion recognition [58]; or Activity recognition [20, 
21], identifying ambulatory activities such as: sitting, walk-
ing, jogging, or running.

2.3 � SpO
2
 Pulse Oximeter

In this work, we have selected the wireless battery-powered 
SpO2 (pulse oximeter) module [19] from RGB medical 
devices for measuring the vital signs of the subjects in a 
non invasive way. This pulse oximeter generates the Photop-
lethysmogram (PPG) wave or pulse rate signal that provides 
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information about the changes of pressure in the blood ves-
sels. Its sampling frequency is 66.67Hz (about 15 ms).

Based on the physiological signal, the module outputs two 
main measures: 1) Oxygen Saturation ( SpO2 ) in arterial blood 
(0-100%); and 2) Heart Rate (30-250 bpm). This telemedicine 
module provides high resolution and accuracy of the meas-
urements: for Oxygen saturation values, it offers a resolution 
of 1% step with an accuracy of ±2 digits for 70-100% SpO2 ; 
for the heart rate, it offers a resolution of 1 bpm step and an 
accuracy of ±3% . Additionally, the oximeter alerts the user 
when the sensor is disconnected or the signal is weak.

For our model, we analyze the PPG signal (pulse rate) to 
infer indoor human actions. Although other devices can be 
used to obtain the pulse rate information, this SpO2 pulse 
oximeter also monitors the oxygen saturation, enabling the 
early detection of hypoxemia: the condition of an abnormal 
below level of oxygen in the blood ( < 93% ) [52].

3 � Our Approach

We present a Two-Stream DL model for recognizing human 
actions from two modalities: video and heart rate informa-
tion. First, the two streams are separately developed: a DL 
model that uses video and another that uses the vital signs 
(heart pulse rate). Next, a new model that combines both 
streams is proposed to create a Multimodal architecture that 
obtains the best recognition rates. With the improved perfor-
mance, we plan to enhance the recognition of critical actions, 
in order to reduce false alarms. Afterwards, a user-adaptive 
approach is studied to evaluate the benefits of specializing the 
DL model to different subjects in terms of recognition per-
formance. This additional adaption is reasonable considering 
that the system will be of personal use and will also enable 
the possibility of continuous refinement over time. Finally, to 
train the DL architectures, a dataset has been collected with 
synchronized data from both sources of information.

3.1 � Deep Learning Models for HAR

The proposed solution for activity recognition is a Two-Stream 
DL model. The first stream takes care of the video input, and 
the second analyzes the heart rate. The first stream runs the 
RGBI3D network and uses resource-intensive operations such 
as 3D convolutions to extract spatio-temporal information from 
the video. The second stream is a 1DCNN + LSTM network 
that extracts temporal patterns from the 1D PPG signal. The 
latter stream requires significantly less computational require-
ments than the other one, although the former is more accurate 
(video information is more discriminant for action recogni-
tion). Additionally, the final layers combine features from 
both data modalities using a custom layer (WeighPerClass) 

that weighs the contribution of the streams to every action for 
the final prediction. The code is publicly available on GitHub1.

3.1.1 � RGB Video Stream

The architecture for the video-based HAR stream is based on 
the RGBI3D network (see Fig. 2) [18]. This model performs 
action recognition from a regular video stream recorded 
at 25 fps with a resolution of 224 × 224 . However, it is 
a resource-demanding network, mainly due to the use of 
the 3D Convolutional layers. Since our CPS nodes are low-
power embedded processors with limited resources, an adap-
tation of the model is required. The spatial resolution and 
temporal framerate are downsampled, reducing the opera-
tions of the input layers.

Transfer learning [49] and specifically fine tuning [59] is 
applied to prevent overfitting and reduce training time, not 
requiring large amount of training data. Transfer learning and 
fine tuning are methods to reuse pre-trained DL models for 
similar tasks, taking advantage of the knowledge extracted by 
the DL models by retraining them for a few epochs.

Concretely, the model is fed with a stream of 64 frames 
with a spatial resolution of 112 × 112 (2560 ms of video). 
Next, the network is trained following these steps:

–	 A data augmentation procedure is added to prevent over-
fitting. A spatio-temporal window of each video is ran-
domly cropped and fed to the network every epoch. The 
video is also randomly flipped and rotated.

–	 Transfer learning is applied using the RGBI3D network 
[18] to take advantage of the pre-trained weights that 
extracted the knowledge from the Kinetics dataset. This 
dataset includes all kinds of actions such as human-object 
or human-human interactions ranging from e.g. people 
playing sports or instruments to people hugging.

–	 Finally, fine tuning is performed to obtain a faster conver-
gence to our own indoor actions, for which we use the data-
set presented in [11] for training. The training is done for 40 
epochs with a batch size of 8, using the Adam optimizer.

Moreover, after training and in the pursue of creating 
a more accurate model that adapts to the user behavior, 
the model is fine tuned again for the user during an initial 
configuration phase. Specializing the DL model for each 
user makes the system learn the user model, concerning to 
the relevant features for action recognition. It is a simple 
approach for a user-adaptive system [60] that achieves sig-
nificant improvement in accuracy for action recognition.

1  https://​github.​com/​DaniD​eniz/​deep-​multi​modal-​action-​recog​nition

https://github.com/DaniDeniz/deep-multimodal-action-recognition
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3.1.2 � Pulse Rate Stream

A medical pulse oximeter measures pulse rate, a 1D signal 
whose frequency indicates the heart-rate of the patient. The 
amplitude and frequency of the pulse signal vary according 
to the activity that the user is performing [55].

We propose a novel model (see Fig. 3) to analyze pulse rate 
data and infer indoor human actions. This DL model is formed 
by two main types of layers: 1) 1D Convolutions and 2) LSTM 
layers. The 1D Convolution layers are used to extract the local 

variations of the points of the signal. LSTM is a Recurrent Neural 
Network (RNN) that extracts the temporal information at a global 
scale via memory to learn sequences of patterns. This DL net-
work also uses dropout layers: it drops some connections between 
the 1D Convolution layers at training time to prevent overfitting.

Furthermore, the DL model is designed to accept an input 
of variable size. Thus, the network is fed at training and infer-
ence with a variable number of points. In this way, the net-
work is enabled to learn for adaptive time intervals, ensuring 
a better generalization of the model.

Figure 2   The RGBI3D-based stream for action recognition from Video 
is based on the Inception model [47]. It uses 3D convolutional layers 
to analyze spatio-temporal information from the video, pooling layers 
to reduce data resolution (and thus, the computation and total param-
eters of the network), and dropout layers to avoid overfitting. Refer to 

[18] to inspect the operations carried out on the Inception blocks. This 
is a complex DL model with more than 12 million weight parameters. 
f: Number of filters, k: kernel size, p: pool size, rate: fraction of dropped 
connections between layers.

Figure 3   1DCNN + LSTM DL stream for action recognition from pulses. 
It uses 1D convolutional layers to analyze local variations of the pulses, 
LSTM layers to learn temporal patterns, and dropout layers to avoid over-
fitting. This DL model amounts to a total of 650000 weight parameters 

(approximately 20x less complex than the video-based stream architec-
ture). f: Number of filters, k: kernel size, rate: fraction of the dropped con-
nections between layers.
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As for the training procedure, it is done as described below:

–	 First, data augmentation is performed sampling a temporal 
window in a different location of the pulses measure at 
every time. Data augmentation contributes to increasing 
the accuracy while also preventing overfitting, and it is 
very helpful when, as in our case, the amount of available 
data is scarce for DL training. It is ensured that at least, the 
last 2.5 seconds of the selected signal correspond to the 
actual action that is being analyzed. The rest of the sample 
can partially overlap with the previous action (actions in 
the dataset are recorded in a continuous batch).

–	 The 1DCNN + LSTM stream is trained from scratch for 
100 epochs, using the Adam optimizer with a batch size 
of 4. Then, the weights that correspond to the epoch with 
the lowest validation loss are selected. The input is on 
average 6.6 seconds long (approximately 440 points).

Similarly to the video-based approach, the DL model is 
specialized in an initial configuration phase, to adapt to the 
user features, behavior, and scenario. The final stage of spe-
cialization makes the system become a user-adaptive solu-
tion that achieves better accuracy results.

3.1.3 � Two‑Stream DL Network for HAR

The proposed multimodal architecture for the Habit Track-
ing system integrates information from the video and pulse 
rate streams. Two approaches are followed to combine the 
streams: 1) the addition of a layer that sums up logits output 
from both streams; 2) the addition of a new (WeighPerClass) 
layer that learns to weigh the individual contributions for 
every action. The first simple approach consists in aggregat-
ing the unnormalized logit predictions from both streams 
and pass them to a softmax activation function. The second 
approach follows the next procedure: the logit predictions 
from both streams are concatenated (L), and passed into a 
custom layer named WeighPerClass. This layer is built using 
a weighing matrix W ( NClasses × NStreams ), initialized 
to 1 (in our case, NStreams is 2 and NClasses is 10). Then, 
a softmax function combines the contribution from each 
stream and for each class (see Eq. 1)

After the weighing phase, another softmax activation 
function is applied to obtain the final output of the Multi-
modal DL architecture.

The WeighPerClass layer of the DL model is trained only for 
5 epochs, starting with a learning rate of 0.01 that is reduced by 
a factor of 2 after every epoch. Note that the learning rate (lr) 

(1)
WeighPerClass(W, L)i,j =

eWi,j

∑nstreams

k=1
eWi,k

⋅ Li,j

∀i∈{1,...,nclasses} and ∀j∈{1,...,nstreams}

has a huge impact on the result: large learning rates may lead 
the network to suboptimal solutions while too small values result 
in insignificant variations on the original weights, causing the 
process to last very long or in the worst case, to get stuck.

As a result, the Two-Stream DL model improves action 
recognition performance, especially for the critical actions 
such as falling down or lying on the floor reducing false 
positives, benefiting from features extracted from both video 
and heart rate data.

4 � Discussion and Results

In this section, we first describe the collection of our custom 
IAPV dataset for lifestyle monitoring systems and its struc-
ture. Next, we present results to prove the benefits of special-
izing the DL model for each user, supporting our decision to 
build a user-adaptive system. Also, we present an ablation 
study of our multimodal DL model using our IAPV dataset, 
assessing the independent contributions of the video and 
pulse rate streams. Finally, since our goal is a CPS with 
nodes that perform HAR, the DL models are optimized and 
their performance and power consumption (essential quali-
ties for embedded edge nodes) are discussed.

4.1 � Multimodal Indoor Action Dataset ‑ IAPV

Since Machine Learning systems learn from examples, one of 
the most important elements when building a Machine Learn-
ing is the availability of datasets for the application field. The 
quantity and quality of the data is crucial and has a direct 
impact on the system recognition performance [61]. Currently, 
there are publicly available datasets for performing activity 
recognition from video [48, 62] and pulses rate information 
[56]. However, there are no available datasets that provide 
video and pulses data synchronously for action recognition.

To overcome this problem, we collected a multimodal 
Indoor action recognition dataset (IAPV), gathering syn-
chronized videos and pulse rate information. This dataset 
contains indoor scenes of people performing actions at dif-
ferent scenarios at home such as bedrooms, living rooms 
and kitchens. The dataset was recorded by 5 actors (3 men 
and 2 women) at home. Actions were recorded in continu-
ous batches of ten minutes, using the RGB Medical tel-
emedicine ( SpO2 ) module for the pulse rate data. Actors 
carried out different actions relevant for lifestyle monitor-
ing as listed in Table 1 such as cleaning, eating, sitting 
down, walking, or watching tv. Also, some critical actions 
were included such as falling down or lying on the floor 
that are useful to identify whether a subject has suffered a 
life-threatening situation that requires assistance. Figure 4 
shows three examples that illustrate some of these actions 
performed by different actors.
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Regarding the data preparation, videos were first manually 
segmented into clips and then labeled. Next, pulse data were 
also automatically labeled since they are synchronized with vid-
eos during collection. As mentioned, Table 1 shows the nine 
action labels contained in the dataset. The no action class rep-
resents scenes of empty rooms without people to help the DL 
model focus on humans when recognizing the actions instead 
of focusing on the environment. This class was not taken into 
account for the pulse rate stream (no humans are involved).

Multimodal instances were manually assigned to each 
split approximately: 55% training, 15% validation, and 30% 
testing. Data is carefully split guaranteeing that all data from 
a batch of actions is assigned to the same set, ensuring the 
fairness of the experiment.

Furthermore, Table 2 shows the number of clips recorded 
per actor. The actor ID is used to perform individual analysis 
of the recognition performance depending on the subject, 
and to enable the user-adaptive system. Bear in mind that, 
after the system deployment, more data will be collected 
from subjects to fine-tune the system and improve its per-
formance in real situations in subsequent iterations.

In this section, the performance of the model using the 
IAPV dataset is presented, focusing mainly in two metrics: 
accuracy, and macro F1-score. The macro F1-score is the 
harmonic mean of the precision TP

TP+FP
 and recall TP

TP+FN
 val-

ues. This metric equally weighs the contribution of every 
class, thus it takes into account the issues of an unbalanced 
dataset as it is the case with our IAPV dataset.

Firstly, an evaluation of the recognition performance of 
the Two-Stream multimodal architecture is shown. Next, an 
evaluation of the customization stage that is added to spe-
cialize the system to make it respond better to a specific user 
is presented. Finally, an ablation study has been included 
to understand the independent contributions of the streams.

Figure 4   Samples of the IAPV dataset. It shows three of the subjects performing the following actions: walking, watching tv, and falling down. 
Note how pulses are synchronized with the video stream and how they greatly vary depending on the specific action.

Table 1   Number of clips of the IAPV Dataset.

Action name Train Val. Test Total

blowing nose or sneezing 38 10 15 63
cleaning 55 17 34 106
eating 57 18 32 107
falling down 34 11 16 61
lying on the floor 53 12 36 101
sitting down 66 22 29 117
standing up 95 30 41 166
walking 158 34 90 282
watching tv 60 19 43 122
no action 57 14 32 103
Total 673 187 368 1228

Table 2   Number of clips recorded by each actor (IAPV).

Actor ID Gender Train Val. Test Total

0 M 406 92 123 621
1 M 32 0 85 117
2 M 70 25 29 124
3 F 70 0 63 133
4 F 95 70 68 233



1044	 Journal of Signal Processing Systems (2023) 95:1037–1050

1 3

4.1.1 � Two‑Stream Multimodal Network Evaluation

The Two-Stream network processes input data from two 
different sources (video and pulses rate). Evaluation is 
addressed using a sliding window of 64 frames and averag-
ing the inference confidence along the video clip, for every 
action instance. Regarding the pulse rate signal, inference 
uses chunks of 6.6 seconds (440 points) synchronized with 
the video. When the system is deployed, multimodal data is 
synchronized by timestamping the signals received on the 
node. Then, the DL model is fed with batches of data rep-
resenting the same time slice of images and vital sign data.

4.2 � Evaluation of the DL Architecture

This network fuses the information retrieved by the streams 
following two approaches: 1) A naive approach that sums 
up the predictions of both streams; 2) An approach that uses 
the custom layer WeighPerClass to weigh the contribution of 
every stream on the prediction of every class. Table 3 shows 
that if the model uses the WeighPerClass layer, it reaches 
better results in terms of accuracy and F1-score, obtaining 
1.7% and 2.5% higher values respectively compared to the 
naive approach. This improvement in performance when 
using the weighing custom layer is due to the network learn-
ing the right contribution of each stream per action.

In particular, using the custom weighing layer, for stand-
ing up action the video stream has a contribution of 71% for 
the prediction of this class, meaning that the video is a much 
more discriminant feature for this action. However, pulse 
rate data brings relevant information for identifying people 
falling down or lying on the floor. For these actions, the 
video stream contribution is reduced to approximately 60% 
and the pulse rate network reaches 40% of the contribution 
for the confidence of the predicted action.

Finally, observe in the confusion matrix (Fig. 5) that the 
Two-Stream model obtains 93.75% of precision and recall 
values for the class falling down, and the F1-score for lying 
on the floor reaches 72%. This model also reaches great rec-
ognition performance for the actions walking or cleaning 
among others. For example, it offers a high recall for watch-
ing tv and reasonable accuracy when identifying people eat-
ing, two relevant actions towards the definition of strategies 

for promoting healthy lifestyles. However, it has misleading 
classifications between some actions. Note also that the top 
2 accuracy of the DL model is 89.9%. This means that with 
high probability, the carried action will be identified as one 
of the top 2 with higher confidence.

The presented performance values show how this model 
offers good results for indoor action recognition, enabling 
the lifestyle monitoring application. It also provides very 
high recognition accuracy for potentially risky situations 
such as falling down or lying on the floor. This minimizes 
the triggering of false alarms and increases the probability  
of accurate identifications, reducing costs and building social  
trust in these systems.

4.2.1 � Evaluation of the User‑adaptive System

The presented Two-Stream DL model is trained using the 
whole IAPV dataset. However, one of the objectives of this 
work is to study the effect of specializing the DL model for 
each actor. As mentioned in the introduction, after a first user-
adaptation stage, the overall recognition rate of the system is 
significantly improved leading to a higher user engagement.

The specialization is addressed in a two-step procedure: 
firstly, each model is trained leaving one actor out; secondly, 
DL model is fine-tuned using the whole IAPV dataset (includ-
ing training data of the new subject). Although the second step 
could achieve better results when training the specialized DL 
model using only the selected actor’s clips, this was rejected 
due to the lack of training data. Building a larger dataset with 
more actors and samples would be crucial for the latter.

Table 4 presents the results of the user-adaptation proce-
dure; accuracy and F1-score are evaluated only for the test 
set of the selected actor before and after the specialization 
phase with the Two-Stream architecture. The accuracy after 
specialization is increased on average approximately 18%, 
and the F1-score in 21.85%. This shows how adapting the 
model to the user remarkably improves recognition rates.

Let us point out, for example, the case of Subject 0 and Sub-
ject 4. Both subjects account for the largest number of sam-
ples (see Table 2) and consequently, the greatest improvements  
in terms of F1-score (around 33%) are found for these two sub-
jects. Obviously, the number of samples has an impact on this 
user-adaptive approach but even a small number of samples 
(such as the 32 clips from Subject 1) may lead to a substantial 
improvement (20% for the F1-score). In any case, using the 
samples from other subjects at training benefits generalization, 
leading also to better recognition performance rates.

4.2.2 � Ablation Study

This section discusses the contribution of each stream to the 
results of the Two-Stream multimodal architecture.

Table 3   Two-Stream evaluation.

Bold emphasis highlights the model with highest recognition performance

Model name Accuracy F1-score

Two-Stream 79.34 76.35
(naive approach)
Two-Stream 80.70 78.27
(weighing custom layer)
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Figure 6 shows precision-recall curves for the Two-Stream 
architecture and the separated streams. PR-curves show the 
trade-off between the precision and recall metrics for differ-
ent thresholds. The area under the curve (AUC) is related to 
precision-recall values: larger AUC denotes better results. 
Note how the 1DCNN+LSTM reaches poor values of AUC 
when evaluated independently. However, it contributes to 
improving the AUC of the Two-Stream architecture by 2.8% 
with respect to the RGBI3D stream. Since values shown  
here are the average for all the actions, one could consider 
this contribution not very relevant. However, the substantial 
improvement in the recognition for certain actions justifies 

Figure 5   Confusion matrix 
of the evaluation of the 
Two-Stream model using the 
weighing custom layer over the 
IAPV dataset. Note how the 
DL model obtains an F1-score 
of 93.75% when identifying 
the critical action falling down. 
The model also successfully 
recognizes other actions use-
ful for habit monitoring such 
as: walking or watching tv. 
Recognition is slightly degraded 
for actions such as blowing 
nose or sneezing, but this usu-
ally occurs when the subject 
is simultaneously carrying out 
other activities (eg. cleaning or 
watching tv).

Table 4   User-adaptive evaluation.

Bold emphasis points out at which stage of the user-adaptation procedure 
the F1-score is highest

Subject Before specialization After specialization

Accuracy F1-score Accuracy F1-score

0 67.47 57.34 82.92 76.71
1 78.82 72.57 91.76 87.34
2 62.06 41.88 72.41 51.74
3 61.90 58.06 68.25 57.53
4 76.47 71.80 95.58 95.15

Figure 6   Macro-average Precision-Recall curves for the Two-Stream 
architecture and the two separated streams. Although the pulse rate 
stream (1DCNN+LSTM) obtains poor precision-recall values, this 
computationally efficient stream brings gains in terms of AUC (2.8%) 
for the Two-Stream network compared to the RGBI3D model, and 
helps increasing recognition for critical actions.
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the combination (see Table 5 and clarification in the next 
three paragraphs).

The 1DCNN+LSTM stream analyzes the pulse rate signal 
using 1D convolutions and LSTM layers. The low complex-
ity of this architecture coupled with the one-dimensional 
signal feeding the network makes it computationally effi-
cient and thus, it offers very fast inference. The analysis of 
Table 5 shows that using only this stream is not enough for 
recognition. This is mainly due to the lack of distinctive 
features in the pulse rate for some actions such as eating or 
sitting down. However, the model is much more accurate to 
discriminate between actions such as walking, falling down 
or lying on the floor.

Regarding the RGBI3D stream, it provides great recogni-
tion results at the expense of high computation requirements, 
mainly due to the use of 3D convolutional operations. Note 
that it has 20x more weight parameters compared to the 
1DCNN+LSTM model. Nevertheless, it achieves high rec-
ognition performance for lifestyle monitoring. In contrast to  
the pulse rate stream, it accurately recognizes actions such as 
eating, sitting down or watching TV. Remarkably, the video 
model achieves an F1-score of 93.75% for the critical action 
falling down. On average, it reaches an accuracy of 78.26% for 
the IAPV dataset. Despite of this, it presents significant confu-
sion between lying on the floor and no action. Obviously, in 
both cases the network does not detect any motion in the scene.

As shown, both streams are complementary and their 
combination boosts the model performance, including the 
critical actions with most interest for our case. For exam-
ple, the F1-score of lying on the floor improves by 18%. 

Additionally, F1-score of daily activities such as walking or 
cleaning are also improved by 3% and 8.9% respectively (see 
also Fig. 5). Therefore, despite its low performance when 
evaluated independently, the 1DCNN+LSTM network deliv-
ers more robust predictions for the Two-Stream architecture 
at a very low cost.

4.3 � Edge Processing Nodes

The proposed Two-Stream multimodal DL architecture for 
action recognition has been designed and optimized to be 
integrated on a CPS for Habit Tracking system that runs 
on low-powered execution boards. Concretely, we use the 
Nvidia Jetson Nano [26] embedded systems.

As mentioned in the introduction, local processing in a 
distributed CPS presents advantages such as inherent data 
privacy, or reduction of data bandwidth usage and latency. 
However, it presents limitations in terms of energy and 
resource availability that lead to design solutions that pro-
vide good performance vs accuracy trade-offs. As described 
in Section 4.1.1, the proposed Two-Stream architecture 
offers great results for the recognition of critical actions and 
thus, it would minimize false alarms.

The presented DL models were optimized through Ten-
sorRT 7 [63] to embed them on the Jetson Nano devices. Ten-
sorRT allows the DL model to be optimized quantizing the 
parameter bitwidths (eg. INT8 - 8-bit integers, or FP16 - 16-bit 
floating point, instead of the standard 32-bit floating point val-
ues) of weights and activation functions. It also enables addi-
tional resource savings by fusing layers, or reusing memory 
to reduce communication latencies. The overall optimization 
reduces inference time, on average 10% faster, and minimizes 
GPU memory usage up to 25%. Table 6 compares inference 
times, energy consumption, and F1-scores for the two streams 
independently and the final multimodal solution. The multi-
modal architecture reaches real-time performance with infer-
ence times under 1.7 s using input batches of 64 frames or 2560 
ms. The efficient 1DCNN + LSTM stream is able to analyze 
a 6.6-second long signal in just 16 ms at a very low energy 
budget. As a result, fusing the video and pulses rate streams 
leads the solution to an enhanced recognition performance in 
terms of F1-score of 2.4% with a low cost in terms of time 
performance and energy.

Finally, in order to illustrate the power consumption, the Mul-
timodal network would continuously run on a 5V 25.000mAh 
battery-powered Jetson Nano for more than 30 hours.

Table 5   Evaluation of individual streams per class.

Action 1DCNN+LSTM RGBI3D

Precision Recall Precision Recall

blowing nose or sneezing 0.00 0.00 58.33 46.67
cleaning 41.67 29.41 64.70 97.05
eating 13.63 9.37 85.18 71.87
falling down 20.00 56.25 93.75 93.75
lying on the floor 33.33 41.67 66.67 55.55
sitting down 16.67 10.34 92.00 79.31
standing up 38.00 46.34 82.05 78.04
walking 50.68 41.11 94.73 80.00
watching tv 47.45 65.11 64.51 93.02
no action - - 76.67 71.87

Table 6   Performance on the 
Nvidia Jetson Nano.

DL model Inference time (ms) GPU (W) Device (W) F1-score

RGBI3D 1604.15 ± 0.702 1.24 ± 0.87 3.68 ± 0.97 76.41
1DCNN + LSTM 16.60 ±  0.480 0.09 ± 0.02 2.42 ± 0.05 30.48
Multimodal network 1626.96 ± 2.812 1.25 ± 0.87 3.75 ± 0.97 78.27
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5 � Conclusions

In this work we have presented a Deep multimodal (Two-
Stream) neural network for an e-Health CPS for monitoring 
the elderly at their home. This solution fuses video and heart 
rate information to recognize human daily activities with 
high accuracy. In particular, the IAPV dataset was intro-
duced to train and evaluate the performance of the habit 
tracking system on a real-world scenario where the subject is 
monitored using a video camera and a device that monitors 
the pulse rate (eg. the SpO2 telemedicine module from RGB 
Medical devices). The proposed multimodal Two-Stream 
architecture reaches a very high recognition performance 
improving the only-video action recognition, specially for 
critical actions that are of utmost interest for our case. Addi-
tionally, the performance improvements come at a very low 
cost in terms of energy and inference time.

The correct recognition of critical actions is crucial to 
trigger alarms in case of accident, for example. Particularly, 
our Two-Stream model is able to recognize people falling 
down and lying on the floor with a F1-score of 93.75% 
and 72%. Additionally, we have proposed a one-time user-
adaptive stage that improves further the recognition of these 
critical actions. This stage shows how by recording only a 
few samples and refining the DL model for a few epochs, 
the recognition performance (F1-score) for a new subject is 
boosted in average by 21%.

Finally, in our CPS, the multimodal Two-Stream model 
runs on power-efficient Nvidia Jetson Nano devices. These 
embedded devices enable local processing and allow our 
CPS to reach real-time inference, consuming less than 3.75 
W. This means that in a battery-powered device it would 
continuously run for more than a day. Additionally, this CPS 
is easily scalable in terms of computational resources due to 
its low energy consumption.

Our e-Health cost-efficient solution has multiple applica-
tions helping with adapted habit monitoring of patients with 
a specific disease pathology, or assisting health-care pro-
fessionals to enhance tailored activity programs for healthy 
lifestyle to their patients, or in general helping people with 
needs to safely live autonomously. In future works, we plan 
to include new telemedicine modules for concrete medical 
conditions such as heart arrhythmias. We are also interested 
in working on monitoring systems that evaluate the deterio-
ration of patients or recovery after serious injuries, to help 
medicine professionals create improved targeted therapies 
based on the evolution of the collected data.
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