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Abstract
In computer-vision feature extraction algorithms, compressing the image into a sparse set of trackable keypoints, empowers 
navigation-critical systems such as Simultaneous Localization And Mapping (SLAM) in autonomous robots, and also other 
applications such as augmented reality and 3D reconstruction. Most of those applications are performed in battery-powered 
gadgets featuring in common a very stringent power-budget. Near-to-sensor computing of feature extraction algorithms 
allows for several design optimizations. First, the overall on-chip memory requirements can be lessened, and second, the 
internal data movement can be minimized. This work explores the usage of an Application Specific Instruction Set Processor 
(ASIP) dedicated to perform feature extraction in a real-time and energy-efficient manner. The ASIP features a Very Long 
Instruction Word (VLIW) architecture comprising one RV32I RISC-V and three vector slots. The on-chip memory sub-
system implements parallel multi-bank memories with near-memory data shuffling to enable single-cycle multi-pattern vector 
access. Oriented FAST and Rotated BRIEF (ORB) are thoroughly explored to validate the proposed architecture, achieving a 
throughput of 140 Frames-Per-Second (FPS) for VGA images for one scale, while reducing the number of memory accesses 
by 2 orders of magnitude as compared to other embedded general-purpose architectures.

Keywords  Vision-based SLAM · Feature extraction · ORB · ASIP

1  Introduction

Many hurdles need to be overcome as robots make the tran-
sition into full autonomous devices, chief among them is 
the efficient computation of Simultaneous Localization 
And Mapping (SLAM). The real-time inference complex-
ity, from unstructured data to estimates of pose and 3D map 
in embedded systems, hinders the rollout of those appliances 
into the market. The use-cases of these autonomous devices 
are constantly growing, as with Unmanned Aerial Vehicles 
(UAVs) for instance, which are potentially employed in a 
broad range of different applications from the delivery of 
goods [1], to traffic monitoring [2], surveillance [3], search-
and-rescue [4], precision farming [5], environmental survey-
ing [6] and assessment of woodlots [7]. These applications 
feature in common the need for navigation and object avoid-
ance, while performing mission-specific tasks to the fullest.

In the case of highly automated cars, in which the vehicle 
is in charge of performing all safety-critical functions for the 
entire trip, the navigation algorithms are performed in a het-
erogeneous computing system comprised of a combination 
of server-grade processors, and several GPUs. In [8], it has 
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been shown that the combined power of such platforms sums 
up to 5 kW, when considering the necessity of redundant 
computations. To put this into perspective, the computation 
of such algorithms in level 4 autonomous vehicles draws 
roughly a quarter of the overall current median energy con-
sumption of 19.6 kWh/100 km across the portfolio of Tesla 
cars [9]. On the other hand, for miniaturized devices such 
as pico-drones, [10] highlights the gap between the 100 mW 
power required for a 100 mg drone to reach stable flight, and 
the 3 W of power consumed by the general-purpose off-the-
shelf processor integrated in the smallest commercial UAV 
executing SLAM algorithms.

In order to overcome this challenge, in this work we 
propose an Application Specific Instruction Set Processor 
(ASIP) whose instruction set and memory architecture are 
focused in feature extraction algorithms such as Oriented 
FAST and Rotated BRIEF (ORB), a crucial building block 
of indirect-sparse SLAM. The following sections are organ-
ized such that the SLAM background, prior art, and ORB 
algorithm are introduced in sections 1 to 3, followed by the 
dataflow, dependencies, and kernel operations analysis dis-
cussing the intrinsic parallelism opportunities in section 5. 
The other half concerns architectural details of the proposed 
hardware implementation and its evaluation.

2 � SLAM Background

In the context of visual-based based SLAM, we can catego-
rize the models into four different groups, based on how the 
input data to the model are processed (direct vs indirect), 
and the resolution of the 3D reconstruction (dense vs sparse) 
[11]. The choice of which SLAM paradigm to support in 
hardware plays a crucial role in alleviating the operational 
complexity and memory requirements of the resulting sys-
tem. Therefore, a brief overview of the trade-offs involved 
is needed.

In general, SLAM is a greedy algorithm that, given the 
set of noisy measurement data � , estimates the camera poses 
and geometry {�,�} that maximizes a likelihood function as

Concerning the input, indirect methods [12, 13] obtain 
the measurement data � by a two-step process. First, the 
images undergo a pre-processing step that transforms them 
into a sparse set of keypoints, in which point correspond-
ences can be found across different frames, as illustrated in 
Fig. 1. A following probabilistic step is necessary in order 
to obtain a set of true correspondences, discarding outlier 
observations, and the results are interpreted as the noisy 
measurement data in Eq. 1. Consequently, the optimization 
target becomes minimizing the reprojection error between 

(1){�∗,�∗} = argmax{�,�}P(�|�,�).

the reconstructed 3D points and their projections into the 
cameras, together with the measured data. Although sensi-
tive to false point correspondences, these indirect methods 
are robust to scaling, rotation, and illumination changes, as 
the geometry is retrieved based on features. From a device 
perspective, indirect methods have the upper hand as images 
are sequentially compressed into features that encode the 
surroundings of pixels, and thus are suitable for privacy-
aware systems.

Direct methods [14, 15], on the other hand, use the raw 
RGB image data, capturing the actual differences of pixel 
intensities over time as the noisy inputs to the model. The 
process of pose estimation consists of finding a solution that 
projectively warps a reference frame into another based on 
minimizing the photometric error [16]. An advantage of 
these models over indirect methods is that pixels are not 
required to be recognizable by themselves, thus steps such 
as feature extraction and matching are not used. However, 
direct methods are sensitive to illumination variations and 
noise which are modelled as outliers, as pixels are compared 
based on a constant brightness assumption [17]. Another 
drawback is that direct methods have a narrower attraction 
basin [14], and consequently are more sensitive to errors of 
the initial pose estimates.

Regarding the reconstruction � , sparse SLAM systems 
result in a cloud of scattered 3D points, which are inferred 
based on a sparse set of the input data, whereas dense meth-
ods seek to reconstruct all the observed 2D image points. 
The computation in real time of dense methods may not 
align with the constraints of low-power embedded systems, 
as every observed pixel must be reconstructed.

Figure  1   Representation of an indirect-sparse SLAM pipeline. Fea-
tures (in green) are extracted and matched in a camera pair, which 
enables both the estimation of relative camera pose, and reconstruc-
tion of a sparse 3D model.
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As the number of cameras and map points grow, even when 
considering sparse methods, they rapidly render the embedded 
computation of Eq. (1) infeasible. This is due to the fact that 
the size of the Jacobian matrix, computed in bundle adjust-
ment, is proportional to the number of covisible points times 
the number of cameras that observed them. Consequently, 
navigation based on a very scarce map of the local surround-
ings paves the way forward for power-constrained devices, 
emphasizing the need for efficient hardware solutions sup-
porting indirect-sparse SLAM algorithms.

Typically, the structure from motion pipeline for indirect-
sparse SLAM systems consist of: extracting and matching 
features across the frames; retrieving an initial estimate of 
relative camera poses, and initial reconstruction of the 3D 
points based on the triangulation of correspondences; opti-
mizing those initial pose and 3D-point estimates as in Eq. (1) 
based on the reprojection error (local bundle adjustment). As 
more frames are observed, the same processes are repeated, 
and a global bundle adjustment over all 3D points and cam-
eras needs to be performed.

3 � Prior Art

Motivated by the computational complexity and recurrence 
of feature extraction in indirect-sparse SLAM systems, it 
becomes a target for hardware acceleration. There are sev-
eral feature extraction algorithms, most noticeable in the 
context of SLAM are: Scale-Invariant Feature Transform 
(SIFT) [18], Speeded Up Robust Features (SURF) [19], 
and ORB [20]. Although SIFT produces arguably the most 
robust features, the operations involved in the algorithm are 
more complex than the others, while the SURF algorithm 
is under patent protection. This leaves us with ORB which 
has features that are scale- and rotation-invariant, has lower 
complexity, and is an open source algorithm.

Several real-time implementations of ORB can be found 
in the literature, across different architectures. Originally 
ORB is implemented on a general-purpose CPU, achieving 
65 Frames-Per-Second (FPS). In [21] an embedded imple-
mentation on a System on Chip (SoC) is found, reaching 179 
FPS for 400 × 400 images. On FPGAs as in [22], a real-time 
multi-level implementation of ORB can be found, which 
identifies corners with only the Feature from Accelerated 
Segmented Test (FAST) and supports VGA images, at 67 
FPS. ASICs such as [23] has been proposed for ORB, with 
high-throughput / energy efficiency, yet offering no support 
for multi-scale or Harris Corner Detector (Harris) feature 
extraction.

To the best of our knowledge our previous work was the 
first [24] implementation of a C programmable ASIP, spe-
cialized in ORB for a single scale, and the purpose of this 
current work is to provide further details on the memory 

access patterns and operational complexity involved in ORB, 
dataflow optimizations to reduce data traffic, and Very Long 
Instruction Word (VLIW) ASIP architecture optimizations.

4 � ORB Feature Extraction

The main algorithmic steps in ORB feature extraction are 
scale space generation, followed by a two-level feature 
extraction, and the generation of the descriptors for each of 
the remaining keypoints, which are illustrated in Fig. 2. The 
inputs of each stage change substantially during the execu-
tion of the algorithm, the continuous stream of input pix-
els becomes sparse after the first level of feature extraction 
(step 2 in Fig. 2). After the second level (step 3), in practice, 
less than 1% of the input pixels remain and become features, 
which are assigned a descriptor and streamed out to the out-
put. This steep gradient of input loads imposes a challenge 
to hardware implementations, and motivates the distribution 
of operations over VLIW slots.

4.1 � Scale Space Generation

The scale space generation in ORB comprises two inter-
leaved steps, which are replicated eight times as in [20]. 
The first of those is the convolution of the input samples, 
which are either pixels from the original image or from the 
previous iteration, with a 5 × 5 Gaussian kernel. The lat-
ter step embodies a bilinear interpolation function, which 
downsamples the convolution output by a factor of 1.2 per 
axis, or in other words reduces every five pixels into four 
(per axis). Since input size is reduced for each iteration of 
the scale space generation, the result is also called the image 
pyramid. Features are extracted across the different levels so 
that the resulting features are invariant to changes in scale, as 
objects appear bigger or smaller depending on how close the 
camera is. Ideally the final extracted features are uniformly 
sampled across the image, and the different scales.

4.2 � Two‑Level Feature Extraction

The keypoint extraction process focuses on the identification 
of small image patches with both high vertical and horizon-
tal gradients, providing a means for consistent recognition 
of such regions independent of perspectives and illumina-
tion. In ORB the screening for those areas, namely corners, 
is attributed to two feature extraction algorithms, FAST and 
Harris, which are interposed by a filtering phase called Non-
Maximum-Suppression (NMS).

Given the much higher complexity of Harris, the scales 
are prescreened with the less complex FAST algorithm, 
which suffers from high response along the edges, but none-
theless discards most of the pixels over the different scales, 
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with typically around 2% of the pixels across the image pyra-
mid lasting this criteria [25]. A Bresenham circle of radius 
3, centered on each pixel under FAST consideration, and a 
user-specified threshold comprise the input of the algorithm. 
If 12 (out of 16) consecutive pixels in the circle are either 
brighter or darker than the circle’s center plus the threshold, 
then the pixel in question is a FAST keypoint. One shortcom-
ing of FAST is the tendency that many features are extracted 
at the same regions in the image, forming bundles which 
opposes the ideal of well-distributed features across a scale. 
Consequently, NM

S is applied to the FAST output to pick out the keypoint 
with the highest combined contrast score.

A 5 × 5 patch of image, in the appropriate scale, cen-
tered in each feature of the sparse set post FAST and NMS 
keypoints constitutes the input load of Harris. Within each 
patch, the vertical and horizontal gradients are computed by 
means of convolution with Sobel filters. These derivatives 
are then combined into a matrix M, as in Eq. (2)

where Iy , and Ix are analogous to the vertical and horizontal 
convolutions of the patch with the correspondent Sobel filter. 
The Harris response r is then obtained as shown in Eq. (3),

(2)M =
∑

(x,y)∈W

[
I2
x

IxIy
IxIy I2

y

]
,

where k is an empirical constant within the closed interval 
[0.04, 0.06] . In ORB, selecting the N best features is equiva-
lent to picking the N highest Harris response keypoints.

4.3 � Descriptor Generation

A descriptor provides a means for a keypoint to be matched 
across different frames, as they encode the aspects of the 
keypoint and its surrounding into a binary vector. To put it 
into context, given one descriptor in a reference frame and a 
set of all descriptors from another, a point correspondence is 
found by selecting which descriptor from the set minimizes 
the Hamming distance with the one in the reference frame. 
Consequently, the degree of similarity between two features 
can be retrieved thanks to its descriptors.

In ORB, descriptors are generated in two steps, first by 
assigning an orientation to each Harris’ keypoint, followed 
by the Rotated-BRIEF (rBRIEF) algorithm, which takes the 
orientation into account and results in the descriptor. The 
step of assigning the orientation to each keypoint renders 
the extracted features robust to variations in rotation, one of 
the key qualities of ORB.

Given a 5 × 5 image patch centered in a Harris keypoint, 
the orientation is found by taking

(3)r = det(M) − k tr(M)2,

Figure 2   High level representation of ORB feature extraction. Depicted in 1 the scale space generation process; In 2 and 3, the two-level feature 
extraction routine; In 4 and 5, the tasks related with the descriptor generation for each keypoint.
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where m10 and m01 correspond to the first order image 
moments as in

The descriptors are constructed with rBRIEF, which 
consists of a rotation-aware variation of Binary Robust 
Independent Elementary Features (BRIEF). This algorithm 
includes two inputs, a patch of the related scale space of 
size 32 × 32 centered in the keypoint, and the previously 
calculated orientation. Within the patch, 256 pairs of pixels 
are compared in order to check which element is brighter 
than the other. Step 5 in Fig. 2 illustrates the pattern and 
three comparison pairs for a given orientation. For other 
angles the pattern has to be rotated accordingly. The binary 
result of those comparisons are stored in a 256-bit string, 
which forms the descriptor of the keypoint.

(4)� = atan2
(
m10,m01

)
,

(5)mpq =
∑

x,y

xpyqI(x, y).

5 � Operation Analysis and Architecture 
Considerations

In this section, we perform a detailed analysis on the kernel 
operations involved in ORB feature extraction and the cor-
responding data flow.

5.1 � Data flow and dependencies

As images are produced by the sensor in a row-major 
sequential form, known as scanlines, different algorithmic 
blocks in ORB could potentially be carried out in parallel as 
the scanlines are streamed. The advantages of such a stream-
ing architecture are twofold. First is the savings in memory 
space, as only a small subset of the input image and scales 
need to be stored on chip. Second is the reduced latency, as 
the algorithm starts as soon as the sensor data is available.

Figure 3 illustrates the overlapping schedule of the sub-
blocks in ORB based on their dependencies and the flow of 

Figure 3   This figure illustrates the scheduling of operations based on the dependencies of each sub-algorithm in ORB. Space-space algorithms 
are represented in yellow, keypoint extraction and descriptor generation, in purple and pink respectively. Note that the sub-algorithms can have 
overlapped execution, since each operate on different image/scale space parts.
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data from the image sensor. Scanlines are represented with 
the S prefix, varying from scanline 1 to 33 (e.g S1..S33). 
The data dependencies are indicated by the orange arrows, 
and are drawn only once across different blocks at the first 
moment in which the dependencies are satisfied, for vis-
ualization purposes. Note, for instance, that the orange 
arrow from FAST to NMS is drawn when three FAST 
scanlines are available, which is when the first NMS has 
its dependencies met. Although the convolution between 
input image and 5 × 5 Gaussian kernel can start as soon as 
the first scanline is streamed out, it is convenient to buffer 
five scanlines before executing the operation, as illustrated 
in the image. The reason is that the number of memory 
accesses can be reduced if all the data needed to produce 
one convolution result is read with a single load operation. 
The same argument is valid for the subsequent convolu-
tion blocks that operate on results of the prior scales. On 
the the other hand, for the bilinear interpolation, it suits 
that two scanlines of convolution results are buffered in 
order to minimize the number of memory accesses, as the 
dependency arrow indicates in the Fig. 3. By these means 
a single load of the required input data ( 2 × 2 pixel patch) 
can be performed for each pixel of the result.

As regarding FAST, every pixel across the scale space 
that can be centered in a Bresenham circle is evaluated, 
with each circle spanning over seven scanlines and columns. 
Thus, in total, a disjoint set of 17 pixels (16 lying on the 
Bresenham circle and 1 center pixel) need to be loaded in 
order to decide whether or not a pixel is a FAST keypoint. 
According to these rates of generation and geometry of the 
input, the number of accesses to memory and buffering 
can be reduced by a joint effort of ultimately loading one 
Bresenham circle per cycle. For this, it suits that FAST is 
performed with seven scanlines of initial latency, as it waits 

for a moving window comprising the seven latest scanlines 
to be valid per scale space, as shown in Fig. 3.

The dataflow and dependencies for Harris and the evalua-
tion of a keypoint’s orientation are similar, as they operate on 
the same patch of image with 5 × 5 shape, and are activated 
based on the result of a prior operation. The same is valid 
for rBRIEF, with the only difference of the input size, which 
spans over 32 scanlines, and therefore impose a lower bound 
on the number of scanlines to be cached per scale space.

One cross-level optimization can be performed by the 
identification of the local data traffic between the different 
algorithms, as for instance within the scale-space generation 
or between FAST-NMS algorithms. In the latter case FAST 
consumes the appropriate input and its output becomes the 
input to NMS as illustrated in Fig. 3. Another cross-level 
solution relies on the observation that Harris and the key-
point’s orientation algorithm share the same input. Those 
two findings were used to derive the VLIW slots of the pro-
posed solution, such that the degree of overlapped execution 
is not completely parallel, with the aim of striking a balance 
between performance and hardware costs.

5.2 � Kernel Operations & Operational Rate

In order to explore the parallelism of the aforementioned 
algorithms, while minimizing the number of accesses to 
memory, a deeper understanding of the kernel operation in 
ORB, together with its rates of generation and consumption 
is necessary. Table 1 gathers the operations across the vari-
ous algorithmic steps.

Parallelism with the respect to the operations in the 
scale space generation process can be explored within a 
scale by block-wise convolutions along the buffered scan-
lines, or across the different pyramid levels, or both. It is 

Table 1   Kernel Operations within the various algorithmic phases in 
ORB. Vector operations listed have the potential for Single Instruc-
tion, Multiple Data (SIMD) execution, which can be executed either 

in a single cycle, if enough resources are available, or in a multi-cycle 
fashion compromising performance and possibly requiring additional 
intermediate buffers.
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advantageous to have matched throughput between the num-
ber of pixels read per cycle and the rate in which they are 
processed, in order to minimize the pressure on the register 
files or local buffers. For instance, in the case that a 5 × 5 
image patch is loaded in one cycle, ideally a matrix multi-
plication with a 5 × 5 kernel can be also performed in one 
cycle, otherwise the data has to be buffered according to the 
consumption rates.

As FAST filters out most of the pixels across the image 
pyramid, it introduces an intermittent work regimen for all 
the subsequent processing steps, of which the first in line is 
NMS. Its inputs encompass the combined FAST contrast 
and pixel’s coordinates across the scale space for both the 
current pixel under examination and its first neighborhood. If 
all pixels in the 3 × 3 patch are keypoints, a combination of a 
single load to access to the patch, together with a concurrent 
max pool operation simplifies the dataflow and eliminates 
unnecessary intermediate buffering steps.

The sudden change of work regimen from operating in 
every pixel across the scale space to 20% or less of the pix-
els, imposes a challenge for hardware implementations as the 
control flow of the nested loop, which contains subsequent 
algorithms, is seldom activated. A dynamic branch predic-
tion scheme, exploring the tendency that many keypoints are 
found in the same regions of the image, may contribute to an 
efficient implementation.

Harris links together a sequence of three operations, 
namely the calculation of image derivatives, computa-
tion of M in Eq. (2), and evaluation of r in Eq. (3). As the 
derivatives operate on the same input, which is the 5 × 5 
patch centered on the keypoint, they can be performed in 
parallel once the necessary data are made available. Data 
movement can be reduced in the following step, if the three 
distinct products of derivatives can be performed in a single 
cycle, given the shared input. At last, the determinant of M, 
a 2 × 2 matrix, and its trace (scaled by a constant) can also 
be handled in parallel to compute the Harris response of a 
single post-NMS FAST keypoint. The sequential nature of 
those operations creates opportunities for pipelined SIMD 
architectures, that have the advantage of higher throughput.

The process of assigning the orientation for a keypoint is 
also a sequential process, which is suitable for the explora-
tion of SIMD operations. The calculation of the first-order 
moments operates on the same data, and its operations con-
sists of a weighted sum based on the pixel location within 
the input patch. Given that the load operation can be per-
formed in a single cycle, the data can be consumed in similar 
rates by calculating the first-order moments in parallel, com-
puting the weighted sum of each as a dot product followed 
by a sum of columns, transforming a row vector into a scalar. 
Once the moments are obtained, iterative methods such as 
CORDIC may be employed to calculate atan2, in order to 
retrieve the angle.

In rBRIEF, the challenge lies on how to explore the 
parallelism available, given that each comparison pair is 
independent, while the pixels pairs to be loaded are distant 
from each other image-wise, together with the fact that the 
pattern selection varies with the angle which is obtained 
during runtime. The extent to which this algorithm can be 
parallelized contributes significantly to the overall system 
throughput, and in the worst case, if no parallelism is con-
sidered, 512 cycles would be required for just loading the 
operands for one keypoint. This means, for real-time opera-
tion at 30 FPS and extracting 2000 features per frame, the 
system needs to run at least at 33 MHz, which is a lot given 
the amount and complexity of all other operations in ORB.

5.3 � Key findings

In summary, the key findings of this operations and dataflow 
analysis section are:

•	 Processing in ORB can leverage the streaming nature of 
how the image is produced, as scanlines, to alleviate the 
on-chip memory requirement, as only a small subset of 
the most recent scanlines per scale space are used when 
adhering to stream processing;

•	 The sub-algorithms in ORB are sequential, cascading a 
sequence of inter-block dependable operations (e.g Con-
volution 5 × 5 → Bilinear Interpolation → FAST → … → 
rBRIEF), but at the same time they can have overlapped 
execution with earlier sub-blocks operating in more 
recent scanlines in order to meet real-time constraints;

•	 Given the rBRIEF requirements, the minimum of the 32 
most recent scanlines are necessary to be stored on-chip 
per scale-space;

•	 A combination of single-cycle memory accesses to usual 
patterns in ORB - patches: 2 × 2 , 3 × 3 , 5 × 5 , Bresenham 
circle, and rBRIEF related - in connection to vectorized 
execution of operations (as in Table 1) in equal rates, 
increase performance of the overall system while reduc-
ing internal data movement;

•	 The FAST-NMS algorithms operate on local data traffic, 
while Harris and keypoint’s orientation algorithms have 
shared data input. On the other hand, rBRIEF has high 
complexity given the irregular access pattern.The slots 
of a VLIW processor can leverage those properties.

6 � The ASIP Architecture

The operation analysis of the prior section conveys several 
opportunities for the exploration of data parallelism inher-
ent to the different matrix operations involved with ORB 
feature extraction, taking into consideration the input/output  
data rates to minimize redundant memory accesses, data 
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movement, and storage of the intermediate values. Lever-
aged by those findings an ASIP architecture is expanded 
on, which comprises scalar and vector slots, augmented by 
a reconfigurable multi-access pattern vector memory that 
provides single cycle access for the varying related patterns.

As the different algorithms in ORB have overlapped 
execution, within and across the different scale spaces, as 
illustrated in Fig. 3 with the scheduling of operations, we 
propose a VLIW architecture striking a balance between the 
different work-load regimens and operational complexity or 
the extent of the sequential operations involved. In outline, 
three vector slots specialized in FAST and NMS, Harris and 
keypoint’s orientation, and rBRIEF, and an additional light-
weight and general purpose RISC-V scalar slot, all described 
in detail in later subsections. A high-level diagram of the 
proposed architecture can be seen in Fig. 4, which focuses 
on data, storage and control units while masking away the 
micro-architectural details.

6.1 � VLIW Partitioning

As operations are concurrently performed across the width 
of the VLIW instruction, the number of slots implemented is 
a trade-off between a non-flexible architecture with extensive 

parallelism and a RISC-like general purpose processor per-
forming a single operation per cycle. A decision of a four-
slot VLIW was made in order to make the processor flex-
ible enough to accommodate further extensions to various 
feature extraction algorithms, while leveraging the fact that 
the sub-blocks in ORB can operate in different regions of 
the image at the same time.

The primary factor motivating our VLIW slot division 
was to maintain a balanced operation complexity so that the 
maximum frequency achieved by the ASIP is not limited 
by the critical path of a single complex operation. It also 
contributes to a unified number of pipeline stages across 
the slots, making the micro-architecture simpler as all slots 
can write back at the same stage. With this purpose, for 
instance, the wide SIMD and sometimes dependent opera-
tions in rBRIEF has its own VLIW slot, whose operations’ 
complexity is equivalent to the other slots.

In addition, the decision of grouping together sub-blocks 
with similar work-load regimen also played an important 
role in the division of the VLIW slots, which is a compro-
mise between slot utilization versus resource sharing, mini-
mization of data movement, and size of intermediate results 
buffer. We have chosen to populate one VLIW slot with 
FAST (and NMS) instructions, which is performed for most 

Figure 4   Bird’s-eye view of the processor.
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of the pixels across the scale space, even though the utiliza-
tion of other slots is reduced, so that the buffer for inter-
mediate results is simplified, and data movement reduced. 
Figure 4 part 1 illustrates the partition of the slots, and how 
the parallelism within the sub-blocks of ORB is explored.

6.2 � Vector Memory

The vector memory as indicated in Fig. 4 is an implementa-
tion of the reconfigurable multi-access pattern vector mem-
ory in [26], conveniently enabling single-cycle access to the 
various and recurrent load operations in ORB. The vector-
ized load of the irregular, and sometimes disjoint, patterns 
made possible by this memory allows for the sub-blocks in 
ORB to read and consume data at the same rates, minimizing 
the number of memory accesses.

A generalized architecture for the vector memory com-
prises a plurality of banks, all addressed by an Address Gen-
eration Unit (AGU), whose readout is intercepted by a shuf-
fling network in order to select the final pixels that belong to 
the load pattern. Each memory bank consists of words which 
are arrays of pixels, of which its length is a design choice 
based on the geometry of the supported single-cycle access 
pattern and the complexity of the AGU (more details in this 
trade-off in [26]).

In Fig. 4 part 2 the image distribution process is illus-
trated. Internally, an input image is subdivided into tags, 
which are rectangular-shaped patches of images, whose 
width is equivalent to a wordlength number of pixels, and 
height equal to the number of banks.

The image is distributed over the different banks such that 
each row of a given tag is assigned to a different memory bank, 
as in part 3 of Fig. 4. In other words, an image row is broken 
into several segments (each of tag width, which is a word-
length), and all those map into consecutive addresses of the 
same bank. As shown in part 2 of the figure, the other image 
rows undergo the same process, but are mapped to the other 
banks, which results that a row is mapped to the same memory 
bank at every number of banks equal amount of image rows.

Since a tag is scattered row-wise over the different banks, 
the number of tags that can be fetched in a clock cycle is 
given by the number of memory ports, and constitutes the 
largest possible pattern that can be fetched at once. If, for 
instance, dual ports are used patterns of pixels spanning over 
two adjacent tags can be loaded per cycle.

A readout operation consists of four steps: pattern speci-
fication, addresses calculations in the AGU, memory access, 
and the selection of pixels within bank words. The first step 
consists of specifying the pattern to be loaded as a vector of 
pixel positions, based on the image coordinates that forms 
the pattern. If the pattern spans over a tag, or if the com-
bination of pixels are not conflicting (i.e not having more 

accesses per bank than the number of ports), the AGU will 
calculate the addresses to be fetched at run time, in each 
bank, and the position of the pixels that belong to the pat-
tern in each word, called word offsets. Lastly, after the words 
are fetched from the different banks, the shuffling networks 
stream out the pattern based on the previously calculated 
word offsets as in part 4 of the figure.

In this work, an instance of this vector memory is imple-
mented and it comprises eight banks, each featuring a single 
port with words that are 256 bits long (accommodating 32 
pixels), and overall memory size of 64 KB, which is indeed 
over-dimensioned when accounting for the necessary scan-
lines of all the eight levels of scale space in ORB for VGA 
images. It provides single-cycle access to all the recurrent 
load patterns in ORB, except rBRIEF which requires in the 
worst possible case eight cycles.

As this ASIP is intended to be best placed near-sensor, 
where the image is directly saved into the vector memory, 
we assume that the image is already pre-loaded. In case the 
image needs to be fetched, in order to preserve performance, 
pseudo-dual ports containing one R/W port, and another R 
only port is required, which has a slight area overhead in 
comparison to single-port memories.

6.3 � Scalar Slot and Register Files

The scalar slot features a lightweight RISC-V, including 
the base instruction set RV32I, with the standard 5 pipeline 
stages (IF, ID, EX, EX1, WB). This slot is primarily respon-
sible for the control flow of the program executed in the 
ASIP, i.e controlling the PC, and performing scalar opera-
tions. However, the RISC-V has also the duty of loading 
the image data into the different vector registers, and thus 
custom extensions to the original Instruction-Set Architec-
ture (ISA) were implemented. In addition the RISC-V is also 
extended with a fetch unit providing zero overhead loops.

The various register files that are implemented in our 
architecture, can be divided into scalar and vector types. In 
Fig. 4, in the vector register file, the one named as VX32, 
for instance, corresponds to a set vector registers capable of 
storing various 32-bit elements. The different registers’ types 
are from the fact that operands for the custom intrinsics are 
either pixel coordinates within the scale-space, here encoded 
with 27 bits (12 for the height, 12 for the width, and 2 for 
the scale space), a 32-bit general pixel-related data type, 
a combination of both ( 27 + 32 = 59 ), a descriptor, or the 
output data ( 256 + 59 = 315 ). Thus, the main motivation for 
the various length and types of vector registers was to reduce 
code size for unnecessary type castings, while increasing 
the utilization of the employed hardware, since the different 
registers are tailored for the intrinsics of each slot.
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6.4 � Vector Slots and Intermediate Buffers

The vector slot 1 is in charge of performing operations 
related to the FAST keypoint extraction and NMS, as illus-
trated in greater detail in Fig. 5. It features, for instance, 
the vectorized compare ring intrinsic, of which given one 
Bresenham circle, a center pixel, and a threshold, it evalu-
ates if any of the 5 possible combinations of 12 consecu-
tive pixels are either brighter or darker than the center. An 
illustration of the hardware implementation responsible for 
execution of this instruction is in part 5 of Fig. 4.

Slot 1 also features the ordinary memory intrinsics capa-
ble of the single-cycle load and store from single or all banks 
from the vector memory. In addition, as the FAST outputs 
are ultimately coordinates of pixels that meet the criteria 
together with the comparison scores, these are merged 
together in a data structure which is temporarily stored in 
the FAST buffer. The benefit of this approach is that FAST 
could potentially operate in different scales and at distinct 

image regions, interleaved by the NMS operations which 
shares the same slot. Similarly, NMS has its own buffer to 
store the keypoints that meet its criteria.

The vector slot 2 comprises operations related to Harris 
and the evaluation of a keypoint’s orientation. It features, 
for instance, operations such as the matrix multiplication of 
3 × 3 matrices, the vertical/horizontal image derivatives, and 
evaluation of atan2 (via iterative multi-cycle CORDIC). Fur-
thermore, the vector load of a 5× patch centered in an image 
pyramid coordinate, and storage of Harris and orientation 
data structures are also assigned to this slot.

The vector slot 3 focuses on the rBRIEF, which, for 
instance, includes a vectorized rotation of the zero-angle 
BRIEF pattern based on the orientation of the Harris keypoint 
found, a vectorized comparison for the intensities of 16 pixel 
pairs per cycle, and vectorized shift-logical left of 16 elements 
at a time. Intrinsics which access either the vector memory or 
the orientation intermediate buffers to feed those operations are 
implemented, as well as to buffer the final keypoints extracted.

Figure 5   The vector slot, with datapath components of slot 1 in further details, from the decode to write-back stage. Storage related units and 
instructions are highlighted in shade of red, while in purple the computation instructions.
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The buffers are exposed to the slots either through to the 
scalar or the vector registers as shown in Fig. 4, and as anec-
dotes of its instructions the operations store FAST keypoint 
(storeFastKP), and store keypoint post-NMS (st_KP_NMS). 
In those buffers, the data structure that represents a key-
point can be saved, according to its level of readiness. For 
instance, at Harris stage, a keypoint has a 32-bit response, 
and a 27-bit position within the scale-space, thus in Harris 
buffer a 59-bit value is stored, or the closest superior even 
number of wordlength (60-bits) given commercial SRAM 
availability. The overall capacity of the utilized buffers are 
35 KB, which are also overdimensioned given commercial 
constraints for minimum number of words, maximum word-
length, and as mentioned parity of word.

6.5 � Programmability

The ORB feature extraction processor has been implemented 
with Synopsys ASIP-Designer, which among other things 
produces RTL and a C/C++ compiler based on the user high 
level description of the processor model. The code snippet in 
Listing 1, illustrates how FAST is programmed with our ASIP.

The snippet includes hardware-primitives that are added 
to the C compiler such as loadRing(), in line 8, and fast(), in 
line 10, which respectively loads the 17 pixels in the Bresen-
ham circle, and evaluates FAST. If the pixel is indeed a key-
point, fast score will be greater than zero, and the keypoint 
data structure containing the score, pixel coordinates in the 
scale space will be saved in the FAST buffer.

7 � Implementation and Evaluation

The design has been synthesized in 22 nm technology with 
the area breakdown represented in Table 2.

Cycle accurate simulation results, obtained for the case of 
ORB feature extraction of 1000 keypoints from a single-scale 
VGA image, indicates that the ASIP takes roughly 3.1 million 
cycles to process one image. Power-annotated (VCD) post-
synthesis simulations, with such setup, shows that the maxi-
mum achievable frame rate is 140 FPS, and considering the 
worst process corner, the power consumption is estimated at 
90 mW at a frequency of 430 MHz. This power analysis does 
not include off-chip accesses for streaming out the extracted 
keypoints, given that only 32 can be kept locally.

Table 3 gathers state-of-the-art implementations of ORB, 
and puts this work into context. To the best of our knowl-
edge there is no processor architecture focused on feature 
extraction in general, and more specifically on ORB. Thus, 
it is difficult to conduct fair comparison between imple-
mentations on different platforms and targeting for differ-
ent applications, as with the CPUs [20], SoC [21], FPGAs 
[22, 27] and ASIC [23] implementations. On the other hand, 
the robustness of the extracted keypoints in Harris-lacking 
implementations such as [22, 23, 27] is compromised since 
the keypoint extraction phase only utilizes FAST. FAST has 
high response along edges [20], thus not specifically identi-
fying only image corners.

Overall more generic architectures suffer from high power 
consumption and lower throughput, but features program-
mability or reconfigurability. In contrast, dedicated ASICs 
such as [23] have the highest energy efficiency, but cannot 
adapt to algorithmic parameters. ASIPs, such as ours, can 
be of relevance as it strikes balance between both architec-
tures, with a high throughput at a quite reasonable energy-
efficiency levels.

When it comes to the precision, a design-choice of keep-
ing a constant 32-bit fixed-point was made in our architecture, 
opposed to 8-bits in [22] or 21-bits in [23], as the proposed 
architecture is a processor and needs to support to a certain 
extend algorithmic explorations which may require more 
precision. Additionally, in our approach, no Harris features 
are dropped, leaving to the user the design choice of sort 

Table 2   Synthesis results with area breakdown for the ASIP.

Block Area [ mm2] % of Total

Vector Memory 0.236 41.7%
Program Memory 0.029 5.1%
Data Memory 0.014 2.5%
Buffers 0.184 32.5%
ASIP 0.103 18.2%
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the features data structures, in which the Harris response is 
encoded.

8 � Conclusion

As discussed in the previous section, this work makes a 
case for processors dedicated to feature extraction, currently 
efficiently supporting ORB. This paves the way forward for 
cloud-based sparse visual-SLAM algorithms given the low-
power, near-sensor computing, and privacy-aware means of 
performing real-time feature extraction, since keypoints and 
not the full image could eventually be streamed out from 
near the sensor to the cloud.

Our proposed solution includes a three-slot VLIW, with 
a SIMD vector processor, and one slot including the RV32I 
RISCV ISA, balancing the contrasts of workload present in 
the set of sub-algorithms constituting ORB. Although sup-
porting efficiently, one single-scale, our system achieves a 
140 FPS at 430 MHz, when extracting 1000 keypoints in a 
VGA image, drawing 90 mW.

In future work, we plan to efficiently support scale-space 
generation, feature matching, and to increase performance 
of already identified bottlenecks regarding VLIW utilization.
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