
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:863–875
https://doi.org/10.1007/s11265-022-01833-9

Design of an Application‑specific VLIW Vector Processor for ORB
Feature Extraction

Lucas Ferreira1  · Steffen Malkowsky1 · Patrik Persson2 · Sven Karlsson3 · Kalle Åström2 · Liang Liu1

Received: 24 May 2022 / Revised: 21 October 2022 / Accepted: 27 December 2022 / Published online: 30 January 2023
© The Author(s) 2023

Abstract
In computer-vision feature extraction algorithms, compressing the image into a sparse set of trackable keypoints, empowers
navigation-critical systems such as Simultaneous Localization And Mapping (SLAM) in autonomous robots, and also other
applications such as augmented reality and 3D reconstruction. Most of those applications are performed in battery-powered
gadgets featuring in common a very stringent power-budget. Near-to-sensor computing of feature extraction algorithms
allows for several design optimizations. First, the overall on-chip memory requirements can be lessened, and second, the
internal data movement can be minimized. This work explores the usage of an Application Specific Instruction Set Processor
(ASIP) dedicated to perform feature extraction in a real-time and energy-efficient manner. The ASIP features a Very Long
Instruction Word (VLIW) architecture comprising one RV32I RISC-V and three vector slots. The on-chip memory sub-
system implements parallel multi-bank memories with near-memory data shuffling to enable single-cycle multi-pattern vector
access. Oriented FAST and Rotated BRIEF (ORB) are thoroughly explored to validate the proposed architecture, achieving a
throughput of 140 Frames-Per-Second (FPS) for VGA images for one scale, while reducing the number of memory accesses
by 2 orders of magnitude as compared to other embedded general-purpose architectures.

Keywords  Vision-based SLAM · Feature extraction · ORB · ASIP

1  Introduction

Many hurdles need to be overcome as robots make the tran-
sition into full autonomous devices, chief among them is
the efficient computation of Simultaneous Localization
And Mapping (SLAM). The real-time inference complex-
ity, from unstructured data to estimates of pose and 3D map
in embedded systems, hinders the rollout of those appliances
into the market. The use-cases of these autonomous devices
are constantly growing, as with Unmanned Aerial Vehicles
(UAVs) for instance, which are potentially employed in a
broad range of different applications from the delivery of
goods [1], to traffic monitoring [2], surveillance [3], search-
and-rescue [4], precision farming [5], environmental survey-
ing [6] and assessment of woodlots [7]. These applications
feature in common the need for navigation and object avoid-
ance, while performing mission-specific tasks to the fullest.

In the case of highly automated cars, in which the vehicle
is in charge of performing all safety-critical functions for the
entire trip, the navigation algorithms are performed in a het-
erogeneous computing system comprised of a combination
of server-grade processors, and several GPUs. In [8], it has

 *	 Lucas Ferreira
	 lucas.ferreira@eit.lth.se

	 Steffen Malkowsky
	 steffen.malkowsky@eit.lth.se

	 Patrik Persson
	 patrik.persson@math.lth.se

	 Sven Karlsson
	 svea@dtu.dk

	 Kalle Åström
	 kalle.astrom@math.lth.se

	 Liang Liu
	 liang.liu@eit.lth.se

1	 Electrical and Information Technology (EIT), Lund
University, Lund, Sweden

2	 Center for Mathematical Sciences, Lund University, Lund,
Sweden

3	 DTU Compute, Technical University of Denmark,
Kongens Lyngby, Denmark

http://orcid.org/0000-0002-4620-2228
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-022-01833-9&domain=pdf

864	 Journal of Signal Processing Systems (2023) 95:863–875

1 3

been shown that the combined power of such platforms sums
up to 5 kW, when considering the necessity of redundant
computations. To put this into perspective, the computation
of such algorithms in level 4 autonomous vehicles draws
roughly a quarter of the overall current median energy con-
sumption of 19.6 kWh/100 km across the portfolio of Tesla
cars [9]. On the other hand, for miniaturized devices such
as pico-drones, [10] highlights the gap between the 100 mW
power required for a 100 mg drone to reach stable flight, and
the 3 W of power consumed by the general-purpose off-the-
shelf processor integrated in the smallest commercial UAV
executing SLAM algorithms.

In order to overcome this challenge, in this work we
propose an Application Specific Instruction Set Processor
(ASIP) whose instruction set and memory architecture are
focused in feature extraction algorithms such as Oriented
FAST and Rotated BRIEF (ORB), a crucial building block
of indirect-sparse SLAM. The following sections are organ-
ized such that the SLAM background, prior art, and ORB
algorithm are introduced in sections 1 to 3, followed by the
dataflow, dependencies, and kernel operations analysis dis-
cussing the intrinsic parallelism opportunities in section 5.
The other half concerns architectural details of the proposed
hardware implementation and its evaluation.

2 � SLAM Background

In the context of visual-based based SLAM, we can catego-
rize the models into four different groups, based on how the
input data to the model are processed (direct vs indirect),
and the resolution of the 3D reconstruction (dense vs sparse)
[11]. The choice of which SLAM paradigm to support in
hardware plays a crucial role in alleviating the operational
complexity and memory requirements of the resulting sys-
tem. Therefore, a brief overview of the trade-offs involved
is needed.

In general, SLAM is a greedy algorithm that, given the
set of noisy measurement data � , estimates the camera poses
and geometry {�,�} that maximizes a likelihood function as

Concerning the input, indirect methods [12, 13] obtain
the measurement data � by a two-step process. First, the
images undergo a pre-processing step that transforms them
into a sparse set of keypoints, in which point correspond-
ences can be found across different frames, as illustrated in
Fig. 1. A following probabilistic step is necessary in order
to obtain a set of true correspondences, discarding outlier
observations, and the results are interpreted as the noisy
measurement data in Eq. 1. Consequently, the optimization
target becomes minimizing the reprojection error between

(1){�∗,�∗} = argmax{�,�}P(�|�,�).

the reconstructed 3D points and their projections into the
cameras, together with the measured data. Although sensi-
tive to false point correspondences, these indirect methods
are robust to scaling, rotation, and illumination changes, as
the geometry is retrieved based on features. From a device
perspective, indirect methods have the upper hand as images
are sequentially compressed into features that encode the
surroundings of pixels, and thus are suitable for privacy-
aware systems.

Direct methods [14, 15], on the other hand, use the raw
RGB image data, capturing the actual differences of pixel
intensities over time as the noisy inputs to the model. The
process of pose estimation consists of finding a solution that
projectively warps a reference frame into another based on
minimizing the photometric error [16]. An advantage of
these models over indirect methods is that pixels are not
required to be recognizable by themselves, thus steps such
as feature extraction and matching are not used. However,
direct methods are sensitive to illumination variations and
noise which are modelled as outliers, as pixels are compared
based on a constant brightness assumption [17]. Another
drawback is that direct methods have a narrower attraction
basin [14], and consequently are more sensitive to errors of
the initial pose estimates.

Regarding the reconstruction � , sparse SLAM systems
result in a cloud of scattered 3D points, which are inferred
based on a sparse set of the input data, whereas dense meth-
ods seek to reconstruct all the observed 2D image points.
The computation in real time of dense methods may not
align with the constraints of low-power embedded systems,
as every observed pixel must be reconstructed.

Figure 1   Representation of an indirect-sparse SLAM pipeline. Fea-
tures (in green) are extracted and matched in a camera pair, which
enables both the estimation of relative camera pose, and reconstruc-
tion of a sparse 3D model.

865Journal of Signal Processing Systems (2023) 95:863–875	

1 3

As the number of cameras and map points grow, even when
considering sparse methods, they rapidly render the embedded
computation of Eq. (1) infeasible. This is due to the fact that
the size of the Jacobian matrix, computed in bundle adjust-
ment, is proportional to the number of covisible points times
the number of cameras that observed them. Consequently,
navigation based on a very scarce map of the local surround-
ings paves the way forward for power-constrained devices,
emphasizing the need for efficient hardware solutions sup-
porting indirect-sparse SLAM algorithms.

Typically, the structure from motion pipeline for indirect-
sparse SLAM systems consist of: extracting and matching
features across the frames; retrieving an initial estimate of
relative camera poses, and initial reconstruction of the 3D
points based on the triangulation of correspondences; opti-
mizing those initial pose and 3D-point estimates as in Eq. (1)
based on the reprojection error (local bundle adjustment). As
more frames are observed, the same processes are repeated,
and a global bundle adjustment over all 3D points and cam-
eras needs to be performed.

3 � Prior Art

Motivated by the computational complexity and recurrence
of feature extraction in indirect-sparse SLAM systems, it
becomes a target for hardware acceleration. There are sev-
eral feature extraction algorithms, most noticeable in the
context of SLAM are: Scale-Invariant Feature Transform
(SIFT) [18], Speeded Up Robust Features (SURF) [19],
and ORB [20]. Although SIFT produces arguably the most
robust features, the operations involved in the algorithm are
more complex than the others, while the SURF algorithm
is under patent protection. This leaves us with ORB which
has features that are scale- and rotation-invariant, has lower
complexity, and is an open source algorithm.

Several real-time implementations of ORB can be found
in the literature, across different architectures. Originally
ORB is implemented on a general-purpose CPU, achieving
65 Frames-Per-Second (FPS). In [21] an embedded imple-
mentation on a System on Chip (SoC) is found, reaching 179
FPS for 400 × 400 images. On FPGAs as in [22], a real-time
multi-level implementation of ORB can be found, which
identifies corners with only the Feature from Accelerated
Segmented Test (FAST) and supports VGA images, at 67
FPS. ASICs such as [23] has been proposed for ORB, with
high-throughput / energy efficiency, yet offering no support
for multi-scale or Harris Corner Detector (Harris) feature
extraction.

To the best of our knowledge our previous work was the
first [24] implementation of a C programmable ASIP, spe-
cialized in ORB for a single scale, and the purpose of this
current work is to provide further details on the memory

access patterns and operational complexity involved in ORB,
dataflow optimizations to reduce data traffic, and Very Long
Instruction Word (VLIW) ASIP architecture optimizations.

4 � ORB Feature Extraction

The main algorithmic steps in ORB feature extraction are
scale space generation, followed by a two-level feature
extraction, and the generation of the descriptors for each of
the remaining keypoints, which are illustrated in Fig. 2. The
inputs of each stage change substantially during the execu-
tion of the algorithm, the continuous stream of input pix-
els becomes sparse after the first level of feature extraction
(step 2 in Fig. 2). After the second level (step 3), in practice,
less than 1% of the input pixels remain and become features,
which are assigned a descriptor and streamed out to the out-
put. This steep gradient of input loads imposes a challenge
to hardware implementations, and motivates the distribution
of operations over VLIW slots.

4.1 � Scale Space Generation

The scale space generation in ORB comprises two inter-
leaved steps, which are replicated eight times as in [20].
The first of those is the convolution of the input samples,
which are either pixels from the original image or from the
previous iteration, with a 5 × 5 Gaussian kernel. The lat-
ter step embodies a bilinear interpolation function, which
downsamples the convolution output by a factor of 1.2 per
axis, or in other words reduces every five pixels into four
(per axis). Since input size is reduced for each iteration of
the scale space generation, the result is also called the image
pyramid. Features are extracted across the different levels so
that the resulting features are invariant to changes in scale, as
objects appear bigger or smaller depending on how close the
camera is. Ideally the final extracted features are uniformly
sampled across the image, and the different scales.

4.2 � Two‑Level Feature Extraction

The keypoint extraction process focuses on the identification
of small image patches with both high vertical and horizon-
tal gradients, providing a means for consistent recognition
of such regions independent of perspectives and illumina-
tion. In ORB the screening for those areas, namely corners,
is attributed to two feature extraction algorithms, FAST and
Harris, which are interposed by a filtering phase called Non-
Maximum-Suppression (NMS).

Given the much higher complexity of Harris, the scales
are prescreened with the less complex FAST algorithm,
which suffers from high response along the edges, but none-
theless discards most of the pixels over the different scales,

866	 Journal of Signal Processing Systems (2023) 95:863–875

1 3

with typically around 2% of the pixels across the image pyra-
mid lasting this criteria [25]. A Bresenham circle of radius
3, centered on each pixel under FAST consideration, and a
user-specified threshold comprise the input of the algorithm.
If 12 (out of 16) consecutive pixels in the circle are either
brighter or darker than the circle’s center plus the threshold,
then the pixel in question is a FAST keypoint. One shortcom-
ing of FAST is the tendency that many features are extracted
at the same regions in the image, forming bundles which
opposes the ideal of well-distributed features across a scale.
Consequently, NM

S is applied to the FAST output to pick out the keypoint
with the highest combined contrast score.

A 5 × 5 patch of image, in the appropriate scale, cen-
tered in each feature of the sparse set post FAST and NMS
keypoints constitutes the input load of Harris. Within each
patch, the vertical and horizontal gradients are computed by
means of convolution with Sobel filters. These derivatives
are then combined into a matrix M, as in Eq. (2)

where Iy , and Ix are analogous to the vertical and horizontal
convolutions of the patch with the correspondent Sobel filter.
The Harris response r is then obtained as shown in Eq. (3),

(2)M =
∑

(x,y)∈W

[
I2
x

IxIy
IxIy I2

y

]
,

where k is an empirical constant within the closed interval
[0.04, 0.06] . In ORB, selecting the N best features is equiva-
lent to picking the N highest Harris response keypoints.

4.3 � Descriptor Generation

A descriptor provides a means for a keypoint to be matched
across different frames, as they encode the aspects of the
keypoint and its surrounding into a binary vector. To put it
into context, given one descriptor in a reference frame and a
set of all descriptors from another, a point correspondence is
found by selecting which descriptor from the set minimizes
the Hamming distance with the one in the reference frame.
Consequently, the degree of similarity between two features
can be retrieved thanks to its descriptors.

In ORB, descriptors are generated in two steps, first by
assigning an orientation to each Harris’ keypoint, followed
by the Rotated-BRIEF (rBRIEF) algorithm, which takes the
orientation into account and results in the descriptor. The
step of assigning the orientation to each keypoint renders
the extracted features robust to variations in rotation, one of
the key qualities of ORB.

Given a 5 × 5 image patch centered in a Harris keypoint,
the orientation is found by taking

(3)r = det(M) − k tr(M)2,

Figure 2   High level representation of ORB feature extraction. Depicted in 1 the scale space generation process; In 2 and 3, the two-level feature
extraction routine; In 4 and 5, the tasks related with the descriptor generation for each keypoint.

867Journal of Signal Processing Systems (2023) 95:863–875	

1 3

where m10 and m01 correspond to the first order image
moments as in

The descriptors are constructed with rBRIEF, which
consists of a rotation-aware variation of Binary Robust
Independent Elementary Features (BRIEF). This algorithm
includes two inputs, a patch of the related scale space of
size 32 × 32 centered in the keypoint, and the previously
calculated orientation. Within the patch, 256 pairs of pixels
are compared in order to check which element is brighter
than the other. Step 5 in Fig. 2 illustrates the pattern and
three comparison pairs for a given orientation. For other
angles the pattern has to be rotated accordingly. The binary
result of those comparisons are stored in a 256-bit string,
which forms the descriptor of the keypoint.

(4)� = atan2
(
m10,m01

)
,

(5)mpq =
∑

x,y

xpyqI(x, y).

5 � Operation Analysis and Architecture
Considerations

In this section, we perform a detailed analysis on the kernel
operations involved in ORB feature extraction and the cor-
responding data flow.

5.1 � Data flow and dependencies

As images are produced by the sensor in a row-major
sequential form, known as scanlines, different algorithmic
blocks in ORB could potentially be carried out in parallel as
the scanlines are streamed. The advantages of such a stream-
ing architecture are twofold. First is the savings in memory
space, as only a small subset of the input image and scales
need to be stored on chip. Second is the reduced latency, as
the algorithm starts as soon as the sensor data is available.

Figure 3 illustrates the overlapping schedule of the sub-
blocks in ORB based on their dependencies and the flow of

Figure 3   This figure illustrates the scheduling of operations based on the dependencies of each sub-algorithm in ORB. Space-space algorithms
are represented in yellow, keypoint extraction and descriptor generation, in purple and pink respectively. Note that the sub-algorithms can have
overlapped execution, since each operate on different image/scale space parts.

868	 Journal of Signal Processing Systems (2023) 95:863–875

1 3

data from the image sensor. Scanlines are represented with
the S prefix, varying from scanline 1 to 33 (e.g S1..S33).
The data dependencies are indicated by the orange arrows,
and are drawn only once across different blocks at the first
moment in which the dependencies are satisfied, for vis-
ualization purposes. Note, for instance, that the orange
arrow from FAST to NMS is drawn when three FAST
scanlines are available, which is when the first NMS has
its dependencies met. Although the convolution between
input image and 5 × 5 Gaussian kernel can start as soon as
the first scanline is streamed out, it is convenient to buffer
five scanlines before executing the operation, as illustrated
in the image. The reason is that the number of memory
accesses can be reduced if all the data needed to produce
one convolution result is read with a single load operation.
The same argument is valid for the subsequent convolu-
tion blocks that operate on results of the prior scales. On
the the other hand, for the bilinear interpolation, it suits
that two scanlines of convolution results are buffered in
order to minimize the number of memory accesses, as the
dependency arrow indicates in the Fig. 3. By these means
a single load of the required input data ( 2 × 2 pixel patch)
can be performed for each pixel of the result.

As regarding FAST, every pixel across the scale space
that can be centered in a Bresenham circle is evaluated,
with each circle spanning over seven scanlines and columns.
Thus, in total, a disjoint set of 17 pixels (16 lying on the
Bresenham circle and 1 center pixel) need to be loaded in
order to decide whether or not a pixel is a FAST keypoint.
According to these rates of generation and geometry of the
input, the number of accesses to memory and buffering
can be reduced by a joint effort of ultimately loading one
Bresenham circle per cycle. For this, it suits that FAST is
performed with seven scanlines of initial latency, as it waits

for a moving window comprising the seven latest scanlines
to be valid per scale space, as shown in Fig. 3.

The dataflow and dependencies for Harris and the evalua-
tion of a keypoint’s orientation are similar, as they operate on
the same patch of image with 5 × 5 shape, and are activated
based on the result of a prior operation. The same is valid
for rBRIEF, with the only difference of the input size, which
spans over 32 scanlines, and therefore impose a lower bound
on the number of scanlines to be cached per scale space.

One cross-level optimization can be performed by the
identification of the local data traffic between the different
algorithms, as for instance within the scale-space generation
or between FAST-NMS algorithms. In the latter case FAST
consumes the appropriate input and its output becomes the
input to NMS as illustrated in Fig. 3. Another cross-level
solution relies on the observation that Harris and the key-
point’s orientation algorithm share the same input. Those
two findings were used to derive the VLIW slots of the pro-
posed solution, such that the degree of overlapped execution
is not completely parallel, with the aim of striking a balance
between performance and hardware costs.

5.2 � Kernel Operations & Operational Rate

In order to explore the parallelism of the aforementioned
algorithms, while minimizing the number of accesses to
memory, a deeper understanding of the kernel operation in
ORB, together with its rates of generation and consumption
is necessary. Table 1 gathers the operations across the vari-
ous algorithmic steps.

Parallelism with the respect to the operations in the
scale space generation process can be explored within a
scale by block-wise convolutions along the buffered scan-
lines, or across the different pyramid levels, or both. It is

Table 1   Kernel Operations within the various algorithmic phases in
ORB. Vector operations listed have the potential for Single Instruc-
tion, Multiple Data (SIMD) execution, which can be executed either

in a single cycle, if enough resources are available, or in a multi-cycle
fashion compromising performance and possibly requiring additional
intermediate buffers.

869Journal of Signal Processing Systems (2023) 95:863–875	

1 3

advantageous to have matched throughput between the num-
ber of pixels read per cycle and the rate in which they are
processed, in order to minimize the pressure on the register
files or local buffers. For instance, in the case that a 5 × 5
image patch is loaded in one cycle, ideally a matrix multi-
plication with a 5 × 5 kernel can be also performed in one
cycle, otherwise the data has to be buffered according to the
consumption rates.

As FAST filters out most of the pixels across the image
pyramid, it introduces an intermittent work regimen for all
the subsequent processing steps, of which the first in line is
NMS. Its inputs encompass the combined FAST contrast
and pixel’s coordinates across the scale space for both the
current pixel under examination and its first neighborhood. If
all pixels in the 3 × 3 patch are keypoints, a combination of a
single load to access to the patch, together with a concurrent
max pool operation simplifies the dataflow and eliminates
unnecessary intermediate buffering steps.

The sudden change of work regimen from operating in
every pixel across the scale space to 20% or less of the pix-
els, imposes a challenge for hardware implementations as the
control flow of the nested loop, which contains subsequent
algorithms, is seldom activated. A dynamic branch predic-
tion scheme, exploring the tendency that many keypoints are
found in the same regions of the image, may contribute to an
efficient implementation.

Harris links together a sequence of three operations,
namely the calculation of image derivatives, computa-
tion of M in Eq. (2), and evaluation of r in Eq. (3). As the
derivatives operate on the same input, which is the 5 × 5
patch centered on the keypoint, they can be performed in
parallel once the necessary data are made available. Data
movement can be reduced in the following step, if the three
distinct products of derivatives can be performed in a single
cycle, given the shared input. At last, the determinant of M,
a 2 × 2 matrix, and its trace (scaled by a constant) can also
be handled in parallel to compute the Harris response of a
single post-NMS FAST keypoint. The sequential nature of
those operations creates opportunities for pipelined SIMD
architectures, that have the advantage of higher throughput.

The process of assigning the orientation for a keypoint is
also a sequential process, which is suitable for the explora-
tion of SIMD operations. The calculation of the first-order
moments operates on the same data, and its operations con-
sists of a weighted sum based on the pixel location within
the input patch. Given that the load operation can be per-
formed in a single cycle, the data can be consumed in similar
rates by calculating the first-order moments in parallel, com-
puting the weighted sum of each as a dot product followed
by a sum of columns, transforming a row vector into a scalar.
Once the moments are obtained, iterative methods such as
CORDIC may be employed to calculate atan2, in order to
retrieve the angle.

In rBRIEF, the challenge lies on how to explore the
parallelism available, given that each comparison pair is
independent, while the pixels pairs to be loaded are distant
from each other image-wise, together with the fact that the
pattern selection varies with the angle which is obtained
during runtime. The extent to which this algorithm can be
parallelized contributes significantly to the overall system
throughput, and in the worst case, if no parallelism is con-
sidered, 512 cycles would be required for just loading the
operands for one keypoint. This means, for real-time opera-
tion at 30 FPS and extracting 2000 features per frame, the
system needs to run at least at 33 MHz, which is a lot given
the amount and complexity of all other operations in ORB.

5.3 � Key findings

In summary, the key findings of this operations and dataflow
analysis section are:

•	 Processing in ORB can leverage the streaming nature of
how the image is produced, as scanlines, to alleviate the
on-chip memory requirement, as only a small subset of
the most recent scanlines per scale space are used when
adhering to stream processing;

•	 The sub-algorithms in ORB are sequential, cascading a
sequence of inter-block dependable operations (e.g Con-
volution 5 × 5 → Bilinear Interpolation → FAST → … →
rBRIEF), but at the same time they can have overlapped
execution with earlier sub-blocks operating in more
recent scanlines in order to meet real-time constraints;

•	 Given the rBRIEF requirements, the minimum of the 32
most recent scanlines are necessary to be stored on-chip
per scale-space;

•	 A combination of single-cycle memory accesses to usual
patterns in ORB - patches: 2 × 2 , 3 × 3 , 5 × 5 , Bresenham
circle, and rBRIEF related - in connection to vectorized
execution of operations (as in Table 1) in equal rates,
increase performance of the overall system while reduc-
ing internal data movement;

•	 The FAST-NMS algorithms operate on local data traffic,
while Harris and keypoint’s orientation algorithms have
shared data input. On the other hand, rBRIEF has high
complexity given the irregular access pattern.The slots
of a VLIW processor can leverage those properties.

6 � The ASIP Architecture

The operation analysis of the prior section conveys several
opportunities for the exploration of data parallelism inher-
ent to the different matrix operations involved with ORB
feature extraction, taking into consideration the input/output
data rates to minimize redundant memory accesses, data

870	 Journal of Signal Processing Systems (2023) 95:863–875

1 3

movement, and storage of the intermediate values. Lever-
aged by those findings an ASIP architecture is expanded
on, which comprises scalar and vector slots, augmented by
a reconfigurable multi-access pattern vector memory that
provides single cycle access for the varying related patterns.

As the different algorithms in ORB have overlapped
execution, within and across the different scale spaces, as
illustrated in Fig. 3 with the scheduling of operations, we
propose a VLIW architecture striking a balance between the
different work-load regimens and operational complexity or
the extent of the sequential operations involved. In outline,
three vector slots specialized in FAST and NMS, Harris and
keypoint’s orientation, and rBRIEF, and an additional light-
weight and general purpose RISC-V scalar slot, all described
in detail in later subsections. A high-level diagram of the
proposed architecture can be seen in Fig. 4, which focuses
on data, storage and control units while masking away the
micro-architectural details.

6.1 � VLIW Partitioning

As operations are concurrently performed across the width
of the VLIW instruction, the number of slots implemented is
a trade-off between a non-flexible architecture with extensive

parallelism and a RISC-like general purpose processor per-
forming a single operation per cycle. A decision of a four-
slot VLIW was made in order to make the processor flex-
ible enough to accommodate further extensions to various
feature extraction algorithms, while leveraging the fact that
the sub-blocks in ORB can operate in different regions of
the image at the same time.

The primary factor motivating our VLIW slot division
was to maintain a balanced operation complexity so that the
maximum frequency achieved by the ASIP is not limited
by the critical path of a single complex operation. It also
contributes to a unified number of pipeline stages across
the slots, making the micro-architecture simpler as all slots
can write back at the same stage. With this purpose, for
instance, the wide SIMD and sometimes dependent opera-
tions in rBRIEF has its own VLIW slot, whose operations’
complexity is equivalent to the other slots.

In addition, the decision of grouping together sub-blocks
with similar work-load regimen also played an important
role in the division of the VLIW slots, which is a compro-
mise between slot utilization versus resource sharing, mini-
mization of data movement, and size of intermediate results
buffer. We have chosen to populate one VLIW slot with
FAST (and NMS) instructions, which is performed for most

Figure 4   Bird’s-eye view of the processor.

871Journal of Signal Processing Systems (2023) 95:863–875	

1 3

of the pixels across the scale space, even though the utiliza-
tion of other slots is reduced, so that the buffer for inter-
mediate results is simplified, and data movement reduced.
Figure 4 part 1 illustrates the partition of the slots, and how
the parallelism within the sub-blocks of ORB is explored.

6.2 � Vector Memory

The vector memory as indicated in Fig. 4 is an implementa-
tion of the reconfigurable multi-access pattern vector mem-
ory in [26], conveniently enabling single-cycle access to the
various and recurrent load operations in ORB. The vector-
ized load of the irregular, and sometimes disjoint, patterns
made possible by this memory allows for the sub-blocks in
ORB to read and consume data at the same rates, minimizing
the number of memory accesses.

A generalized architecture for the vector memory com-
prises a plurality of banks, all addressed by an Address Gen-
eration Unit (AGU), whose readout is intercepted by a shuf-
fling network in order to select the final pixels that belong to
the load pattern. Each memory bank consists of words which
are arrays of pixels, of which its length is a design choice
based on the geometry of the supported single-cycle access
pattern and the complexity of the AGU (more details in this
trade-off in [26]).

In Fig. 4 part 2 the image distribution process is illus-
trated. Internally, an input image is subdivided into tags,
which are rectangular-shaped patches of images, whose
width is equivalent to a wordlength number of pixels, and
height equal to the number of banks.

The image is distributed over the different banks such that
each row of a given tag is assigned to a different memory bank,
as in part 3 of Fig. 4. In other words, an image row is broken
into several segments (each of tag width, which is a word-
length), and all those map into consecutive addresses of the
same bank. As shown in part 2 of the figure, the other image
rows undergo the same process, but are mapped to the other
banks, which results that a row is mapped to the same memory
bank at every number of banks equal amount of image rows.

Since a tag is scattered row-wise over the different banks,
the number of tags that can be fetched in a clock cycle is
given by the number of memory ports, and constitutes the
largest possible pattern that can be fetched at once. If, for
instance, dual ports are used patterns of pixels spanning over
two adjacent tags can be loaded per cycle.

A readout operation consists of four steps: pattern speci-
fication, addresses calculations in the AGU, memory access,
and the selection of pixels within bank words. The first step
consists of specifying the pattern to be loaded as a vector of
pixel positions, based on the image coordinates that forms
the pattern. If the pattern spans over a tag, or if the com-
bination of pixels are not conflicting (i.e not having more

accesses per bank than the number of ports), the AGU will
calculate the addresses to be fetched at run time, in each
bank, and the position of the pixels that belong to the pat-
tern in each word, called word offsets. Lastly, after the words
are fetched from the different banks, the shuffling networks
stream out the pattern based on the previously calculated
word offsets as in part 4 of the figure.

In this work, an instance of this vector memory is imple-
mented and it comprises eight banks, each featuring a single
port with words that are 256 bits long (accommodating 32
pixels), and overall memory size of 64 KB, which is indeed
over-dimensioned when accounting for the necessary scan-
lines of all the eight levels of scale space in ORB for VGA
images. It provides single-cycle access to all the recurrent
load patterns in ORB, except rBRIEF which requires in the
worst possible case eight cycles.

As this ASIP is intended to be best placed near-sensor,
where the image is directly saved into the vector memory,
we assume that the image is already pre-loaded. In case the
image needs to be fetched, in order to preserve performance,
pseudo-dual ports containing one R/W port, and another R
only port is required, which has a slight area overhead in
comparison to single-port memories.

6.3 � Scalar Slot and Register Files

The scalar slot features a lightweight RISC-V, including
the base instruction set RV32I, with the standard 5 pipeline
stages (IF, ID, EX, EX1, WB). This slot is primarily respon-
sible for the control flow of the program executed in the
ASIP, i.e controlling the PC, and performing scalar opera-
tions. However, the RISC-V has also the duty of loading
the image data into the different vector registers, and thus
custom extensions to the original Instruction-Set Architec-
ture (ISA) were implemented. In addition the RISC-V is also
extended with a fetch unit providing zero overhead loops.

The various register files that are implemented in our
architecture, can be divided into scalar and vector types. In
Fig. 4, in the vector register file, the one named as VX32,
for instance, corresponds to a set vector registers capable of
storing various 32-bit elements. The different registers’ types
are from the fact that operands for the custom intrinsics are
either pixel coordinates within the scale-space, here encoded
with 27 bits (12 for the height, 12 for the width, and 2 for
the scale space), a 32-bit general pixel-related data type,
a combination of both ( 27 + 32 = 59 ), a descriptor, or the
output data ( 256 + 59 = 315 ). Thus, the main motivation for
the various length and types of vector registers was to reduce
code size for unnecessary type castings, while increasing
the utilization of the employed hardware, since the different
registers are tailored for the intrinsics of each slot.

872	 Journal of Signal Processing Systems (2023) 95:863–875

1 3

6.4 � Vector Slots and Intermediate Buffers

The vector slot 1 is in charge of performing operations
related to the FAST keypoint extraction and NMS, as illus-
trated in greater detail in Fig. 5. It features, for instance,
the vectorized compare ring intrinsic, of which given one
Bresenham circle, a center pixel, and a threshold, it evalu-
ates if any of the 5 possible combinations of 12 consecu-
tive pixels are either brighter or darker than the center. An
illustration of the hardware implementation responsible for
execution of this instruction is in part 5 of Fig. 4.

Slot 1 also features the ordinary memory intrinsics capa-
ble of the single-cycle load and store from single or all banks
from the vector memory. In addition, as the FAST outputs
are ultimately coordinates of pixels that meet the criteria
together with the comparison scores, these are merged
together in a data structure which is temporarily stored in
the FAST buffer. The benefit of this approach is that FAST
could potentially operate in different scales and at distinct

image regions, interleaved by the NMS operations which
shares the same slot. Similarly, NMS has its own buffer to
store the keypoints that meet its criteria.

The vector slot 2 comprises operations related to Harris
and the evaluation of a keypoint’s orientation. It features,
for instance, operations such as the matrix multiplication of
3 × 3 matrices, the vertical/horizontal image derivatives, and
evaluation of atan2 (via iterative multi-cycle CORDIC). Fur-
thermore, the vector load of a 5× patch centered in an image
pyramid coordinate, and storage of Harris and orientation
data structures are also assigned to this slot.

The vector slot 3 focuses on the rBRIEF, which, for
instance, includes a vectorized rotation of the zero-angle
BRIEF pattern based on the orientation of the Harris keypoint
found, a vectorized comparison for the intensities of 16 pixel
pairs per cycle, and vectorized shift-logical left of 16 elements
at a time. Intrinsics which access either the vector memory or
the orientation intermediate buffers to feed those operations are
implemented, as well as to buffer the final keypoints extracted.

Figure 5   The vector slot, with datapath components of slot 1 in further details, from the decode to write-back stage. Storage related units and
instructions are highlighted in shade of red, while in purple the computation instructions.

873Journal of Signal Processing Systems (2023) 95:863–875	

1 3

The buffers are exposed to the slots either through to the
scalar or the vector registers as shown in Fig. 4, and as anec-
dotes of its instructions the operations store FAST keypoint
(storeFastKP), and store keypoint post-NMS (st_KP_NMS).
In those buffers, the data structure that represents a key-
point can be saved, according to its level of readiness. For
instance, at Harris stage, a keypoint has a 32-bit response,
and a 27-bit position within the scale-space, thus in Harris
buffer a 59-bit value is stored, or the closest superior even
number of wordlength (60-bits) given commercial SRAM
availability. The overall capacity of the utilized buffers are
35 KB, which are also overdimensioned given commercial
constraints for minimum number of words, maximum word-
length, and as mentioned parity of word.

6.5 � Programmability

The ORB feature extraction processor has been implemented
with Synopsys ASIP-Designer, which among other things
produces RTL and a C/C++ compiler based on the user high
level description of the processor model. The code snippet in
Listing 1, illustrates how FAST is programmed with our ASIP.

The snippet includes hardware-primitives that are added
to the C compiler such as loadRing(), in line 8, and fast(), in
line 10, which respectively loads the 17 pixels in the Bresen-
ham circle, and evaluates FAST. If the pixel is indeed a key-
point, fast score will be greater than zero, and the keypoint
data structure containing the score, pixel coordinates in the
scale space will be saved in the FAST buffer.

7 � Implementation and Evaluation

The design has been synthesized in 22 nm technology with
the area breakdown represented in Table 2.

Cycle accurate simulation results, obtained for the case of
ORB feature extraction of 1000 keypoints from a single-scale
VGA image, indicates that the ASIP takes roughly 3.1 million
cycles to process one image. Power-annotated (VCD) post-
synthesis simulations, with such setup, shows that the maxi-
mum achievable frame rate is 140 FPS, and considering the
worst process corner, the power consumption is estimated at
90 mW at a frequency of 430 MHz. This power analysis does
not include off-chip accesses for streaming out the extracted
keypoints, given that only 32 can be kept locally.

Table 3 gathers state-of-the-art implementations of ORB,
and puts this work into context. To the best of our knowl-
edge there is no processor architecture focused on feature
extraction in general, and more specifically on ORB. Thus,
it is difficult to conduct fair comparison between imple-
mentations on different platforms and targeting for differ-
ent applications, as with the CPUs [20], SoC [21], FPGAs
[22, 27] and ASIC [23] implementations. On the other hand,
the robustness of the extracted keypoints in Harris-lacking
implementations such as [22, 23, 27] is compromised since
the keypoint extraction phase only utilizes FAST. FAST has
high response along edges [20], thus not specifically identi-
fying only image corners.

Overall more generic architectures suffer from high power
consumption and lower throughput, but features program-
mability or reconfigurability. In contrast, dedicated ASICs
such as [23] have the highest energy efficiency, but cannot
adapt to algorithmic parameters. ASIPs, such as ours, can
be of relevance as it strikes balance between both architec-
tures, with a high throughput at a quite reasonable energy-
efficiency levels.

When it comes to the precision, a design-choice of keep-
ing a constant 32-bit fixed-point was made in our architecture,
opposed to 8-bits in [22] or 21-bits in [23], as the proposed
architecture is a processor and needs to support to a certain
extend algorithmic explorations which may require more
precision. Additionally, in our approach, no Harris features
are dropped, leaving to the user the design choice of sort

Table 2   Synthesis results with area breakdown for the ASIP.

Block Area [ mm2] % of Total

Vector Memory 0.236 41.7%
Program Memory 0.029 5.1%
Data Memory 0.014 2.5%
Buffers 0.184 32.5%
ASIP 0.103 18.2%

874	 Journal of Signal Processing Systems (2023) 95:863–875

1 3

the features data structures, in which the Harris response is
encoded.

8 � Conclusion

As discussed in the previous section, this work makes a
case for processors dedicated to feature extraction, currently
efficiently supporting ORB. This paves the way forward for
cloud-based sparse visual-SLAM algorithms given the low-
power, near-sensor computing, and privacy-aware means of
performing real-time feature extraction, since keypoints and
not the full image could eventually be streamed out from
near the sensor to the cloud.

Our proposed solution includes a three-slot VLIW, with
a SIMD vector processor, and one slot including the RV32I
RISCV ISA, balancing the contrasts of workload present in
the set of sub-algorithms constituting ORB. Although sup-
porting efficiently, one single-scale, our system achieves a
140 FPS at 430 MHz, when extracting 1000 keypoints in a
VGA image, drawing 90 mW.

In future work, we plan to efficiently support scale-space
generation, feature matching, and to increase performance
of already identified bottlenecks regarding VLIW utilization.

Author Contribution  All coauthors contributed to this publication.

Funding  Open access funding provided by Lund University. This study
was funded by the Lunds Tekniska Högskola, Lunds universitet.

Data Availability  Data sharing not applicable to this article as no data-
sets were generated or analysed during the current study.

Declarations 

Ethics Approval  Not applicable.

Competing Interest  The authors have no relevant financial or non-
financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated

Table 3   Current work in the light of hardware implementation of ORB feature extraction.

875Journal of Signal Processing Systems (2023) 95:863–875	

1 3

otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Chiang, W. -C., Li, Y., Shang, J., & Urban, T. L. (2019). Impact
of drone delivery on sustainability and cost: Realizing the UAV
potential through vehicle routing optimization. Applied Energy,
242, 1164–1175. https://​doi.​org/​10.​1016/j.​apene​rgy.​2019.​03.​117

	 2.	 Kanistras, K., et al. (2013). A survey of unmanned aerial vehicles
(UAVs) for traffic monitoring. In: 2013 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 221–234. https://​
doi.​org/​10.​1109/​ICUAS.​2013.​65646​94

	 3.	 Liu, Y., Liu, H., Tian, Y., & Sun, C. (2020). Reinforcement learn-
ing based two-level control framework of UAV swarm for cooper-
ative persistent surveillance in an unknown urban area. Aerospace
Science and Technology, 98, 105671. https://​doi.​org/​10.​1016/j.​ast.​
2019.​105671

	 4.	 Erdos, D., Erdos, A., & Watkins, S. E. (2013). An experimental
UAV system for search and rescue challenge. IEEE Aerospace
and Electronic Systems Magazine, 28(5), 32–37. https://​doi.​org/​
10.​1109/​MAES.​2013.​65161​47

	 5.	 Candiago, S., et al. (2015). Evaluating multispectral images and
vegetation indices for precision farming applications from UAV
images. Remote Sensing, 7(4), 4026–4047. https://​doi.​org/​10.​
3390/​rs704​04026

	 6.	 Li, D., Wang, X., & Sun, T. (2016). Energy-optimal coverage
path planning on topographic map for environment survey with
unmanned aerial vehicles. Electronics Letters, 52(9), 699–701.
https://​doi.​org/​10.​1049/​el.​2015.​4551

	 7.	 Franklin, S. E., & Ahmed, O. S. (2018). Deciduous tree species
classification using object-based analysis and machine learning
with unmanned aerial vehicle multispectral data. International
Journal of Remote Sensing, 39(15–16), 5236–5245. https://​doi.​
org/​10.​1080/​01431​161.​2017.​13634​42

	 8.	 Liu, S., et al. (2017). Computer architectures for autonomous driving.
Computer, 50(8), 18–25. https://​doi.​org/​10.​1109/​MC.​2017.​30012​56

	 9.	 European Union Energy label. Tesla Support. (2021). https://​
www.​tesla.​com/​en_​EU/​suppo​rt/​europ​ean-​union-​energy-​label

	10.	 Suleiman, A., et al. (2019). Navion: A 2-mw fully integrated real-
time visual-inertial odometry accelerator for autonomous naviga-
tion of nano drones. IEEE Journal of Solid-State Circuits, 54(4),
1106–1119. https://​doi.​org/​10.​1109/​JSSC.​2018.​28863​42

	11.	 Engel, J., Koltun, V., & Cremers, D. (2018). Direct sparse odom-
etry. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 40(3), 611–625. https://​doi.​org/​10.​1109/​TPAMI.​2017.​
26585​77

	12.	 Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE
Transactions on Robotics, 31(5), 1147–1163. https://​doi.​org/​10.​
1109/​TRO.​2015.​24636​71

	13.	 Klein, G., & Murray, D. (2007). Parallel tracking and mapping for
small AR workspaces. In: 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, pp. 225–234.
https://​doi.​org/​10.​1109/​ISMAR.​2007.​45388​52

	14.	 Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011).
DTAM: Dense tracking and mapping in real-time. In: 2011 Inter-
national Conference on Computer Vision, pp. 2320–2327. https://​
doi.​org/​10.​1109/​ICCV.​2011.​61265​13

	15.	 Engel, J., Schöps, T., & Cremers, D. (2014). LSD-SLAM: Large-
scale direct monocular SLAM. In: ECCV.

	16.	 Hartley, R., & Zisserman, A. (2003). Multiple wiew geometry
in computer vision, 2nd Edn. Cambridge University Press, New
York, NY, USA.

	17.	 Park, S., Schöps, T., & Pollefeys, M. (2017). Illumination change
robustness in direct visual SLAM. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4523–4530.
https://​doi.​org/​10.​1109/​ICRA.​2017.​79895​25

	18.	 Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2), 91–110.
https://​doi.​org/​10.​1023/B:​VISI.​00000​29664.​99615.​94

	19.	 Bay, H., et al. (2008). Speeded-up robust features (SURF). Com-
puter Vision and Image Understanding, 110(3), 346–359. https://​
doi.​org/​10.​1016/j.​cviu.​2007.​09.​014

	20.	 Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB:
an efficient alternative to SIFT or SURF. In: 2011 International
Conference on Computer Vision, pp. 2564–2571. https://​doi.​org/​
10.​1109/​ICCV.​2011.​61265​44

	21.	 Viswanath, P., Swami, P., Desappan, K., Jain, A., & Pathayapurakkal,
A. (2015). ORB in 5 ms: an efficient SIMD friendly implementation.
In: Jawahar, C. V., Shan, S. (eds.) Computer Vision - ACCV 2014
Workshops, pp. 675–686. Springer, Cham.

	22.	 Fang, W., Zhang, Y., Yu, B., & Liu, S. (2017). FPGA-based orb
feature extraction for real-time visual slam. In: 2017 International
Conference on Field Programmable Technology (ICFPT), pp.
275–278. https://​doi.​org/​10.​1109/​FPT.​2017.​82801​59

	23.	 Taranco, R., Arnau, J. -M., González, A. (2021). A low-power
hardware accelerator for ORB feature extraction in self-driving
cars. In: 2021 IEEE 33rd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pp.
11–21. https://​doi.​org/​10.​1109/​SBAC-​PAD53​543.​2021.​00013

	24.	 Ferreira, L., et al. (2021). Energy-efficient application-specific
instruction-set processor for feature extraction in smart vision sys-
tems. In: 2021 55th Asilomar Conference on Signals, Systems, and
Computers, pp. 324–328. https://​doi.​org/​10.​1109/​IEEEC​ONF53​345.​
2021.​97231​14

	25.	 Bailo, O., Rameau, F., Joo, K., Park, J., Bogdan, O., & Kweon, I.
(2018). Efficient adaptive non-maximal suppression algorithms
for homogeneous spatial keypoint distribution. Pattern Recogni-
tion Letters, 106. https://​doi.​org/​10.​1016/j.​patrec.​2018.​02.​020

	26.	 Ferreira, L., et al. (2021). Reconfigurable multi-access pattern
vector memory for real-time ORB feature extraction. In: 2021
IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5. https://​doi.​org/​10.​1109/​ISCAS​51556.​2021.​94016​98

	27.	 Sun, R., et al. (2017). A 42fps full-HD ORB feature extraction
accelerator with reduced memory overhead. In: 2017 Interna-
tional Conference on Field Programmable Technology (ICFPT),
pp. 183–190. https://​doi.​org/​10.​1109/​FPT.​2017.​82801​37

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.apenergy.2019.03.117
https://doi.org/10.1109/ICUAS.2013.6564694
https://doi.org/10.1109/ICUAS.2013.6564694
https://doi.org/10.1016/j.ast.2019.105671
https://doi.org/10.1016/j.ast.2019.105671
https://doi.org/10.1109/MAES.2013.6516147
https://doi.org/10.1109/MAES.2013.6516147
https://doi.org/10.3390/rs70404026
https://doi.org/10.3390/rs70404026
https://doi.org/10.1049/el.2015.4551
https://doi.org/10.1080/01431161.2017.1363442
https://doi.org/10.1080/01431161.2017.1363442
https://doi.org/10.1109/MC.2017.3001256
https://www.tesla.com/en_EU/support/european-union-energy-label
https://www.tesla.com/en_EU/support/european-union-energy-label
https://doi.org/10.1109/JSSC.2018.2886342
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/ICRA.2017.7989525
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/FPT.2017.8280159
https://doi.org/10.1109/SBAC-PAD53543.2021.00013
https://doi.org/10.1109/IEEECONF53345.2021.9723114
https://doi.org/10.1109/IEEECONF53345.2021.9723114
https://doi.org/10.1016/j.patrec.2018.02.020
https://doi.org/10.1109/ISCAS51556.2021.9401698
https://doi.org/10.1109/FPT.2017.8280137

	Design of an Application-specific VLIW Vector Processor for ORB Feature Extraction
	Abstract
	1 Introduction
	2 SLAM Background
	3 Prior Art
	4 ORB Feature Extraction
	4.1 Scale Space Generation
	4.2 Two-Level Feature Extraction
	4.3 Descriptor Generation

	5 Operation Analysis and Architecture Considerations
	5.1 Data flow and dependencies
	5.2 Kernel Operations & Operational Rate
	5.3 Key findings

	6 The ASIP Architecture
	6.1 VLIW Partitioning
	6.2 Vector Memory
	6.3 Scalar Slot and Register Files
	6.4 Vector Slots and Intermediate Buffers
	6.5 Programmability

	7 Implementation and Evaluation
	8 Conclusion
	References

