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Abstract
6G networks have the burden to provide not only higher performance compared to 5G, but also to enable new service domains 
as well as to open the door over a new paradigm of mobile communication. This paper presents an overview on the role and 
key challenges of signal processing (SP) in future 6G systems and networks from the conditioning of the signal at transmis-
sion to MIMO precoding and detection, from channel coding to channel estimation, from multicarrier and non-orthogonal 
multiple access (NOMA) to optical wireless communications and physical layer security (PLS). We describe also the core 
future research challenges on technologies including machine learning based 6G design, integrated communications and 
sensing (ISAC), and the internet of bio-nano-things.
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1 Introduction

Wireless communications networks have evolved to per-
vasive and ubiquitous enablers for modern societies. The 
first generation (1G) networks were introduced in 1980s and 
since then a new generation has emerged every ten years. 
Each generation from the analog 1G to the current 5G has 
provided new service features via new technology enablers. 
The service and quality metrics have focused on improving 
data rate, reliability, quality, security, and more. While 5G 
has introduced some initial versions of distributed or edge 
intelligence to the system design, their actual breakthrough 
is expected with 6G systems. The technology for 6G net-
works is now under intensive research and the networks are 
expected be enrolled in 2030s.

The global data traffic is foreseen to be more than 
5000 EB/month in 2030. The value may even increase due 
to the increasing worldwide use of remote digital services 
driven by the Covid-19 pandemic. The future society will 
require fully automated and connected systems. Those will 
use distributed artificial intelligence (AI) and machine 
learning (ML), ultra-dense sensors, fast computing, fully 
integrated heterogeneous connectivity, etc. Those services 
will consume huge amounts of data, which needs to be 
transferred and to large extent to or from mobile sources. 
Emerging Internet of Everything (IoE) applications will 
require the convergence of communications, sensing, con-
trol, and computing functionalities. Some attempts toward 
this direction have been made in 5G networks already. 
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The stronger demand of high data rates with low latency 
and low energy consumption, will require the use of THz 
spectrum in the radio frequency (RF) domain as well as 
the use of optical wireless communications (OWC), and in 
particular of visible light communications (VLC).

Although 5G has started the journey to address the 
challenges described above, many open problems remain. 
We need to investigate, e.g., the following: 1) How to uti-
lize higher frequencies with larger bandwidths and lower 
power communications? 2) How to satisfy the new require-
ments: ultra low latency and ultra reliable communica-
tions? 3) How to guarantee security, also in low-resourced 
(but fully connected) devices? 4) How to integrate het-
erogeneous technologies (e.g., radio-optical)? 5) How to 
use ML/AI and deep learning (DL) for networks and over 
networks? 6) How to guarantee the power/energy effi-
ciency and material sustainability of the new networks and 
user devices? 7) How to design the systems and business 
environment so that it is profitable while the services and 
applications serve the green transition and environmental 
sustainability?

The future 6G networks will be designed so that users’ 
intelligence and needs will be further explored and satisfied. 
In other words, the various applications of run by the users 
will form the 6G network operating as a networked computer 
or inference machine. This calls for power and energy effi-
cient, reliable wireless connectivity and networks.

Potential use cases and challenges (Fig. 1) for 6G con-
nectivity could span from extended reality (enhanced virtual/

augmented reality) to interactive robotics and AI-based 
autonomous systems, from wireless brain-computer inter-
action to haptic communications, from in-body communica-
tions to human-bond communications, from massive Internet 
of everything to umanned mobility.

1.1  Main 6G System Technologies and Architectures

Since 6G research and projects emerged, papers started to 
appear in scientific literature, in particular overview papers. 
In [1], a survey of 6G from the point of view of energy con-
sumption and green architectures and technologies is reported. 
The first 6G technology white paper was published in 2019 by 
the Finnish 6G Flagship Program [2]. In [3], a general survey 
over the technologies envisioned for 6G networks and ser-
vices is described. A holistic and forward-looking vision that 
defines the tenets of a 6G system can be found in [4]. In [5], 
the role of AI in designing and optimizing 6G architectures, 
protocols, and operations is analyzed. In [6], the potential use 
cases enable by new technologies of 6G systems are taken 
into account, while [7] focused on 6G architecture, describing 
the usage scenarios and requirements for multi-terabyte per 
second and intelligent 6G networks. The role of deep learning 
to enhance 6G networks is discussed in [8]. In [9], signal pro-
cessing is indicated as important factor for the integration of 
different frequency bands and dynamic resource management. 
In [10], the use of optical signal processing together with AI 
is envisioned to revolutionize the next generation mobile net-
works, while [11] envisions new signal processing methods as 

Figure 1  6G challenges.
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mandatory for dealing with future massime MIMO networks 
as well as for security in 6G networks. In [12], the signal pro-
cessing is seen as fundamental, together with AI, for network 
orchestration of future intelligent IoT networks. In [13], the 
role of signal processing in the 6G era, along with the associ-
ated challenges, is briefly discussed, although this is not the 
main goal of the paper.

While 6G architectural/technological/societal challenges 
are reported in Fig. 1, core technologies can be classified as

• Wireless communication systems: THz communica-
tions; visible light communications; nanoscale commu-
nications;

• Next generation antenna and materials: massive mul-
tiple antennas; cell-free MIMO; reflecting intelligent 
surfaces; radio-reconfigurable antennas;

• Coding and modulation: channel coding; non-orthogonal 
wave; multiple access systems;

• Spectrum sharing: free duplex; full duplex; dynamic 
spectrum sharing;

• Full integration of: artificial intelligence; Internet of 
things; blockchain.

From architectures point of view, the 6G era will show 
several novelties

• Ubiquitous 3D coverage: non-terrestrial networks 
(NTN); high amplitude platform systems (HAPS); inte-
gration of space, aerial, terrestrial, and underwater net-
works;

• Intelligence inside networks and systems: AI-based 
networking; real-time intelligence (edge computing); 
intelligent spectrum adaptation;

• New network protocols: next Internet protocols.

The current 5G networks already increase the data rate and 
decrease the data connections latency. Further performance 
gains are expected from cell-free massive MIMO illustrated 
in Fig. 2. Massive MIMO is a key enabler already in the 5G 
networks, while the cell-free extension is largely expected to 
be introduced to practical use in the 6G era. In cell-free mas-
sive MIMO, all multiple-antennas access points (AP)s are 
connected to a CPU which operates all as a massive MIMO 
network with no cell boundaries where all users are served 
by coherent transmission and reception [14]. The APs and the 
CPU exchange the users’ estimated channels between them, 
hence, the burden on the fronthaul network is increased pro-
viding opportunities for performance enhancements. Cell-
free massive MIMO is first introduced by Yang in [15]. It 
implies that there are no boundaries between cells. Cell-free 
massive MIMO is a combination of three concepts: massive 
MIMO, distributed MIMO, and cell without boundaries [14].

1.2  Paper Outline

Although the general literature on 6G is getting rich, very 
few overview papers on signal processing aspects for 6G 
have appeared. This paper aims at discussing the role and 
key challenges of signal processing in future 6G systems 
and networks. In [8] the signal processing for 6G systems 
is touched but its main interest is towards the deep learning 
techniques. Conversely, we discuss the whole signal process-
ing chain in future 6G systems, from the conditioning of 
the signal at transmission to MIMO detection, from chan-
nel coding to channel estimation, from multicarrier (radio) 
modulation to optical wireless communications.

The paper is organized as follows. We cover frontend 
signal processing, transmit precoding and beamforming, 
multiantenna detection, channel coding and decoding, chan-
nel estimation, as well as non-orthogonal multiple access 
(NOMA) signal processing, optical wireless communica-
tions (OWC), and physical layer security (PLS) in Sec-
tions 2–9. In Section 10, the future research challenges on 
technologies are discussed. Those include machine learning 
based 6G design, integrated communications and sensing 
(ISAC), and the internet of bio-nano-things. Paper is briefly 
summarized and conclusions are drawn in Section 11.

Figure 2  Massive MIMO networks.



438 Journal of Signal Processing Systems (2023) 95:435–457

1 3

2  Front‑End Signal Processing and Digital 
Pre‑distortion

The non-linear distortion of radio frequency components 
can severely degrade the performance of an entire com-
munication system. The primary source of the non-linear 
distortion in radios are typically the high-power amplifier 
(PA). The non-linearity problem can be circumvented by 
using linear class A PAs or operating any PA far from their 
saturation point. However, this leads to a bulky, expensive 
and inefficient PA which is far from an ideal solution to non-
linear distortion. A popular solution is to apply a non-linear 
filter at the digital domain of the transmitter that applies 
an inverse of the PA response. This technique to linearize 
PA response by pre-distorting the digital signal is known 
as digital pre-distortion or DPD. In Fig. 3, a communica-
tion system in the presense of a DPD is illustrated. Here, 
the baseband signal is denoted by a(KT0) which traverses 
through a pre-distortion filter which applies an inverse of 
the PA response. The coefficients of the pre-distortion filter 
gets repeatedly updated by the adaptation or training block. 
The adaptation block compares the output of the PA at the 
baseband, c(KT0) and the output of the pre-distortion filter, 
b(KT0) to generate the updated coefficients.

DPD for dual-band PAs is a common feature for 5G radios 
these days. It is an alternative to ultra-wideband DPDs by 
only compensating for the nonlinear distortions around the 
signal bands of interest. The dual-band DPD is derived from 
the wideband memory polynomial DPD model [16]. The 
individual terms located around each band can be grouped to 
define the coefficient mapping between the wideband model 
and its corresponding dual-band model. We envision that the 
trend to develop more sophisticated DPDs for multi-band 
will continue throughout the decade. To be more specific, 
the tri-band DPD products will be more popular by the time 
6G arrives. For dual-band case, the terms centered around 
the signal band are sufficient because the out-of-band inter-
modulations are far from the band of interest. However, the 
out-of-band intermodulation terms might be located around 
the band of interest in concurrent tri-band PAs due to their 

high volume. Some literature already exists on tri-band 
DPDs. In [17], the authors presented a DPD for concurrent 
tri-band PAs. The PA model is based on a pruned Volterra 
model which takes both phase distortion in multiband PAs 
and compound amplitude distortion. Conventional least-
square (LS) has been used to estimate model coefficients 
in [17]. A simplified dynamic deviation reduction model and 
LS is used for modeling the PAs and estimating the model 
coefficients, respectively, for a tri-band DPD.

The cell-free massive MIMO system requires relatively 
smaller antennas and analog circuitry for radio-frequency 
(RF) modules so that the access point (AP) could be placed 
in any geographical location. This poses an interesting chal-
lenge to DPD implementation because the pre-distortion fil-
ter is typically placed closer to the RF circuits. Due to the 
small size of the AP hardware unit close to the user, it might 
be challenging to implement complex algorithms for the 
DPD. As the AP distance from the central processing unit 
(CPU) will be different, it will be challenging to synchronize 
different feedback signals with a single feedback path. Due 
to the size of the APs and challenges with the feedback, a 
non-adaptive simpler DPD solution will be ideal for a cell-
free massive MIMO system. A simple look-up table (LUT) 
based DPD can be used in this case which is typically used 
for mobile phones. In [18], one such classical LUT DPD has 
been presented. The AM-AM and AM-PM non-linearities 
are characterized to calculate complex coefficients which 
are placed in the LUT.

6G communication systems will use very high carrier 
frequencies and thus, beamforming is essential to circum-
vent the high attenuation and path loss. Phased array based 
beamforming transmitters typically apply multiple PAs for 
a single digital stream. However, this introduces significant 
challenges for DPD because multiple parallel PAs have to 
be linearized with a single DPD. According to [19], the two 
methods to design such a DPD would be to linearize indi-
vidual PA as a LS problem or to linearize array response to 
a desired spatial direction. In [20], the authors presented a 
DPD scheme that can linearize multiple PAs of a hybrid sys-
tem with antenna subarrays. The authors used LS to identify 
the PA parameters. The identified parameters and the input 
signal were used to design the DPD block which minimizes 
the expected sum of squared error. To accelerate the con-
vergence, the least mean-square (LMS)-Newton algorithm 
was used for iteratively minimizing the expected sum error. 
However, this scheme is less effective because the errors are 
measured independently and they can add up constructively 
or destructively over the air. Therefore, minimizing the array 
error in the desired beam direction provides better results. 
In [21], the authors formed the cost function with the theo-
retical nonlinear behavior in the array far-field and input 
signal, which was solved by LS.

Pre-Distortion
Filter Modulation

DemodulationAdaptation/
Training

PA
a(kT0) b(kT0) u(t) v(t)

c(kT0)

Weight
Update

Figure 3  A communication system with DPD.
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The PA models are generally not perfect as the response 
of a PA is a non-linear continuous function. The PA has to 
support different types of signals and thus, the PA mod-
eling can be challenging for a rapidly changing environment. 
Neural networks can be very efficient for non-linear map-
pings. A feedforward neural network with sufficient neu-
rons is known as universal approximators for an arbitrary 
continuous function [22]. Therefore, the neural network 
has been a popular choice for DPD modeling. For example, 
in [23], the authors proposed a neural network DPD model 
to jointly mitigate crosstalk, I/Q imbalance and nonlinearity 
in MIMO transmitters. During the feedforward computation, 
the authors initially set the weights between [−0.8, 0.8] and 
during backward propagation weights are adjusted to reduce 
the error. The Levenberg-Marquardt algorithm, which is an 
approximation of the Gauss-Newton method, is used for 
updating the coefficients. We expect deep neural networks 
to play an important role for 6G DPD modeling.

3  Transmit Precoding and Beamforming

In a wireless propagation environment, it is usually hard to 
obtain a reliable channel state information (CSI) where the 
performance of a downlink (DL) transmission system could 
largely be affected. Precoding algorithms can be exploited 
to deal with imperfect CSI where the effects of interference 
and path-loss are reduced. Precoding can also be exploited 
at the MIMO’s base station (BS) to increase the spectral effi-
ciency, and enhance the throughput and the capacity when 
the number of antennas approaches infinity [24]. In litera-
ture, linear, non-linear, and machine learning based precod-
ing algorithms were proposed. Usually linear precoding 
techniques, such as the zero-forcing (ZF) and the MMSE, 
depend on multiplying the transmitted signal by the precod-
ing matrix [25]. However, such methods incur a high com-
plexity due to a matrix inversion. Linear precoders based on 
approximate matrix inversion methods such as the Neumann 
series approximation (NSA), Newton iteration (NI), Cheby-
shev iteration (CI), Gauss-Seidel (GS), conjugate gradient 
(CG) and successive overrelaxation (SOR), were proposed. 
Although approximate matrix inversion methods achieve a 
satisfactory performance when the ratio between the num-
ber of BS antennas and user terminals is large, they have 
a severe performance degradation when the ratio is small. 
They also need to calculate an initial value which could slow 
the convergence. In addition, many methods need additional 
calculations to find suitable relaxation/optimization factors. 
Matrix decomposition algorithms provide better numerical 
stability over approximate matrix inversion methods at the 
cost of a high computational complexity [26]. However, 
semiconductor technology has also matured greatly over the 
last ten years where the interest has been shifted towards 

better system design than saving logic area within unstable 
and risky solutions. Several precoders have been proposed 
based on QR and Cholesky decompositions [26].

The second class of precoders is the non-linear such as 
the dirty-paper-coding (DPC) [27], Tomlinson-Harashima 
(TH) [28], and vector perturbation (VP) [29] based precod-
ers. The DPC algorithm is not hardware friendly because 
infinite length of codewords and sophisticated signal pro-
cessing are required. The TH precoder is a suboptimal 
implementation of the DPC algorithm and decomposition. 
In comparison with the DPC based precoders, TH precoder 
is more hardware friendly. The generalized TH algorithm, 
also known as VP algorithm, obtains a much lower com-
plexity compared with the DPC algorithm. In the VP algo-
rithm, the data is aligned to the eigenvalues of the chan-
nel matrix inverse on an instantaneous basis. It performs a 
sphere search out of several candidate perturbation vectors 
to reduce the precoded signal norm [29].

In order to improve the achievable downlink data rates 
of a cell-free massive MIMO, conjugate beamforming (CB) 
precoding [30], ZF precoding [31] and MMSE precoding 
[32] have been utilized. It is shown that the centralized 
MMSE significantly achieves higher DL data rates compared 
to conventional CB precoding. In centralized approach, the 
APs and the CPU exchange the users’ estimated channels 
between them, hence, the burden on the fronthaul network 
is increased. Therefore, several advanced local precoding 
techniques are proposed to eliminate such burden such as 
the local full-point ZF (FZF) [33], partial ZF (PZF), and 
protective partial ZF (PPZF) [34].

An important recent extension of the conventional beam-
forming or precoding is presented by the reconfigurable 
intelligent surface (RIS) technology, known also as intel-
ligent reflecting surface (IRS) [35–38] illustrated in Fig. 4). 
A RIS typically consists of a large number of low-cost pas-
sive elements, and can support different functional modes, 
e.g., reflection, polarization, refraction, and absorption. A 
RIS can be constructed, e.g., by varactor diodes or crystal 
liquid [39, 40]. A ray tracing based RIS channel model was 
proposed in [41] for both indoor and outdoor environments. 

BS

BS

MS

MS

MS

MS

RIS

RIS

Figure 4  Reconfigurable intelligent surfaces.
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The objective of the RIS is to control the wireless propaga-
tion environment so as to enable improved connectivity [35, 
42, 43]. What is more, the RIS can also be considered for 
localization together with mmWave communications tech-
nology networks [44–46].

One key limitation of the passive RIS is the fact that the 
passive beamforming limits the beamforming gains or the 
available degrees of freedom. Large numbers of RIS ele-
ments are needed to outperform the decode-and-forward 
(DF) half duplex relaying with moderate numbers of anten-
nas [47, 48]. What is more, a practical RIS often applies 
limited-resolution phase shifters resulting in further perfor-
mance penalty [49, 50]. Therefore, the RIS performance can 
be improved by so called hybrid relay-reflecting (HR-RIS), 
which combines the functionalities of a RIS and a relay [51]. 
The basic idea of the HR-RIS is to replace few elements of 
the RIS by simple reflect amplifiers.

4  MIMO Detection

In the last few years, there is a debate to choose the most 
scalable massive MIMO scheme: centralized vs. decentral-
ized. In centralized massive MIMO, the central processing 
unit (CPU) collects the CSI from all antenna elements. The 
signal processing tasks (demodulation, decoding, etc) are 
performed at the CPU which require extra radio frequency 
(RF) and analog-to-digital converter (ADC) components 
(Fig. 5). In the last few years, cell-free massive MIMO has 
gained a lot of attention due to its potential to improve the 
energy and spectral efficiencies of wireless communication 
systems. In cell-free massive MIMO, data detection is per-
formed locally at each AP, centrally at the CPU, or partially 

first at each AP and then at the CPU. Most of the detection 
techniques for cell-free massive MIMO are centralized as 
they rely on a single CPU to do most digital signal process-
ing (DSP) tasks with the help of irregular distributed APs.

The first centralized massive MIMO detector has used the 
likelihood ascent search (LAS) because of its linear aver-
age per bit complexity in number of users and its ability to 
achieve a near-maximum likelihood performance. Unfor-
tunately, the bit-error-rate (BER) is significantly deterio-
rated in the scenario of high modulation order and realistic 
environment. In addition, a computation of the initial vector 
includes a matrix inversion which increases the computa-
tional complexity. Reactive tabu search (RTS) is another 
local search method where more restrictions are introduced 
to avoid an early termination, and hence, higher accuracy 
is achieved. Unfortunately, the RTS detector suffers from a 
high computational complexity and a performance loss when 
a high modulation order is used. In order to reduce the com-
plexity, most of the proposed detectors during 2008 - 2013 
had used local search algorithms and belief propagation (BP) 
algorithms. The BP algorithms, such as the message pass-
ing and the Bayesian belief networks, iteratively search for 
the optimum solution in a space where the damping factor 
(DF) is carefully optimized. The BP is very sensitive to both 
the message update rules and prior information. However, it 
achieves a high performance when the correlation between 
the channel elements is relatively small. In years after, due to 
fail to guarantee convergence and implementation difficul-
ties, a research on linear and nonlinear detectors based on 
free-matrix-inverse methods has been conducted. Unfortu-
nately, these detectors suffer from a high performance loss 
and a high computational complexity when the massive 
MIMO size is large, the ratio between the BS antennas and 
user antennas is small, and an existence of a high correlation 
between channel elements. Researchers in the telecommuni-
cation industry intend to improve the system design to avoid 
unstable and risky solutions for their products. Therefore, 
in [52], we present the computational complexity of linear 
detection mechanisms based on the QR, Cholesky and LDL 
decomposition algorithms for different massive MIMO con-
figurations. Other detectors, such as the sphere decoding 
(SD), suffer from a high computational complexity. There-
fore, most existing detectors need a refinement to meet the 
implementation demands of a low computational complex-
ity and high performance, in particular under complicated 
environments.

Since 2017, there is a substantial trend in the research 
community to exploit machine learning, artificial intelli-
gence (AI), and deep learning (DL) in data detection. The 
deep network in the massive MIMO detector’s design based 
on projected gradient descent method is utilized and called 
DetNet [53]. It performs well in i.i.d. Gaussian channel and 
low-order modulation schemes (i.e., BPSK and 4-QAM). A 
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modified DetNet [54] is proposed where a relatively small 
number of parameters is required to optimize. Unfortunately, 
the training is unstable in realistic and correlated channels. 
In addition, scalability of the DetNet algorithm is poor 
because of a relatively large number of training parameters. 
In 2018-2022, there is a notable trend in a research com-
munity to exploit the DL to build a robust massive MIMO 
detector. A model-driven DL network is proposed based 
on the orthogonal approximate message passing network 
(OAMP-Net) [53]. It adds some adjustable parameters to 
the existing OAMP method. Unfortunately, it is very restric-
tive where a strict assumption has to exist. The performance 
of the OAMP-Net is dominated by the matrix inverse in 
each layer. Therefore, it is not feasible for implementation 
because of a high complexity. OAMP-Net2 algorithm is an 
extension of the OAMP-Net where new training parameters 
are utilized [53]. Unlike the OAMP-Net, imperfect channels 
are considered. However, like the OAMP-Net, it is domi-
nated by the matrix inverse. The MMNet [55] algorithm is 
proposed to overcome the challenges in the DetNet and the 
OAMPNet. It is designed to be trained online for each where 
an iterative soft thresholding algorithm is used. Although it 
achieves a good performance when implemented in a real-
istic channel simulator, it incurs latency due to the sequen-
tial online training. In addition, the performance degrades 
significantly in a high modulation order. A HyperMIMO 
[56] based detector replaces the training process required by 
the MMNet for each channel realization by a single infer-
ence through a trained hyper-network. It also reduces the 
number of parameters of the MMNet. In comparison with 
the MMNet, HyperMIMO performs slightly worse. It also 
needs to be re-trained when the channel statistics change 
significantly.

Many testbeds, such as the Argos testbed, the LuMaMi  
testbed, and the BigStation testbed, are available to support  
the decentralized channel estimation and data detec-
tion at antenna elements. Unfortunately, they rely on 
the maximum ratio combining (MRC) that significantly 
reduces spectral efficiency, and hence, prevents the use 
of high-rate modulation and coding schemes. Therefore, 
alternative (BS) architectures based on a decentralized 
approach are proposed. A decentralized data detection 
method based on the (CG) is proposed where the BS 
antenna array is partitioned into clusters and each clus-
ter is associated with independent local (RF) elements 
and computing circuitry [57]. Another decentralized 
data detection based on alternating direction method  
of multipliers (ADMM) [58], partially decentralized (PD)  
and fully decentralized (FD) data detectors based on 
approximate message passing (AMP) [59] are proposed.  
Unfortunately, the proposed decentralized based processing  
(DBP) is not tested in different system configurations and 
realistic channel conditions. The DBP is studied based on 

free-matrix-inversion methods in different channel condi-
tions [60]. The FD [61] architectures based on the coordi-
nate descent (CD) method and FD [61] data detector based  
on recursive least square (RLS), stochastic gradient descent  
(SGD), and averaged stochastic GD (ASGD) have also been  
proposed.

DL architectures and (AI) could be exploited in decen-
tralized and cell-free massive MIMO. However, the lit-
erature has shown a paucity of employing artificial intel-
ligence for data detection in decentralized and cell-free 
massive MIMO.

5  Channel Coding

Channel coding is a technique to control errors in data com-
munication over noisy channels. The key idea of channel 
coding is to add redundancy to the messages in the trans-
mitter for encoding. These redundant parts are used on the 
receiver side to detect the errors. Channel coding is an inte-
gral part of wireless communication systems since the intro-
duction of the convolutional codes in 1955 by Elias [62]. 
In 5G new radio (NR) standard, low-density parity-check 
(LDPC) and polar coding are adopted data and control chan-
nels, respectively [63]. Therefore, LDPC and polar coding 
schemes will continue to evolve throughout this decade. 
We envision that improved versions of LDPC and polar 
will be major candidates for 6G channel coding. The first 
reason is we have seen in the past that popular channel cod-
ing schemes have been adopted for more than one genera-
tion of communication systems. For example, turbo coding 
has been adopted for both 3G and 4G systems. The second 
reason is LDPC and polar are already very good channel 
coding schemes. LDPC are capacity-approaching codes 
and polar are the first capacity achieving codes with low 
decoding complexity. The third reason is the existing hard-
ware implementations in the literature can already provide 
hundreds of Gbps [64, 65]. Therefore, we can assume that 
with improved algorithm and hardware architectures LDPC 
or polar schemes will be able to provide Tbps throughput 
required for 6G communication systems.

LDPC introduces more complexity in the encoding 
phase, but the decoding phase is simpler than turbo codes 
and thus, ideal for large block lengths. However, to reach 
the Tbps goals of 6G, the LDPC algorithms will require 
further modification and optimization. In [66], the authors 
proposed a Check Node Self-Update (CNSU) algorithm 
for LDPC decoding which reduces the memory and power 
requirements. The hardware architecture based on CNSU 
algorithm was able to provide very high throughput which 
makes it suitable for beyond 5G systems. In [67], the authors 
studied the convolutional code LDPC (CC-LDPC). The 
authors compared the CC-LDPC to the conventional block 
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code LDPC schemes. CC-LDPC has the advantage in terms 
of lower error floor, faster decoding convergence and lower 
decoding complexity. The authors concluded that CC-LDPC 
has enormous potential for 6G communications due to its 
high reliability and low latency. There have been reinvigor-
ated interest in protograph-based LDPC as protographs pro-
vide an efficient way to construct LDPC codes. In [68], the 
authors proposed an improved protograph LDPC algorithm 
suitable for 1-bit ADC-based massive MIMO systems. This 
new method overcomes the error-floor issue of conventional 
LDPC codes and is a suitable candidate for low resolution 
6G base stations. NOMA schemes have great potential to be 
an integral part of 6G which opens a new area of multi-user 
oriented channel coding [69]. Interleave-division multiple-
access (IDMA), a capacity-approaching NOMA scheme, 
with turbo joint decoding at the receiver can leave a gap of 
1.4 dB to Shannon limit at the sum spectral efficiency with 
16 users [70]. Recently, LDPC codes have been proposed 
for multiuser channels due to their lower complexity and 
flexibility. For example, a raptor-like quasi-cyclic LDPC has 
been constructed for IDMA based random access in [71].

Polar codes, which was introduced in 2009, is the first 
capacity achieving codes with low encoding and decoding 
complexities. However, sequential coding (SC) is required 
for the polar coding schemes to reach Tbps throughput. SC 
decoding traverses through a polar factor tree in a sequen-
tial manner which can be unrolled for high throughput [72]. 
Even though SC decoding enables very high throughput, 
they suffer from error correcting performance. Successive 
cancellation list (SCL) processes only a subset of candidates 
among the polar factor tree nodes. At leaf nodes, the less 
reliable candidates are sorted out. The sorting process intro-
duces marginal complexity which is negligible due to an 
improved error correction performance. We would also like 
to mention that 6G systems might replace LDPC codes and 
adopt polar codes also for the data channels.

Most channel codes are designed for a specific set of cod-
ing rates. Even though LDPC provides a large choice of 
coding rates for 5G, they are not truly rate-less. In [73], the 
authors presented a novel rate-less code which they named 
as spinal codes. This novel coding scheme uses a hash func-
tion over the message to generate pseudo-random bits which 
can be mapped directly to the constellations. The simulation 
results show that spinal codes achieve Shannon capacity and 
outperform the best-known fixed rate block codes. There-
fore, spinal codes will enable a rate-less 6G system where 
any coding rate can be used for transmission based on the 
receiver capacity and channel condition.

Deep learning will play a key part in 6G systems. Chan-
nel coding methods based on deep learning have also gained 
a lot of attention in recent years. Deep learning has been 
used to decode linear codes in [74]. The application of deep 
learning improved the performance of the belief propagation 

algorithm. The improvements were demonstrated by differ-
ent LDPC codes. The polar decoder is enhanced by applying 
deep learning in [75]. The authors partitioned the encoding 
graph and train them individually which results in a non-
iterative and highly parallel decoder. In [76], a trained deep 
neural network is concatenated with a standard belief propa-
gation decoder. Iterating between the neural network and 
belief propagation resulted in better decoding performance.

6  Channel Estimation

Channel estimation continues to be an essential receiver 
functionality in 6G systems. Several of the key technologies 
envisioned for 6G impose new channel estimation problems 
that cannot be solved efficiently using conventional methods. 
For instance, THz communication experiences significantly 
long channel responses as well as low SNR due to the srong 
noise [77]. Moreover, minor variations in the environment 
can cause significant channel estimation errors [78]. Further-
more, massive MIMO systems operating in the THz range 
experience the beam split effect where the path components 
split into different spatial directions at different subcarrier 
frequencies, leading to serious array gain losses [79]. RISs 
also introduce new challenges in channel estimation since 
RIS elements are passive and cannot transmit, receive, or 
process any pilot signals to realize channel estimation. It is 
therefore important to develop channel estimation algorithms 
that can handle such challenges. These algorithms should 
combine low computational complexity with high spectral 
efficiency (low pilot overhead), without sacrificing the esti-
mation accuracy. In what follows, we will summarize the 
state of the art in channel estimation for 6G systems.

The enormous bandwidth available for THz communica-
tion enables the achievement of data rates in the order of 
1 Tbps. The unprecedented potential of THz communica-
tion also comes with major practical challenges for imple-
mentation, including high propagation losses due to severe 
signal attenuation and molecular absorption, as well as the 
frequency selectivity of the channel. Considering the large 
number of channel parameters and the unsuitability of con-
ventional estimation techniques, most works in the litera-
ture either exploit the inherent sparsity characteristics of the 
channel through compressed sensing (CS), or leverage the 
power of deep learning to reduce the computational com-
plexity and improve the estimation accuracy and spectral 
efficiency.

CS was applied to estimate indoor THz channels in [77]. 
In addition to proposing a compressive sampling matching 
pursuit (CoSaMP) algorithm, the authors of [77] also consid-
ered the Dantzig selector (DS), a computationally tractable 
CS-based approach that formulates the channel estimation as 
a convex optimization problem. It was shown that the both 
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CS methods significantly outperform the least squares (LS) 
approach in terms of MSE, and that the DS method is prefer-
able to the CoSaMP method which exhibits some degree of 
instability for low number of observations. The work in [80] 
applies CS to estimate dynamic MIMO THz channels by 
exploiting sparsity in the angular/delay domain. An algo-
rithm is proposed based on accelerated gradient descent with 
adaptive restart (AGDAR), which is shown to be fast and 
effective. Moreover, two further improved CS algorithms 
are introduced, namely the selective AGDAR (S-AGDAR) 
and the adaptive AGDAR (A-AGDAR). Substantial gains in 
MSE, computational complexity and latency are observed 
over the LS method. A joint activity detection and channel 
estimation (JADCE) technique is proposed in [81] for wide-
band THz IoT systems to address the large pilot overhead 
and the large dimensionality of the signal processing, by 
exploiting both the sparsity pattern in the angular domain 
and the low-rank structure of the channel matrix.

While [77] and [81] consider SISO systems, and [80] 
considers a MIMO system, massive MIMO THz channel 
estimation is more complicated due to the very large number 
of channel parameters. Accurate channel estimation is essen-
tial to enable hybrid precoding and to reduce the number 
of RF chains. Furthermore, massive MIMO THz systems 
experience the beam-split effect, where the large number 
of antennas and the wide bandwidth result in frequency-
dependent sparse channel supports and make the spatial 
channel directions different from each other in the angular 
domain for different subcarriers. Channel estimation for this 
scenario is studied in [82], where beam split patter detection 
is first performed, and then the sparse channel supports at 
different subcarriers are estimated using a support detection 
window. The procedure is repeated until all path components 
are considered, and the wideband channel is recovered by 
considering the total sparse channel support containing the 
channel supports for the different path components.

The work in [83] also addresses the beam split effect 
in THz massive MIMO systems by using uniform planar 
arrays. Channel sparsity in the angular domain is exploited 
to formulate the channel estimation problem as a CS prob-
lem, which is solved using the orthogonal matching pur-
suit (OMP) algorithm. Contrary to the existing works, the 
authors employ a wideband dictionary and show that the 
channels across different OFDM subcarriers share a com-
mon support in this case. This enables applying a variant 
of the simultaneous OMP algorithm, coined as generalized 
simultaneous OMP (GSOMP), which exploits the informa-
tion of multiple subcarriers to increase the probability of 
successfully recovering the common support. It is reported 
that the proposed GSOPM outperforms the OMP in the low 
and moderate SNR regimes.

Other works have sought to leverage the power of deep 
learning for channel estimation in THz massive MIMO 

systems. Considering an array-of-subarrays configura-
tion, [84] develops a deep convolutional neural network 
(DCNN) channel estimation technique that learns the param-
eters of the spherical wave channel model, including azi-
muth and elevation angles, amplitude of the channel gain 
and phase shift matrix. The work in [85] addresses the inac-
curacies of the planar wave model and the limitations of the 
spherical wave model by proposing a hybrid planar-spherical 
model. The planar wave model is adopted within sub-arrays 
and the spherical model among subarrays. A combination of 
DCNN and geometric relationships is employed to estimate 
the channel parameters over two stages. The work in [86] 
exploits both machine learning techniques and the sparsity 
structure of the channel matrix by designing a hybrid trans-
ceiver where estimation is performed via a combination of 
Bayesian learning and orthogonal matching pursuit (OMP). 
Generative adversarial networks (GANs) are trained in [87] 
to generate samples from the unknown channel distribution. 
The trained network is then used as a prior to estimate the 
current channel using the received signal.

CSI acquisition for RIS-assisted networks is another chal-
lenging problem due to the compound nature of the propa-
gation. However, it is necessary for the RIS phase control, 
beamforming, resource allocation, and interference man-
agement [88]. Several channel estimation algorithms have 
been proposed. The RIS is often assumed to be used in the 
mmWave or (sub-)THz communications systems to enable 
line-of-sight (LOS)-like connectivity even with the non-
line-of-sight (NLOS) conditions. The mmWave channels 
are typically very directive and sparse with a small number 
of propagation paths. Numerous compressive sensing (CS) 
based approaches, e.g., the atomic norm minimization, basis 
pursuit, approximate message passing (AMP), and mixed 
norm minimization have been proposed for RIS channel 
estimation [89–94]. Joint channel estimation and data-
rate maximization for THz-based RISs is proposed in [95] 
through an iterative atom pruning based subspace pursuit 
(IAP-SP) scheme, which is noted to exhibit lower compu-
tational complexity than the classical subspace pursuit (SP) 
scheme. A two-stage algorithm that includes a sparse matrix 
factorization stage and a matrix completion stage is devel-
oped in [96], and a novel message-passing based algorithm 
is proposed to solve the matrix-calibration based matrix fac-
torization problem in [97].

In [98], the channel is estimated for the downlink MISO 
RIS system, with the assistance of active elements that are 
randomly distributed in the RIS, which successfully reduces 
the pilot overhead. On the other hand, an uplink multi-user 
MISO RIS system is considered in [99], and the channel is 
estimated based on parallel factor decomposition to unfold 
the cascaded channel model. The channel is then estimated 
using alternating least squares and vector approximate mes-
sage passing.
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Geometric channel models explicitly couple the chan-
nel parameters and node locations leading naturally to joint 
channel estimation and mobile positioning [100]. In addi-
tion to conventional model-based approaches, data-driven 
approaches, for instance, deep learning can also be employed 
for channel estimation, positioning, RIS phase control, and 
symbol detection.

Cell-free massive MIMO is another promising 6G 
technology where channel estimation plays a critical role. 
Channel estimation enables the evaluation of the precod-
ing/detection vectors used for DL/UL data transmission. 
An overview of channel estimation techniques for cell-free 
massive MIMO is provided in [101]. As noted in [101], 
most techniques are based on pilot transmission where both 
orthogonal and non-orthogonal pilot schemes have been 
studied. Orthogonal schemes are more suitable scenarios 
with low mobility and a small number of users, whereas 
non-orthogonal schemes are preferable for high mobility 
scenarios. Most of the works adopt the minimum-mean 
squared error (MMSE) estimation scheme, and significant 
effort has been expended to limit the impact of pilot con-
tamination, for instance by proposing greedy-based pilot 
assignment methods [102, 103]. A graph coloring-based 
pilot allocation scheme is also proposed in [104] to reduce 
the impact of pilot contamination assuming that only a lim-
ited number of APs serves each user. A different approach 
is taken in [105] by focusing on reducing the pilot overhead 
through joint channel estimation and data detection, which 
is formulated as a biconvex optimization problem and solved 
using a forward-backward splitting algorithm.

As evidenced by the above works, progress has been made 
in developing channel estimation techniques to enable 6G 
systems. Yet there are still open problems and more effort 
needs to be expended to find the most optimal solutions. It 
is expected that future solutions will continue to build on 
the sparsity properties of the channel matrix and the power 
of deep learning to produce algorithms that combine high 
spectral efficiency with low computational complexity and 
high estimation accuracy. Only few works have considered 
the impact of various RF impairments in channel estima-
tion thus far [106], although these impairments are expected 
to affect the performance of 6G systems. Furthermore, 6G 
systems support high levels of mobility, while most of the 
developed works focus on stationary channels.

7  Non‑Orthogonal Multiple Access

As 6G systems are expected to support extremely high data 
rates for numerous users and devices, orthogonal multiple 
access (OMA) schemes, which have been the mainstay of 
previous generations of wireless systems, may not be able 
to cope with the increasing demand, resulting in undesired 

limitations on the improvement in spectral efficiency. Non-
orthogonal multiple access is a promising technology that 
can effectively solve this problem. At the cost of increased 
receiver complexity, NOMA allows multiple users to use the 
same time/frequency resources, separating them in power 
or code domains [107]. The most common form is power-
domain NOMA, which multiplexes users by superposing 
them at the transmitter side using different power levels. At 
the receiver side, successive interference cancellation (SIC) 
is used to recover the transmissions of the different users. 
NOMA exhibits both improved throughout and fairness in 
comparison to OMA, and it is expected to play a key role 
in 6G systems.

The integration of NOMA and MIMO technologies 
has been highlighted as a powerful approach to achieving 
high spectral efficiency and better wireless services [108] 
(Fig. 6). In contrast to SISO NOMA, where the focus is to 
optimize power allocation among users, MIMO-NOMA pro-
vides additional degrees of freedom through beamforming in 
the spatial domain. As noted in [107], the beamforming and 
SIC problems become coupled in the MIMO-NOMA setup, 
since the design of the beamformer has a direct impact on 
both the signal power and the interference power of the dif-
ferent users. Since the SIC performance of MIMO-NOMA 
largely depends on the decoding order of the users, it needs 
to be designed jointly with the beamformer, which opens the 
way to a new class of joint optimization problems.

A single-cluster MIMO-NOMA system is investigated 
in  [109], where the authors aim to optimize the power 
allocation and beamforming in order to maximize the sum 
rate of single-antenna users for a given SIC order. The 
optimization considers both a total transmit power constraint 
as well as an additional constraint to protect weak users. 
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Figure 6  NOMA-MIMO scheme.
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The resulting problem is non-convex and is solved through 
a successive convex optimization approach based on 
minorization-maximization. The simulation results indicate 
that MIMO-NOMA may be superior to traditional Zero-
Forcing (ZF) beamforming when the number of users is 
significantly higher than the number of transmit antennas 
at the BS. A two-user downlink MIMO-NOMA system is 
considered in [110], where the ergodic capacity is maximized 
for a given decoding order based on statistical CSI and 
optimizing the transmit covariance matrix. Inspired by the 
H-BLAST scheme, a MIMO-NOMA system with layered 
transmission is proposed in [111], and the power allocation is 
optimized to maximize the sumrate. Furthermore, the authors 
of [112] identify a “quasi-degraded” channel condition for 
the two-user MISO channel, and accordingly optimize the 
beamforming for MISO-NOMA by minimizing the transmit 
power under user rate constraints.

In the above scenarios, all the users are grouped into the 
same cluster, and hence each user interferes with all other 
users in the network. It can be prohibitively complex to opti-
mize both the beamformer and the decoding order in such 
cases, especially when the number of users is large. To over-
come this problem, multi-cluster MIMO-NOMA is proposed 
in [113], where each cluster consists of several users that 
share the same beamformer. This allows grouping users with 
similar spatial characteristics into the same cluser to mini-
mize inter-cluster interference. Furthermore, it is sufficient 
to perform SIC only for users within the same cluster, which 
reduces the decoding complexity. Using ZF beamforming 
to eliminate inter-cluster interference, the authors in [113] 
develop clustering algorithms to maximize the fairness for 
downlink MIMO-NOMA. The authors of [114] propose a 
general MIMO-NOMA framework applicable to both uplink 
and downlinke transmission, by employing the concept of 
signal alignment. Using signal alignment, the multi-user 
MIMO-NOMA scenario is decomposed into several single-
antenna NOMA channels. Both fixed power allocation and 
cognitive-radio inspired power allocation are considered. A 
precoding/detection vector selection scheme is also devel-
oped in order to efficiently exploit the available degrees of 
freedom.

A two-stage beamforming scheme is proposed for two-
user downlink MISO-NOMA in [115] where the first stage 
eliminates the inter-cluster interference through ZF beam-
forming, while the second stage employs intra-cluster beam-
formers to minimize the transmit power. The authors of [116] 
consider a beamforming design for downlink MIMO-NOMA 
to cancel a substantial part of the inter-cluster interference 
when the number of transmit antennas of the BS is smaller 
than the total number of user antennas. User clustering is also 
considered in [116], where a method is proposed that assigns 
users with maximally distinct channel gains to each clus-
ter in order to optimize SIC performance. The beamformer 

optimization problem under imperfect CSI is investigated 
in [117] using successive convex optimization and semi-
definite programming.

The previous works investigate the combination of 
NOMA with conventional MIMO. As massive MIMO 
is expected to play a leading role in 6G systems, massive 
MIMO-NOMA is considered an attractive research area, 
given the large number of spatial degrees of freedom avail-
able at the BS. Massive MIMO has traditionally focused on 
underloaded systems where the number of users is smaller 
than the number of BS antennas. Hence, the spatial degrees 
of freedom provided by massive MIMO may not be enough 
to efficiently handle overloaded systems with an excessive 
number of users. The power domain multiplexing enabled 
by NOMA can facilitate serving more users. The authors 
of [118] consider the overloaded massive MIMO-NOMA 
scenario where the number of users is larger than the num-
ber of antennas, and propose a Gaussian message passing 
(GMP) multiuser detection scheme. The GMP exhibits 
a complexity that is linear in the number of users. A user 
clustering scheme is proposed for cell-free massive MIMO-
NOMA in [119] and the resulting sum rates are derived 
considering intra-cluster pilot contamination, inter-cluster 
interference and imperfect SIC.

As massive MIMO-NOMA requires accurate CSI to 
realize its potential, the authors of [120] consider two pilot 
schemes, one of orthogonal pilots, and the other where pilots 
are superimposed with the data. A data-aided channel esti-
mation scheme is investigated, where partially decoded data 
are used to improve channel estimation. The use of NOMA 
is shown to mitigate the impact of pilot contamination. 
Channel estimation for uplink massive MIMO-NOMA is 
also studied in [121], using semi-blind estimation strategies. 
Group successive interference cancellation is employed in 
conjunction with semi-blind estimation in a multi-cell sce-
nario. After dividing the users into multiple groups accord-
ing to their large scale fading, eigenvalue decomposition is 
applied to separate the signal subspaces of different groups 
using the same pilot sequences. The proposed method is 
shown to outperform conventional estimation techniques. 
The authors of  [122] propose a method to alleviate the 
impact of channel estimation and SIC imperfections by 
employing a successive sub-array activation (SSAA) diver-
sity scheme, resulting in better performance.

The application of NOMA at mmWave and THz bands 
is another avenue to combine high data rates with increased 
connectivity. As noted in [107], the number of users that can 
be supported at such high frequencies is limited by the num-
ber of available RF chains. NOMA can resolve this limitation 
by increasing the number of users through power domain 
multiplexing. The authors of [123] propose the integration 
of NOMA with beamspace MIMO systems operating in 
mmWave settings. A ZF precoding scheme is also developed 
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to reduce the inter-beam interference, while a dynamic power 
allocation scheme is developed to optimize the sum rate, 
which considers both inter-beam and intra-beam power allo-
cation. The proposed system is shown to provide superior 
energy and spectrum efficiency compared to systems that 
do not utilize NOMA. To guarantee the rate performance for 
all users,the authors of [124] maximize the minimal rate of 
the system using max-min fairness, assuming that NOMA 
users in the same beam share the same precoding vector. 
The minimal rate maximization problem is non-convex due 
to the inter-beam and intra-beam interferences. Hence, alter-
nating optimization is used to solve the power allocation and 
precoding problems. The integration of simultaneous wire-
less information and power transfer (SWIPT) with mmWave 
massive MIMO-NOMA is proposed in [125], where hybrid 
precoding is considered to reduce the number of RF chains. 
A power splitting receiver is proposed to allow each user 
to extract both information and energy. Joint optimization 
of the user power allocation and power splitting factors for 
SWIPT is solved through an iterative optimization algorithm. 
Furthermore, a novel cluster grouping scheme is proposed 
in [126] to reduce the inter-cluster interference for mmWave 
MIMO-NOMA with hybrid precoding. MIMO-NOMA 
using the THz band is studied in [127], where user cluster-
ing, hybrid precoding and power allocation are optimized to 
maximize energy efficiency.

The integration of RIS and NOMA technologies is also 
considered an attractive option since the careful deploy-
ment and selection of reflection coefficients of RISs can 
increase the channel disparity among users, which would 
lead to higher NOMA gains [107]. Furthermore, this inte-
gration can aid in satisfying the QoS constraints of users, 
since the QoS constraints are not necessarily of the same 
order as the decoding order, which is dictated by channel 
conditions. The ability to modify the channels through RIS 
can help in satisfying the constraints. Hence, there has been 
a significant interest in combining the two technologies. 
The work in [128] considers a downlink MISO RIS-aided 
NOMA system, where the active beamforming of the BS 
and the passive beamforming of the RIS are jointly opti-
mized to maximize the sum rate of all users subject to vari-
ous constraints. Alternating optimization is used to solve 
the resulting non-convex optimization problems. Further-
more, low-complexity user ordering schemes are proposed 
in [129], which achieve close performance to the exhaustive 
search used in [128]. A signal cancellation design is devel-
oped in [130], where the reflection coefficients are selected 
to reduce inter-cluster interference of the different NOMA 
clusters. The signal cancellation enabled by RIS relaxes the 
constraints on the number of transmit and receive antennas.

Given the growing appreciation for the power of deep 
learning, it has also been applied to solve various NOMA-
related research problems. Deep learning is used to acquire 

end-to-end CSI in [131]. In particular, a long short-term 
memory (LSTM) network is integrated into the NOMA sys-
tem, to obtain channel characteristics automatically. User 
clustering through deep learning is proposed in [132]. A 
deep learning framework is proposed in [133] to maximize 
the sum rate and energy efficiency for MIMO-NOMA. A 
deep convolutional neural network, aided by training algo-
rithms is used to address the power allocation problem. 
Deep learning is used in [134] to maximize the sum rate 
for a downlink NOMA system by optimizing the power 
allocation.

It is obvious form the above works that NOMA will play 
an important role in the evoluation of 6G systems due to 
its attractive spectral efficiency. Furthermore, NOMA can 
be effectively integrated with other emerging technologies 
such as massive MIMO, mmWave communication, and 
RIS. NOMA also lends itself to the application of machine 
learning and deep learning techniques to improve perfor-
mance and/or reduce computational complexity. Important 
challenges remain to be addressed, however. While most 
works assume perfect channel knowledge, accurate channel 
estimation requires a significant training overhead, which 
may have a non-negligible impact on spectral efficiency. 
Furthermore, while most works consider perfect SIC, error 
propagation remains a importance consideration in practical 
SIC for NOMA systems [107]. Finally, the efficient design 
of modulation and detection schemes for NOMA remains an 
open problem since most works base their analysis on the 
ideal Gaussian signaling [135].

8  Optical Wireless Communications

Optical wireless communications (OWC) is an efficient 
and mature technology that has been developed alongside 
cellular technology, which has only used radio spectrum. 
OWC can potentially satisfy the demanding requirements 
at the backhaul and access network levels beyond 5G net-
works. As the 6G development gains momentum, compre-
hensive research activities are being carried out on develop-
ing OWC-based solutions capable of delivering ubiquitous, 
ultra-high-speed, low-power consumption, highly secure, 
and low-cost wireless access in diverse application sce-
narios [136, 137]. In particular, this includes using hybrid 
networks that combine OWC with radio frequency or wired/
fiber-based technologies. Solutions for IoT connectivity in 
smart environments are being investigated for developing 
flexible and efficient backhaul/fronthaul OWC links with 
low latency and support for access traffic growth [138].

The OWC technology covers the three optical bands of 
infrared (IR: 187-400 THz, 750-1600 nm wavelength), vis-
ible light (VL: 400-770 THz, 390-750 nm) and ultraviolet 
(UV: 1000-1500 THz, 200-280 nm). Free space optics (FSO) 
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and visible light communications (VLC) are commonly used 
terms to describe various forms of OWC technology [139]. 
FSO mainly refers to the use of long-range, high-speed 
point-to-point outdoor/space laser links in the IR band [140], 
while VLC relies on LEDs operating in the VL band, mostly 
in indoor vehicular environments [141].

In comparison to RF, OWC systems offer significant 
technical and operational advantages including, but not 
limited to i) huge bandwidth, which leads to high data 
rates; e.g., a recent FSO system achieved a world record 
data rate of 13.16 Tbps over a distance of 10 km [139], and 
multiple Gbps in indoor VLC setups [142]; ii) operation in 
the unregulated spectrum, thus no license fees and associ-
ated costs; iii) immunity to the RF electromagnetic inter-
ference; iv) a high degree of spatial confinement, offering 
virtually unlimited frequency reuse capability, inherent 
security at the physical layer, and no interference with other 
devices; v) a green technology with high energy efficiency 
due to low power consumption and reduced interference. 
With such features, OWC is well-positioned to be a prevail-
ing complement to RF wireless solutions from micro- to 
macro-scale applications, including intra/inter-chip con-
nections and indoor wireless access (WA) localization, 
underwater, outdoor and space point-to-point links, etc. 
Beyond the state-of-the-art, however, the dominance of 
RF-based WA technologies will be challenged. LiFi [142] 
is a promising technology to provide local broadband con-
nectivity [141]. As shown in Fig. 7, VLC provides high-
speed, bi-directional, networked data delivery through the 
lighting infrastructure. When a device moves out of the 
light cone of one light source, the services can be handed 
over to the next light source, or eventually, the device can 
be connected and handed over to an RF-based system if 
optical access is no longer provided. In VLC, all the base-
band signal processing at the transmitter and the receiver 

is performed in the electrical domain, and intensity modu-
lation/direct detection is the most practical scheme. LEDs 
with large FoV or laser diodes with a small FoV encode 
and transmit data over the line-of-sight (LOS)/NLOS opti-
cal channel. Photo-detectors at the receiver convert data, 
carrying light intensity back to electrical signals for base-
band processing. A VLC-enabled device inside a pocket 
or briefcase cannot be connected optically, which is one 
example of why a hybrid optical-radio wireless network is 
needed. A reconfigurable optical-radio network is a high 
performance and highly flexible communications system 
that can be adapted for changing situations and different 
scenarios [143].

Performance-wise, data throughput below 100 Mbps 
can be achieved with relatively simple optical transceivers 
and off-the-shelf components. Data rates of up to hundreds 
of Gbps have been demonstrated in laboratory conditions, 
and it is expected that even Tbps-communications will be 
achieved in the future.

Open research directions in OWC and in VLC toward 
6G include:

• Accurate VLC channel modeling and characterization for 
various deployment scenarios with a particular emphasis 
on user-dense environments. Incorporating user mobility 
and device orientation into the VLC channel models and 
combining VLC and RF systems [144, 145].

• New non-coherent physical-layer transmission schemes 
such as spatial modulation and its variations can be used, 
as well as non-orthogonal communication schemes such 
as MIMO [144, 145].

• Exploiting R-G-B LEDs, developing new materials and 
optoelectronic devices (e.g., fast non phosphorous LEDs, 
micro-LEDs), very fast switching mechanisms between 
optical and radio systems, etc. [146].

Figure 7  Bi-directional, point-
to-point and mobile communi-
cations with networked wireless 
access.
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• Use of OWC to provide secure and safe connectivity in in-
body communications applications, including communica-
tions to and from the body [147], communications between 
sensors inside the body, etc. Recent results have shown that 
near-infrared light can be used for this purpose [148, 149].

• Design of new and novel optical IoT, new devices, and 
interfaces to tackle the efficient generation, routing, detec-
tion, and processing of optical signals [150].

• For ultra-dense IoT scenarios, there are a number of open 
challenges that appeal for a radical rethinking of network 
topologies and the design of media access control and net-
work layers in OWC [151].

• In VLC, to account for multi-user scenarios and user mobil-
ity, robust low-complexity multiple access techniques need 
to be designed, together with efficient cellular architectures 
with user-scheduling and intra-room handover capability, 
achieving high capacity, low latency, and fairness [138, 
152].

• At the MAC layer, robust link quality estimators will be 
developed due to the small packet sizes used in machine-
to-machine (M2M) applications and constraints on sensor 
devices. Routing algorithms will be devised taking into 
account the optimal trade-off between the link capacity, 
connectivity, latency, and energy consumption [141, 153, 
154].

• In medium-range OWC, the effects of weather and environ-
mental conditions, ambient noise, and link misalignment 
need to be investigated to enable connectivity between dis-
tant vehicles. Physical-layer designs need to be built upon 
multi-hop transmission to reduce the delay in transmission 
of road safety-related information [138, 141, 154].

• For long-range links, extensive research should be carried 
out to minimize the terminal size to enable the technology 
to be integrated into small satellites, e.g., CubeSats, with 
data rates up to 10 Gbps and for the investigation of how to 
deal with cloud obstruction. Site diversity techniques and 
smart route selection algorithms should be devised for satel-
lite links and airborne networks, respectively. Also, hybrid 
RF/FSO and optimized multi-hop transmission techniques 
should be investigated to improve link reliability between 
satellites or high altitude platforms (HAPs) [155, 156].

9  Physical‑Layer Security

9.1  PLS Through Wireless Communications

Given the intrinsic nature of future 6G services, with the 
increase in traffic volumes over wireless networks, data pri-
vacy and security are a predominant concern for users and 
network administrators. Providing wireless networks both in 
RF and optical domains with trusted communications is a 
crucial objective for successfully deploying services, such as 

perpetual data upload and download, caching, and inter-net-
working. Hence, security should be considered an essential 
performance requirement in 6G systems, and signal process-
ing can strongly support it.

Physical layer security (PLS) can play a vital role in 
enhancing cyber-security in 6G wireless networks. It 
refers to transmission schemes that exploit dissimilarities 
among the channels of different receivers to hide informa-
tion from unauthorized users without reliance on upper 
network layer encryption techniques. The secrecy capacity 
is used as a performance measure to determine the maxi-
mum communication rate that guarantees the authorized 
receiver’s reliable reception of the secret message. PLS 
mechanisms, that are mainly based on advanced signal 
processing techniques, will also help reduce the latency 
and the complexity of novel security algorithms.

Two well-known PLS techniques are based on either 
applying beamforming in the direction of the legitimate 
user or generating a friendly jamming signal that creates 
an artificial noise, which lies in the null space of the legiti-
mate user. After combining the confidential information 
with the jamming signal at the transmitter side, only the 
eavesdropper will experience destructive effects from the 
jamming signal [157–159]. These techniques are anyway 
based on having knowledge of the location of the eaves-
dropper or at least an estimation of its channel state infor-
mation, which is often hard to get. In [160, 161] a noise-
loop modulation is proposed, which uses equipment noise 
to modulate the information bits to provide confidentiality 
without any knowledge about the eavesdropper.

9.2  PLS Through Optical Wireless Communications

In VLC, PLS is especially important when a large physical 
indoor environment is accessible to or shared by multiple 
users and potential eavesdroppers. Some examples include 
meeting rooms, public libraries, airplanes, hospitals, etc. 
Light does not propagate through opaque objects (e.g. 
walls), it is directional and light beams can be formed with 
signal processing efforts. It is, therefore, possible to sig-
nificantly reduce the possibilities of man-in-middle attacks 
in LiFi compared to WiFi (Fig. 8). It has been shown that 
the secrecy capacity of a LiFi network is 20 times higher 
than that of a WiFi network.

PLS methods employing signal processing techniques in 
MIMO-VLC have been proposed recently. In MIMO-based 
index-modulation (IM) techniques [157, 162], a random 
switching among the antennas (LEDs) is exploited to gener-
ate a strong and friendly jamming signal, which is invaluable 
for PLS applications. In precoding approaches [163–165], 
the channel state information at the transmitter (CSIT) of 
the legitimate user is used to construct the precoding matrix 
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coefficients so that the confidential message is perceived by 
the legitimate user clearly while the eavesdropper’s bit error 
rate (BER) performance is degraded substantially.

10  Research Directions and Challenges

In addition to the core signal processing technologies 
described in the previous section, there are several emerg-
ing technologies possibly having a significant impact on 6G 
systems. A few possible ones are briefly discussed below.

10.1  Machine Learning for 6G Design

The availability of a large amount of data, advanced tech-
nological progress, the revolution in optimization tools, the 
availability of powerful processing units, a huge amount of 
available memory, and systematic data mining and extrac-
tion techniques may jointly lead the basis to the AI utiliza-
tion to achieve further improvements to the physical, MAC, 
and network layers in B5G networks. However, the avail-
able resources and the technological development remain 
limited, hence, the ML paradigms look promising in 6G as 
the communication performance requirements keep aggres-
sively increasing. Although a plethora of machine learning 
(ML) based 5G can be seen in literature, the concepts are 
taken from mature technologies, such as computer vision 
and natural language processing domains, and exploited in 
communication systems, and hence, many challenges are 
raised such as the selection of optimal data representations, 
loss-functions, and training strategies. In other words, 6G 
should have its own definitions, algorithms, techniques, 
and tools of ML for wireless communication scenarios. The 
training complexity and the generalization capabilities of the 
trained models in wireless communications are really chal-
lenges. Most existing models are not adaptable to changes 
in channel statistics, realizations, and modulation orders. 
In addition, there is a lack of datasets to benchmark and 

compare the performance of ML models and algorithms 
[166]. Training at wide ranges of SNR should be consid-
ered as it severely impacts training time. Moreover, wireless 
communication systems usually deal with complex baseband 
representation while the most used neural networks (NN) 
utilize real arithmetic. Therefore, to meet the requirements 
of 6G, there is a need for NNs to operate with complex 
numbers. ML could be exploited at the MAC layer to have 
an adaptive control channel based on the traffic and other 
requirements of the connected devices. ML also could be 
exploited at the network layer to develop routing protocols.

10.2  Integrated Communications and Sensing

6G is envisioned to continue to transform from connected 
people and connected things, to connected “intelligences”. 
The mobile network will connect large numbers of intel-
ligent devices, equipped with not only communication but 
also sensing capabilities at the same time. These intelligent 
nodes will have the capability to sense their surroundings, 
and exchange their observations through communication: 
the cognitive circle (sense-communicate-think-act) applied 
to intelligent networks. AI can be combined with sens-
ing capability such that the network will have human-like 
cognition capabilities [167]. Communications and sensing 
can be integrated and work jointly to give benefits to each 
other [168]. When those are integrated to a single device to 
coexist based on different system designs and waveforms 
(possibly operating on separate frequency bands), the term 
ICAS is often used. When the systems and waveforms are 
jointly designed to serve both functionalities, the solution is 
often called joint communications and sensing (JCS). Both 
approaches can provide the system with accurate localiza-
tion, imaging, and, in general, high-resolution environment 
map. Those can improve communication performance, open-
ing the way to a broad range of new services [169].

The use of higher frequency spectrum enables a high-
accuracy localization and tracking, together with the capa-
bility of imaging and 3D mapping of the environment where 
communication subjects (humans, machines, things) are 
immersed. Similarly, an accurate sensing capability in/on 
the human body could open the way to augmented human 
communications and very accurate gesture/activity recogni-
tion [170].

In such scenario, the role of signal processing is crucial to 
model the environment and adapt the communication: from 
one side the model-based methods (geometric optics, statis-
tical signal processing, optimization theory, etc.) [171] and, 
from the other side, model-free methods (data-driven ML 
and AI) [172]. Although the former methods are rigorous 
and provide certain performance and design optimization, 
the latter can be used when the modelling is too complex to 
be obtained or to quickly adapt to changes.

Figure 8  WiFi-LiFi hybrid communications.
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10.3  Internet of Bio‑Nano‑Things

The Internet of Things (IoT) is one of the most important ele-
ment of 6G systems. Things refer to interconnected machines 
and objects with embedded computing capabilities employed 
to extend the Internet to many application domains such as 
health, home, office, transportation, food, space, ocean, 
etc. 6G should be the connectivity “tissue” that makes all 
these different resourced and sized devices to connect each 
other. There are many application domains where Things are 
required to be tiny, concealable, and non-intrusive. Nanoma-
terials (graphene, etc.) have stimulated the recent concept of 
Internet of NanoThings (IoNT), referring to interconnection 
of nano-scale (artificial) devices. More recently bio-nano-
devices have been investigated, as a potential disrupting 
method to take and deliver information inside the human 
body. The concept of Internet of Bio-Nano Things (IoBNT) 
was firstly introduced in [173], envisioning the use of natu-
ral or engineered bio-devices with embedded computing and 
communication capabilities (by using bio-chemical signals). 
6G networks should support the exchange of information from 
inside the body to Internet (Fig. 9), following the concept that 
the human body will be part of the global Network [174]. 
Bio-Nano-Things, together with the 6G support, could enable 
applications such as intra-body sensing and actuation systems 
for a new era of health monitoring and treatment [175].

11  Summary and Conclusions

In this paper an overview of the signal processing tech-
niques for future 6G networks is provided. The sig-
nal processing chain is considered as a whole, from the 

conditioning of the signal at transmission to MIMO detec-
tion, from channel coding to channel estimation, from 
multicarrier (radio) modulation to optical wireless com-
munications. Physical-layer security and bio-nano in-body 
communications are also considered as an important part 
of next generation networks.

DPD in the THz band large array transmitters is a sig-
nificant challenge together with the design of efficient 
transmit and receive processing chains providing energy 
and power efficient solutions given the large numbers of 
ADCs and digital-to-analog converters. Channel estima-
tion is challenging also due to the rapid channel varia-
tions and phase noise in the THz band. The large antenna 
arrays and the introduction of RIS technology further 
complicates the processing. Efficient channel coding and 
practical implementation of Tb/s decoders is by no means 
trivial and requires both algorithmic and architectural 
innovations. The multicarrier OFDM based air interfaces 
and the design of NOMA solutions together with realistic 
transceivers is an important challenge determining to large 
extent the power and energy efficiency characteristics of 
the emerging 6G networks. OWC is a promising solution 
for special indoor use cases providing inherent security 
and avoiding the electromagnetic interference problems 
typical for the microwave and THz bands. PLS may also 
solve elegantly some of the security and privacy concerns, 
which are very significant in the data avalanche enabled in 
part by 5G and even more by 6G.

All the above mentioned signal processing challenges still 
require significant research efforts. In addition, some more 
future directions were also identified and discussed. There 
is a room for fundamental research to exploit the artificial 
intelligence and deep learning in the design of DPD, pre-
coders and detectors. What is more, ML is expected to play 
some role in the design of actual air interfaces, modulation, 
waveforms, channel decoders etc. The benefit of such an 
approach is still debatable and more research is necessary. 
The merger of communications and sensing will be one key 
feature of 6G and AI/ML will play a role therein, too. The 
internet of bio-nano-things was also discussed as one poten-
tial direction for future networks. It may, however, be more 
a technology for 7G than 6G. Wireless quantum computing 
and communications is also an important emerging area, 
which may also mature for practical realization in the 7G 
systems expected to emerge in 2040s.
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