
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11265-022-01787-y

Integrating Energy‑Optimizing Scheduling of Moldable Streaming
Tasks with Design Space Exploration for Multiple Core Types
on Configurable Platforms

Jörg Keller1 · Sebastian Litzinger1 · Christoph Kessler2

Received: 2 October 2021 / Revised: 4 February 2022 / Accepted: 19 June 2022
© The Author(s) 2022

Abstract
Design space exploration of a configurable, heterogeneous system for a given application with required throughput searches
for a combination of cores or softcores with different architectures that can be accommodated within the given ASIC or FPGA
area and that achieves the required throughput and optimizes power consumption. For a soft real-time streaming applica-
tion, modeled as a task graph with internally parallelizable streaming tasks, this requires assigning a core type and quantity
and DVFS frequency level to each task, which implies task runtime and energy consumption, and mapping and scheduling
the tasks, such that the throughput requirement is met. We tightly integrate such static scheduling for stream processing
applications with design space exploration of the best heterogeneous core combination, and solve the resulting combined
optimization problem by an integer linear program (ILP). We evaluate our solution for different numbers of core types on
synthetic and application-based task graphs, and demonstrate improvements of up to 34.8% for ARM big and LITTLE cores,
and 70.5% for 3 different core types.

Keywords Design space exploration · Task scheduling · Energy efficiency

1 Introduction

Data stream processing is an important computation par-
adigm in embedded (and edge) computing, where a con-
tinuous stream of data elements coming from data sensors
should, due to its high volume and velocity, be processed
as close to the data source as possible. An example is the
preprocessing of continuously arriving camera raw data or
vehicle sensor data. Such devices are often constrained in
power usage (e.g., battery driven and/or using passive cool-
ing only), therefore the throughput requirements often can

only be fulfilled by using a heterogeneous multicore plat-
form offering also a type of cores with a special architecture
optimized for low power consumption. For a configurable
platform such as an application-specific integrated circuit
(ASIC) or a field-programmable gate array (FPGA), also
the number of each type of (soft) core can (and must) be
determined during design space exploration (DSE), to find
a collection of cores that for the given area and throughput
constraints optimizes the power consumption.

Stream processing programs are usually expressed as a
graph of persistent streaming tasks that read packets of data
from their input channels, process one packet at a time, and
write a packet of output data to output channels, thus for-
warding it to data consumer tasks or to the program’s result
channel(s). By providing sufficient FIFO buffering capacity
along all channels (thus following the Kahn Process Net-
work model [2]), the streaming program execution can be
software-pipelined such that all instances of streaming tasks
for different data packets in the same round in the steady
state of the pipeline are independent and thus can execute
concurrently (see Fig. 1). On a many-core system, these can
then be scheduled to different cores or core groups so that
the makespan for one round of the steady-state loop is kept

This article is an extended version of [1].

 * Sebastian Litzinger
 sebastian.litzinger@fernuni-hagen.de

 Jörg Keller
 jorg.keller@fernuni-hagen.de

 Christoph Kessler
 christoph.kessler@liu.se

1 FernUniversität in Hagen, Hagen, Germany
2 Linköping University, Linköping, Sweden

/ Published online: 30 June 2022

Journal of Signal Processing Systems (2022) 94:849–864

http://orcid.org/0000-0003-0303-6140
http://orcid.org/0000-0003-2200-7337
http://orcid.org/0000-0001-5241-0026
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-022-01787-y&domain=pdf

1 3

low enough to meet the throughput requirement and the
workload is well balanced. Streaming tasks perform a cer-
tain amount of work per input packet and can be internally
parallel, i.e., run on multiple cores to speed up one instance
of their execution. For example, a moldable task can use
any number of cores that must be determined before the task
is executed, in contrast to malleable tasks which are paral-
lelizable tasks that can change their degree of parallelism
during execution [3]. Crown scheduling [4] is a static sched-
uling approach for moldable tasks that has been extended
to heterogeneous platforms and multiple possible target
functions such as maximum throughput for given power
budget besides the usual energy minimization per round
(thus achieving minimum average power) for given through-
put [5]. In all these investigations, the platform was fixed,
i.e., the number of cores of each type was given. While the
scheduler had the freedom not to use some cores, their chip
area could not be used for cores of a different type, which
might have been helpful in further optimization, e.g., using
more energy-efficient cores instead of high-performance
cores if the task structure demands or allows this.

Such tradeoff is possible in a configurable platform such
as an FPGA or ASIC where multiple (soft) cores can be
implemented and the number of cores of each type is not
predetermined (although the maximum combined area of
the cores is). To achieve this, we extend the integer linear
program (ILP) of the crown scheduler to allow the solver
to determine the core counts of different core types. Thus,
we integrate design space exploration with the scheduler to
generate an energy-optimal configuration of heterogeneous
(soft) cores for an application with given throughput con-
straints and a platform with a given area.

We evaluate our proposal with a benchmark suite of 40
synthetic task sets and 3 task sets from real-world appli-
cations for different numbers of core types. We start with
2 core types and use ARM’s big.LITTLE in its original
manifestation, i.e. A7 and A15 cores. We use power pro-
files for different task types and core types derived from
measurements on a real platform. We find that our integrated

approach improves energy efficiency compared to a fixed
platform and that in many cases, the optimal number of LIT-
TLE cores is notably larger than the number of big cores,
i.e. different from real platforms. Moreover, our ILP solver is
only marginally slower than for a fixed platform, so that we
improve DSE time compared to heuristic DSE approaches
like steepest descent or tabu search over the configuration
space, which call energy computation (which in turn needs
at least some approximation to scheduling) at each configu-
ration point considered. We also perform scheduling exper-
iments for three core types, adding ARM A72 as further
core type, and again find an energy improvement of 50.3%
averaged over all task sets, with only moderately increased
runtime. Furthermore, we free the crown scheduler from
using only core group sizes that are powers of two, which
allows to use e.g. 3 cores of one core type more efficiently.
In particular, we make the following contributions1:

– We extend crown scheduling from a fixed platform
structure to a variable platform structure, i.e. numbers
of each type of (soft) cores in a configurable architecture,
in order to find the platform configuration and schedule
that lead in combination to the energy-optimal execution.
The presented approach works for any number of differ-
ent core types.

– We demonstrate the potential for improving energy effi-
ciency over crown-optimal schedules for a fixed platform
by evaluation with a multitude of synthetic task sets with
realistic task types, several task sets from real-world
applications, and power profiles for ARM big.LITTLE
types of cores. Additional experiments with three core
types demonstrate the feasibility of the general approach
beyond two core types.

– We demonstrate how to generalize this approach to differ-
ent optimization targets such as minimum area solution
for a given power budget and throughput, or a Pareto
front of minimum power budgets for different maxi-
mum chip sizes of the configurable architecture, given a
required throughput. By requiring that not only the sum
of the core areas meet the chip size, but also cores with
rectangular geometry fit into the chip rectangle, we pro-
vide a lower bound on usable core counts and refine such
Pareto front, to illustrate that real floorplanning will be
somewhere in between those extremes.

– We generalize the crown scheduler by still using a binary
partitioning of cores into groups, but allowing core group
sizes that are not powers of 2. This may help to improve

Figure 1 Left: A streaming task graph with four streaming tasks.
Right: The red box shows the steady state of the software-pipelined
streaming program execution, where all task instances in one round
are independent, i.e. belong to different instances of the streaming
task graph or are independent tasks from one task graph instance.

1 This article is an extended version of [1]. In particular, we add
experiments with more than 2 core types, contrast upper bound on
usable cores with a lower bound, generalize the crown scheduler to
non-power of 2 group sizes, and analyze possible threats to validity.

850 Journal of Signal Processing Systems (2022) 94:849–864

1 3

task assignment for core types where the core count is
odd, like 3 or 5.

The remainder of this article is organized as follows:
Sect. 2 introduces the processor, task and power models,
and the crown scheduling principle. Section 3 explains how
to combine the design space exploration for a configurable
platform with task scheduling to achieve more accurate pre-
dictions. Scheduling results are presented in Sect. 4. Sec-
tion 5 presents generalizations of our optimization, while
Sect. 6 restricts core counts by geometric constraints to
provide lower bounds on achievable core counts. Section 7
shows how to free the crown scheduler from the limitation to
core group sizes of powers of two, and illustrates its helpful-
ness. Section 8 discusses possible threats to validity of this
study, while related work is discussed in Sect. 9. Section 10
concludes and suggests future work.

2 Background

2.1 Architecture Model

We consider a generic multicore or manycore CPU with p
cores with dynamic discrete voltage and frequency selection
(DVFS). The cores can either be all of the same type (as in
standard server multicore CPUs) or of different types (such
as in ARM’s big.LITTLE). We assume a configurable plat-
form of a given area, i.e., we consider ASIC cores or FPGA
soft cores of known area.2

A core can execute at most one task (instance) at a
time, and can switch the voltage/frequency level between
tasks among a given fixed set of K discrete voltage/fre-
quency levels with frequencies fk , k = 1, ...,K , where
fmin = f1 < f2 < ... < fK = fmax , and the voltage is, for each
k, auto-co-scaled to the lowest level still supporting the cho-
sen frequency fk . For heterogeneous platforms with cores of
different types t, the frequencies fk,t and even their number
Kt might depend on the core type.

While idle, a core consumes a base power Pidle,t . When
executing a task j at some DVFS level k, it consumes a
power power(t, k, tty(j)) that depends on k and on the task
type tty(j) , and, in the case of a heterogeneous architecture,
also on the core type t. The task type tty(j) of each task j can

be roughly characterized by a small number of predefined
discrete classes in order to distinguish e.g. computationally
intensive from memory-access intensive tasks, as these react
differently to frequency scaling. Idle power and task power
can, for each DVFS level, task type and core type, either be
sampled on the target system using microbenchmarks for
the different task types, or be estimated using a theoretical
power model. In the following, we will subtract Pidle,t from
power(t, k, tty(j)) , so that the power drawn by a core of type
t executing a task j is

2.2 Task Model

Each task j, for j = 1, ..., n , performs work work(j) , correspond-
ing to the time of executing the task on a single (reference-type)
core at unit frequency, i.e., executing the task at frequency fk
results in a runtime work(j)∕fk . This runtime includes the phase
where the task writes its output either to a memory shared by
all cores, or via an on-chip network to the local memory of the
core that runs the follow-up task.

We consider moldable parallel tasks, i.e. parallelizable
tasks that can use any number of cores assigned prior to
execution, internally employing a parallel algorithm to share
the work, in contrast to malleable tasks where the degree of
parallelism might change during execution [3]. We make
no assumptions about monotonicity of parallel speedup
nor absence of speedup anomalies. Instead, the actual rela-
tive speedup of task j with q > 1 cores on the target sys-
tem, denoted by speedup(j, q) , can again be found out by
microbenchmarking or be estimated from a theoretical cost
model for the deployed parallel algorithm. Obviously, for
all j we have speedup(j, 1) = 1 . Inherently sequential tasks j
can be modeled by simply setting speedup(j, q) = 1 for q > 1 .
If a task j has a maximum width or degree of parallelism
W(j), then we can e.g. set speedup(j, q) = speedup(j,W(j))
for q > W(j) , i.e. the runtime does not shrink anymore
if we use more than W(j) cores. One might even use a
lower speedup to account for additional overhead with
more cores. For architectures with different core types,
we index the tasks’ speedup tables also by the core type
t, i.e., speedup(j, q, t) , where speedup(j, 1, t) = 1 in general
only holds for the reference core type t = 1 , while for other
core types, speedup(j, 1, t) denotes the relative performance
between core type t and the reference core type for the task
type of task j.

The time of executing task j at DVFS level k on q cores
of core type t is then

power(t, k, tty(j)) + Pidle,t.

Time(j, k, q, t) =
work(j)

fk,t ⋅ speedup(j, q, t)
.

2 The cores of same type typically share common L2 on-chip caches
and/or other common “uncore” on-chip infrastructure, thus forming a
core cluster, as for example in ARM big.LITTLE architectures. Sim-
plifying the area model, we assume here that such additional area is
proportional in size to the number of cores of each type, and factor it
proportionally into the core area resp. overall chip area. See also the
lower-bound discussion in Sect. 6. An extension of our area model
with explicit un-core area parameters is left to future work.

851Journal of Signal Processing Systems (2022) 94:849–864

1 3

2.3 Crown Scheduling

Crown scheduling [4, 6] is a static scheduling technique for
the steady state of the software-pipelined streaming task graph
where all tasks are active processing data. It considers the sub-
problems of core allocation to moldable tasks, DVFS level
selection, mapping of tasks to specific groups of cores and
ordering of task execution in time together, and introduces
artificial constraints on core allocation and task sequencing to
reduce the integrated optimization problem’s complexity with-
out sacrificing significant optimization potential in practice [7].

A key property is the hierarchical organization of the set
of p cores by recursive binary partitioning into 2p − 1 core
groups jointly referred to as the crown, see Fig. 2 for an
example of a balanced binary crown of 8 cores (ignore the
colors/shading for now), which consists of 15 core groups
in total: The root group of all cores (group 1) is decomposed
into two child groups (groups 2 and 3) of half the size each,
which are further split into four grandchild groups (groups
4–7) and so on, until we arrive at p leaf groups containing
one core each. Note that the crown is exponentially smaller
than the power set of p cores with 2p − 1 core groups.

In a crown schedule, moldable tasks can only be mapped
to one of the core groups in the crown. This also implies
that the core allocation to each moldable task has to be a
power of two. Moreover, a crown schedule is constructed so
that each core executes, within each iteration of the steady-
state pattern of the software pipeline, the tasks mapped to it
in (the same) order of non-increasing core allocation. This
allows all cores mapped to a parallel task to simultaneously
start their execution, so that the parallel algorithm running
in the task does not incur additional delays. Hence, there is
no internal fragmentation within the schedule; any idle times
due to residual load imbalances only occur at the end of a
round. Optimal and heuristic algorithms for crown schedul-
ing have been presented in earlier work [4, 6].

Crown scheduling can be generalized [5] to heteroge-
neous multicore CPUs with different core types such as
ARM big.LITTLE, which in our setting combines four
A15 (“big”) cores with four A7 (“LITTLE”) cores. In this

case, the top-level subdivision splits the overall heterogene-
ous core set such that internally homogeneous subsets are
obtained as its child groups, and the heterogeneous root
group is excluded as a possible mapping target, see Fig. 2.
An alternative view, which might be more appropriate for
more than two core types, is that each core type has a crown
of its own.

3 Combining Design Space Exploration
with Scheduling

Up to now, crown scheduling assumes a platform with a
fixed number of cores of each core type, and a fixed map-
ping of core indices and core types. In order to integrate
DSE with scheduling, we assume that we can give an upper
bound p on the maximum possible number of cores of any
core type t. More exactly, we will set p to be the smallest
power of 2 larger than this maximum number. The number
T of core types is a constant of arbitrary value, i.e. the com-
bined DSE and scheduling works for any number of core
types. This is illustrated by the fact that the following ILP3
to solve the DSE and scheduling optimization only sums
over all core types t, or uses constraints for all core types t.
We denote the number of cores of each type t by an integer
variable pt . For the big.LITTLE example with T = 2 , vari-
ables p1 and p2 which denote the number of LITTLE and big
cores, respectively.

Each core type t gets a crown of its own with groups
i = 1… , 2p − 1 and cores with indices l = 0,… , p − 1 . For

Figure 2 A heterogeneous crown for a standard big.LITTLE configu-
ration with 4 big cores (orange) and 4 LITTLE cores (green). Note
that the root group (1) does not exist, i.e., cannot be assigned (paral-
lel) tasks.

Figure 3 Crown structures for T = 2 different core types. As there are
five cores of type 1, core groups 2, 4, 5, 8, 9, 10, 11, 12 exist for t = 1
(green, top), and with only two cores of type 2, we have core groups
4, 8, 9 for t = 2 (red, bottom). Tasks will only be assigned to the actu-
ally instantiated core groups colored in white.

3 Available from https:// github. com/ sglit zinger/ idses.

852 Journal of Signal Processing Systems (2022) 94:849–864

https://github.com/sglitzinger/idses

1 3

core type t, a group i with maximum core index max(i) is
only existing if max(i) < pt , cf. Fig. 3.

For T = 2 core types and fixed values of p1 and p2 , the
ILP below resembles the ILP from [5]. Yet, as p1 and p2 ,
or in general pt , are variables in the current setting where
scheduling is combined with DSE, we will define further
constraints for them, and minimize the objective function
over all possible combinations of these variables.

We use binary variables xi,j,k,t where xi,j,k,t = 1 iff task j
is mapped to core group i of core type t at frequency fk,t .
Furthermore, we use binary variables exi,t where exi,t = 1 iff
core group i does not exist for core type t.

We then aim to solve the following optimization problem:

Constraint 2 ensures that each task j is mapped to exactly
one core group of one core type but only to an existing
frequency level by constraint 3, and constraint 4 guarantees that
tasks cannot be mapped to core groups that do not exist. For
each core l = 0,… , p − 1 , let Gl in constraint 5 denote the set of
all core groups i that comprise l, whether they are instantiated
or not. For given p, this set is known a priori. For example,
in Fig. 3 we have G13 = {1, 3, 6, 13}. To denote task runtimes,
we use time(i, j, k, t) ∶= Time(j, k, size(i), t). To constrain
round duration, constraint 5 must hold, i.e., for each core l
of each core type t, the total runtime of all tasks mapped to
a core group in Gl must not exceed the deadline M.

To set variables exi,t , we use the constraints 6 and 7. If
max(i) ≥ pt , then exi,t must be 1 because of constraint 6.

(1)

min
∑
i,j,k,t

xi,j,k,t ⋅ time(i, j, k, t) ⋅ power(t, k, tty(j))

⋅ size(i) +
∑
t

(pt ⋅ Pidle,t) ⋅M

(2)s.t. ∀j
∑
i,t

∑
k≤Kt

xi,j,k,t = 1

(3)∀j
∑
i,t

∑
k>Kt

xi,j,k,t= 0

(4)∀i, j, t
∑
k

xi,j,k,t≤ 1 − exi,t

(5)∀t, l
∑

i∈Gl,j,k

xi,j,k,t ⋅ time(i, j, k, t)≤ M

(6)∀i, t max(i) − exi,t ⋅ p< pt

(7)∀i, t max(i) + (1 − exi,t) ⋅ p≥ pt

(8)
∑
t

pt ⋅ At≤ ATotal.

By constraint 7, exi,t = 0 if max(i) < pt . Besides the obvious
non-negativity constraints, the variables pt need constraint 8,
i.e., the sum of the core areas for the different core types can-
not exceed the total FPGA area, where area here also might
mean number of CLBs, depending on the FPGA architecture,
and the total area might be discounted by a percentage to
account for efficiency loss of some kind such as area for wir-
ing. By the choice of p, this also implies

∑
t pt ≤ p . The objec-

tive function seeks to minimize the sum of the energies needed
to execute each task on the core group it is mapped to, plus the
power at idle times. While the latter term was a constant for
a fixed platform, i.e. not influencing the optimum, it is now
variable and must be considered.

Please note that the given ILP can even be helpful for a
fixed platform with Pt cores of each core type t, where the
cores can be shutdown individually if they are not used. If
we replace constraint 8 by ∀t ∶ pt ≤ Pt , then we have an
improved variant for crown scheduling with core consolida-
tion, cf. [8].

4 Scheduling Results

4.1 Experimental Settings

The reasoning behind our initial experiments was to facili-
tate a comparison to the results in [5] in order to assess the
additional value of adapting the device’s design to the appli-
cation at hand. To this end, we adopted the experimental
setup in [5], in particular: task sets, deadlines, core power
consumption values, available core operating frequencies,
relative performance figures for big vs. LITTLE cores, and
speedup values4.

We are aware that power consumption and frequencies
will not be identical when switching from ASIC cores to
soft cores on an FPGA. Still, we assume that the power con-
sumption values (and operating frequencies) of different core
types relative to each other might remain as they were.

Table 1 Characteristics of the synthetic task sets.

number of tasks 10, 20, 40, 80
task types Branch, MeMory, FMult,

SIMD, MatMul

task workloads (106 cyc.) 1 to 40 on LITTLE cores
max. parallelism degree 1 to 4, dep. on task type

4 In [5], we used parallel efficiency, i.e. speedup over core count,
instead of speedup and separated the difference in performance
between core types from the speedup by using an additional variable
ri,j , yet the speedup can be uniquely computed from efficiency and ri,j.

853Journal of Signal Processing Systems (2022) 94:849–864

1 3

The original experiments were conducted for 40 task sets
with 10, 20, 40, and 80 tasks, respectively (10 task sets of
each cardinality). Tasks are of one of five possible types:
MeMory, Branch, FMult, SIMD, or MatMul. A task’s type
implies a certain average core power consumption when
being executed as well as an affinity to one of the two avail-
able core types with regard to its runtime, meaning some
task types run faster on LITTLE cores and some on the big
ones. All this information is procured from [9] and summa-
rized in Table 1. Furthermore, a task’s maximum width is
determined by its type in the following manner5:

As before, the operating frequencies to choose from are
{0.6, 0.8, 1.0, 1.2, 1.4} GHz, the theoretically available 1.6
GHz for the big cores is ignored. Parallel speedups for all
tasks, i.e. all task types, on the reference core type (LITTLE)
are given as 1, 1.8 and 3.44 for widths 1, 2 and 4, respec-
tively, and are multiplied by the relative factors from [9,
Table 4], to obtain speedups on big cores, cf. [5]. Deadlines
are computed as

with p = 8 to obtain deadlines for a platform with 4 big and
4 LITTLE cores.

For further details on the original experimental set-up
please consult [5]. For these experiments, core idle power was
ignored as under fixed round times and fixed core composi-
tion, energy consumption caused by idle power is a constant
and therefore not relevant with regard to optimization. Now,
core composition can vary, thus idle power must be taken
into account, cf. the objective function in Eq. 1. To enable

W(j) =

⎧
⎪⎨⎪⎩

1, if tty(j) is BRANCH,

wj∈{2, 4},if tty(j) is MEMORY or FMULT,

4, if tty(j) is SIMD or MATMUL.

M = 0.6 ⋅

∑
j work(j)

p ⋅ f1
+

∑
j work(j)

p ⋅ fK

2
,

a meaningful comparison to the results in [5], we added the
energy consumption caused by idle power for 4 big and 4 LIT-
TLE cores over a round’s duration to the original results.

The Gurobi 8.1.0 solver was employed to obtain ILP solu-
tions. The respective computations were run on an AMD
Ryzen 7 2700X with 8 physical cores and SMT under a 5
minute (wall clock) timeout. The implementation was car-
ried out in Python utilizing the gurobipy module.

4.2 Scheduling Synthetic Task Sets

Primarily, we are interested in whether a chip of the same size
as in [5] can lead to energy savings when altering core composi-
tion, i.e., whether jointly optimizing chip design and schedule
can lower energy consumption for the execution of the target
application. To gain any insight in this regard, we have repeated
the original experiments with the ILP from Sect. 3 and the
chip’s size capped at the value required for the standard con-
figuration of 4 big and 4 LITTLE cores. In the implementation
described in [10], a big core6 occupies an area of 19mm2 , while
a LITTLE core’s size is 3.8mm2. For the area constraint 8, we
therefore set ATotal = 4 ⋅ 19mm2 + 4 ⋅ 3.8mm2 = 91.2mm2 . As
no more than

⌊
91.2mm2

min{19mm2,3.8mm2}

⌋
= 24 cores can be placed on

the chip, we further set p = 32 . Also here, the absolute values
will not be maintained when going from ASIC to FPGA, yet
the relative size of cores, even if measured in configurable
blocks (or resources), would rather be the same. Also, we are
aware that using a purely additive area model is a simplification,
but assume that the majority of the FPGA logic blocks will be
spent for cores and not for communication in addition to the
programmable interconnect, so that the inaccuracy is small.

Table 2 displays the results. It compares energy consump-
tion values Etotal from the original experiments to those
obtained via our current experiments. Depending on task
set size, we observe a 16.5–20.8% lower energy consump-
tion on average. For single task sets, energy savings of up
to 34.8% are possible. Variance drops with increasing task

Table 2 Results for the current
experiments on synthetic task
sets with two core types (A7
and A15) in comparison to the
original experiments in [5],
same chip size.

task set size n 10 20 40 80 total

Etotal curr. vs. orig. exp. min. 65.2% 70.3% 74.5% 78.5% 65.2%
Etotal curr. vs. orig. exp. avg. 83.5% 79.2% 80.9% 80.4% 81.0%
Etotal curr. vs. orig. exp. max. 94.5% 86.4% 86.3% 83.9% 94.5%
#big vs. orig. avg. -2.2 -2.0 -2.6 -2.3 -2.3
#LITTLE vs. orig. avg. 0.5 -0.6 0.3 -0.3 0.0
Eidle∕Etotal current avg. 0.662 0.642 0.647 0.628 0.645
Eidle∕Etotal orig. avg. 0.741 0.770 0.764 0.770 0.761

6 In that paper, the area refers to a quad core including cache, so that
one might divide the area by 4, if cache is evenly distributed over
individual cores. We decided to keep the original figures.

5 We did not express the maximum width explicitly in Sect. 2 but
included it in the definition of speedup.

854 Journal of Signal Processing Systems (2022) 94:849–864

1 3

set size as indicated by growing minimum and decreasing
maximum values. Figure 4 summarizes the energy savings
with regard to the original experiments for all task set sizes.
All ILPs could be solved either to optimality or solutions
are very close to the optimum (the maximum MIPGap value
over the 40 experiments is 0.0018).

It becomes clear that a considerable reduction of energy
consumption is possible if chip size remains constant while
the total number of cores as well as core composition may
differ. In particular, the number of big cores was on aver-
age 2.3 lower than in the original experiments with fixed
values for p1 and p2 , i.e. the number of LITTLE and big
cores, respectively. Interestingly, the total number of LIT-
TLE cores did not change when averaged over all examined
task sets. Figure 5 shows the distribution of deviation from
the results in the original experiments in # cores for both big
(top) and LITTLE (bottom) cores over all 40 task sets. The
last two rows in Table 2 contain the fraction of the energy
consumption caused by the chip’s idle power. For the original
experiments, the figures show that idle power7 is responsible
for > 75% of the total energy consumption. It is therefore
not surprising that significant optimization potential may
lie in altering the core composition for a given chip size. In
our current experiments, the chip’s idle power accounts for
62.8–66.2% of the total energy consumption. Jointly optimiz-
ing chip design and the target application’s schedule enables
a tradeoff between core count on the one hand and higher
operating frequencies or heavier parallelization on the other,
which proves to be beneficial with regard to energy efficiency.

As unused cores could simply be switched off, elimi-
nating their idle power from the calculation, we scanned
the original results from [5] for cores which had no tasks
mapped to them. These could then be regarded as switched
off, and the energy consumption caused by their idle power
deducted from the total energy consumption. As it turned
out, all 40 schedules had tasks mapped to each available
core, so no cores could be switched off. In a way, this dem-
onstrates the importance of considering chip design at
scheduling. After all, our results can not only be employed
to prescribe a specific core composition but also increase
energy efficiency for a given chip design, where unused
cores can be switched off to save energy.

Had our power model not considered a core’s idle power,
there would be no incentive for the solver to minimize the
number of cores when a solution with optimal energy con-
sumption has been reached. Thus, it is conceivable that
including the total number of cores in the optimization

Figure 4 Energy savings in comparison to the original experiments
on synthetic task sets for two core types (A7 and A15) and all exam-
ined task set sizes.

Figure 5 Distribution of deviation from the results in the original
experiments in # cores for big (top) and LITTLE (bottom) cores over
all 40 synthetic task sets.

Table 3 Characteristics of the real application task sets.

application number of tasks parallelism

H.263 encode 9 seq.
SDE 8 seq. & par.
edge detection 6 seq. & par.

7 Please remember that also during task execution, power is com-
posed from “idle” power and power on top, so that idle power mostly
indicates static power.

855Journal of Signal Processing Systems (2022) 94:849–864

1 3

process might lead to solutions with equally optimal energy
consumption but lower core count. By modifying the objec-
tive function, energy consumption and core count are jointly
minimized:

Of course, � must be chosen such that optimality regard-
ing energy consumption is given while core count still makes
a relevant difference during optimization.

4.3 Scheduling Real Applications

In addition to the synthetic task sets considered in [5], we
were interested in whether combined design space explora-
tion and scheduling could offer any benefits when it comes
to real applications. Therefore, we have performed the above
experiments for three selected applications: H.263 encode
detailed in [11], stereo depth estimation (SDE) from [12],
and edge detection as described in [13]. The H.263 encode
task set is comprised of 9 sequential tasks. SDE features
8 tasks, some of which are sequential while some can be
parallelized to an arbitrary degree. This holds true as well
for the edge detection application consisting of 6 tasks.
Table 3 assembles information on the task sets while Table 4
shows the results for the three applications just presented. It
becomes clear that the energy savings are more substantial
than for the synthetic task sets, ranging from approximately
35% for the H.263 encode application to 45% for SDE. Opti-
mizing chip design in conjunction with the schedule again
pays off as is indicated by the specific chip compositions
featuring less than four cores of each type for all three appli-
cations. In each case, we chose tight deadlines just about
sufficient to produce a feasible schedule. This means that
even from a performance-oriented point of view, the chip
with four big and four LITTLE cores would not provide
any advantages over the individual designs issued by our
approach for the respective task sets. Due to the small num-
ber of tasks in each application, scheduling times were very
low (< 1s) throughout, which is why we will omit any dis-
cussion to this effect here.

min
∑
i,j,k,t

xi,j,k,t ⋅ time(i, j, k, t) ⋅ power(t, k, tty(j))

⋅ size(i) + � ⋅ (pb + pL).

4.4 Experiments with 3 Core Types

In our approach outlined in Sect. 3, we allow for an arbitrary
number of core types. In an attempt to demonstrate that this
decision proves fruitful, we have repeated the scheduling
experiments with an additional core type for a total of three
different core types. As the data available in [9] covers only
two core types (ARM A7 and A15), we have conducted our
own measurements for a third core type, which we chose
to be an ARM A72. It is implemented e.g. in the Broad-
comBCM2711 chip, a quad-core processor featured in the
latest instalment of the ubiquitous Raspberry Pi device, the
Pi 4 Model B. For the measurements, we have adhered to
the procedure detailed in [9]: per-core power consumption
figures for the various task types and core operating fre-
quencies were obtained by running the respective benchmark
functions from the epEBench bench-mark [14] on all four
cores, subsequently subtracting base power and dividing by
4. Relative performance characteristics were determined by
executing a fixed number of loop iterations on a single core
at 1 GHz for each of the benchmark functions on the A7 and
A72 cores while measuring runtime. As no information on
die size is available for the Broadcom BCM2711, we have
derived an approximate value from the publicly available8
data on the MediaTek Helio X20 chip, taking into account
that it is manufactured in TSMC 20 nm in contrast to TSMC
28 nm for the BCM2711. Furthermore, the A72 implementa-
tion on the Raspberry Pi 4 B offers more extensive DVFS
capabilities than the core types considered so far, with 10
discrete frequency levels in steps of 100 MHz from 600
MHz to 1.5 GHz.

Table 5 displays the results for the 40 synthetic task sets
featuring five distinct task types from [5]. In comparison
to the current experiments with two core types (A7 and
A15, cf. Table 2), energy consumption can be brought
down even further. The significantly lower Eidle∕Etotal value
(43.3% vs. 64.5% on average for the experiments with two
core types only) is due to the lower total number of cores
placed on the chip (3.4 vs. 5.7 on average for the experi-
ments with two core types only) as well as the lower base
power for the A72. This is not the only reason for the
more favorable energy consumption though: the fact that
all three core types are made use of over all task set sizes
in a large number of cases indicates that energy efficiency
is furthered by the greater heterogeneity of the chip. Big
cores (A15) were used for 26 out of the 40 task sets, LIT-
TLE cores for 39, and an A72 core was placed on the chip
for each of the cases examined here. In Fig. 6, one can see
the distribution of deviation from the results in the original

Table 4 Experimental results for three real-world applications with
two core types.

application H.263 encode SDE edge detection

Etotal design & sched.
vs. sched. only

64.9% 55.3% 62.0%

big cores 3 2 2
LITTLE cores 1 1 2

8 cf.https:// en. wikic hip. org/ wiki/ arm_ holdi ngs/ micro archi tectu res/ cortex-
a72.

856 Journal of Signal Processing Systems (2022) 94:849–864

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a72
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a72

1 3

experiments in # cores for both big (top) and LITTLE (bot-
tom) cores over all 40 task sets. Note that for each task
set, one A72 core was placed on the chip. Finally, Fig. 7
visualizes the energy savings for all task set sizes versus
the original experiments in [5] with two core types.

A natural assumption when designing a chip with a vari-
ety of cores of different types would be that a given core
type is well suited to execute workloads of a particular kind,
whereas others may run more efficiently on cores of a dif-
ferent type. It will therefore be interesting to look at how
often certain task type/core type pairings have occurred in
our experiments. This information is provided by Table 6,
which by and large confirms our suspicions. For the compute-
intensive task types FMult, SIMD, and MatMul, the A72

core is usually favored. This is not surprising as the A72 is a
more recent development and some technological advance-
ments can be assumed to have taken place. The vast majority
of tasks of type Branch runs on the LITTLE cores, whereas
the MeMory tasks are roughly split between big and LITTLE
cores. All in all, these results still do not merit the conclusion
that one can simply schedule all tasks of a certain type to a
particular core type and thus reach optimality w.r.t. energy
efficiency with ease. Note that even if such a plain mapping
procedure could be issued, the exact number of cores of each
type would nonetheless be subject to further optimization.

The observation that the greater flexibility a third core
types offers is well received by the optimizer and pays off in
terms of energy efficiency also holds for the three real-world
applications, as Table 7 shows. In each case, the optimal
solution entails a different core type composition: big and
A72 cores for the edge detection application, LITTLE and
A72 cores for SDE, and for the H.263 encode task set, all
three core types are picked in the chip design. In comparison
to joint design space exploration and scheduling with two
core types, we notice a further reduction of energy consump-
tion for executing the resulting schedule, cf. Table 4.

Table 5 Results for the current
experiments with three core
types (A7, A15, and A72) in
comparison to the original
experiments in [5], same chip
size.

task set size n 10 20 40 80 total

Etotal curr. vs. orig. exp. min. 29.5% 41.9% 41.6% 47.0% 29.5%
Etotal curr. vs. orig. exp. avg. 50.6% 49.7% 48.1% 50.3% 49.7%
Etotal curr. vs. orig. exp. max. 73.3% 59.4% 54.4% 61.0% 73.3%
big avg. 0.7 0.6 0.5 0.8 0.7
#LITTLE avg. 1.9 1.8 1.8 1.5 1.8
#A72 avg. 1.0 1.0 1.0 1.0 1.0
Eidle∕Etotal current avg. 0.424 0.444 0.435 0.427 0.433
Eidle∕Etotal orig. avg. 0.741 0.770 0.764 0.770 0.761

Figure 6 Distribution of deviation from the results in the original
experiments in # cores for big (top) and LITTLE (bottom) cores over
all 40 synthetic task sets and 3 core types.

Figure 7 Energy savings for the experiments with three core types
(A7, A15, A72) in comparison to the original experiments for two
core types (A7 and A15) and all examined task set sizes.

857Journal of Signal Processing Systems (2022) 94:849–864

1 3

4.5 Scheduling Time

Beyond scheduling quality we are concerned with the time
it takes to compute a schedule (and potentially a core com-
position) for a given task set. Table 8 provides information
on scheduling times for the original experiments without
design space exploration in [5] as well as for our current
experiments jointly optimizing chip design and application
schedule under an area constraint (ATotal ≤ 91.2mm2), with 2
or 3 different core types. For small and moderately sized task
sets, scheduling times are low throughout. For n = 10 , they
are notably lower in the original experiments though, which
illustrates that considering chip design in the optimization
process may lead to a higher computational effort than solely
optimizing the schedule for low energy consumption. For
the larger task sets (n = 40 , n = 80), scheduling times rise
significantly in all setups, indicating that the decisive factor
is task set size when it comes to problem complexity. Here,
the setup with three core types causes the lowest schedul-
ing times. Over all task sets examined, the overhead in our
current experiments under the area constraint is ≈ 37% for
the case with two core types. Unsurprisingly, the solver ran
into the timeout more often as well (11 timeouts in total
vs. 6 in the experiments in [5]). Nevertheless, the largest
MIPGap value at timeout was 0.0018, thus we can consider
all solutions (near-)optimal. For the setup with three core
types on the other hand, the solver computes solutions nota-
bly quicker when considering all task set sizes examined
here. It should be noted though that we have not performed
any scheduling experiments for three core types without
design space exploration, so we actually lack data which

could permit any conclusions regarding the additional effort
the optimization of chip design demands for the case where
three core types are available. Figure 8 provides a visualiza-
tion of the information on scheduling times in Table 8.

5 Generalization

The design space for a streaming application on a configur-
able platform can be optimized in several dimensions: (1)
energy for one round, (2) duration of one round, and (3)
number of (soft) cores of each type (or total area of (soft)
cores). So far, we have given fixed upper bounds for (2) and
(3), and minimized the first target under those constraints.
However, it is also possible to fix any other two and optimize
the third. For (1) and (2), this is explained in [5], where a
fixed platform is assumed, i.e., (3) is not a variable.

Here, we can change the optimization goal, e.g. to mini-
mize the duration M of one round, by making M a real-valued
variable, using objective function minM , and changing the
previous objective function in Eq. 1 to a constraint E ≤ Pbud ⋅M ,
where Pbud is a given maximum (average) power budget, and
E is a short-hand for the sum in 1. Similarly, the minimum
area for given power budget and throughput can be found by
using the left-hand side of constraint 8 as objective function,
using the previous objective function in a constraint as given
above, and letting M as a constant as in Sect. 3.

Moreover, it is possible to fix one of those dimensions
and produce a Pareto front for the other two. We will exem-
plify this for the case of determining the minimum (average)
power budget vs. chip area for a given throughput, i.e. for a
given round length M. This can e.g. be used to find a suitably
sized FPGA for a given application.

To do this, we solve a sequence of MILPs, starting
with the maximum available chip area Amax , and using
ATotal(i) = Amax − i ⋅ ALITTLE with i = 0, 1, 2,… until9 no fea-
sible solution is found. Each solution comprises optimum
core counts p1 and p2 and the minimum energy E⋆ , which
can be converted into an average power budget by divid-
ing by M. Figure 9 depicts such a Pareto curve for one set
of tasks (n = 20) with the deadline M from Sect. 4, giving
maximum chip area in mm2 and power in W as the axes,
and marking each point in the Pareto curve with (p2, p1) , i.e.
starting with the number of big cores, for that solution. As
we can see, for a wide range of the examined maximum die
size values, core composition does not change as the most
energy-efficient design can be accommodated within the
given constraints. Presumably, adding more cores does more
damage energy-wise than increasing operating frequencies

Table 6 Occurrences of task type/core type mappings for the current
experiments with three core types (A7, A15, and A72).

task type big # mapped to LITTLE A72

MeMory 128 142 22
Branch 0 264 36
FMult 17 0 259
SIMD 3 0 282
MatMul 0 4 343

Table 7 Experimental results for three real-world applications with
three core types.

application H.263 encode SDE edge detection

Etotal design & sched. (3 core
types) vs. sched. only (2
core types)

42.5% 29.4% 37.9%

big cores 1 0 1
LITTLE cores 1 1 0
A72 cores 1 1 1

9 A smaller step than the area ALITTLE of the smaller core would not
change anything.

858 Journal of Signal Processing Systems (2022) 94:849–864

1 3

or extending parallelization, even if there is plenty of unused
area left on the chip. When maximum chip size starts to pose
an effective limitation, big cores are substituted by one or
several LITTLE cores. That way, average power consump-
tion increases but feasible solutions can still be produced
down to 34.2 mm2 die size, when the chip only features LIT-
TLE cores and average power consumption is ≈ 54% higher
than for the energy-optimal solution under arbitrary chip
size.

6 Lower Bound on Area Consumption

Constraint 8 which simply sums up the core areas is kind of
a best case consideration, as it allows arbitrary, even unre-
alistic shapes of core layouts and arbitrary intertwining of
layouts for different cores. Thus, the core counts for different
core types possible via that constraint can be considered as
an upper bound.

Here, we also provide a lower bound on core counts.
We consider the different types’ core layouts as rectangles
of fixed size and shape (no rotation allowed), which must
be placed into the FPGA area (also given as a rectangle)

without overlap. These requirements are rather harsh and
thus comprise a kind of worst case (cf. e.g. Fig. 6 in https://
www. design- reuse. com/ artic les/ 21583/ proce ssor- noc- fpga.
html.)

By providing a Pareto curve similar to Fig. 9, the dif-
ferences between lower and upper bound are visible, and a
realistic solution will be inbetween.

Finding optimal, non-overlapping layouts for rectangles
of different sizes is a hard problem [15, 16]. The solution
can be approximated by a variant of strip packing, where the
strip represents the FPGA and thus has a finite length, larger
rectangles are only provided in the required counts, and
smaller rectangles are placed as long as they fit the strip’s
length. In our case, we additionally require that cores of the
same type be placed in a contiguous area of the chip, in order
to account for shared on-chip infrastructure of a core-type
cluster and also to avoid unnecessarily large intra-cluster
core distances.

For two core types, the problem can be approximated
by first tiling a given number p2 of big cores in the lower
left corner of the FPGA rectangle, and then finding the
possible number of LITTLE cores by tiling them in the
upper right corner of the FPGA rectangle, see example in
Fig. 10. This is done for all possible arrangements of p2
big cores in the lower left corner. The best result provides
the maximum number p1(p2) of LITTLE cores when p2 big
cores are already placed. By repeating this algorithm for
p2 = 0, 1, 2,… , p , we get a list of possible core counts.

For the small areas available in our concrete case, we can
even give exact figures. The die photo in [10] suggests that
the aspect ratios of big and LITTLE cores are 5:3 and 2:1,
respectively. The aspect ratio of the FPGA is assumed to be
1:110. As the areas of all three have already been determined
in Sect. 4, the side lengths of all three can be computed.
Maximum core counts can be seen in Table 9. Reduction of
FPGA size for bus area etc. has not been applied.

If an ILP is constructed for the worst case, only con-
straint 8 must be replaced by constraints

Table 8 Scheduling times
(sums of user and system time)
and number of timeouts for the
current experiments and for the
experiments in [5].

experiments in [5] current experiments, 2 core
types

current experiments, 3 core
types

n avg. sched. time (s) #timeouts avg. sched. time (s) #timeouts avg. sched. time (s) #timeouts

10 0.355 0 2.906 0 1.407 0
20 5.175 0 142.798 0 4.247 0
40 1702.486 3 2491.273 5 21.378 0
80 1671.283 3 1984.073 6 513.461 1
total 844.825 6 1155.262 11 135.123 1

Figure 8 Comparison of scheduling times for the original experi-
ments in [5] and for the current experiments on synthetic task sets
with two and three core types, respectively, grouped by task set size.

10 cf.https:// forums. xilinx. com/ t5/ Xcell- Daily- Blog- Archi ved/ FPGAs-
Not- Dead- Yet- Thank- you- Very- Much- Kevin- Morris/ ba-p/ 387825.

859Journal of Signal Processing Systems (2022) 94:849–864

https://www.design-reuse.com/articles/21583/processor-noc-fpga.html
https://www.design-reuse.com/articles/21583/processor-noc-fpga.html
https://www.design-reuse.com/articles/21583/processor-noc-fpga.html
https://forums.xilinx.com/t5/Xcell-Daily-Blog-Archived/FPGAs-Not-Dead-Yet-Thank-you-Very-Much-Kevin-Morris/ba-p/387825
https://forums.xilinx.com/t5/Xcell-Daily-Blog-Archived/FPGAs-Not-Dead-Yet-Thank-you-Very-Much-Kevin-Morris/ba-p/387825

1 3

The largest difference between best and worst case is the
maximum number of big cores, which is 2 in the worst and
4 in the best case. For similar numbers of big cores, the
maximum number of LITTLE cores is around 20% larger
than in the best case.

As the number of LITTLE cores needed in Fig. 9 is below
the maximum number even for the worst case, the lower
bound curve is not different, but shorter as only 2 big cores
can be used.

7 Using Core Types with Core Count other
than a Power of 2

If the number pt of cores of some core type t is not a power
of 2, then the last core(s) can only be used to place tasks with
small width, cf. Fig. 3. To improve this situation, some groups

p2 ≤ 2,

p1 + 4 ⋅ p2 ≤ 20.

of larger width might be extended. This has been explored in
the context of asymmetric binary core groups in [17], where
however the decision where to split a group was done before
actual scheduling, i.e. independent of the task set at hand. As
it might depend on the task set and the task workloads if using
different group sizes is helpful, it seems plausible to let the
scheduler decide whether to do this.

We still maintain a binary partitioning of the pt ≤ p cores
of each core type t into groups. However, within this frame-
work the group sizes can be determined by the scheduler.
We introduce binary variables sizei,t,s and integer variables
lowi,t which indicate the size s of group i on core type t
and give the index of this group’s first core, respectively
(i = 1,… , 2p − 1 , s = 0,… , p).

Then, the following constraints apply:

i.e. each group (on each core type) has exactly one size.

i.e. the sum of sizes of two child groups is at most the size of
the parent group, and the size of the root group is at most pt.

∀i, t
∑
s

sizei,t,s = 1,

∀t
∑
s

s ⋅ size1,t,s ≤ pt,

∀t, i even
∑
s

s ⋅ sizei,t,s +
∑
s

s ⋅ sizei+1,t,s

≤

∑
s

s ⋅ sizei∕2,t,s,

∀t low1,t = 0,

∀t, i even lowi,t = lowi∕2,t,

∀t, i ≥ 3 odd lowi,t = lowi∕2,t +
∑
s

s ⋅ sizei−1,t,s.

Figure 9 Pareto curve of power
vs. chip area for an example
task set. Each point on the curve
is marked with the core counts
(p2, p1 , i.e. with the number of
big and LITTLE cores, respec-
tively,) for that solution. As
energy consumption per round
equals average power multiplied
with the deadline of 3.2 ms, the
Pareto curve for energy con-
sumption has a similar shape,
with a range of 8 to 25.6 mJ on
the y-axis instead of 5 to 8 W.

Figure 10 Exemplary tiling arrangement of 5 big cores in the lower
left corner and maximum tiling of LITTLE cores in the upper right
corner of the FPGA.

860 Journal of Signal Processing Systems (2022) 94:849–864

1 3

We thus allow groups of size 0 (however no tasks can
be mapped to them) and we allow to not use all cores in
groups, e.g. if using 4 cores instead of 5 cores is better in
Fig. 3.

A consequence of this flexibility is that the mapping,
which groups comprise a certain core l, is not static any-
more. Hence we introduce binary variables mapi,t,l = 1 iff
group i on core type t comprises core l. This is the case if
lowi,t ≤ l < lowi,t +

∑
s s ⋅ sizei,t,s . We thus exclude l if it is

outside this range and by requiring that a sufficient number
of cores is comprised, we force the variables for the proper
cores to 1.

We connect the mapping to the tasks by introducing
binary variables yj,s,t,k,l = 1 iff task j runs on a group of size
s comprising core l of core type t, using frequency level k.

Then constraint 5 can be reformulated as

Note that time is dependent on the size, not on the group
index itself. We also can reformulate the target function as

The binary variables xi,j,t,k now only serve to assign
tasks to groups and frequency levels, i.e. xi,j,t,k = 1 iff task
j runs in group i on core type t at frequency level k.

Constraints 2 and 3 remain as they are.
We forbid to run tasks on groups of size 0:

Constraints 4, 6, 7 are not needed anymore. Constraint 8
remains as is.

We still must connect variables x, y, and map to get a con-
sistent solution, i.e. yj,s,t,k,l = 1 iff ∃i ∶ xi,j,t,k = 1 ∧ sizei,t,s =

∀t, i, l l + (1 − mapi,t,l) ⋅ p ≥ lowi,t,

∀t, i, l lowi,t +
∑
s

s ⋅ sizei,t,s > l − (1 − mapi,t,l) ⋅ p,

∀t, i
∑
l

mapi,t,l =
∑
s

s ⋅ sizei,t,s.

∀l, t
∑
j,s>0,k

yj,s,t,k,l ⋅ time(s, t, j, k) ≤ M.

min
∑

j,s>0,t,k,l

yj,s,t,k,l ⋅ time(s, t, j, k) ⋅ power(t, k, tty(j)) +…

∀j, i, t
∑
k

xi,j,t,k ≤ 1 − sizei,t,0.

1 ∧ mapi,t,l = 1 . As this implies computing the product of size
and x variables, we achieve linearization by introducing a
further kind of decision variables zi,j,s,t,k , where zi,j,s,t,k = 1 iff
task j runs in group i of size s on core type t and frequency
level k. The additional constraints then read:

The first constraint yields yj,s,t,k,l = 1 if ∃i ∶ xi,j,t,k = 1

∧sizei,t,s = 1 ∧ mapi,t,l = 1 , while the remaining four con-
straints serve to determine the number of yj,s,t,k,l set to 1 for
each task, which collectively ensures that yj,s,t,k,l = 0 when-
ever the above implication does not hold.

We illustrate the advantage of this relaxation with a
small task set comprised from n = 4 tasks, and for the situ-
ation where only pt = 3 cores of a single core type (big)
are available, i.e. p = 4 , for which the crown has 2p − 1 = 7
groups, cf. left part of Fig. 2. The deadline is fixed to M = 1
second.

Task T1 has a workload work(1) = 2.24 ⋅ 109 cycles
and speedup speedup(1, 1) = 1 and speedup(1, q) = 0.8q
for q ≥ 2 . Thus, parallel execution of this task incurs
some overhead, but there is a sufficient degree of paral-
lelism so that parallelization for any (small) number of
cores occurs with constant efficiency 0.8. The workload
of this task is chosen such that it can complete on two
cores at highest frequency 1.4 GHz until the deadline. A
sequential execution of the task will not meet the dead-
line. If the task is run on q = 3 cores, then a frequency of
1 GHz is sufficient to meet the deadline, with a runtime
of 0.9333 seconds.

The three other tasks are identical and sequential. Their
workload is chosen such that those tasks can be executed
in the remaining 0.0666 seconds after task T1 has com-
pleted at the lowest possible frequency 600 MHz, i.e.,
work(j) = 0.04 ⋅ 109 for j = 2, 3, 4.

If task T1 is run on 2 cores, then the other three tasks will
be run in sequence on the third core, cf. Fig. 11 (top). If task
T1 is run on 3 cores, then the other three tasks will be run
concurrently on the three cores after task T1 has completed,
see Fig. 11 (bottom). However, this latter scenario is only
possible with the above relaxation.

The energy of the 3 small tasks is the same in both sce-
narios. The energy for the large task is lower in the 3-core
scenario, as the processor-cycle-product is the same in both
scenarios, but the frequency and thus power consumption is
lower than if the task runs on 2 cores.

∀j, i, s, t, k, l yj,s,t,k,l ≥ xi,j,t,k + sizei,t,s + mapi,t,l − 2,

∀i, j, s, t, k zi,j,s,t,k ≤ xi,j,t,k,

∀i, j, s, t, k zi,j,s,t,k ≤ sizei,t,s,

∀i, j, s, t, k zi,j,s,t,k ≥ xi,j,t,k + sizei,t,s − 1,

∀j
∑
s,t,k,l

yj,s,t,k,l =
∑
i,s,t,k

s ⋅ zi,j,s,t,k.

Table 9 Maximum number of LITTLE cores for given number of big
cores in FPGA, in best and worst case.

big # LITTLE worst # LITTLE
best

0 20 24
1 16 19
2 12 14
3 N/A 9
4 N/A 4

861Journal of Signal Processing Systems (2022) 94:849–864

1 3

8 Threats to Validity

In this section, we discuss possible limitations of our method
with regard to number of core types, use of rectangular lay-
outs and influence of task interference on task runtimes.

While we only demonstrated applicability of our method
to tightly integrate DSE and crown scheduling for 2 and 3
core types (cf. Sect. 4), larger numbers of core types are
already foreseen in our ILP model and by extrapolating from
Table 8 also seem computationally feasible for moderately
sized task graphs.

Our assumption of rectangular layouts of the core types
for the area constraint, motivated by publically available
ASIC implementation data, is of course subject to the used
hardware (FPGA vs. ASIC) and design tool (component
libraries, placement, routing) technology, which we do
not model in further detail, and thus we only considered
an upper bound for area consumption and lower bound for
accommodatable core counts, respectively, as described in
Sect. 6. The real plasticity of pre-layouted core modules is
expected to be somewhere in between this lower bound and
the upper bound obtained by considering flat area limits
only. The actual placement is considered a third-party plug-
in to our method; in fact, the placements (as by the heuristic
in Sect. 6) can be pre-computed offline for each possible
configuration and then quickly looked up in the ILP model
at solving time.

The task time parameters are derived by microbench-
marking on the concrete target core type for all possible

core allocations and DVFS levels, but might, for execution
on core subgroups, be sensitive to co-scheduled other tasks
of different type that also compete for shared resources, in
particular, main memory access bandwidth. This is mainly
a problem for memory-intensive tasks. As crown schedul-
ing does, by design, not constrain co-scheduling of tasks in
disjoint core groups with respect to memory bandwidth, the
microbenchmarking will have to co-schedule a task against
the most memory-access-intensive task type available if
used in scenarios where worst-case task execution times are
critical.

9 Related Work

Design space exploration and scheduling have been consid-
ered for configurable platforms since decades, cf. e.g. [18]
and the references therein, however in largely varying con-
texts and with widely differing goals.

Holzer et al. [19] and Duhem et al. [20] consider the
combination of design space exploration and scheduling in
the context of reconfiguration at runtime, while we consider
static scheduling. Sarma and Dutt [21] consider design space
exploration of heterogeneous chip multiprocessors with a
given power or area budget for several given core types,
with the goal of optimizing for energy, performance or a
combination of these. In contrast to our work, they use
sequential tasks with dynamic scheduling by the operating
system scheduler, and DVFS is not considered. Uscumlic
et al. [22] and Li et al. [23] consider design space explora-
tion and scheduling via ILP and evolutionary computation,
respectively, but in the application, i.e. for a fixed platform,
while we target an architecture where different numbers and
types of (soft) cores can be used.

The closest related work seems to be [24]. They combine
modulo scheduling and design space exploration, and solve
for performance and energy efficiency, i.e., they generate a
Pareto front of solutions so that the designer has a choice.
However, their tasks are instructions in a high-level hardware
design language, and their resources are operation units like
adders or multipliers, while our tasks are parallelizable pro-
grams in itself, and our resources are different types of cores.

10 Conclusion and Future Work

We have presented an approach to combine design space
exploration and static scheduling for executing streaming
task graph applications with parallelizable tasks on a config-
urable, heterogeneous platform, i.e. to select a collection of
cores or softcores of different types that achieve the required
throughput and minimize energy consumption per round, i.e.
average power consumption. Our experiments indicate that

Figure 11 Energy-efficient schedules for example task set on three
cores with allocations as powers of 2 (top) and with arbitrary alloca-
tions (bottom).

862 Journal of Signal Processing Systems (2022) 94:849–864

1 3

integrating the design space exploration with the schedul-
ing does not notably increase scheduling time, and at the
same time improves energy efficiency by 19% and 50% on
average via selecting optimum core counts for two and three
core types, respectively, within a given area available in a
configurable architecture.

Moreover, we have exemplified that the approach can
be generalized for other targets than energy efficiency,
such as minimum area solution for a given power budget
and throughput, and to produce a Pareto front relating two
optimization goals like minimum power budgets for differ-
ent ASIC or FPGA areas, given a required throughput. By
determining core counts not only via area constraints but
also geometric constraints, lower bounds on the number of
usable cores can be found that indicate core counts that can
be expected in a real implementation.

Future work will comprise to validate our experiments on
a real configurable platform.

Moreover, the architecture area model (and the core pack-
ing heuristic) could be refined e.g. by introducing explicit
area parameters and constraints to model the shared uncore
area cost for core-type clusters.

Acknowledgements C. Kessler acknowledges partial funding by
ELLIIT, project GPAI.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Keller, J., Litzinger, S., & Kessler, C. (2021). Combining design
space exploration with task scheduling of moldable streaming
tasks on reconfigurable platforms. In S. Derrien, F. Hannig,
P. C. Diniz, & D. Chillet (Eds.), Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications - 17th Interna-
tional Symposium, ARC 2021, Virtual Event, June 29-30, 2021,
Proceedings (pp. 93–107). Springer volume 12700 of Lecture
Notes in Computer Science.

 2. Kahn, G. (1974). The semantics of a simple language for paral-
lel programming. In Proc. IFIP Congress on Information Pro-
cessing (pp. 471–475). North-Holland.

 3. Leung, J. Y.-T. (Ed.) (2004). Handbook of Scheduling. Boca
Raton, FL: Chapman & Hall/CRC.

 4. Melot, N., Kessler, C., Keller, J., & Eitschberger, P. (2015). Fast
Crown scheduling heuristics for energy-efficient mapping and
scaling of moldable streaming tasks on manycore systems. ACM
Transactions on Architecture and Code Optimization, 11.

 5. Litzinger, S., Keller, J., & Kessler, C. (2019). Scheduling mold-
able parallel streaming tasks on heterogeneous platforms with
frequency scaling. In Proc. 27th European Signal Processing
Conference (EUSIPCO 2019).

 6. Kessler, C. W., Melot, N., Eitschberger, P., & Keller, J. (2013).
Crown scheduling: Energy-efficient resource allocation, map-
ping and discrete frequency scaling for collections of malleable
streaming tasks. In 23rd International Workshop on Power and
Timing Modeling, Optimization and Simulation (pp. 215–222).

 7. Melot, N., Kessler, C., Keller, J., & Eitschberger, P. (2019).
Co-optimizing core allocation, mapping and dvfs in streaming
programs with moldable tasks for energy efficient execution on
manycore architectures. In Proc. 19th International Conference
on Application of Concurrency to System Design (ACSD-2019),
Aachen, Germany. IEEE.

 8. Melot, N., Kessler, C., & Keller, J. (2016). Improving energy-
efficiency of static schedules by core consolidation and switch-
ing off unused cores. In Proc. Int. Conf. on Parallel Computing
(ParCo’15) (pp. 285 – 294). IOS Press.

 9. Holmbacka, S., & Keller, J. (2017). Workload type-aware
scheduling on big.LITTLE platforms. In Algorithms and Archi-
tectures for Parallel Proc. (pp. 3–17). Springer.

 10. Shimpi, A. L. (2013). Samsung Details Exynos 5 Octa Architec-
ture & Power at ISSCC ’13. https:// www. anand tech. com/ show/
6768/. Accessed: 2021-03-01.

 11. Eindhoven Technical University, Electronic Systems. (2010). Data-
flow Benchmark Suite (DFbench). http:// www. es. ele. tue. nl/ dfben ch/

 12. Hautala, I. (2019). From dataflow models to energy efficient appli-
cation specific processors. Ph.D. thesis Oulu University, Finland.

 13. Litzinger, S., & Keller, J. (2021). Code generation for energy-
efficient execution of dynamic streaming task graphs on parallel
and heterogeneous platforms. Concurrency and Computation:
Practice and Experience, n/a, e6072.

 14. Holmbacka, S., & Müller, R. (2017). epEBench: True energy
benchmark. In I. Merelli, P. Lio, & I. V. Kotenko (Eds.), 25th
Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP) (pp. 426–429).

 15. Fekete, S. P., & Schepers, J. (2004). A combinatorial characteriza-
tion of higher-dimensional orthogonal packing. Mathematics of
Operations Research, 29, 353–368.

 16. Garey, M. R., & Johnson, D. S. (1979). Computers and intracta-
bility, a guide to the theory of NP-completeness. Freeman.

 17. Torggler, M., Keller, J., & Kessler, C. W. (2017). Asymmetric
crown scheduling. In I. V. Kotenko, Y. Cotronis, & M. Daneshtalab
(Eds.), 25th Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing, PDP 2017, St. Petersburg,
Russia, March 6-8, 2017 (pp. 421–425). IEEE Computer Society.

 18. Maestre, R., Kurdahi, F., Fernandez, M., Hermida, R., Bagherzadeh,
N., & Singh, H. (2001). Kernel scheduling techniques for efficient
solution space exploration in reconfigurable computing. Journal of
Systems Architecture, 47, 277–292.

 19. Holzer, M., Knerr, B., & Rupp, M. (2007). Design space explo-
ration for real-time reconfigurable computing. In Proc. 41st
Asilomar Conference on Signals, Systems and Computers (pp.
1981–1985).

 20. Duhem, F., Muller, F., Aubry, W., Le Gal, B., Négru, D., &
Lorenzini, P. (2013). Design space exploration for partially
reconfigurable architectures in real-time systems. Journal of
Systems Architecture, 59, 571–581.

 21. Sarma, S., & Dutt, N. (2015). Cross-layer exploration of heteroge-
neous multicore processor configurations. In Proc. 28th Int. Conf.
on VLSI Design and 14th Int. Conf. on Embedded Systems. IEEE.

863Journal of Signal Processing Systems (2022) 94:849–864

http://creativecommons.org/licenses/by/4.0/
https://www.anandtech.com/show/6768/
https://www.anandtech.com/show/6768/
http://www.es.ele.tue.nl/dfbench/

1 3

 22. Uscumlic, B., Enrici, A., Pacalet, R., Gharbi, A., Apvrille, L.,
Natarianni, L., & Roullet, L. (2020). Design space exploration
with deterministic latency guarantees for crossbar mpsoc archi-
tectures. In Proc. IEEE International Conference on Communica-
tions (ICC) (pp. 1–7).

 23. Li, Z., Park, H., Malik, A., Wang, K.I.-K., Salcic, Z., Kuzmin, B.,
et al. (2017). Using design space exploration for finding schedules
with guaranteed reaction times of synchronous programs on multi-
core architecture. Journal of Systems Architecture, 74, 30–45.

 24. Oppermann, J., Sittel, P., Kumm, M., Reuter-Oppermann,
M., Koch, A., & Sinnen, O. (2019). Design-space exploration
with multi-objective resource-aware modulo scheduling. In
R. Yahyapour (Ed.), Euro-Par 2019: Parallel Processing (pp.
170–183). Cham: Springer International Publishing.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jörg Keller received the Ph.D.
degree in computer science from
Universität des Saarlandes,
Saarbrücken, Germany, in 1992.
He is a professor at the Faculty
of Mathematics and Computer
Science of FernUniversität in
Hagen, Germany. His research
interests include energy-efficient
parallel computing, security and
cryptography and fault tolerant
computing.

Sebastian Litzinger received a
master’s degree in philosophy
from University of Tübingen and
a master’s degree in computer
science from FernUniversität in
Hagen, Germany. Currently, he is
a PhD student with the Parallel-
ism & VLSI group at FernUni-
versität in Hagen. His research
interests are energy-efficient task
scheduling for parallel machines,
the application of machine learn-
ing techniques to task scheduling,
and neural architecture search.

Christoph Kessler received the
Ph.D. degree in computer science
from the Universität des Saar-
landes, Saarbrücken, Germany,
in 1994. He is a Professor with
the Department of Computer and
Information Science (IDA) of
Linköping University, Linköping,
Sweden. His main research inter-
ests are in the areas of parallel
computing and compilers, espe-
cially models and frameworks for
high-level parallel programming,
program parallelization, optimiza-
tion, and code generation.

864 Journal of Signal Processing Systems (2022) 94:849–864

	Integrating Energy-Optimizing Scheduling of Moldable Streaming Tasks with Design Space Exploration for Multiple Core Types on Configurable Platforms
	Abstract
	1 Introduction
	2 Background
	2.1 Architecture Model
	2.2 Task Model
	2.3 Crown Scheduling

	3 Combining Design Space Exploration with Scheduling
	4 Scheduling Results
	4.1 Experimental Settings
	4.2 Scheduling Synthetic Task Sets
	4.3 Scheduling Real Applications
	4.4 Experiments with 3 Core Types
	4.5 Scheduling Time

	5 Generalization
	6 Lower Bound on Area Consumption
	7 Using Core Types with Core Count other than a Power of 2
	8 Threats to Validity
	9 Related Work
	10 Conclusion and Future Work
	Acknowledgements
	References

