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Abstract
Design space exploration of a configurable, heterogeneous system for a given application with required throughput searches 
for a combination of cores or softcores with different architectures that can be accommodated within the given ASIC or FPGA 
area and that achieves the required throughput and optimizes power consumption. For a soft real-time streaming applica-
tion, modeled as a task graph with internally parallelizable streaming tasks, this requires assigning a core type and quantity 
and DVFS frequency level to each task, which implies task runtime and energy consumption, and mapping and scheduling 
the tasks, such that the throughput requirement is met. We tightly integrate such static scheduling for stream processing 
applications with design space exploration of the best heterogeneous core combination, and solve the resulting combined 
optimization problem by an integer linear program (ILP). We evaluate our solution for different numbers of core types on 
synthetic and application-based task graphs, and demonstrate improvements of up to 34.8% for ARM big and LITTLE cores, 
and 70.5% for 3 different core types.

Keywords Design space exploration · Task scheduling · Energy efficiency

1 Introduction

Data stream processing is an important computation par-
adigm in embedded (and edge) computing, where a con-
tinuous stream of data elements coming from data sensors 
should, due to its high volume and velocity, be processed 
as close to the data source as possible. An example is the 
preprocessing of continuously arriving camera raw data or 
vehicle sensor data. Such devices are often constrained in 
power usage (e.g., battery driven and/or using passive cool-
ing only), therefore the throughput requirements often can 

only be fulfilled by using a heterogeneous multicore plat-
form offering also a type of cores with a special architecture 
optimized for low power consumption. For a configurable 
platform such as an application-specific integrated circuit 
(ASIC) or a field-programmable gate array (FPGA), also 
the number of each type of (soft) core can (and must) be 
determined during design space exploration (DSE), to find 
a collection of cores that for the given area and throughput 
constraints optimizes the power consumption.

Stream processing programs are usually expressed as a 
graph of persistent streaming tasks that read packets of data 
from their input channels, process one packet at a time, and 
write a packet of output data to output channels, thus for-
warding it to data consumer tasks or to the program’s result 
channel(s). By providing sufficient FIFO buffering capacity 
along all channels (thus following the Kahn Process Net-
work model [2]), the streaming program execution can be 
software-pipelined such that all instances of streaming tasks 
for different data packets in the same round in the steady 
state of the pipeline are independent and thus can execute 
concurrently (see Fig. 1). On a many-core system, these can 
then be scheduled to different cores or core groups so that 
the makespan for one round of the steady-state loop is kept 
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low enough to meet the throughput requirement and the 
workload is well balanced. Streaming tasks perform a cer-
tain amount of work per input packet and can be internally 
parallel, i.e., run on multiple cores to speed up one instance 
of their execution. For example, a moldable task can use 
any number of cores that must be determined before the task 
is executed, in contrast to malleable tasks which are paral-
lelizable tasks that can change their degree of parallelism 
during execution [3]. Crown scheduling [4] is a static sched-
uling approach for moldable tasks that has been extended 
to heterogeneous platforms and multiple possible target 
functions such as maximum throughput for given power 
budget besides the usual energy minimization per round 
(thus achieving minimum average power) for given through-
put [5]. In all these investigations, the platform was fixed, 
i.e., the number of cores of each type was given. While the 
scheduler had the freedom not to use some cores, their chip 
area could not be used for cores of a different type, which 
might have been helpful in further optimization, e.g., using 
more energy-efficient cores instead of high-performance 
cores if the task structure demands or allows this.

Such tradeoff is possible in a configurable platform such 
as an FPGA or ASIC where multiple (soft) cores can be 
implemented and the number of cores of each type is not 
predetermined (although the maximum combined area of 
the cores is). To achieve this, we extend the integer linear 
program (ILP) of the crown scheduler to allow the solver 
to determine the core counts of different core types. Thus, 
we integrate design space exploration with the scheduler to 
generate an energy-optimal configuration of heterogeneous 
(soft) cores for an application with given throughput con-
straints and a platform with a given area.

We evaluate our proposal with a benchmark suite of 40 
synthetic task sets and 3 task sets from real-world appli-
cations for different numbers of core types. We start with 
2 core types and use ARM’s big.LITTLE in its original 
manifestation, i.e. A7 and A15 cores. We use power pro-
files for different task types and core types derived from 
measurements on a real platform. We find that our integrated 

approach improves energy efficiency compared to a fixed 
platform and that in many cases, the optimal number of LIT-
TLE cores is notably larger than the number of big cores, 
i.e. different from real platforms. Moreover, our ILP solver is 
only marginally slower than for a fixed platform, so that we 
improve DSE time compared to heuristic DSE approaches 
like steepest descent or tabu search over the configuration 
space, which call energy computation (which in turn needs 
at least some approximation to scheduling) at each configu-
ration point considered. We also perform scheduling exper-
iments for three core types, adding ARM A72 as further 
core type, and again find an energy improvement of 50.3% 
averaged over all task sets, with only moderately increased 
runtime. Furthermore, we free the crown scheduler from 
using only core group sizes that are powers of two, which 
allows to use e.g. 3 cores of one core type more efficiently. 
In particular, we make the following contributions1:

– We extend crown scheduling from a fixed platform 
structure to a variable platform structure, i.e. numbers 
of each type of (soft) cores in a configurable architecture, 
in order to find the platform configuration and schedule 
that lead in combination to the energy-optimal execution. 
The presented approach works for any number of differ-
ent core types.

– We demonstrate the potential for improving energy effi-
ciency over crown-optimal schedules for a fixed platform 
by evaluation with a multitude of synthetic task sets with 
realistic task types, several task sets from real-world 
applications, and power profiles for ARM big.LITTLE 
types of cores. Additional experiments with three core 
types demonstrate the feasibility of the general approach 
beyond two core types.

– We demonstrate how to generalize this approach to differ-
ent optimization targets such as minimum area solution 
for a given power budget and throughput, or a Pareto 
front of minimum power budgets for different maxi-
mum chip sizes of the configurable architecture, given a 
required throughput. By requiring that not only the sum 
of the core areas meet the chip size, but also cores with 
rectangular geometry fit into the chip rectangle, we pro-
vide a lower bound on usable core counts and refine such 
Pareto front, to illustrate that real floorplanning will be 
somewhere in between those extremes.

– We generalize the crown scheduler by still using a binary 
partitioning of cores into groups, but allowing core group 
sizes that are not powers of 2. This may help to improve 

Figure  1  Left: A streaming task graph with four streaming tasks. 
Right: The red box shows the steady state of the software-pipelined 
streaming program execution, where all task instances in one round 
are independent, i.e. belong to different instances of the streaming 
task graph or are independent tasks from one task graph instance.

1 This article is an extended version of [1]. In particular, we add 
experiments with more than 2 core types, contrast upper bound on 
usable cores with a lower bound, generalize the crown scheduler to 
non-power of 2 group sizes, and analyze possible threats to validity.
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task assignment for core types where the core count is 
odd, like 3 or 5.

The remainder of this article is organized as follows: 
Sect. 2 introduces the processor, task and power models, 
and the crown scheduling principle. Section 3 explains how 
to combine the design space exploration for a configurable 
platform with task scheduling to achieve more accurate pre-
dictions. Scheduling results are presented in Sect. 4. Sec-
tion 5 presents generalizations of our optimization, while 
Sect. 6 restricts core counts by geometric constraints to 
provide lower bounds on achievable core counts. Section 7 
shows how to free the crown scheduler from the limitation to 
core group sizes of powers of two, and illustrates its helpful-
ness. Section 8 discusses possible threats to validity of this 
study, while related work is discussed in Sect. 9. Section 10 
concludes and suggests future work.

2  Background

2.1  Architecture Model

We consider a generic multicore or manycore CPU with p 
cores with dynamic discrete voltage and frequency selection 
(DVFS). The cores can either be all of the same type (as in 
standard server multicore CPUs) or of different types (such 
as in ARM’s big.LITTLE). We assume a configurable plat-
form of a given area, i.e., we consider ASIC cores or FPGA 
soft cores of known area.2

A core can execute at most one task (instance) at a 
time, and can switch the voltage/frequency level between 
tasks among a given fixed set of K discrete voltage/fre-
quency levels with frequencies fk , k = 1, ...,K  , where 
fmin = f1 < f2 < ... < fK = fmax , and the voltage is, for each 
k, auto-co-scaled to the lowest level still supporting the cho-
sen frequency fk . For heterogeneous platforms with cores of 
different types t, the frequencies fk,t and even their number 
Kt might depend on the core type.

While idle, a core consumes a base power Pidle,t . When 
executing a task j at some DVFS level k, it consumes a 
power power(t, k, tty(j)) that depends on k and on the task 
type tty(j) , and, in the case of a heterogeneous architecture, 
also on the core type t. The task type tty(j) of each task j can 

be roughly characterized by a small number of predefined 
discrete classes in order to distinguish e.g. computationally 
intensive from memory-access intensive tasks, as these react 
differently to frequency scaling. Idle power and task power 
can, for each DVFS level, task type and core type, either be 
sampled on the target system using microbenchmarks for 
the different task types, or be estimated using a theoretical 
power model. In the following, we will subtract Pidle,t from 
power(t, k, tty(j)) , so that the power drawn by a core of type 
t executing a task j is

2.2  Task Model

Each task j, for j = 1, ..., n , performs work work(j) , correspond-
ing to the time of executing the task on a single (reference-type) 
core at unit frequency, i.e., executing the task at frequency fk 
results in a runtime work(j)∕fk . This runtime includes the phase 
where the task writes its output either to a memory shared by 
all cores, or via an on-chip network to the local memory of the 
core that runs the follow-up task.

We consider moldable parallel tasks, i.e. parallelizable 
tasks that can use any number of cores assigned prior to 
execution, internally employing a parallel algorithm to share 
the work, in contrast to malleable tasks where the degree of 
parallelism might change during execution [3]. We make 
no assumptions about monotonicity of parallel speedup 
nor absence of speedup anomalies. Instead, the actual rela-
tive speedup of task j with q > 1 cores on the target sys-
tem, denoted by speedup(j, q) , can again be found out by 
microbenchmarking or be estimated from a theoretical cost 
model for the deployed parallel algorithm. Obviously, for 
all j we have speedup(j, 1) = 1 . Inherently sequential tasks j 
can be modeled by simply setting speedup(j, q) = 1 for q > 1 . 
If a task j has a maximum width or degree of parallelism 
W(j), then we can e.g. set speedup(j, q) = speedup(j,W(j)) 
for q > W(j) , i.e. the runtime does not shrink anymore 
if we use more than W(j) cores. One might even use a 
lower speedup to account for additional overhead with 
more cores. For architectures with different core types, 
we index the tasks’ speedup tables also by the core type 
t, i.e., speedup(j, q, t) , where speedup(j, 1, t) = 1 in general 
only holds for the reference core type t = 1 , while for other 
core types, speedup(j, 1, t) denotes the relative performance 
between core type t and the reference core type for the task 
type of task j.

The time of executing task j at DVFS level k on q cores 
of core type t is then

power(t, k, tty(j)) + Pidle,t.

Time(j, k, q, t) =
work(j)

fk,t ⋅ speedup(j, q, t)
.

2 The cores of same type typically share common L2 on-chip caches 
and/or other common “uncore” on-chip infrastructure, thus forming a 
core cluster, as for example in ARM big.LITTLE architectures. Sim-
plifying the area model, we assume here that such additional area is 
proportional in size to the number of cores of each type, and factor it 
proportionally into the core area resp. overall chip area. See also the 
lower-bound discussion in Sect.  6. An extension of our area model 
with explicit un-core area parameters is left to future work.
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2.3  Crown Scheduling

Crown scheduling [4, 6] is a static scheduling technique for 
the steady state of the software-pipelined streaming task graph 
where all tasks are active processing data. It considers the sub-
problems of core allocation to moldable tasks, DVFS level 
selection, mapping of tasks to specific groups of cores and 
ordering of task execution in time together, and introduces 
artificial constraints on core allocation and task sequencing to 
reduce the integrated optimization problem’s complexity with-
out sacrificing significant optimization potential in practice [7].

A key property is the hierarchical organization of the set 
of p cores by recursive binary partitioning into 2p − 1 core 
groups jointly referred to as the crown, see Fig. 2 for an 
example of a balanced binary crown of 8 cores (ignore the 
colors/shading for now), which consists of 15 core groups 
in total: The root group of all cores (group 1) is decomposed 
into two child groups (groups 2 and 3) of half the size each, 
which are further split into four grandchild groups (groups 
4–7) and so on, until we arrive at p leaf groups containing 
one core each. Note that the crown is exponentially smaller 
than the power set of p cores with 2p − 1 core groups.

In a crown schedule, moldable tasks can only be mapped 
to one of the core groups in the crown. This also implies 
that the core allocation to each moldable task has to be a 
power of two. Moreover, a crown schedule is constructed so 
that each core executes, within each iteration of the steady-
state pattern of the software pipeline, the tasks mapped to it 
in (the same) order of non-increasing core allocation. This 
allows all cores mapped to a parallel task to simultaneously 
start their execution, so that the parallel algorithm running 
in the task does not incur additional delays. Hence, there is 
no internal fragmentation within the schedule; any idle times 
due to residual load imbalances only occur at the end of a 
round. Optimal and heuristic algorithms for crown schedul-
ing have been presented in earlier work [4, 6].

Crown scheduling can be generalized [5] to heteroge-
neous multicore CPUs with different core types such as 
ARM big.LITTLE, which in our setting combines four 
A15 (“big”) cores with four A7 (“LITTLE”) cores. In this 

case, the top-level subdivision splits the overall heterogene-
ous core set such that internally homogeneous subsets are 
obtained as its child groups, and the heterogeneous root 
group is excluded as a possible mapping target, see Fig. 2. 
An alternative view, which might be more appropriate for 
more than two core types, is that each core type has a crown 
of its own.

3  Combining Design Space Exploration 
with Scheduling

Up to now, crown scheduling assumes a platform with a 
fixed number of cores of each core type, and a fixed map-
ping of core indices and core types. In order to integrate 
DSE with scheduling, we assume that we can give an upper 
bound p on the maximum possible number of cores of any 
core type t. More exactly, we will set p to be the smallest 
power of 2 larger than this maximum number. The number 
T of core types is a constant of arbitrary value, i.e. the com-
bined DSE and scheduling works for any number of core 
types. This is illustrated by the fact that the following ILP3 
to solve the DSE and scheduling optimization only sums 
over all core types t, or uses constraints for all core types t. 
We denote the number of cores of each type t by an integer 
variable pt . For the big.LITTLE example with T = 2 , vari-
ables p1 and p2 which denote the number of LITTLE and big 
cores, respectively.

Each core type t gets a crown of its own with groups 
i = 1… , 2p − 1 and cores with indices l = 0,… , p − 1 . For 

Figure 2  A heterogeneous crown for a standard big.LITTLE configu-
ration with 4 big cores (orange) and 4 LITTLE cores (green). Note 
that the root group (1) does not exist, i.e., cannot be assigned (paral-
lel) tasks.

Figure 3  Crown structures for T = 2 different core types. As there are 
five cores of type 1, core groups 2, 4, 5, 8, 9, 10, 11, 12 exist for t = 1 
(green, top), and with only two cores of type 2, we have core groups 
4, 8, 9 for t = 2 (red, bottom). Tasks will only be assigned to the actu-
ally instantiated core groups colored in white.

3 Available from https:// github. com/ sglit zinger/ idses.
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core type t, a group i with maximum core index max(i) is 
only existing if max(i) < pt , cf. Fig. 3.

For T = 2 core types and fixed values of p1 and p2 , the 
ILP below resembles the ILP from [5]. Yet, as p1 and p2 , 
or in general pt , are variables in the current setting where 
scheduling is combined with DSE, we will define further 
constraints for them, and minimize the objective function 
over all possible combinations of these variables.

We use binary variables xi,j,k,t where xi,j,k,t = 1 iff task j 
is mapped to core group i of core type t at frequency fk,t . 
Furthermore, we use binary variables exi,t where exi,t = 1 iff 
core group i does not exist for core type t.

We then aim to solve the following optimization problem:

Constraint 2 ensures that each task j is mapped to exactly 
one core group of one core type but only to an existing  
frequency level by constraint 3, and constraint 4 guarantees that 
tasks cannot be mapped to core groups that do not exist. For 
each core l = 0,… , p − 1 , let Gl in constraint 5 denote the set of 
all core groups i that comprise l, whether they are instantiated  
or not. For given p, this set is known a priori. For example,  
in Fig. 3 we have G13 = {1, 3, 6, 13}. To denote task runtimes, 
we use time(i, j, k, t) ∶= Time(j, k, size(i), t).  To constrain 
round duration, constraint 5 must hold, i.e., for each core l 
of each core type t, the total runtime of all tasks mapped to  
a core group in Gl must not exceed the deadline M.

To set variables exi,t , we use the constraints 6 and 7. If 
max(i) ≥ pt , then exi,t must be 1 because of constraint 6. 

(1)

min
∑
i,j,k,t

xi,j,k,t ⋅ time(i, j, k, t) ⋅ power(t, k, tty(j))

⋅ size(i) +
∑
t

(pt ⋅ Pidle,t) ⋅M

(2)s.t. ∀j
∑
i,t

∑
k≤Kt

xi,j,k,t = 1

(3)∀j
∑
i,t

∑
k>Kt

xi,j,k,t= 0

(4)∀i, j, t
∑
k

xi,j,k,t≤ 1 − exi,t

(5)∀t, l
∑

i∈Gl,j,k

xi,j,k,t ⋅ time(i, j, k, t)≤ M

(6)∀i, t max(i) − exi,t ⋅ p< pt

(7)∀i, t max(i) + (1 − exi,t) ⋅ p≥ pt

(8)
∑
t

pt ⋅ At≤ ATotal.

By constraint 7, exi,t = 0 if max(i) < pt . Besides the obvious 
non-negativity constraints, the variables pt need constraint 8, 
i.e., the sum of the core areas for the different core types can-
not exceed the total FPGA area, where area here also might 
mean number of CLBs, depending on the FPGA architecture, 
and the total area might be discounted by a percentage to 
account for efficiency loss of some kind such as area for wir-
ing. By the choice of p, this also implies 

∑
t pt ≤ p . The objec-

tive function seeks to minimize the sum of the energies needed 
to execute each task on the core group it is mapped to, plus the 
power at idle times. While the latter term was a constant for 
a fixed platform, i.e. not influencing the optimum, it is now  
variable and must be considered.

Please note that the given ILP can even be helpful for a 
fixed platform with Pt cores of each core type t, where the 
cores can be shutdown individually if they are not used. If 
we replace constraint 8 by ∀t ∶ pt ≤ Pt , then we have an 
improved variant for crown scheduling with core consolida-
tion, cf. [8].

4  Scheduling Results

4.1  Experimental Settings

The reasoning behind our initial experiments was to facili-
tate a comparison to the results in [5] in order to assess the 
additional value of adapting the device’s design to the appli-
cation at hand. To this end, we adopted the experimental 
setup in [5], in particular: task sets, deadlines, core power 
consumption values, available core operating frequencies, 
relative performance figures for big vs. LITTLE cores, and 
speedup values4.

We are aware that power consumption and frequencies 
will not be identical when switching from ASIC cores to 
soft cores on an FPGA. Still, we assume that the power con-
sumption values (and operating frequencies) of different core 
types relative to each other might remain as they were.

Table 1  Characteristics of the synthetic task sets.

number of tasks 10, 20, 40, 80
task types Branch, MeMory, FMult,

SIMD, MatMul

task workloads ( 106 cyc.) 1 to 40 on LITTLE cores
max. parallelism degree 1 to 4, dep. on task type

4 In [5], we used parallel efficiency, i.e. speedup over core count, 
instead of speedup and separated the difference in performance 
between core types from the speedup by using an additional variable 
ri,j , yet the speedup can be uniquely computed from efficiency and ri,j.

853Journal of Signal Processing Systems (2022) 94:849–864
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The original experiments were conducted for 40 task sets 
with 10, 20, 40, and 80 tasks, respectively (10 task sets of 
each cardinality). Tasks are of one of five possible types: 
MeMory, Branch, FMult, SIMD, or MatMul. A task’s type 
implies a certain average core power consumption when 
being executed as well as an affinity to one of the two avail-
able core types with regard to its runtime, meaning some 
task types run faster on LITTLE cores and some on the big 
ones. All this information is procured from [9] and summa-
rized in Table 1. Furthermore, a task’s maximum width is 
determined by its type in the following manner5:

As before, the operating frequencies to choose from are 
{0.6, 0.8, 1.0, 1.2, 1.4} GHz, the theoretically available 1.6 
GHz for the big cores is ignored. Parallel speedups for all 
tasks, i.e. all task types, on the reference core type (LITTLE) 
are given as 1, 1.8 and 3.44 for widths 1, 2 and 4, respec-
tively, and are multiplied by the relative factors from [9, 
Table 4], to obtain speedups on big cores, cf. [5]. Deadlines 
are computed as

with p = 8 to obtain deadlines for a platform with 4 big and 
4 LITTLE cores.

For further details on the original experimental set-up 
please consult [5]. For these experiments, core idle power was 
ignored as under fixed round times and fixed core composi-
tion, energy consumption caused by idle power is a constant 
and therefore not relevant with regard to optimization. Now, 
core composition can vary, thus idle power must be taken 
into account, cf. the objective function in Eq. 1. To enable 

W(j) =

⎧
⎪⎨⎪⎩

1, if tty(j) is BRANCH,

wj∈{2, 4},if tty(j) is MEMORY or FMULT,

4, if tty(j) is SIMD or MATMUL.

M = 0.6 ⋅

∑
j work(j)

p ⋅ f1
+

∑
j work(j)

p ⋅ fK

2
,

a meaningful comparison to the results in [5], we added the 
energy consumption caused by idle power for 4 big and 4 LIT-
TLE cores over a round’s duration to the original results.

The Gurobi 8.1.0 solver was employed to obtain ILP solu-
tions. The respective computations were run on an AMD 
Ryzen 7 2700X with 8 physical cores and SMT under a 5 
minute (wall clock) timeout. The implementation was car-
ried out in Python utilizing the gurobipy module.

4.2  Scheduling Synthetic Task Sets

Primarily, we are interested in whether a chip of the same size 
as in [5] can lead to energy savings when altering core composi-
tion, i.e., whether jointly optimizing chip design and schedule 
can lower energy consumption for the execution of the target 
application. To gain any insight in this regard, we have repeated 
the original experiments with the ILP from Sect. 3 and the 
chip’s size capped at the value required for the standard con-
figuration of 4 big and 4 LITTLE cores. In the implementation 
described in [10], a big core6 occupies an area of 19mm2 , while 
a LITTLE core’s size is 3.8mm2. For the area constraint 8, we 
therefore set ATotal = 4 ⋅ 19mm2 + 4 ⋅ 3.8mm2 = 91.2mm2 . As 
no more than 

⌊
91.2mm2

min{19mm2,3.8mm2}

⌋
= 24 cores can be placed on 

the chip, we further set p = 32 . Also here, the absolute values 
will not be maintained when going from ASIC to FPGA, yet 
the relative size of cores, even if measured in configurable 
blocks (or resources), would rather be the same. Also, we are 
aware that using a purely additive area model is a simplification, 
but assume that the majority of the FPGA logic blocks will be 
spent for cores and not for communication in addition to the 
programmable interconnect, so that the inaccuracy is small.

Table 2 displays the results. It compares energy consump-
tion values Etotal from the original experiments to those 
obtained via our current experiments. Depending on task 
set size, we observe a 16.5–20.8% lower energy consump-
tion on average. For single task sets, energy savings of up 
to 34.8% are possible. Variance drops with increasing task 

Table 2  Results for the current 
experiments on synthetic task 
sets with two core types (A7 
and A15) in comparison to the 
original experiments in [5], 
same chip size.

task set size n 10 20 40 80 total

Etotal curr. vs. orig. exp. min. 65.2% 70.3% 74.5% 78.5% 65.2%
Etotal curr. vs. orig. exp. avg. 83.5% 79.2% 80.9% 80.4% 81.0%
Etotal curr. vs. orig. exp. max. 94.5% 86.4% 86.3% 83.9% 94.5%
#big vs. orig. avg. -2.2 -2.0 -2.6 -2.3 -2.3
#LITTLE vs. orig. avg. 0.5 -0.6 0.3 -0.3 0.0
Eidle∕Etotal current avg. 0.662 0.642 0.647 0.628 0.645
Eidle∕Etotal orig. avg. 0.741 0.770 0.764 0.770 0.761

6 In that paper, the area refers to a quad core including cache, so that 
one might divide the area by 4, if cache is evenly distributed over 
individual cores. We decided to keep the original figures.

5 We did not express the maximum width explicitly in Sect.  2 but 
included it in the definition of speedup.
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set size as indicated by growing minimum and decreasing 
maximum values. Figure 4 summarizes the energy savings 
with regard to the original experiments for all task set sizes. 
All ILPs could be solved either to optimality or solutions 
are very close to the optimum (the maximum MIPGap value 
over the 40 experiments is 0.0018).

It becomes clear that a considerable reduction of energy 
consumption is possible if chip size remains constant while 
the total number of cores as well as core composition may 
differ. In particular, the number of big cores was on aver-
age 2.3 lower than in the original experiments with fixed 
values for p1 and p2 , i.e. the number of LITTLE and big 
cores, respectively. Interestingly, the total number of LIT-
TLE cores did not change when averaged over all examined 
task sets. Figure 5 shows the distribution of deviation from 
the results in the original experiments in # cores for both big 
(top) and LITTLE (bottom) cores over all 40 task sets. The 
last two rows in Table 2 contain the fraction of the energy 
consumption caused by the chip’s idle power. For the original 
experiments, the figures show that idle power7 is responsible 
for > 75% of the total energy consumption. It is therefore 
not surprising that significant optimization potential may 
lie in altering the core composition for a given chip size. In 
our current experiments, the chip’s idle power accounts for 
62.8–66.2% of the total energy consumption. Jointly optimiz-
ing chip design and the target application’s schedule enables 
a tradeoff between core count on the one hand and higher 
operating frequencies or heavier parallelization on the other, 
which proves to be beneficial with regard to energy efficiency.

As unused cores could simply be switched off, elimi-
nating their idle power from the calculation, we scanned 
the original results from [5] for cores which had no tasks 
mapped to them. These could then be regarded as switched 
off, and the energy consumption caused by their idle power 
deducted from the total energy consumption. As it turned 
out, all 40 schedules had tasks mapped to each available 
core, so no cores could be switched off. In a way, this dem-
onstrates the importance of considering chip design at 
scheduling. After all, our results can not only be employed 
to prescribe a specific core composition but also increase 
energy efficiency for a given chip design, where unused 
cores can be switched off to save energy.

Had our power model not considered a core’s idle power, 
there would be no incentive for the solver to minimize the 
number of cores when a solution with optimal energy con-
sumption has been reached. Thus, it is conceivable that 
including the total number of cores in the optimization 

Figure  4  Energy savings in comparison to the original experiments 
on synthetic task sets for two core types (A7 and A15) and all exam-
ined task set sizes.

Figure  5  Distribution of deviation from the results in the original 
experiments in # cores for big (top) and LITTLE (bottom) cores over 
all 40 synthetic task sets.

Table 3  Characteristics of the real application task sets.

application number of tasks parallelism

H.263 encode 9 seq.
SDE 8 seq. & par.
edge detection 6 seq. & par.

7 Please remember that also during task execution, power is com-
posed from “idle” power and power on top, so that idle power mostly 
indicates static power.

855Journal of Signal Processing Systems (2022) 94:849–864



1 3

process might lead to solutions with equally optimal energy 
consumption but lower core count. By modifying the objec-
tive function, energy consumption and core count are jointly 
minimized:

Of course, � must be chosen such that optimality regard-
ing energy consumption is given while core count still makes 
a relevant difference during optimization.

4.3  Scheduling Real Applications

In addition to the synthetic task sets considered in [5], we 
were interested in whether combined design space explora-
tion and scheduling could offer any benefits when it comes 
to real applications. Therefore, we have performed the above 
experiments for three selected applications: H.263 encode 
detailed in [11], stereo depth estimation (SDE) from [12], 
and edge detection as described in [13]. The H.263 encode 
task set is comprised of 9 sequential tasks. SDE features 
8 tasks, some of which are sequential while some can be 
parallelized to an arbitrary degree. This holds true as well 
for the edge detection application consisting of 6 tasks. 
Table 3 assembles information on the task sets while Table 4 
shows the results for the three applications just presented. It 
becomes clear that the energy savings are more substantial 
than for the synthetic task sets, ranging from approximately 
35% for the H.263 encode application to 45% for SDE. Opti-
mizing chip design in conjunction with the schedule again 
pays off as is indicated by the specific chip compositions 
featuring less than four cores of each type for all three appli-
cations. In each case, we chose tight deadlines just about 
sufficient to produce a feasible schedule. This means that 
even from a performance-oriented point of view, the chip 
with four big and four LITTLE cores would not provide 
any advantages over the individual designs issued by our 
approach for the respective task sets. Due to the small num-
ber of tasks in each application, scheduling times were very 
low ( < 1s ) throughout, which is why we will omit any dis-
cussion to this effect here.

min
∑
i,j,k,t

xi,j,k,t ⋅ time(i, j, k, t) ⋅ power(t, k, tty(j))

⋅ size(i) + � ⋅ (pb + pL).

4.4  Experiments with 3 Core Types

In our approach outlined in Sect. 3, we allow for an arbitrary 
number of core types. In an attempt to demonstrate that this 
decision proves fruitful, we have repeated the scheduling 
experiments with an additional core type for a total of three 
different core types. As the data available in [9] covers only 
two core types (ARM A7 and A15), we have conducted our 
own measurements for a third core type, which we chose 
to be an ARM A72. It is implemented e.g. in the Broad-
comBCM2711 chip, a quad-core processor featured in the 
latest instalment of the ubiquitous Raspberry Pi device, the 
Pi 4 Model B. For the measurements, we have adhered to 
the procedure detailed in [9]: per-core power consumption 
figures for the various task types and core operating fre-
quencies were obtained by running the respective benchmark 
functions from the epEBench bench-mark [14] on all four 
cores, subsequently subtracting base power and dividing by 
4. Relative performance characteristics were determined by 
executing a fixed number of loop iterations on a single core 
at 1 GHz for each of the benchmark functions on the A7 and 
A72 cores while measuring runtime. As no information on 
die size is available for the Broadcom BCM2711, we have 
derived an approximate value from the publicly available8 
data on the MediaTek Helio X20 chip, taking into account 
that it is manufactured in TSMC 20 nm in contrast to TSMC 
28 nm for the BCM2711. Furthermore, the A72 implementa-
tion on the Raspberry Pi 4 B offers more extensive DVFS 
capabilities than the core types considered so far, with 10 
discrete frequency levels in steps of 100 MHz from 600 
MHz to 1.5 GHz.

Table 5 displays the results for the 40 synthetic task sets 
featuring five distinct task types from [5]. In comparison 
to the current experiments with two core types (A7 and 
A15, cf. Table 2), energy consumption can be brought 
down even further. The significantly lower Eidle∕Etotal value 
(43.3% vs. 64.5% on average for the experiments with two 
core types only) is due to the lower total number of cores 
placed on the chip (3.4 vs. 5.7 on average for the experi-
ments with two core types only) as well as the lower base 
power for the A72. This is not the only reason for the 
more favorable energy consumption though: the fact that 
all three core types are made use of over all task set sizes 
in a large number of cases indicates that energy efficiency 
is furthered by the greater heterogeneity of the chip. Big 
cores (A15) were used for 26 out of the 40 task sets, LIT-
TLE cores for 39, and an A72 core was placed on the chip 
for each of the cases examined here. In Fig. 6, one can see 
the distribution of deviation from the results in the original 

Table 4  Experimental results for three real-world applications with 
two core types.

application H.263 encode SDE edge detection

Etotal design & sched. 
vs. sched. only

64.9% 55.3% 62.0%

# big cores 3 2 2
# LITTLE cores 1 1 2

8 cf.https:// en. wikic hip. org/ wiki/ arm_ holdi ngs/ micro archi tectu res/ cortex- 
a72.
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experiments in # cores for both big (top) and LITTLE (bot-
tom) cores over all 40 task sets. Note that for each task 
set, one A72 core was placed on the chip. Finally, Fig. 7 
visualizes the energy savings for all task set sizes versus 
the original experiments in [5] with two core types.

A natural assumption when designing a chip with a vari-
ety of cores of different types would be that a given core 
type is well suited to execute workloads of a particular kind, 
whereas others may run more efficiently on cores of a dif-
ferent type. It will therefore be interesting to look at how 
often certain task type/core type pairings have occurred in 
our experiments. This information is provided by Table 6, 
which by and large confirms our suspicions. For the compute-
intensive task types FMult, SIMD, and MatMul, the A72 

core is usually favored. This is not surprising as the A72 is a 
more recent development and some technological advance-
ments can be assumed to have taken place. The vast majority 
of tasks of type Branch runs on the LITTLE cores, whereas 
the MeMory tasks are roughly split between big and LITTLE 
cores. All in all, these results still do not merit the conclusion 
that one can simply schedule all tasks of a certain type to a 
particular core type and thus reach optimality w.r.t. energy 
efficiency with ease. Note that even if such a plain mapping 
procedure could be issued, the exact number of cores of each 
type would nonetheless be subject to further optimization.

The observation that the greater flexibility a third core 
types offers is well received by the optimizer and pays off in 
terms of energy efficiency also holds for the three real-world 
applications, as Table 7 shows. In each case, the optimal 
solution entails a different core type composition: big and 
A72 cores for the edge detection application, LITTLE and 
A72 cores for SDE, and for the H.263 encode task set, all 
three core types are picked in the chip design. In comparison 
to joint design space exploration and scheduling with two 
core types, we notice a further reduction of energy consump-
tion for executing the resulting schedule, cf. Table 4.

Table 5  Results for the current 
experiments with three core 
types (A7, A15, and A72) in 
comparison to the original 
experiments in [5], same chip 
size.

task set size n 10 20 40 80 total

Etotal curr. vs. orig. exp. min. 29.5% 41.9% 41.6% 47.0% 29.5%
Etotal curr. vs. orig. exp. avg. 50.6% 49.7% 48.1% 50.3% 49.7%
Etotal curr. vs. orig. exp. max. 73.3% 59.4% 54.4% 61.0% 73.3%
# big avg. 0.7 0.6 0.5 0.8 0.7
#LITTLE avg. 1.9 1.8 1.8 1.5 1.8
#A72 avg. 1.0 1.0 1.0 1.0 1.0
Eidle∕Etotal current avg. 0.424 0.444 0.435 0.427 0.433
Eidle∕Etotal orig. avg. 0.741 0.770 0.764 0.770 0.761

Figure  6  Distribution of deviation from the results in the original 
experiments in # cores for big (top) and LITTLE (bottom) cores over 
all 40 synthetic task sets and 3 core types.

Figure  7  Energy savings for the experiments with three core types 
(A7, A15, A72) in comparison to the original experiments for two 
core types (A7 and A15) and all examined task set sizes.
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4.5  Scheduling Time

Beyond scheduling quality we are concerned with the time 
it takes to compute a schedule (and potentially a core com-
position) for a given task set. Table 8 provides information 
on scheduling times for the original experiments without 
design space exploration in [5] as well as for our current 
experiments jointly optimizing chip design and application 
schedule under an area constraint ( ATotal ≤ 91.2mm2 ), with 2 
or 3 different core types. For small and moderately sized task 
sets, scheduling times are low throughout. For n = 10 , they 
are notably lower in the original experiments though, which 
illustrates that considering chip design in the optimization 
process may lead to a higher computational effort than solely 
optimizing the schedule for low energy consumption. For 
the larger task sets ( n = 40 , n = 80 ), scheduling times rise 
significantly in all setups, indicating that the decisive factor 
is task set size when it comes to problem complexity. Here, 
the setup with three core types causes the lowest schedul-
ing times. Over all task sets examined, the overhead in our 
current experiments under the area constraint is ≈ 37% for 
the case with two core types. Unsurprisingly, the solver ran 
into the timeout more often as well (11 timeouts in total 
vs. 6 in the experiments in [5]). Nevertheless, the largest 
MIPGap value at timeout was 0.0018, thus we can consider 
all solutions (near-)optimal. For the setup with three core 
types on the other hand, the solver computes solutions nota-
bly quicker when considering all task set sizes examined 
here. It should be noted though that we have not performed 
any scheduling experiments for three core types without 
design space exploration, so we actually lack data which 

could permit any conclusions regarding the additional effort 
the optimization of chip design demands for the case where 
three core types are available. Figure 8 provides a visualiza-
tion of the information on scheduling times in Table 8.

5  Generalization

The design space for a streaming application on a configur-
able platform can be optimized in several dimensions: (1) 
energy for one round, (2) duration of one round, and (3) 
number of (soft) cores of each type (or total area of (soft) 
cores). So far, we have given fixed upper bounds for (2) and 
(3), and minimized the first target under those constraints. 
However, it is also possible to fix any other two and optimize 
the third. For (1) and (2), this is explained in [5], where a 
fixed platform is assumed, i.e., (3) is not a variable.

Here, we can change the optimization goal, e.g. to mini-
mize the duration M of one round, by making M a real-valued  
variable, using objective function minM , and changing the  
previous objective function in Eq. 1 to a constraint E ≤ Pbud ⋅M , 
where Pbud is a given maximum (average) power budget, and 
E is a short-hand for the sum in 1. Similarly, the minimum  
area for given power budget and throughput can be found by 
using the left-hand side of constraint 8 as objective function, 
using the previous objective function in a constraint as given 
above, and letting M as a constant as in Sect. 3.

Moreover, it is possible to fix one of those dimensions 
and produce a Pareto front for the other two. We will exem-
plify this for the case of determining the minimum (average) 
power budget vs. chip area for a given throughput, i.e. for a 
given round length M. This can e.g. be used to find a suitably 
sized FPGA for a given application.

To do this, we solve a sequence of MILPs, starting 
with the maximum available chip area Amax , and using 
ATotal(i) = Amax − i ⋅ ALITTLE with i = 0, 1, 2,… until9 no fea-
sible solution is found. Each solution comprises optimum 
core counts p1 and p2 and the minimum energy E⋆ , which 
can be converted into an average power budget by divid-
ing by M. Figure 9 depicts such a Pareto curve for one set 
of tasks ( n = 20 ) with the deadline M from Sect. 4, giving 
maximum chip area in mm2 and power in W as the axes, 
and marking each point in the Pareto curve with (p2, p1) , i.e. 
starting with the number of big cores, for that solution. As 
we can see, for a wide range of the examined maximum die 
size values, core composition does not change as the most 
energy-efficient design can be accommodated within the 
given constraints. Presumably, adding more cores does more 
damage energy-wise than increasing operating frequencies 

Table 6  Occurrences of task type/core type mappings for the current 
experiments with three core types (A7, A15, and A72).

task type big # mapped to LITTLE A72

MeMory 128 142 22
Branch 0 264 36
FMult 17 0 259
SIMD 3 0 282
MatMul 0 4 343

Table 7  Experimental results for three real-world applications with 
three core types.

application H.263 encode SDE edge detection

Etotal design & sched. (3 core 
types) vs. sched. only (2 
core types)

42.5% 29.4% 37.9%

# big cores 1 0 1
# LITTLE cores 1 1 0
# A72 cores 1 1 1

9 A smaller step than the area ALITTLE of the smaller core would not 
change anything.
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or extending parallelization, even if there is plenty of unused 
area left on the chip. When maximum chip size starts to pose 
an effective limitation, big cores are substituted by one or 
several LITTLE cores. That way, average power consump-
tion increases but feasible solutions can still be produced 
down to 34.2 mm2 die size, when the chip only features LIT-
TLE cores and average power consumption is ≈ 54% higher 
than for the energy-optimal solution under arbitrary chip 
size.

6  Lower Bound on Area Consumption

Constraint 8 which simply sums up the core areas is kind of 
a best case consideration, as it allows arbitrary, even unre-
alistic shapes of core layouts and arbitrary intertwining of 
layouts for different cores. Thus, the core counts for different 
core types possible via that constraint can be considered as 
an upper bound.

Here, we also provide a lower bound on core counts. 
We consider the different types’ core layouts as rectangles 
of fixed size and shape (no rotation allowed), which must 
be placed into the FPGA area (also given as a rectangle) 

without overlap. These requirements are rather harsh and 
thus comprise a kind of worst case (cf. e.g. Fig. 6 in https:// 
www. design- reuse. com/ artic les/ 21583/ proce ssor- noc- fpga. 
html.)

By providing a Pareto curve similar to Fig. 9, the dif-
ferences between lower and upper bound are visible, and a 
realistic solution will be inbetween.

Finding optimal, non-overlapping layouts for rectangles 
of different sizes is a hard problem [15, 16]. The solution 
can be approximated by a variant of strip packing, where the 
strip represents the FPGA and thus has a finite length, larger 
rectangles are only provided in the required counts, and 
smaller rectangles are placed as long as they fit the strip’s 
length. In our case, we additionally require that cores of the 
same type be placed in a contiguous area of the chip, in order 
to account for shared on-chip infrastructure of a core-type 
cluster and also to avoid unnecessarily large intra-cluster 
core distances.

For two core types, the problem can be approximated 
by first tiling a given number p2 of big cores in the lower 
left corner of the FPGA rectangle, and then finding the 
possible number of LITTLE cores by tiling them in the 
upper right corner of the FPGA rectangle, see example in 
Fig. 10. This is done for all possible arrangements of p2 
big cores in the lower left corner. The best result provides 
the maximum number p1(p2) of LITTLE cores when p2 big 
cores are already placed. By repeating this algorithm for 
p2 = 0, 1, 2,… , p , we get a list of possible core counts.

For the small areas available in our concrete case, we can 
even give exact figures. The die photo in [10] suggests that 
the aspect ratios of big and LITTLE cores are 5:3 and 2:1, 
respectively. The aspect ratio of the FPGA is assumed to be 
1:110. As the areas of all three have already been determined 
in Sect. 4, the side lengths of all three can be computed. 
Maximum core counts can be seen in Table 9. Reduction of 
FPGA size for bus area etc. has not been applied.

If an ILP is constructed for the worst case, only con-
straint 8 must be replaced by constraints

Table 8  Scheduling times 
(sums of user and system time) 
and number of timeouts for the 
current experiments and for the 
experiments in [5].

experiments in [5] current experiments, 2 core 
types

current experiments, 3 core 
types

n avg. sched. time (s) #timeouts avg. sched. time (s) #timeouts avg. sched. time (s) #timeouts

10 0.355 0 2.906 0 1.407 0
20 5.175 0 142.798 0 4.247 0
40 1702.486 3 2491.273 5 21.378 0
80 1671.283 3 1984.073 6 513.461 1
total 844.825 6 1155.262 11 135.123 1

Figure  8  Comparison of scheduling times for the original experi-
ments in [5] and for the current experiments on synthetic task sets 
with two and three core types, respectively, grouped by task set size.

10 cf.https:// forums. xilinx. com/ t5/ Xcell- Daily- Blog- Archi ved/ FPGAs- 
Not- Dead- Yet- Thank- you- Very- Much- Kevin- Morris/ ba-p/ 387825.
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The largest difference between best and worst case is the 
maximum number of big cores, which is 2 in the worst and 
4 in the best case. For similar numbers of big cores, the 
maximum number of LITTLE cores is around 20% larger 
than in the best case.

As the number of LITTLE cores needed in Fig. 9 is below 
the maximum number even for the worst case, the lower 
bound curve is not different, but shorter as only 2 big cores 
can be used.

7  Using Core Types with Core Count other 
than a Power of 2

If the number pt of cores of some core type t is not a power 
of 2, then the last core(s) can only be used to place tasks with 
small width, cf. Fig. 3. To improve this situation, some groups 

p2 ≤ 2,

p1 + 4 ⋅ p2 ≤ 20.

of larger width might be extended. This has been explored in 
the context of asymmetric binary core groups in [17], where 
however the decision where to split a group was done before 
actual scheduling, i.e. independent of the task set at hand. As 
it might depend on the task set and the task workloads if using 
different group sizes is helpful, it seems plausible to let the 
scheduler decide whether to do this.

We still maintain a binary partitioning of the pt ≤ p cores 
of each core type t into groups. However, within this frame-
work the group sizes can be determined by the scheduler. 
We introduce binary variables sizei,t,s and integer variables 
lowi,t which indicate the size s of group i on core type t 
and give the index of this group’s first core, respectively 
( i = 1,… , 2p − 1 , s = 0,… , p).

Then, the following constraints apply:

i.e. each group (on each core type) has exactly one size.

i.e. the sum of sizes of two child groups is at most the size of 
the parent group, and the size of the root group is at most pt.

∀i, t
∑
s

sizei,t,s = 1,

∀t
∑
s

s ⋅ size1,t,s ≤ pt,

∀t, i even
∑
s

s ⋅ sizei,t,s +
∑
s

s ⋅ sizei+1,t,s

≤

∑
s

s ⋅ sizei∕2,t,s,

∀t low1,t = 0,

∀t, i even lowi,t = lowi∕2,t,

∀t, i ≥ 3 odd lowi,t = lowi∕2,t +
∑
s

s ⋅ sizei−1,t,s.

Figure 9  Pareto curve of power 
vs. chip area for an example 
task set. Each point on the curve 
is marked with the core counts 
( p2, p1 , i.e. with the number of 
big and LITTLE cores, respec-
tively,) for that solution. As 
energy consumption per round 
equals average power multiplied 
with the deadline of 3.2 ms, the 
Pareto curve for energy con-
sumption has a similar shape, 
with a range of 8 to 25.6 mJ on 
the y-axis instead of 5 to 8 W.

Figure 10  Exemplary tiling arrangement of 5 big cores in the lower 
left corner and maximum tiling of LITTLE cores in the upper right 
corner of the FPGA.

860 Journal of Signal Processing Systems (2022) 94:849–864



1 3

We thus allow groups of size 0 (however no tasks can 
be mapped to them) and we allow to not use all cores in 
groups, e.g. if using 4 cores instead of 5 cores is better in 
Fig. 3.

A consequence of this flexibility is that the mapping, 
which groups comprise a certain core l, is not static any-
more. Hence we introduce binary variables mapi,t,l = 1 iff 
group i on core type t comprises core l. This is the case if 
lowi,t ≤ l < lowi,t +

∑
s s ⋅ sizei,t,s . We thus exclude l if it is 

outside this range and by requiring that a sufficient number 
of cores is comprised, we force the variables for the proper 
cores to 1.

We connect the mapping to the tasks by introducing 
binary variables yj,s,t,k,l = 1 iff task j runs on a group of size 
s comprising core l of core type t, using frequency level k.

Then constraint 5 can be reformulated as

Note that time is dependent on the size, not on the group 
index itself. We also can reformulate the target function as

The binary variables xi,j,t,k now only serve to assign 
tasks to groups and frequency levels, i.e. xi,j,t,k = 1 iff task 
j runs in group i on core type t at frequency level k.

Constraints 2 and 3 remain as they are.
We forbid to run tasks on groups of size 0:

Constraints 4, 6, 7 are not needed anymore. Constraint 8 
remains as is.

We still must connect variables x, y, and map to get a con-
sistent solution, i.e. yj,s,t,k,l = 1 iff ∃i ∶ xi,j,t,k = 1 ∧ sizei,t,s =

∀t, i, l l + (1 − mapi,t,l) ⋅ p ≥ lowi,t,

∀t, i, l lowi,t +
∑
s

s ⋅ sizei,t,s > l − (1 − mapi,t,l) ⋅ p,

∀t, i
∑
l

mapi,t,l =
∑
s

s ⋅ sizei,t,s.

∀l, t
∑
j,s>0,k

yj,s,t,k,l ⋅ time(s, t, j, k) ≤ M.

min
∑

j,s>0,t,k,l

yj,s,t,k,l ⋅ time(s, t, j, k) ⋅ power(t, k, tty(j)) +…

∀j, i, t
∑
k

xi,j,t,k ≤ 1 − sizei,t,0.

1 ∧ mapi,t,l = 1 . As this implies computing the product of size 
and x variables, we achieve linearization by introducing a 
further kind of decision variables zi,j,s,t,k , where zi,j,s,t,k = 1 iff 
task j runs in group i of size s on core type t and frequency 
level k. The additional constraints then read:

The first constraint yields yj,s,t,k,l = 1 if ∃i ∶ xi,j,t,k = 1

∧sizei,t,s = 1 ∧ mapi,t,l = 1 , while the remaining four con-
straints serve to determine the number of yj,s,t,k,l set to 1 for 
each task, which collectively ensures that yj,s,t,k,l = 0 when-
ever the above implication does not hold.

We illustrate the advantage of this relaxation with a 
small task set comprised from n = 4 tasks, and for the situ-
ation where only pt = 3 cores of a single core type (big) 
are available, i.e. p = 4 , for which the crown has 2p − 1 = 7 
groups, cf. left part of Fig. 2. The deadline is fixed to M = 1 
second.

Task T1 has a workload work(1) = 2.24 ⋅ 109 cycles 
and speedup speedup(1, 1) = 1 and speedup(1, q) = 0.8q 
for q ≥ 2 . Thus, parallel execution of this task incurs 
some overhead, but there is a sufficient degree of paral-
lelism so that parallelization for any (small) number of 
cores occurs with constant efficiency 0.8. The workload 
of this task is chosen such that it can complete on two 
cores at highest frequency 1.4 GHz until the deadline. A 
sequential execution of the task will not meet the dead-
line. If the task is run on q = 3 cores, then a frequency of 
1 GHz is sufficient to meet the deadline, with a runtime 
of 0.9333 seconds.

The three other tasks are identical and sequential. Their 
workload is chosen such that those tasks can be executed 
in the remaining 0.0666 seconds after task T1 has com-
pleted at the lowest possible frequency 600 MHz, i.e., 
work(j) = 0.04 ⋅ 109 for j = 2, 3, 4.

If task T1 is run on 2 cores, then the other three tasks will 
be run in sequence on the third core, cf. Fig. 11 (top). If task 
T1 is run on 3 cores, then the other three tasks will be run 
concurrently on the three cores after task T1 has completed, 
see Fig. 11 (bottom). However, this latter scenario is only 
possible with the above relaxation.

The energy of the 3 small tasks is the same in both sce-
narios. The energy for the large task is lower in the 3-core 
scenario, as the processor-cycle-product is the same in both 
scenarios, but the frequency and thus power consumption is 
lower than if the task runs on 2 cores.

∀j, i, s, t, k, l yj,s,t,k,l ≥ xi,j,t,k + sizei,t,s + mapi,t,l − 2,

∀i, j, s, t, k zi,j,s,t,k ≤ xi,j,t,k,

∀i, j, s, t, k zi,j,s,t,k ≤ sizei,t,s,

∀i, j, s, t, k zi,j,s,t,k ≥ xi,j,t,k + sizei,t,s − 1,

∀j
∑
s,t,k,l

yj,s,t,k,l =
∑
i,s,t,k

s ⋅ zi,j,s,t,k.

Table 9  Maximum number of LITTLE cores for given number of big 
cores in FPGA, in best and worst case.

# big # LITTLE worst # LITTLE 
best

0 20 24
1 16 19
2 12 14
3 N/A 9
4 N/A 4
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8  Threats to Validity

In this section, we discuss possible limitations of our method 
with regard to number of core types, use of rectangular lay-
outs and influence of task interference on task runtimes.

While we only demonstrated applicability of our method 
to tightly integrate DSE and crown scheduling for 2 and 3 
core types (cf. Sect. 4), larger numbers of core types are 
already foreseen in our ILP model and by extrapolating from 
Table 8 also seem computationally feasible for moderately 
sized task graphs.

Our assumption of rectangular layouts of the core types 
for the area constraint, motivated by publically available 
ASIC implementation data, is of course subject to the used 
hardware (FPGA vs. ASIC) and design tool (component 
libraries, placement, routing) technology, which we do 
not model in further detail, and thus we only considered 
an upper bound for area consumption and lower bound for 
accommodatable core counts, respectively, as described in 
Sect. 6. The real plasticity of pre-layouted core modules is 
expected to be somewhere in between this lower bound and 
the upper bound obtained by considering flat area limits 
only. The actual placement is considered a third-party plug-
in to our method; in fact, the placements (as by the heuristic 
in Sect. 6) can be pre-computed offline for each possible 
configuration and then quickly looked up in the ILP model 
at solving time.

The task time parameters are derived by microbench-
marking on the concrete target core type for all possible 

core allocations and DVFS levels, but might, for execution 
on core subgroups, be sensitive to co-scheduled other tasks 
of different type that also compete for shared resources, in 
particular, main memory access bandwidth. This is mainly 
a problem for memory-intensive tasks. As crown schedul-
ing does, by design, not constrain co-scheduling of tasks in 
disjoint core groups with respect to memory bandwidth, the 
microbenchmarking will have to co-schedule a task against 
the most memory-access-intensive task type available if 
used in scenarios where worst-case task execution times are 
critical.

9  Related Work

Design space exploration and scheduling have been consid-
ered for configurable platforms since decades, cf. e.g. [18] 
and the references therein, however in largely varying con-
texts and with widely differing goals.

Holzer et al. [19] and Duhem et al. [20] consider the 
combination of design space exploration and scheduling in 
the context of reconfiguration at runtime, while we consider 
static scheduling. Sarma and Dutt [21] consider design space 
exploration of heterogeneous chip multiprocessors with a 
given power or area budget for several given core types, 
with the goal of optimizing for energy, performance or a 
combination of these. In contrast to our work, they use 
sequential tasks with dynamic scheduling by the operating 
system scheduler, and DVFS is not considered. Uscumlic 
et al. [22] and Li et al. [23] consider design space explora-
tion and scheduling via ILP and evolutionary computation, 
respectively, but in the application, i.e. for a fixed platform, 
while we target an architecture where different numbers and 
types of (soft) cores can be used.

The closest related work seems to be [24]. They combine 
modulo scheduling and design space exploration, and solve 
for performance and energy efficiency, i.e., they generate a 
Pareto front of solutions so that the designer has a choice. 
However, their tasks are instructions in a high-level hardware 
design language, and their resources are operation units like 
adders or multipliers, while our tasks are parallelizable pro-
grams in itself, and our resources are different types of cores.

10  Conclusion and Future Work

We have presented an approach to combine design space 
exploration and static scheduling for executing streaming 
task graph applications with parallelizable tasks on a config-
urable, heterogeneous platform, i.e. to select a collection of 
cores or softcores of different types that achieve the required 
throughput and minimize energy consumption per round, i.e. 
average power consumption. Our experiments indicate that 

Figure  11  Energy-efficient schedules for example task set on three 
cores with allocations as powers of 2 (top) and with arbitrary alloca-
tions (bottom).
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integrating the design space exploration with the schedul-
ing does not notably increase scheduling time, and at the 
same time improves energy efficiency by 19% and 50% on 
average via selecting optimum core counts for two and three 
core types, respectively, within a given area available in a 
configurable architecture.

Moreover, we have exemplified that the approach can 
be generalized for other targets than energy efficiency, 
such as minimum area solution for a given power budget 
and throughput, and to produce a Pareto front relating two 
optimization goals like minimum power budgets for differ-
ent ASIC or FPGA areas, given a required throughput. By 
determining core counts not only via area constraints but 
also geometric constraints, lower bounds on the number of 
usable cores can be found that indicate core counts that can 
be expected in a real implementation.

Future work will comprise to validate our experiments on 
a real configurable platform.

Moreover, the architecture area model (and the core pack-
ing heuristic) could be refined e.g. by introducing explicit 
area parameters and constraints to model the shared uncore 
area cost for core-type clusters.
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