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Abstract
Testing and evaluation of an automotive perception system is a complicated task which requires special equipment and 
infrastructure. To compute key performance indicators and compare the results with real-world situation, some additional 
sensors and manual data labelling are often required. In this article, we propose a different approach, which is based on 
a UAV equipped with a 4K camera flying above a test track. Two computer vision methods are used to precisely determine 
the positions of the objects around the car – one based on ArUco markers and the other on a DCNN (we provide the algo-
rithms used on GitHub). The detections are then correlated with the perception system readings. For the static and dynamic 
experiments, the differences between various systems are mostly below 0.5 m. The results of the experiments performed 
indicate that this approach could be an interesting alternative to existing evaluation solutions.

Keywords  UAV · Drone · LiDAR · Automotive · ADAS · Perception systems · Testing · Evaluation · Automatic labelling · 
ArUco markers · DCNN

1  Introduction

The problem of accurate information about the objects 
around the host vehicle is essential for the verification/test-
ing of the automotive perception systems (cameras/radars/
LiDARs) performance as well as for creating a dataset that 
can be used for the training of machine learning (ML) algo-
rithms. In production projects, OEMs (Original Equipment 
Manufacturers) require a testing phase (e.g. performed on 
a test track) and the computation of key performance indi-
cators (KPIs) for larger datasets. The testing phase usually 
comprises of different tests with the aim of additional data 
acquisition, algorithm verification, KPIs calculation or con-
ducting Euro NCAP safety tests. It is worth mentioning that 
even in very similar tests, different manufacturers may have 
different requirements in terms of accuracy etc. Among the 
mentioned KPIs some may include binary information (e.g. 
if a collision happened or not), a metric value (e.g. a distance 
to another object in centimetres) or a numeric value (e.g. 
a number of correct object detections).

Generally, to verify the system performance in a quan-
titative form, not only the sensor output must be recorded 
but the reference must also be available (e.g. the position of 
the objects “visible” to the perception system). So far, the 
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problem mentioned is mostly solved by adding additional 
precise sensors to the vehicle tested such as LiDAR (Light 
Detection and Ranging) or GPS (Global Positioning System) 
etc., recording data, and manually labelling it. There are 
some solutions which use multiple, synchronised, precise, 
and expensive GPS receivers placed in a few vehicles which 
can provide the required information without labelling, but 
the number of objects monitored is very limited [1].

There are several problems with the solutions described 
above:

–	 Manual labelling requires a lot of man power, is a time-
consuming process, and generates high costs and project 
risk.

–	 When additional sensors are used as a reference, they are 
mounted on the host vehicle and in almost all cases have 
fields of view and perspective the same as the sensors 
under test. This might lead to errors in labelling due to 
occlusions (e.g. a pedestrian partially covered by a lamp 
pole).

–	 Using multiple GPS receivers and tracking objects (e.g. 
during the testing phase) is expensive and requires sig-
nificant vehicle modifications. Additionally, an accurate 
GPS signal is not available in all locations.

–	 Integrated reference systems are costly.
–	 What is most important is the relative position of the 

objects regarding the vehicle under test instead of the 
precise global position in the world. Thus, using expen-
sive GPS systems seems to be unjustified in the consid-
ered case.

In this work, we propose a different approach to the issue of 
evaluation of perception systems used in advanced automatic 
driver assistance systems (ADAS) and autonomous vehicles 
(AV). It assumes the use of video sequences captured with 
a high-quality camera mounted on a UAV hovering above 
the host vehicle as reference data. On their basis, computer 
vision methods, including deep convolutional neural net-
works, are used to detect and locate objects in the surround-
ings of the vehicle.

This article is an extension of the conference paper [2] 
presented at DASIP’21 workshop in January 2021. We con-
ducted further experiments for vehicle perception system 
evaluation with a drone’s camera. We managed to upgrade 
the vision algorithms, eliminating some problems from the 
previous work. Some additional tests were also carried out 
to investigate the effect of multiple factors on detection accu-
racy with vision-based methods.

The main contributions of this paper:

–	 The proposal of a methodology for automotive perception 
systems evaluation with the use of sequences recorded by 
a UAV,

–	 The analysis of multiple factors which have an impact on 
accuracy of vision methods (ArUco markers and DCNN),

–	 The description of a static and dynamic experiment, the 
results of which are mostly below 0.5 m between differ-
ent sensors, thus confirming the usefulness of the pro-
posed solution.

We provide the source code of our application [3].
The rest of the paper is organised as follows. In Section 2 

previous works on the vehicle perception systems evalua-
tion are presented. Sections 3 and 4 describe our solution to 
the aforementioned problem: the equipment and the vision 
algorithms used in the project. Section 5 presents the tests 
carried out and the results obtained. Section 6 summarises 
the article with the conclusions.

2 � Previous Work

The evaluation and testing of perception systems used in 
modern cars has received great attention in commercial 
solutions. As already mentioned in the introduction, they 
are based on different technologies while offering different 
degrees of accuracy and automation.

The RT-Range [4] solution is a coupled inertial (INS) 
and satellite (GNSS) navigation system. It requires expen-
sive additional components to be installed inside the vehi-
cle. These modules communicate with each other wirelessly, 
which enables simultaneous ground truth acquisition and 
the processing of relative position measurements. According 
to the manufacturer’s information, the accuracy is 0.02 m 
for the distance in case of an RTK (Real-Time Kinematic) 
system and 0.4 m in case of a standard DGPS (Differential 
GPS) system, 0.2 km/h for the speed, and 0.1◦ for the rota-
tion angle around the vertical axis.

A competitive solution is levelXdata [5]. It is a com-
prehensive system for processing 4K road traffic images 
recorded by a UAV. It enables the detection of various 
objects (mainly different vehicles, but also pedestrians and 
cyclists) and the determination of their trajectories using 
deep neural networks. The system discussed can operate 
in several modes. In one of them, the UAV can track the 
selected car, collecting information about the surrounding 
objects. The images captured by the drone are then pro-
cessed off-line (i.e. on the ground). On their basis, the refer-
ence data can be prepared for the verification of the vehicle 
perception systems.

The main advantages and motivations of levelXdata are 
collected in [6], where the authors present its superiority 
over different existing solutions for automotive data record-
ing and provide references to their earlier publications. 
Several details about the solution can be found in [7]. In 
this work the authors focused on a database creation with 
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the UAV, recording the road intersections from an altitude 
mainly between 60 and 100 m.

For the altitude of 100  m, 1 pixel corresponded to 
around 4 × 4 cm and the camera’s field of view was around 
140 × 70 m. Only in case of highway recordings the drone 
was hovering much higher to make it possible to monitor 
a longer part of the road (precisely 420 m). The authors 
applied video stabilisation to remove occurring movements 
of the drone and used expensive smoothing of the object 
trajectories over entire sequences separately. In terms of 
accuracy of the algorithm, the DCNN used by the authors 
achieved a positioning error of the objects mostly in the 
range of 10 cm compared with manual labels.

Despite these advantages, the solution described does 
not address the problem of the synchronisation between the 
camera and the sensors tested, which is a crucial element in 
the evaluation. Furthermore, the aim of the authors was to 
prepare a reliable dataset for testing purposes, so the pro-
posed sequence-based smoothing that they used definitely 
improved the accuracy, but is rather not suitable for real-time 
operation. The authors also state that the accurate meas-
urements require high video resolution, strong algorithms 
and high processing power, which is unavailable for online 
processing on the UAV.

In the scientific literature, most of the research in the 
vehicle perception field is focused on data processing and 
fusion – mainly on object detection and tracking. In this 
case, the well-known off-line comparison with the ground 
truth data (often manually labelled) is used. There is quite 
a significant shortage of articles devoted to other approaches 
to the evaluation of perception systems. In particular, we 
are not aware of solutions, which can work in real-time and 
process data in an on-line manner.

In [8] the authors have proposed the concept of using an 
artificial intelligence (AI) throughout the testing process. At 
first, the AI would be used to generate appropriate simula-
tion scenarios based on a real-world data. Then it would 
also verify the results obtained. On this basis, it could pre-
pare some additional scenarios, if necessary. As a result, the 
entire testing and validation process would be significantly 
automated and the human role would be limited only to the 
supervision of the results.

In the work [9] the authors proposed an innovative system 
for HIL (Hardware-in-the-Loop) testing. Its purpose is to 
enable the verification of all perception modules as a whole 
instead of separate components. According to the authors, 
this approach allows, to some extent, to replace costly road 
tests. At the same time, however, the proposed test bench 
lacks the ability to verify radar detections. This functionality 
is yet to be developed and will be added in the future.

To the authors’ best knowledge, the use of UAVs for an 
on-line perception systems evaluation has not been con-
sidered in the scientific literature so far. The most similar 

approach was presented by the levelXdata authors, but 
they focused rather on a dataset creation than a real-time 
(on-line) evaluation of perception systems – therefore, it 
is unknown whether their solution can be used in real-
time processing tasks. However, other “automotive prob-
lems” could be addressed with the use of UAVs. One of 
the examples is a road traffic monitoring. In the work [10] 
the authors present a survey of systems dedicated to this 
subject. They also propose their own solution, using the 
images recorded by cameras mounted on a UAV. The algo-
rithm designed makes it possible to detect the individual 
cars, determine their speed and possible violations of the 
traffic rules.

3 � The Proposed System

The proposed solution is schematically presented in Fig. 1. 
The perception systems of the car on the left were evalu-
ated. For the purposes of this test, the host vehicle was 
equipped with a LiDAR (exemplar perception system) and 
an accurate differential GPS – both integrated within the 
ROS system (Robot Operating System). In addition, the 
car was equipped with LEDs for data synchronisation with 
the UAV and an ArUco marker on the roof (see Fig. 2a). 
The remaining vehicles had ArUco markers placed on their 
roofs. The scene was recorded by the UAV that was essen-
tially above the host vehicle.

At the current stage of the project, we have focused 
mainly on vehicle detection. We did some initial tests for 
pedestrian detection, however, the detection of other objects 
is planned as future work. We have assumed that two vision 
methods of measuring the vehicle position will be compared: 
based on the ArUco markers and object segmentation with 
a deep convolutional neural network (DCNN).

Fig. 1   Scheme of the proposed solution [2]. The host vehicle, pre-
sented on the left, is equipped with a  LiDAR (exemplar perception 
system), differential GPS – both integrated within the ROS, and 
LEDs for data synchronisation with the UAV. ArUco markers are 
placed on the host and other vehicles.
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3.1 � Vehicle Setup

An instrumented vehicle was used to perform sensor data 
recording. An Hesai Pandar 40p LIDAR (10 Hz rotation) 
together with an ArUco marker and LEDs were mounted on 
the roof rack (c.f. Fig. 2a). The vehicle was also equipped 
with a precise differential GPS system (also 10 Hz, accuracy 
of 3 cm) with RTK corrections from SwiftNavigation, which 
we used in our initial experiments. All sensors were con-
nected to a logging PC with ROS used for data acquisition.

3.2 � UAV Setup

A DJI Mavic Air UAV was used to record the test sequences. 
It is equipped with an on-board 4K (Ultra High Definition 
– 3840 × 2160 pixels, 30 fps – frames per second) camera, 
which is mounted on a 3-axis gimbal stabiliser. The camera 
also supports lower resolutions, e.g. Full HD ( 1920 × 1080 
pixels) in slow motion format, i.e. 120 fps. It has a 12 meg-
apixel CMOS sensor and an f/2.8 lens with an equivalent 
focal length of 24 mm and an 85◦ field of view. The recorded 
video is saved in the UAV’s internal memory or on an SD 
card, as well as on a  smartphone as a  lower resolution 
backup. Additionally, it is possible to preview the image 
on the smartphone in real-time, which was useful during 
the experiments. With a single battery, a flight of around 20 
minutes is possible.

According to the manufacturer, the maximum speed of 
the drone is 68.4 km/h, which is enough for the majority 
of tests, among which some would only require hovering 
above the tested vehicles. Only some special cases require 
higher velocities, e.g. testing an ACC (Adaptive Cruise Con-
trol) on a highway. However, despite the above-mentioned 
advantages, we assume the use of a custom-made drone in 
the target system. This issue is discussed in more detail in 
the summary section.

3.3 � Vehicle‑UAV Synchronisation Concept

If the data from different sensors (i.e. LiDAR, GPS and cam-
eras) is used during the vehicle perception system evalu-
ation, the synchronisation of these sensors is necessary. 
Given the available hardware setup, we have chosen to use 
a vision-based approach. We have prepared and constructed 
a controllable LED system shown in Fig. 2a.

The hardware part of the LED system consists of a 1 m 
long rail with sixteen 6 × 6 cm boxes. Every second box con-
tains a high-brightness LED of a selected colour (red, green, 
blue, or white). There are empty boxes between the LEDs, 
which are used as a reference to cope with different lighting 
conditions. Everything is connected to a Raspberry Pi 3B+ 
mini-computer, which controls the LEDs. To synchronise 
consecutive image frames with the LiDAR point clouds, an 
8-bit binary number is displayed on the LEDs, which is then 
recorded by the camera on the UAV.

The source of the synchronisation signal is a custom ROS 
node running on a PC computer. It subscribes to LiDAR 
point cloud messages and with every new LiDAR mes-
sage an internal counter is incremented and sent over the 
USB2RS232 conversion board to the RPi3 with a protocol 
ensuring proper error correction. This value is then instantly 
displayed on the LEDs.

The above-described LED-based system was a direct 
consequence of the use of the off-the-shelf UAV. As the 
evaluated perception system (LiDAR) works at 10 Hz, 
a  very precise timestamp synchronisation with 0.01 or 
0.001 s accuracy was not needed. However, a much simpler 
and more reliable approach (less prone to all typical issues 
related to vision systems) would be a wireless communica-
tion channel between the vehicle (ROS) and the UAV (pref-
erably a custom-built one). Ultimately, a timestamp from 
each of the evaluated sensors (LiDAR, radar, camera, and 
GPS) should be attached to the recorded video sequence.

Fig. 2   (a) The host vehicle and its sensors [2], (b) ChArUco calibration board [11].
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4 � The Video Processing Methods Used

In the target solution, the reference information about the 
location of the objects in the vicinity of the host vehicle 
would be obtained in real-time from a camera mounted on 
a UAV to evaluate its on-board sensors. This would allow 
to conduct different tests using various sensors with cal-
culating appropriate KPIs and then to verify these results 
with the ones obtained from the UAV’s camera and vision-
based algorithms. Exemplary KPIs that could be verified 
this way include time to collision with an object, driving 
lane departure, velocity of the vehicle, number of stops in 
a particular section of the road or vehicle throughput at 
an intersection.

However, the primary aim of this work was to compare 
the measurements from the UAV’s camera with the ground 
truth to assess the suitability of the proposed solution. 
Two approaches described below were used and evalu-
ated – the ArUco markers [12] and a DCNN segmentation. 
The secondary objective was the initial evaluation of one 
of the vehicle’s sensors – precisely the LiDAR that was 
mounted on our host car. For this task we decided to make 
a comparison between its measurements and the results 
obtained from vision-based methods.

It is worth adding here that the entire camera-based sys-
tem is designed for good weather conditions, which gener-
ally means the weather without rain, snow, fog, or strong 
wind. Typical UAVs are not suitable for flying in such 
bad weather, because water or high humidity can cause 
the electronics to fail, which results in erroneous behav-
iour or loss of functionalities (only specialised UAVs are 
adapted to such conditions). Fog can reduce visibility or 
result in condensation on the camera lens. Rain or strong 
wind may cause the loss of control or communication and 
eventually result in severe damage of a UAV. Therefore, 
inadequate weather conditions may cause a threat to the 
UAV’s equipment and the participants, or at least result in 
reduced accuracy of the experiment. On the other hand, 
using a specialised UAV, robust to weather conditions, 
could be an interesting idea for future experiments mainly 
due to the requirement of perception system evaluation in 
different, even unfavourable conditions.

4.1 � Camera Calibration

For the correct operation of a vision system, especially when 
it involves measurements, it is necessary to calibrate the 
camera used. In our experiments, for this purpose, we have 
used a so-called ChArUco board available in the OpenCV 
library [11]. It is created by combining a typical chessboard 
widely used for image calibration with the ArUco markers 
placed on its white fields (c.f. Fig. 2b). In comparison to 

the standard solution (i.e. traditional chessboard), it allows 
to increase the calibration precision. The detection of the 
corners is carried out for ArUco markers first and these 
results are used for interpolation of the chessboard corners. 
Such an approach results in slightly more accurate corner 
positions of the entire ChArUco board than in the case of 
a traditional chessboard without additional markers. Thus, 
as the correct calibration is crucial for determining real dis-
tances based on the camera, the ChArUco-based method is 
a better choice than the traditional chessboard.

To perform the calibration, the functions from the 
OpenCV library were used – the main one was calibrate-
CameraCharucoExtended. As a result, the distortion coef-
ficients and the camera matrix of our optical system were 
obtained. Thanks to this, it was possible to remove the dis-
tortion introduced by the camera and more precisely deter-
mine the distances between objects visible on the scene 
(closer to real-world measurements). It should be noted that 
the calibration is necessary for both vision-based detection 
methods – ArUco and DCNN.

4.2 � ArUco Detection

The ArUco markers [12, 13], well known in the image 
processing community, were used to detect the vehicles in 
the camera image. A typical ArUco marker is a big black 
square with multiple smaller white and black squares inside 
it. These small squares define the code of the marker (c.f. 
Fig. 2a). The detection procedure works in the same way for 
all markers, while the possibility of coding a unique identi-
fier allows the use of a large number of easily distinguishable 
codes. Therefore, these markers are commonly used to detect 
various objects. Moreover, they are not very susceptible to 
interference (e.g. changes in lighting).

In this project, 4 markers of 55 × 55 cm with 4 × 4 small 
squares inside were used. They were printed on a magnetic 
foil and placed on the vehicles’ roofs to enable their detec-
tion and determination of mutual distances. In addition, 
the information about the actual dimensions of the marker 
allowed us to convert the distances expressed in pixels 
to metres (i.e. from the image domain to the real-world 
measurements).

4.2.1 � Marker Detection

Firstly, the distortion introduced by the camera optics was 
removed. Next, the gamma correction with gamma value 
set to 2 was applied to the image, as its usage increased the 
accuracy of the detections. Then, the detectMarkers function 
from the OpenCV library was used. The corners positions 
determined with precision of 5 decimal places and IDs of 
the detected markers were obtained, as well as a list of detec-
tions considered incorrect.
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In lighting conditions, in which the sequences were 
recorded (quite harsh sun), not all markers were correctly 
detected. However, a modification of the default parameters 
of the mentioned OpenCV function allowed us to mostly 
eliminate this problem. We carried out some further tests in 
different weather conditions (harsh sun, cloudy). A different 
method of detecting marker corners was tested – APRILTAG​ 
instead of SUBPIX, which we used earlier [2]. This modi-
fication, as well as tuning some other detector parameters, 
significantly accelerated the calculations and improved the 
results. Some further speedups would be possible with dif-
ferent sets of parameters but at a cost of a decreased detec-
tion accuracy. For more details about modified ArUco detec-
tion parameters, please refer to the provided source code [3].

Different lighting (i.e. very cloudy, partly cloudy, sunny) 
is generally not a big problem in case of the ArUco markers 
as they are very robust to illumination changes. Therefore, 
even in more demanding situations, the additional tuning of 
the parameters should be sufficient for correct detections. 
However, the determination of the universal set of param-
eters for different lighting conditions is quite complicated 
– here some kind of automatic calibration would be a good 
idea for the future.

Then, for the detected markers, the estimatePoseSingle-
Markers function was used to determine their orientation 
and position in the coordinate system associated with the 
camera. These positions were expressed in metres in relation 
to the centre of the image with the precision of 8 decimal 
places. In addition, the distance of each marker from the 
camera was determined. Then, the centre of each marker and 
its size in pixels were computed – also with a high precision 
to take advantage of results returned from OpenCV func-
tions. For the marker size calculation, the average length of 
its 4 sides was used.

The next step of the algorithm was to determine 
a bounding box for each of the vehicles. As they had vari-
ous dimensions, slightly different scaling factors were used 
to calculate the length and width of their bounding boxes 
with respect to the detected marker. This was done due to 
the data format usually returned by the vehicle perception 
systems – bounding boxes or cuboids. Therefore, the final 
comparison could be done with well-known approaches 
like IoU (Intersection over Union).

After the initial tests, one more problem was noted 
– when the car is visible not directly from above, but from 
an angle, it is difficult to correctly establish the bounding 
box. So an additional correction was introduced, which takes 
into account the angle at which the vehicle is visible in the 
image. This change allowed us to calculate particular bound-
ing boxes with higher accuracy. But generally this issue is 
complicated (as it also depends on the altitude of the drone 
that makes the recording) and it requires further investiga-
tion in the future to increase the accuracy of the algorithm.

4.2.2 � LEDs Detection

Additionally, for the host car, the LEDs detection had to 
be performed. For this purpose, their known positions in 
relation to the centre of the ArUco marker were used. These 
distances, known in metres, were projected into pixels and 
the approximate LEDs positions in the image were obtained. 
More details are included in the provided source code [3]. In 
this way, it was possible to avoid the problem of the LEDs 
detection in the whole image.

Then the pixel brightness in the designated locations was 
verified. At first, the image was converted to grayscale. If the 
value of the pixel brightness in the calculated position was 
greater than a preset threshold (its default range is between 
0 and 255), the LED was considered ON and otherwise OFF. 
After the preliminary tests, the threshold value was set as 
the sum of 190 and the altitude of the drone rounded to 
metres, which made it possible to correctly distinguish the 
activated LEDs from the deactivated ones. Such a sum was 
the result of additional tests in different weather conditions, 
as it turned out that the big influence on the correct decoding 
of the LED state has the altitude of the UAV above the host 
car. It is worth mentioning that in case of different weather 
conditions the summed threshold may be slightly higher or 
lower.

An exemplary result of the LED state detection was pre-
sented in Fig.  3. To increase the robustness of the LEDs 
positioning to minor disturbances, the average pixel bright-
ness in its small vicinity (exactly 5 × 5 ) was used instead 
of a single value. As a result, the situations, in which the 
designated positions of the LEDs were inaccurate, were lim-
ited. The information about the state of 8 LEDs was then 
translated into a binary code and a decimal number, which 
finally enabled the synchronisation with the LiDAR’s data.

However, in case of a high altitude of the drone, the 
entire LED system is quite small and blurred in the image, 
which makes it difficult to properly encode its ID for 

Fig. 3   Results of a  correct LED system state detection. Red circle 
around the diode means that it is detected as OFF, while the green 
circle means that diode is detected as ON. The most significant bit of 
a binary number is on the right side of the image, while the least sig-
nificant is on its left side. After the conversion to a decimal number, 
ID = 252 is obtained.
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automatic synchronisation. Even though we managed to 
slightly update the LED system, the wireless communica-
tion channel seems to be a more reliable way of synchroni-
sation than the vision-based approach, thus it will be used 
in the target solution instead of the LEDs.

4.2.3 � Distance Calculation

The final step of the video processing was the determina-
tion of the distances between individual vehicles using 
a simple Euclidean norm. As the markers (and vehicles) 
are visible in different parts of the image, their dimensions 
in pixels are not identical, although in reality they are of 
the same size ( 55 × 55 cm). To scale the measurements 
from pixels to metres, two approaches were analysed and 
compared. For both methods, the maximum precision of 
calculated positions was used to avoid accumulation of 
rounding errors.

The first one was based on calculating the distances 
straight from the positions in metres returned by estimate-
PoseSingleMarkers OpenCV function. These positions 
were expressed in a 3D coordinate system with the cam-
era as its centre. In case of this method, we noticed bigger 
variability of the results, as even small inaccuracies in the 
marker detection procedure had a significant impact on 
calculated 3D positions.

In the other one, the distances in pixels were calculated 
on a 2D image plane and then converted to metric units. 
The average size of the two analysed markers was calcu-
lated to obtain a more reliable scaling factor. For example, 
to determine the distance between markers having ID = 
1 and ID = 2, Equation 1 was used. For this method, the 
distances obtained were much more stable and the simple 
averaging increased the robustness of this approach even 
further. As a result of the comparison between both meth-
ods, we decided to use this approach.

(1)dist_m =
dist_pix ⋅ML

0.5 ⋅ (ms1 + ms2)

where: dist_m is the distance in metres, dist_pix is the dis-
tance in pixels, ML is the size (length) of a printed marker 
in metres, while ms1 and ms2 are the sizes of the markers in 
pixels obtained from the detection.

Finally, two distances were calculated between the host 
car and every other vehicle, just like in Fig. 4. The first one 
(red line) defined the distance between the centre of the host 
vehicle’s ArUco marker and the corresponding point on each 
of the other cars. The second one (yellow line) expressed 
the approximate minimum distance from the same point 
(i.e. the centre of the ArUco marker on the host vehicle) 
to the bounding box of a given vehicle (which roughly cor-
responds to its bumper). For more information, please refer 
to the source code [3]. These measurements could be later 
compared with the results obtained with DCNN or LiDAR 
detections, as well as the ground truth.

4.2.4 �  Performance Analysis

In the target solution, the algorithm presented above should 
be implemented and run on an embedded platform. In this 
work, a software version of the algorithm written in Python 
3.7 runs on Intel Core i7-6700K 4.00 GHz CPU and takes 
around 300 ms to process one 4K frame from the sequence. 
Reading the frame by using videoCapture takes around 20 
ms. Frame preprocessing takes around 85 ms – conversions 
between colour spaces, needed for gamma correction, and 
into grayscale take 55 ms, LUT-based gamma correction 
10 ms, while removal of camera distortion 20 ms. The core 
function of the algorithm (detectMarkers) takes 200 ms on 
average, but depending on number of detected marker can-
didates, this time can be around 50 ms shorter or longer. 
The rest of operations, including pose estimation, distance 
calculation or LEDs detection, need just a few milliseconds, 
which is a very small fraction of a total processing time.

The main problem lies in the image resolution – the pro-
cessing of a 4K image on a CPU is very time-consuming. 
Of course resizing down the image or using parameters in 
detectMarkers function that do similar down-sampling helps 
to reduce ArUco detection time by an order of magnitude, 

Fig. 4   Exemplary measure-
ments between the host car and 
other vehicle.
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but at a cost of decreased number of detections and their 
accuracies.

In terms of a hardware implementation it is possible to 
easily accelerate/parallelise some of the functions on GPU 
or FPGA. So as a simple test we ran this algorithm on the 
Nvidia Jetson AGX Xavier embedded GPU and obtained 
mostly longer processing times. After rewriting the ”frame 
preprocessing” functions to use the available CUDA cores, 
we were able to reduce their processing times and obtained 
the following results: videoCapture 45 ms, colour conver-
sions 30 ms, distortion removal 10 ms, detectMarkers 125 
ms. So the speedup for colour conversions and distortion 
removal is around 2. However, accelerating the ArUco detec-
tion function is more difficult and requires more investiga-
tion into parallelising particular operations of the detection 
procedure. The entire algorithm requires on average 250 ms 
to process one frame, which translates to 4 fps. This value is 
slightly better than on a CPU, but is definitely not enough for 
real-time processing (at least 20-25 fps). Therefore, a real-
time implementation of the proposed algorithm in 4K reso-
lution poses a challenge, but this simple test shows that there 
is a room for improvement over the software version.

4.3 � Vehicle Detection and Tracking with DCNN

The second of the considered vehicle detection methods was 
based on a deep convolutional neural network (DCNN). In 
recent years, some successful DCNN detection frameworks 
were introduced. One-stage detectors, like SSD (Single 
Shot Detector) [14] or YOLO (You Only Look Once) [15], 
contain a single network that is used for classification and 
localisation during a single forward pass on the input image. 
These algorithms aim for a high processing speed (exceeding 
30 fps), while maintaining competitive detection accuracy 
among other state-of-the-art methods. YOLO network has 
already been successfully used for object detection from 
drone’s perspective [16]. The authors added extra convo-
lutional filters and retrained the net using a dataset with 
the images from a UAV. On the other hand, detectors using 
R-CNN architectures (Faster R-CNN [17], Mask R-CNN 
[18]) use separate networks for feature extraction, proposal 
generation, and classification. The Mask R-CNN detector 
based on the convolutional ResNet architecture was used 
in this work, as it precisely segments the detected objects 
along their contours, which was crucial in our experiments.

4.3.1 � Initial experiments with DCNN

The model trained by the authors of the Mask R-CNN solu-
tion on the COCO train2017 set, containing 80 classes of 
objects, including the car class, was used. Initially, we fol-
lowed the work of [19], which investigated the effective-
ness of the Mask R-CNN detector, learned on the COCO set 

[20], on video sequences recorded by high-mounted security 
cameras. Their results indicated a high detection accuracy 
on selected sequences (95% true positives ratio for the car 
class), even though the COCO training set contains photos 
of the cars presented only from the perspective of a stand-
ing human or other ground vehicles. Our initial experiments 
have shown, however, that such a trained detector is not able 
to effectively recognise the cars or pedestrians from the vid-
eos recorded by a UAV (at an altitude of 30 m and above).

4.3.2 � Mask R‑CNN Fine‑Tuning

In the next step, we have decided to fine-tune a  50-layer 
ResNet model pretrained on the COCO train2017 dataset. 
We used the COCO as well as the VisDrone dataset [21] 
containing over 10000 photos and 260000 video frames 
captured by drone-mounted cameras, on which vehicles and 
pedestrians were annotated. We applied the SGD (Stochastic 
Gradient Descent) algorithm with the learning coefficient 
0.02, the momentum 0.9 and a batch size equal to eight 
images. The ground truth of the VisDrone set contained 
bounding boxes of the cars, so we only trained the ResNet, 
RPN (Region Proposal Network) and classifier networks. 
To train the segmentation sub-network of the Mask R-CNN 
detector, only the COCO train2017 set was used, from which 
images containing cars and people were selected.

4.3.3 � Results

Sample results of the trained detector operation are shown in 
Fig. 5. The model is able to generate precise binary masks 
of vehicles seen from above, even though the training set for 
segmentation fine-tuning (COCO) contained only segmen-
tation masks of vehicles from the front view. Some of the 
recorded test sequences were quite demanding due to the 
lighting conditions. The occurring shadows made it difficult 
to localise the vehicles and segment them correctly. How-
ever, these problems were significantly reduced compared 
with our previous test [2] by using data augmentation with 
random changes in brightness, saturation, and contrast of 
the training images. The training process applied resulted in 
a significant improvement in the quality of the detection and 
classification of the cars from the drone’s perspective. The 
model evaluated with the COCO API yielded bounding box 
mAP (mean Average Precision) of 0.36 for cars and person 
classes in our test sequences and 0.23 for car, truck, bus, 
pedestrian, person classes in the VisDrone dataset. In our 
test sequences, the detector was able to successfully recog-
nise people at altitudes of up to 40 m with missed detections 
and false positives starting above that altitude. In terms of 
the vehicles, the results were much better – they were cor-
rectly detected for the entire range of tested altitudes, up to 
100 m.
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Our fine-tuned model of the network used in this project 
is available in the source code [3]. The use of the VisDrone 
together with the COCO dataset made it possible to cor-
rectly detect vehicles and pedestrians seen from above, while 
maintaining the ability to detect them from the front view.

4.3.4 � Object Tracking

The detector was then used to create a multi-object tracking-
by-detection system. The problem of the detection associa-
tion in subsequent frames was solved by using an additional 
fully-connected neural network (single layer). It returned the 
object identification vectors on the basis of the features from 
the ResNet network. The Euclidean metric was used to deter-
mine the similarity of the two identification vectors. This 
method, described in [22], is a popular solution in the latest 
tracking-by-detection systems. The final detection assign-
ment was done using the Hungarian algorithm and based on 
the similarity metric. The analysed test sequences, however, 
were not demanding from the tracking point of view: there 
were no occlusions, no rotations of objects outside the image 
plane, or changes in lighting.

4.3.5 � Performance Analysis

In terms of performance, we compared the processing 
times of our modified network on Intel Core i7-6700K 4.00 
GHz CPU and Nvidia GTX 1070 GPU. Using the CPU we 
achieved on average 2400 ms for one frame (around 0.4 fps), 
while using the GPU we managed to accelerate it to 156 ms, 
which equals 6.4 fps. Similarly to the ArUco-based method, 
we ran the network on Nvidia Jetson AGX Xavier using 
CUDA cores and achieved around 500 ms on average for the 
processing of one frame, which translates to 2 fps.

5 � Experiments & Results

To assess the usefulness of the proposed concept, multiple 
tests were carried out – some initial ones, the static experi-
ments and the dynamic ones. They were executed on a dedi-
cated test track in conditions similar to a real road situation.

5.1 � Initial Tests

Before recording the planned testing scenarios, some initial 
experiments were conducted. They were motivated by the 
fact that when analysing the results from our previous tests 
described in [2], we found a few problems with distance 
measurements based on the vision methods (ArUco and 
DCNN).

5.1.1 � Altitude Test

The aim of the first test was to investigate the effect of the 
altitude of the UAV at which the recording is done on ArUco 
marker detection. For this purpose, we placed two markers 
on the ground at a distance of 10 m (measured with a tape). 
Next, the UAV hovered above the markers at an altitude 
ranging from 10 to 100 m. With the ArUco-based algorithm, 
the distances between the markers on subsequent frames 
were calculated. The results of vision-based measurements 
in relation to the altitude of the drone (and its camera) are 
presented in Fig. 6a.

On its basis, at least three conclusions can be made. 
Firstly, the calculated distances exceed 10 m and the error 
increases with the altitude of the UAV, which corresponds 
to increasing distance between the markers (on the ground) 
and the camera. These errors are mostly caused by two rea-
sons – characteristics of the camera used and inaccuracies 

Fig. 5   Vehicle and pedestrian 
detections obtained with the 
fine-tuned Mask R-CNN.
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of marker detection. If a corner of the marker is misplaced, 
it has an influence on the scaling factor from pixels to 
metres, so on the distances in metres as well.

Therefore, some kind of scaling correction factor can 
be introduced, taking into account the current altitude of 
the drone. Approximately, the error grows linearly with 
the altitude, so it can be significantly reduced with the cal-
culation as in Equation 2. It presents the way to calculate 
the marker size after applying the correction based on the 
drone’s altitude. The coefficient 0.00057 (which equals 
0.057% ) can be interpreted as a change of the perceived 
by the vision system marker size for one metre of altitude 
difference.

where: newML is the marker size after correction, ML is the 
real marker size, and h is the altitude of the UAV above the 
ground in metres.

The distances between the markers obtained after the 
correction are presented in Fig.  6b. The results are signifi-
cantly better and much closer to the real distance (10 m), 
independently of the altitude of the drone. Below 50 m of 
altitude the errors are mostly in the range of 1% of the real 
distance between the markers. Above that altitude they are 
slightly bigger (up to 3%), but they are much lower than 
without the correction (errors up to 9%).

Thus, the usage of the introduced correction factor is well 
justified and it was taken into account in static and dynamic 
experiments.

Secondly, the measurements made from a high altitude 
are more prone to errors. The reason for that is the smaller 

(2)newML = ML ⋅ (1 − 0.00057 ⋅ h)

size of the objects in pixels. At the same time, the edges 
of the objects are blurred, so it is more demanding to cor-
rectly detect their positions, which is crucial in marker 
corners detection. In some cases, the ArUco markers were 
not detected at all, when it was not possible to correctly 
decode their IDs. Therefore, selecting the “proper” altitude 
of a UAV is a compromise between the field of view and the 
accuracy of the calculated distances.

Thirdly, the maximum altitude of the UAV at which the 
detection of the markers used by us is still possible is around 
100 m. In Fig. 6 we limited it to around 80 m as up to that 
altitude we can consider detections as ”stable” in various 
conditions. In comparison to our initial work [2], in which 
we used different detection parameters, this result is much 
better – previously, the maximum altitude was around 40 m. 
However, such a limit is generally influenced by a number 
of factors – the camera used, the parameters of the detector 
and the lighting conditions. The last factor (e.g. harsh sun) 
has an effect of reducing the contrast of the image and thus 
limiting the detection accuracy with increasing altitude.

5.1.2 � Marker Orientation Test

The existing inaccuracies in marker corners detection 
inspired us to conduct another test. Its aim was to analyse the 
effect of marker orientation with regard to the camera. Just 
like in the altitude test, we placed two markers on the ground 
at a distance of 10 m. The UAV was hovering above them 
at an altitude between 10 and 80 m. Next, we changed the 
orientation of one marker by a small angle and did a simi-
lar flight. We did the same steps a few times, recording the 

Fig. 6   Results of distance measurements between markers (real distance – 10 m) based on altitude of the UAV’s camera recording (a) original 
(without any correction), (b) corrected (dependent on UAV’s altitude).
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markers with different orientations. For each of them, the 
distances between the markers were calculated at multiple 
altitudes. It turned out, however, that the influence of the 
orientation is so small that the results are nearly identical. 
Therefore, there was no need to take into account any cor-
rection based on the marker’s orientation.

5.1.3 � Centroid Test

For the vision method based on the DCNN an additional 
experiment was carried out. Its aim was to investigate the 
calculation of the object centroid in relation to the position 
and the size of the object in the image. This test was moti-
vated by the requirement to convert the vehicle’s centroid 
coordinates to its ArUco marker, to allow a direct compari-
son of both methods, which was not done in our previous 
tests.

On the basis of manual measurements, the centre of 
the vehicle (precisely – the host) was established in a view 
directly from above. Additionally, its position in relation to the 
ArUco marker was calculated. Next, a flight above the vehicle 
was made in a way to make the car visible in different parts of 
the image. Then, for both vision methods the centroid of the 
host car was calculated. In case of the ArUco-based method, 
after detecting the marker, the displacement obtained before 
was used to establish the centroid of the vehicle. For the 
DCNN-based method, the centroid of the segmented vehicle 
mask was obtained. Both results were then compared. A few 
frames from the test sequence are presented in the form of 
a superposition of the host car in Fig.  7 – in these positions 
the analysed vehicle was visible on particular frames.

It turned out that when the car was not in the centre of 
the image, the DCNN centroid was closer to the centre of 
that image than the centroid from the ArUco method. It was 

caused by the fact that the car was not visible directly from 
above, but from an angle, so other parts of the car (side, 
front, and rear) were visible as well. The difference between 
both methods was calculated and it turned out that the cal-
culated positions for DCNN were around 7% smaller than 
for the ArUco method. Therefore, another correction was 
evaluated to enable a  direct comparison between both vision 
methods. However, additional tests on other sequences at 
different altitudes did not confirm the results presented 
above (around 7% of difference). It turned out that varying 
altitude also has a big effect on DCNN centroids and the 
calculated percentage value varies as well.

Eventually, at this stage of the project we decided not to 
use any correction for the centroids. Not only is the evalu-
ated correction factor related to the position of the object in 
the image, but also to the camera used and the altitude of 
the drone above the ground. Therefore, some inaccuracies 
of the measurements by the DCNN method may be caused 
by the problem discussed above and the further the car is 
from the centre of the image, the bigger that inaccuracy is. 
However, this negative effect is diminished when the UAV 
is at higher altitudes and the errors are then much smaller 
(like in levelXdata solution).

An additional source of errors is the situation in which 
only the part of the vehicle is visible in the image – then 
its centre does not match the reality, e.g. when the object 
is just the rear part of the car. However, a DCNN is at least 
able to correctly determine the distance to the closest point 
of this object. On contrary, the ArUco-based method may 
not be able to detect such a vehicle at all, when its marker 
is not entirely visible in the image. Therefore, both ana-
lysed vision methods have some pros and cons, so the idea 
of combining their advantages in one solution seems quite 
justified.

Fig. 7   Centroids calculated with 
the ArUco method (red circles) 
and the DCNN method (green 
circles). Note that when the 
vehicle is in the centre of the 
image, both centroids are basi-
cally in the same place.
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5.1.4 �  Velocity Test

We have also conducted additional experiments to verify 
whether our vision-based algorithms can work with differ-
ent vehicle and UAV velocities. At first, the vehicle under 
test was driving in a straight line at a constant speed of 30 
km/h, while the UAV was operated manually to fly around 
30 m above the car. Then, in next tests we increased the 
speed of the vehicle by 10 km/h up to 70 km/h, which was 
the maximum one for the drone, thus limiting the experi-
ments. As the relative speed between the drone and the car 
was small, the images recorded were very sharp, thus ena-
bling correct and accurate marker detections for both vision 
methods.

Later, we conducted another type of test – the drone was 
hovering above the road and the vehicle was driving on it 
at a constant speed, again ranging from 30 to 70 km/h. This 
time, with the increasing speed, there were some frames 
on which the car (with the marker) was blurred, result-
ing in problems with marker detection in ArUco-based 
method – this was happening at speeds over 50 km/h. One 
of the possible solutions to this problem would be to use 
an event camera, where the blur does not happen, but it 
would require a different approach to algorithm implemen-
tation. Anyway, better lighting conditions helped to acquire 
sharper images and obtain correct detections with vehicle 
speed of 70 km/h.

In case of DCNN-based method such problems did not 
occur, as the network was able to accurately detect and seg-
ment the vehicle at different speeds, independently of the 
existing blur that was problematic for the ArUco-based 
method – therefore, the DCNN seems to be better in this 
task.

In conclusion, the proposed system can be used in experi-
ments with a variety of vehicle velocities, but at the higher 
ones the DCNN-based method seems like a better choice, as 
it is not as vulnerable to blur as the ArUco-based method.

5.2 � Static Scenario

In this scenario, all vehicles remained stationary. The host 
car was placed in the middle of the scene, between other 
vehicles. Contrary to the initial tests, the results of which 
were published in our previous work [2], we decided not to 
generate an orthophotomap as it was not very useful in our 
experiments. The analysed scene is visualised in Fig.  8a, 
where the vehicles are marked with letters.

The main aim of the test was to estimate the accuracy 
of the measurements using both visual methods and com-
pare them with ground truth and LiDAR (evaluated sensor) 
data. The secondary aim of the static test was to confirm 
the maximum height at which the registration of the ArUco 
markers and LEDs is possible. In case of the ArUco markers, 
just like in a dedicated altitude test 5.1.1, correct detections 
were possible up to 80 m (in favourable conditions even up 
to 100 m). For the LED system, the problems described in 
4.2.2 appeared – it was difficult to correctly determine the 
position and the state of particular LEDs, when the UAV was 
above 40 m. It can be perceived as the limiting height up to 
which the entire system works properly. However, in case of 
using another method for synchronisation (a wireless com-
munication channel), correct marker detection (so vehicle as 
well) is possible up to 80-100 m.

The reference data was obtained with manual measure-
ments using a traditional tape measure. Contrary to our first 
experiments, we decided not to use a differential GPS as 
a ground truth. This was motivated by the fact that GPS 
measurements had to be shifted to a common coordinate 
system to compare them with other sensors and these dis-
placements generated some extra errors. However, we will 
try to correct these errors or find a different solution in future 
work. The data from the LiDAR sensor was also acquired 
(Fig. 8b) as in this experiment it is the evaluated vehicle 
perception system. It was labelled manually with a 10 cm 
accuracy.

Fig. 8   (a) Camera image of the test scene, (b) corresponding LiDAR point cloud projected on the ground plane.
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All of the vehicles used were visible in the image when 
the UAV was hovering at an altitude of around 30 m. From 
that point we increased the altitude up to 80 m. With such 
a change, the field of view increased significantly – from 
37 × 21 metres to around 116 × 66 metres. For the images 
recorded in that range, we calculated the distances between 
vehicles, using the correction described in altitude test 5.1.1. 
For each vehicle two measurements from the host car were 
made – first to the centre of its ArUco marker and second to 
its closest point (which usually corresponds to its front or 
rear bumper). The results obtained in this experiment were 
averaged over the entire sequence (over 200 video frames) 
and summarised in Table 1.

5.2.1 � Results Analysis

Several conclusions can be drawn from the information pre-
sented in Table 1. In general, the distance measurements 
obtained with the analysed methods are quite similar. The 
differences from the reference (manual) measurements may 
be caused by various reasons, depending on the evaluated 
method, which are briefly discussed below.

For the method based on the ArUco markers, the most 
important thing is the detection accuracy – not only does 
it apply to the centre of the marker, but even more to its 
dimensions. Accurately detected marker corners (i.e. posi-
tion error equals fraction of a pixel) are the key elements 
that enable correct scaling of the distances to metric units. 
The altitude of the recordings also has an important effect 
on the results, however, compared with our initial research 
[2], we managed to reduce it by introducing the correction 
factor. Eventually, the maximum mean error (for one point) 
was just 0.26 m and the average errors for other points were 
below 0.2 m, which is a big improvement over our previous 
work [2]. What is more, the variability of the measurements 
is quite low – below 0.2 m, which translates to around 1% 
of the measured distances.

In case of DCNN, as already mentioned, the correct 
object segmentation is essential. If some pixels belonging 
to the object are omitted or some background is attached to 
it, then the position of its centroid, which defines the loca-
tion of each vehicle, is misplaced. The proper masks are also 
important for other measurements, as the distances between 
the reference point on the host car and the selected points 
from the other vehicles’ masks are taken into account. How-
ever, the masks after re-training the network were pretty 
good – the mean errors calculated to their closest points (so 
more or less vehicle bumpers) did not exceed 0.1 m. A dif-
ficult task, which was described in 5.1.3, is to determine the 
relationship between the centroid and the position and size 
of the object in the image. Therefore, this problem is the 
main reason for much bigger errors (maximum of 0.73 m) in 
measurements to vehicle markers than in the ArUco-based 
method, especially for Vehicle B. Anyway, even in such 
problematic cases the measurement variability was not very 
high – below 0.3 m, so up to 1.5% of the measured distances. 
That means the main source of errors can be eliminated by 
effectively solving this issue (object’s centroid calculation), 
bringing the results much closer to the reference values.

In case of the LiDAR, the differences may occur (espe-
cially for further objects) due to a lower density of the points 
and the resulting difficulties in the precise manual deter-
mination of proper points (uncertainty of around 10 cm). 
These are the main reasons for such big errors in calculating 
distances to the markers (up to 0.5 m) compared with the 
bumpers (up to 0.1 m).

Another potential source of distance differences, which 
is worth noting here, is the need to express all measure-
ments in a common coordinate system. In the considered 
case, it was the coordinate system of the LiDAR (the 
evaluated perception system). Therefore, for the results 
of the vision algorithms, the appropriate displacements 
from their coordinate systems to the LiDAR one were 
necessary. One more reason for distance differences may 

Table 1   Results of the static experiment (in metres). In columns 3-6 
the distances calculated from the host vehicle and obtained with dif-
ferent methods are presented: the ground truth [R], two vision-based 
methods [V1], [V2] and LiDAR [L]. In case of vision-based methods 
([V1], [V2]) the values presented in the table are mean distances over 
the entire sequence along with the corresponding standard deviations 

(all in metric values). In columns 7-9 the mean differences in results 
of the analysed methods ([V1], [V2], [L]) regarding the ground truth 
[R] are shown (for clarity without standard deviations). These dif-
ferences are quite low for all the evaluated methods (mostly below 
0.5 m, for ArUco-based below 0.3 m), confirming the correctness of 
the calculations made.

Car Point Measurement [R] ArUco [V1] DCNN [V2] LiDAR [L] V1-R V2-R L-R

Vehicle A marker 19.17 19.08 ± 0.07 18.71 ± 0.21 18.84 -0.09 -0.46 -0.33
bumper 16.87 16.71 ± 0.15 16.83 ± 0.18 16.90 -0.16 -0.04 0.03

Vehicle B marker 14.88 14.95 ± 0.07 14.15 ± 0.11 14.44 0.07 -0.73 -0.44
bumper 11.92 11.77 ± 0.10 11.83 ± 0.16 11.82 -0.15 -0.09 -0.10

Vehicle C marker 17.63 17.89 ± 0.10 17.92 ± 0.26 17.72 0.26 0.29 0.09
bumper 16.12 16.18 ± 0.16 16.02 ± 0.20 16.16 0.06 -0.10 0.04
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also be an imperfect calibration of the camera used – even 
if done in a proper way, some small inaccuracies may 
happen.

Summarising the results obtained in this test it can 
be stated that the measurements based on the camera 
(ArUco, DCNN) and the LiDAR are generally similar 
to the distances between the vehicles determined with 
manual, ground truth measurements. In most cases, the 
average error is less than 0.5 m. The system works cor-
rectly for a range of altitudes at which we recorded the 
scene – precisely between 30 and 80 m.

Although the errors are in a similar range as in [2] 
(mostly below 0.5 m), the updated algorithm is more 
versatile and maintains a good quality independently of 
the drone’s altitude. Another thing is that we managed 
to calculate two distances for each vehicle (which was 
not done in previous work) and the errors are still in the 
same range. Therefore, it can be concluded that the use of 
vision methods is quite a good reference for a data from 
e.g. a LiDAR.

The comparison of different methods from the lit-
erature with our solutions is presented in Table 2. The 
proposed algorithm shows a comparable accuracy to the 
one from levelXdata [5], although the authors used there 
a  slightly different methodology than us – comparing 
midpoint of the vehicle’s bounding box with manually 
created labels, obtaining the positioning error mostly 
below 0.1 m. It is worth mentioning that this kind of 
manual reference is also prone to errors, especially when 
the vehicles in the image are very small.

In conclusion, both camera-based solutions have worse 
accuracy than the RTK system of RT-Range [4]. On the 
other hand, vision-based solutions ensure better accuracy 
than a traditional DGPS system from RT-Range.

5.3 � Dynamic Scenario

In this scenario, the host car drives between static vehi-
cles with the speed of around 20 km/h. At the same time, 
the UAV is controlled manually to fly with a  similar 

speed above the moving car in order to keep it around 
the centre of the image – it can be perceived as a kind 
of manual tracking. In a target solution, the tracking is 
planned to be automatic, i.e. without the human operator. 
An exemplary sequence of photos from this test is shown 
in Fig. 9. The aim of the experiment was to analyse the 
accuracy of the measurements in dynamic conditions that 
potentially negatively affect the detection of the ArUco 
markers and vehicles (using the DCNN method). In addi-
tion, the data from the LiDAR sensor is also changing 
– in this case, just like in the static scenario, the data was 
labelled manually.

Contrary to the initial dynamic experiment (described in 
[2]), we did not use a GPS system as a reference due to the 
required displacements needed for comparison and some 
additional errors resulting from them. Instead, we decided 
to compare the measurements from the LiDAR and vision 
methods in a direct way. We carried out multiple experi-
ments during which the UAV was flying at different alti-
tudes. The lower ones made it possible to determine the dis-
tances using a camera with higher accuracy (with an error 
of just a few cm), but at the same time the camera field of 
view was limited – for example, at 15 m of altitude it was 
just 20 × 11 metres. Therefore, not all analysed vehicles were 
visible on some frames. A LiDAR sensor works in a differ-
ent way, so in its case that problem was non-existent as its 
range was the same in all experiments. The above-mentioned 
problem limited the number of camera frames on which the 
comparison with LiDAR could be done.

Therefore, we decided to use a scenario, in which the 
UAV was flying at an altitude of around 45 m. It enabled the 
comparison of the entire sequence with all vehicles visible 
in the image as the field of view was 53 × 30 metres. In our 
previous work [2] the marker size on subsequent frames was 
averaged over 10 frames as it filtered out single incorrect 
detections. However, in this work due to updated detection 
parameters the averaging was not necessary as the results 
with and without it were basically the same.

The results of the dynamic experiment are summa-
rised in Table 3, which presents the mean differences of 

Table 2   Comparison of 
measurement accuracy between 
different solutions.

 Solution  Equipment  Method  Approx. accuracy [m]

 RT-Range [4]  coupled inertial and satellite naviga-
tion, additional components in 
vehicles

RTK 0.02

DGPS 0.4
levelXdata [5] UAV with 4K camera DCNN 0.1
 Our previous work [2]  UAV with 4K camera ArUco markers 0.3

DCNN 1.0 (bumper only)
 This work  UAV with 4K camera ArUco markers marker 0.3, bumper 0.2

DCNN marker 0.7, bumper 0.1
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the calculated distances using vision methods in relation 
to LiDAR measurements. The number of camera frames 
(synchronised with frames from the LiDAR working with 
a frequency of 10 Hz) differs for particular vehicles as not 

on all LiDAR frames was it possible to choose a proper point 
(marker centre).

5.3.1 � Results Analysis

For both vision methods the average differences with ref-
erence to LiDAR measurements were mostly below 0.5 m 
– precisely just in two cases (out of 12) the errors exceeded 
this value and the maximum one was 0.61 m. What is worth 
mentioning, such similar errors were achieved for both 
points (ArUco marker and bumper) for all analysed cars. 
However, the comparison of these results with the ones from 
the initial dynamic experiment [2] is not straightforward as 
we did not use a GPS system this time. Due to obvious rea-
sons, manual measurements using a tape were not possible 
in this experiment. Therefore, it is not possible to directly 

Fig. 9   ArUco-based detection and distance measurements on multiple frames from the dynamic test sequence.

Table 3   Results of the dynamic experiment – comparison of vision 
methods with LiDAR measurements (in metres). The average differ-
ences between the analysed systems are mostly below 0.5 m.

Car Point Frames LiDAR - ArUco LiDAR - DCNN

Vehicle A marker 115 0.15 0.61
bumper 129 0.56 0.41

Vehicle B marker 107  -0.30 0.39
bumper 107 -0.10 -0.28

Vehicle C marker 116 -0.01 0.16
bumper 129 0.25 0.25
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compare these results with the ones from the static experi-
ment, where it was shown that LiDAR’s data also has some 
inaccuracies with regard to the ground truth.

Nevertheless, the differences were again caused by vari-
ous reasons. In case of the ArUco markers, just like in the 
static scenario, the main challenge is the accurate determina-
tion of the marker corners and its size. Compared with the 
initial test, we corrected the placing of the elements on the 
host car, so there were no shadows on the ArUco marker and 
it was detected more precisely during the entire sequence.

In case of DCNN, the distances between the objects in 
pixels were scaled to metres using the marker dimensions 
from a particular frame.

This turned out to be a slightly better solution than using 
averaged marker size from multiple frames and a much bet-
ter solution than in the previous test, where we used the 
averaged marker size from the entire sequence. The neural 
network used is able to make a better segmentation of the 
vehicles than the ArUco-based method, which is entirely 
dependent on the accuracy of the marker detection. How-
ever, in some more demanding cases the cars were detected 
with their shadows, resulting in incorrect distances between 
them. These situations were significantly reduced in com-
parison with the initial test [2], but they still occasionally 
appear. But the most significant reason for differences seems 
to be the calculated position of the centroid for every car. 
This problem, described in 5.1.3, seems even more impor-
tant in case of a dynamic test, where the vehicles move.

It is worth noting that with the ArUco-based method, 
such problems (regarding shadows and centroids) do not 
occur, because it only detects the marker instead of the 
entire object (i.e. car). Therefore, a solution that combines 
the advantages of both methods may be a good idea for the 
future – for example a network able to precisely segment the 
objects and correctly detect the markers.

In summary, the differences of both vision methods com-
pared with LiDAR measurements were mostly below 0.5 m. 
This result seems much better than in the initial dynamic test. 
Even without a ground truth in this experiment, the improve-
ments in ArUco detection and DCNN segmentation as well 
as more accurate scaling from pixels to metric units allowed 
us to achieve quite good results. Of course, the vision algo-
rithms still require additional analysis and experiments in 
different conditions, especially in unfavourable ones.

The big advantage of the LiDAR sensor is the wide range 
and constancy of perspective – in case of the vision meth-
ods from a UAV’s camera the range of the scene and the 
accuracy of measurements is dependent on the altitude of 
the drone and the camera itself. Thus, the evaluation of the 
LiDAR by a vision system is a challenge, especially when 
monitoring a bigger space around the vehicle.

6 � Summary

In this article, we have presented experiments during which 
the possibility of using a 4K camera mounted on a UAV for 
the evaluation of autonomous vehicle perception systems 
was analysed. The vision algorithms applied in this work 
make it possible to use any off-the-shelf UAV equipped with 
a camera for this task.

As a test case, we assumed car detection using a LiDAR 
sensor (the evaluated vehicle perception system) and con-
sidered two vision methods: ArUco and DCNN. Two types 
of tests were carried out – static and dynamic ones. In the 
first one, the measurement accuracy of approx. 0.3 m for 
the ArUco-based method and 0.5 m for the DCNN-based 
method was obtained regarding the ground truth. It should 
be noted that the commercial solutions offer an accuracy of 
approx. 0.02 m (RT-range), while a vision-based approach 
of levelXdata around 0.1 m. However, in this solution the 
authors used slightly different methodology. Therefore, it is 
not possible to easily compare its results with our method.

In the dynamic experiment, as a ground truth was una-
vailable, the results of the vision methods were compared 
with the LiDAR measurements – they turned out to be in the 
range of around 0.5 m. Due to the multiple improvements 
to vision algorithms, these results are much better than in 
our initial work [2]. However, there is a room for further 
refinement, which should be done in the next versions of 
the system.

For the ArUco markers, inaccurate corner detections 
occur in some cases, which leads to erroneous positions of 
the objects and scaling the distances between them from 
pixels to metric units. For the DCNN method, localising 
the objects (vehicles) with their centroids makes it difficult 
to compare them with other methods, especially when they 
are visible in different parts of the image. However, in the 
target solution, where the bounding boxes obtained from the 
perception systems will be compared, the masks from the 
DCNN method seem to be the best reference.

Summing up, the accuracy obtained currently is better 
than in our initial work, so we strongly believe that the pro-
posed approach is an interesting alternative to the existing 
solutions and therefore can be used in real evaluation sce-
narios to calculate various KPIs.

We have also implemented both vision methods on 
Nvidia Jetson Xavier AGX – for the ArUco-based method 
we achieved processing of 4 fps, while for the DCNN-
based one 2 fps. With some additional improvements, the 
algorithms described in this work can be run on a hard-
ware platform in real-time. Therefore, this work is the 
first step on the way to an on-line system for evaluation of 
vehicle perception systems.
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6.1 �  Future Work

The experiments described in this article are an introduc-
tion to a fully automatic solution for the real-time evalua-
tion of perception systems for an autonomous vehicle. On 
their basis, the next stages of further work can be outlined. 
First, we plan to concentrate on applying on-line image 
processing and solving the frame synchronisation issue. 
This can be done in two variants: on-ground using WiFi 
communication with the drone or embedded on the UAV. 
The first approach should be possible with the use of the 
API provided by DJI. However, transmitting a 4K video 
stream using WiFi can be a challenge, thus the system may 
have to work with a lower resolution. Then a ground PC, 
equipped with a GPU, could be responsible for all image 
processing (also tracking the host-vehicle) and control. 
This would speed up the next experiments, as most of the 
results would be available on-line. The advantage of this 
solution is also the use of an off-the-shelf UAV.

The second approach would require the use of a custom 
UAV platform. In this case, we would have full control 
over all equipment: camera, lens, and computing platform 
– the use of an embedded GPU and/or heterogeneous pro-
grammable SoC is assumed. Also, one of the ideas regard-
ing the custom UAV is the use of a specialised drone, 
which is able to operate in unfavourable conditions (rain, 
strong wind, etc.).

Second, it is necessary to refine or combine the applied 
vision algorithms. The use of the Aruco markers has some 
limitations – for more accurate determination of their posi-
tions, bigger markers may be necessary, but this is limited 
by the width of the vehicle’s roof. On the other hand, to be 
able to analyse a larger space around the vehicle, the UAV 
should be located even higher than in our experiments – up 
to 100-120 metres. Despite a good accuracy of the ArUco-
based algorithm it seems better to use methods that do not 
require markers – like based on a DCNN. Moreover, in 
this case it would be possible to add detection and tracking 
of other classes of objects, e.g. pedestrians and cyclists 
(which is impossible with the ArUco markers).

The DCNN method should be refined to be even more 
robust in different meteorological conditions – especially 
in the case of shadows. Finally, it is necessary to conduct 
multiple additional tests to better assess the suitability of 
the proposed solution.
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