
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11265-021-01727-2

Architecture of a Low Latency H.264/AVC Video Codec for Robust ML
based Image Classification

How Region of Interests can Minimize the Impact of Coding Artifacts

Fritjof Steinert1,2 · Benno Stabernack1,2

Received: 16 April 2021 / Revised: 24 September 2021 / Accepted: 30 November 2021
© The Author(s) 2022

Abstract
The use of neural networks is considered as the state of the art in the field of image classification. A large number of different
networks are available for this purpose, which, appropriately trained, permit a high level of classification accuracy.Typically, these
networks are applied to uncompressed image data, since a corresponding training was also carried out using image data of similar
high quality. However, if image data contains image errors, the classification accuracy deteriorates drastically. This applies in par-
ticular to coding artifacts which occur due to image and video compression. Typical application scenarios for video compression
are narrowband transmission channels for which video coding is required but a subsequent classification is to be carried out on
the receiver side. In this paper we present a special H.264/Advanced Video Codec (AVC) based video codec that allows certain
regions of a picture to be coded with near constant picture quality in order to allow a reliable classification using neural networks,
whereas the remaining image will be coded using constant bit rate. We have combined this feature with the ability to run with low-
est latency properties, which is usually also required in remote control applications scenarios. The codec has been implemented
as a fully hardwired High Definition video capable hardware architecture which is suitable for Field Programmable Gate Arrays.

Keywords H.264 · Advanced Video Codec (AVC) · Low Latency · Region of Interest · Machine Learning · Inference ·
FPGA · Hardware accelerator

1 Introduction

Our application scenario is focused on the detection of per-
sons floating in water (shipwrecked) as a first step in a suc-
cessful sea rescue operation. The system is shown in Fig. 1.
For this purpose an unmanned aerial vehicle (UAV) with a
full HD (High Definition) camera pointing downwards is
used to record the water surface. The intended UAV has a
long flight duration and can fly up to 100 km away from the
ground station. The video data is transmitted to the ground
station via a radio link with a very limited bandwidth,

especially with increasing distance to the station. Due to
the limited bandwidth a video codec must be used. At the
ground station, an operator searches the video image for
persons in the water and other objects. For this, the operator
is assisted by complex machine learning (ML) methods for
the recognition of persons.

The proposed processing pipeline consists of:

1. An HD camera which captures the scene.
2. A Region of Interest (ROI) generation based on the cap-

tured scene e.g. using simple ML methods.
3. Encoding the video with the recognized ROIs.
4. Transmission of the bitstream over a limited wireless air

link to the ground station.
5. Decoding the video at the ground station.
6. Classification of objects in ROIs using more complex

ML algorithms. Additional object detection over the
entire image to possibly identify objects not detected in
the UAV.

 * Fritjof Steinert
 fritjof.steinert@hhi-extern.fraunhofer.de

 Benno Stabernack
 benno.stabernack@hhi.fraunhofer.de

1 Fraunhofer Institute for Telecommunications - Heinrich
Hertz Institute (HHI), Einsteinufer 37, 10587 Berlin,
Germany

2 University of Potsdam, Potsdam, Germany

/ Published online: 31 January 2022

Journal of Signal Processing Systems (2022) 94:693–708

https://orcid.org/0000-0002-8733-3064
https://orcid.org/0000-0002-6654-1606
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-021-01727-2&domain=pdf

1 3

7. Display of the recognized object classes as a label for
visual support of the operator.

Due to the limited computing power in the UAV, only simple
ML methods can be used to detect the ROIs. A more detailed
analysis with complex ML algorithms is performed in the
ground station. Several requirements for the video codec are
derived from this scenario:

R1: Real-time processing is necessary because the camera
continuously streams video data.
R2: Since control data of the UAV is also transmitted via
the radio link, rate control must be applied to ensure that
the encoded video data does not exceed a defined band-
width. At the same time, the available bandwidth should
be used in the best possible way for a good video quality.
R3: Since ML requires a high image quality with few
coding artifacts for a reliable detection rate, potentially
interesting regions should be detected in the UAV and
encoded with a better quality.
R4: The encoding has to be done with low latency so that
ROIs set manually by the operator cause a timely change
of the encoded video.
R5: The codec should also run on low-end FPGAs (Field
Programmable Gate Array) and therefore be implemented
with low complexity.
R6:In order to be able to manually detect shipwrecked
persons not detected in the UAV due to the simple ML
algorithm, the entire image and not only the ROIs should
be transmitted.

Other technical applications of video coding in the auto-
motive, railroad or marine sector have similar require-
ments. For example, in autonomous driving applications,

ultra-low latency combined with high image quality in the
regions of interest and constant data rate is relevant for
ML based object recognition, e.g., of cyclists. At the same
time, a large number of camera streams are to be trans-
mitted via a single network for cost reasons, so that the
available bandwidth is limited and encoding is mandatory.

In this paper, which is based on our publication [36], we
present the hardware architecture of a low-complexity, low-
latency video codec based on H.264/Advanced Video Coding
(AVC). The codec can be implemented on low-cost FPGAs,
yet still providing sufficient coding efficiency for the given
application scenario and satisfying the stated requirements.
We also show its integration into a distributed image process-
ing system. Compared to our conference paper, we extended
the explanation of the process pipeline as well as related
work and included the external memory requirements for
encoder and decoder. To the results we added a more exten-
sive resource review, a comparison with related work, and
analysis of power consumption. In addition, we presented the
system integration of the codec into a hardware framework.

The structure of the paper is as follows: In Sect. 2 we
present the influence of video coding quality on image
processing algorithms. We also discuss the contributions
of individual components of a signal processing pipeline
to video coding delay and the importance of low latency.
Section 3 describes the architecture of the low-latency,
low-complexity video codec for FPGAs, separately for
encoder and decoder. Section 4 provides our results and
the related discussion of the FPGA implementation in
terms of resource utilization, clock frequency and the
influence of ROIs on image quality. In Sect. 5 we cover
the integration of our codec into a distributed system via
network interfaces. The remaining part of the paper is
dedicated to a conclusion and our future work.

Image processing e.g. DCNN classification

persons

unmanned
aerial
vehicle

Region of Interest
generation

HD
camera encoder

decoder classification
boats

input image

"person"

ground stationremote recognition

1

2

3

2 4

5
6

6

7

Figure 1 Sea rescue application scenario.

694 Journal of Signal Processing Systems (2022) 94:693–708

1 3

2 Background and Related Work

2.1 Influence of Video Coding Quality on Image
Processing Algorithms

A fundamental problem with video coding is the fact that
the drastic reduction in the data rate is based on lossy coding
methods, i.e. as the compression rate increases, the image
quality deteriorates and leads to visible coding artifacts. Due
to the applied coding methods this means, that achieving
a constant bit rate (CBR) results in varying video quality
and when aiming for a constant video quality the resulting
bit rate cannot be held constant (variable bit rate, VBR).
Typically, CBR is preferred for transmission channels with
a specific channel capacity, while VBR is often used in cases
where consistent video quality is required, e.g. Blu-ray or
other storage media. Using video coding in classical appli-
cations scenarios like video streaming, the coding quality
will be judged by the viewer who is in most cases willing to
accept artifacts in favor of using low bit rate transmission
channels. In contrast to these scenarios technical applica-
tions typically apply image processing algorithms on the
decoded video streams. In this case the resulting video
quality must be held constant to achieve the best results.
An often used measure to indicate the quality of video cod-
ing is PSNR (peak signal to noise ratio), where a higher
value means better video quality. With the advent of the
broad usage of DCNN (deep convolutional neural network)
as image processing algorithms for various applications,
our following simple experiment shows that the higher the
PSNR, the higher is the resulting confidence of the classifi-
cation, which obviously deteriorates when using error-prone
low bit rate channels.

Figure 2 shows three images that have been coded using
H.264/AVC Baseline Profile with three different target
PSNR values. In Table 1 the inference results of an ima-
genet-trained MobileNetV2 DCNN [32] using the three
images depicted in Fig. 2 are given as global confidence for
the predicted class. The example given in Table 1 is not suf-
ficient to make a general statement on the influence of video
coding artifacts, but it is evident that a drastic degradation
of the confidence is occurring. It is in that sense obvious
that by using high-quality images for the training of neural
network parameters, video coding artifacts typically are not
taken into account. A number of papers have been published
in which the problem has been analyzed in depth.

The authors in [12] examine the relationship between
the recognition accuracy of different neural networks and
the image quality delivered by a corresponding camera. An

Figure 2 Example images from top to bottom with 33 dB PSNR Y,
26 dB PSNR Y and 22 dB PSNR Y.

▸

695Journal of Signal Processing Systems (2022) 94:693–708

1 3

Ethernet-based camera is used, which also applies H.264/
AVC as the coding method. The application scenario in
this case is the detection of vehicles in an automotive
environment. An analysis of the recognition accuracy is
carried out on the basis of different bit rates and differ-
ent image sizes. Here too, the authors report that the rec-
ognition accuracy depends on the data rates. In this use
case very high data rates were used, at which the coding
artifacts are relatively moderate. Since the camera pro-
vides a constant bit rate a high probability exists in this
scenario, that the image quality can be greatly reduced in
certain cases, which means a non-deterministic behavior
of the following object detection algorithms. Since the
paper focuses foremost on the analysis, no solution to the
problem is given. The authors in [7] discuss the problem
related to applying a people detection DCNN to decoded
video data. In this scenario the authors take multiple cam-
eras with multiple streams into account, where the band-
width needs to be shared between the different cameras.
Based on object detection in one particular video stream
the quantization parameter QP of the corresponding video
encoder will be changed by a central server that is aware
of the overall bandwidth, which means in turn that the
data rate will be adapted to the needed image quality. The
overall system has been simulated and shows good results
regarding the object recognition. One drawback is the
backchannel needed to adjust the rate control of the dif-
ferent video encoders accordingly. In [11] the authors dis-
cuss the influence of video compression artifacts on a FIR
(far infrared) video stream for the purpose of pedestrian
detection based on night vision technology. The authors
analyzed MJPEG (Motion-JPEG) and H.264/AVC. AVC
shows better performance at the same bit rates, which is
not surprising since the standard provides a much higher
coding efficiency compared to MJPEG by using more cod-
ing tools and temporal prediction methods. Here no solu-
tion is given besides the fact, that the authors vote for a
certain data rate limit used by the video encoder as well.

The presented H.264 codec features ROIs to provide
improved image quality in interesting image areas. At the
same time, maximum bandwidth is guaranteed.

2.2 Video Coding Latency

Besides video coding quality in terms of PSNR, the most
interesting non-functional video coding parameter for tech-
nical applications is the achieved overall coding latency,
which describes the time needed to process a video signal
from the input of the encoder to the corresponding video
signal at the output of the video decoder, often referred to as
the so-called glass-to-glass delay. This parameter is mostly
important for applications where an interaction between the
receiver and the transmitter side takes place. In these appli-
cations latencies much lower than one frame period (e.g.
for 25Hz frame rate the time period for one frame is 40ms)
are required, which could be in the range of only several
milliseconds. In the past, this problem has been typically
solved by the transmission of uncompressed digital video
signals such as LVDS (Low Voltage Differential Signaling)
which provides the lowest latency possible. The drawback
of this approach is the lack of a seamless integration into
existing digital network infrastructures such as Ethernet due
to the much higher bandwidth demanded or the requirement
for a wireless link, which is typically not capable of high
data rates in the Gbps range. E.g. in the automotive domain
there is a strong need to reduce cost and weight by reducing
the number of copper wires in future cars to optimize fuel
economy or battery life and overall costs. Service integra-
tion like Advanced Driver Assistance Systems (ADAS) [11]
leads to the demand of transmitting video signals digitally
over the same in-car bus system typically dedicated to con-
trol information. Due to high data rates of uncompressed
video and the limited bandwidth of the bus systems used
e.g. optical Ethernet, compression of the video signal is
mandatory while still providing the same latency as the
equivalent uncompressed or analog video links/systems.
Other examples for applications with similar requirements
are telemedicine [3], endoscopic medical imaging [5], online
video gaming [40] or real-time steering of robotic equip-
ment using wireless links for video transmission. The major
burden when replacing digital uncompressed video links by
video compression schemes is the desired low latency on
one side and the video compression inherent accumulated

Table 1 MobileNetV2 inference results

Original 33 dB PSNR Y 26 dB PSNR Y 22 dB PSNR Y

confidence prediction confid. prediction confid. prediction confid. prediction

1 0.998468 104 (wallaby, brush kan-
garoo)

0.602415 104 0.078762 268 (Mexican hairless) 0.160643 847 (tank, ...)

2 0.000088 273 (dingo, ...) 0.034602 341 (hog, ...) 0.037112 341 0.064593 895 (warplane, ...)
3 0.000083 383 (Madagascar cat, ...) 0.027936 286 (cougar, ...) 0.030874 346 (water buffalo, ...) 0.033603 438 (beaker)
4 0.000082 373 (macaque) 0.023066 394 (sturgeon) 0.028397 150 (sea lion) 0.028306 403 (aircraft carrier, ...)
5 0.000063 105 (koala, ...) 0.016754 227 (kelpie) 0.026863 148 (killer whale, ...) 0.023474 660 (mobile home, ...)

696 Journal of Signal Processing Systems (2022) 94:693–708

1 3

coding delay caused by the different involved buffers on the
other hand. As depicted in Fig. 3 these incorporated sources
for delay are:

where:

– Δtall is the overall delay / latency.
– ΔtVideoInput time to read in the video signal.
– ΔtEncode time to encode the captured video signal.
– ΔtOutputBuf time the corresponding compressed data

resides in the output buffer of the encoder.
– ΔtNetwork time needed to transmit compressed data ele-

ment over the network.
– ΔtInputBuf time the corresponding compressed data resides

in the input buffer of the decoder.
– ΔtDecode time to decode the received compressed data ele-

ment.
– ΔtVideoOutput time to send decompressed video signal to

output device.

It is obvious, that besides the network latency, the major
delay results from the codec and its corresponding buffers.
Whereas the buffer size is mostly dependent on the mode
(CBR or VBR) and the compression method used e.g. tem-
poral predictive or intra predictive coding, the delay result-
ing from the codec is defined by its architecture. Typically a
hardware architecture relies on a MB-based processing pipe-
line where the resulting latency can be significantly lower
compared to the delay introduced from the accompanied bit-
stream buffers. The size of the bitstream buffer results from
the requirements regarding the generation of a constant data
rate at the output of the video encoder. Compression meth-
ods based on temporal predictive methods typically show
a significant variation in the output data rate whereas intra
predictive coding methods provide a more constant bit rate
at the price of a overall higher data rate and lower coding
efficiency. Regarding the encoding delay both methods intra
and motion compensated temporal predictive modes can
achieve the same coding delay, by carefully controlling the

(1)

Δtall = ΔtVideoInput + ΔtEncode + ΔtOutputBuf

+ ΔtNetwork + ΔtInputBuf + ΔtDecode

+ ΔtVideoOutput

bitstream buffers. In [20] the authors describe a rate control
scheme, which has been applied to an H.264/AVC intra only
encoder, which provides very low latency by controlling the
output buffer on macroblock (MB) level.

In our proposed codec architecture, a very low latency
of less than 2 ms is achieved for encoder, decoder and the
minimum required buffer sizes combined.

2.3 Hardware Architectures for Video Coding

One possible solution to provide the lowest achievable cod-
ing latency is to avoid compression methods relying on
temporal prediction. In this case only intra frame predictive
methods will be used by the encoder leading to high data
rates and latencies which can be below one frame period.
Besides compression standards that only provide intra type
coding methods as JPEG-2000 or M-JPEG, most video cod-
ing standards can be used by applying only intra modes.
Based on the results presented in previous sections, we
decided to develop an H.264 codec that on the one hand
provides good video quality and on the other hand meets
the strict latency requirements. As mentioned above, the
lowest possible latency will be achieved using intra-only
codec approaches. In [6] an architecture is presented by the
authors based on a quality scalable architecture featuring
the possibility to adapt the video coding performance to
the clock requirements of the underlying system. As a chip
implementation (90 nm process) it can by used to encode
D1, HD720 and HD1080 video sequences with 30 fps at
clock frequencies of 23 MHz to 43 MHz, 71 MHz to 116
MHz and 152 MHz. Besides the high bandwidth inherent
to intra-only codecs, it is characterized by the low latency
required. The authors in [21] describe their architecture,
which performs nearly with the same throughput numbers
as our FPGA implementation. They accomplish 560 clock
cycles/MB at a clock frequency of about 140 MHz to process
1080p in real time. The implementation uses a quite old
technology (130 nm). In [10] a codec architecture is given,
which performs about the same, but in contrast to the previ-
ous mentioned implementations besides the ASIC design an
FPGA implementation is described. Authors in [15, 19, 34]
introduce very similar architectures, all having in common
that they are based on a MB processing pipeline. There are

Figure 3 Causes of video cod-
ing latency.

697Journal of Signal Processing Systems (2022) 94:693–708

1 3

two main advantages of this approach. First, this processing
scheme keeps the amount of buffer memory needed small,
which is very important for hardware implementations in
general. Second, MB-based processing guarantees determin-
istic throughput numbers, something we strive for, especially
in terms of low-latency processing. The problem with these
approaches is, that the obtained data rates are quite high,
which prevents us from using bandwidth limited wireless
communications channels. To attain a better efficiency it is
strongly desired to use all other available coding tools pro-
vided by the H.264 video coding standard. In particular, the
use of inter predictive coding modes raises the coding effi-
ciency significantly, but as described in [38] it considerably
increases the complexity. In [8, 9, 16, 22–25, 29, 39] a cou-
ple of dedicated hardware implementations for H.264 codecs
supporting at least P- and in most cases also B-predictive
coding modes are described. Another common feature of all
these implementations is that they are not optimized towards
low-latency processing, since the rate control algorithms in
the codecs rely on huge buffer sizes in order to relax mode
decisions. Common for all of the refereed implementations
is the fact, that they have been implemented as dedicated
hardware blocks for a given semiconductor technology.
Fabricating a dedicated chip for the described application
field was not possible due to limited amount of funding
and project duration. We have designed our codec for an
FPGA target platform instead. This solution can hardly be
compared to dedicated chip design. Various FPGA related
building blocks for H.264 video encoders can be found in
the literature. In [27, 28, 31] the design space for H.264

quantizers/dequantizers for FPGAs are discussed, which is
also suitable for H.264 video decoders. An architecture for
intra predictions is discussed in [41]. Other building blocks
such as transform, entropy encoders or decoders and motion
estimation can be found in [17, 18, 26, 33]. In [4] a codec
architecture based on processor cores implemented on an
FPGA is given. It results in similar performance points as
processor based software implementations. In [29] results
for a complete H.264 encoder is given, which has been
developed as a dedicated hardware IP, but mapped to an
FPGA for hardware verification purposes.

To the best of our knowledge, the presented codec archi-
tecture (encoder and decoder) is the only complete non-
commercial H.264 implementation that provides all fea-
tures for technical encoding applications with intra and inter
encoding, very low latency even in inter mode, guaranteed
rate control and ROIs.

3 Low Latency Video Codec

3.1 Encoder

The H.264/AVC baseline profile compliant video
encoder [14] is designed around a 5-stage MB pipeline
as shown in Fig. 4 to encode incoming video data with a
near constant bit rate in real-time for formats up to level 4.1
(e.g. 1920x1080p30). The encoder is entirely implemented
in hardware with vendor-independent VHDL (Very High
Speed Integrated Circuit Hardware Description Language).

Figure 4 Encoder 5 stage pipeline block diagram.

698 Journal of Signal Processing Systems (2022) 94:693–708

1 3

No processor is used. Each MB is processed within a stage
with a constant delay of 613 clock cycles, which is a direct
result of the maximum number of cycles specified by hard-
ware description to calculate one MB. Therefore the mini-
mum needed clock frequency for real-time encoding is cal-
culated as follows:

If the system clock frequency is reached, then real-time pro-
cessing is ensured and the requirement R1 is fulfilled. An
HD video can thus be processed in real-time at a system
clock of 150.1 MHz or higher.

In stage 1 the Video Input Interface converts the incom-
ing 4:2:0 YCbCr 8 bit video stream into a MB format. This
way, a sub-marcoblock (SMB) can always be processed in
only one external memory burst and the bandwidth can be
used efficiently. After image data and quantization param-
eter (QP) have been adjusted according to the set ROIs
(details in Sect. 3.1.2), the MBs are distributed to both the
intra- and the inter-pipeline. In the inter-pipeline, motion
estimation is first performed with pixel accuracy at stage 2
(Integer Motion Estimation, IME), then with sub-pixel accu-
racy at stage 3 (Fractional Motion Estimation, FME) with
a search window of ± 13 pixels. Within the search window
the motion vectors are unrestricted. Finally, in stage 4 the
Chroma Motion Estimation together with the Mode Decision
and the Motion Vector Prediction is performed. In contrast,
in the parallel intra-pipeline the stages 2 and 3 are only used
for delay. The Intra Encoder in stage 4 accomplishes the
intra prediction and transformation of the video MB by MB.
It supports all 4x4 intra modes as well as 16x16 vertical,
horizontal and DC modes. Plane Prediction is not supported,
as it provides only 1% coding efficiency while almost dou-
bling the resources required for intra-coding. On MB basis,
either the residual data of the intra (I) or inter (P) pipeline
are taken as basis for generating a baseline compliant bit-
stream using a Context Adaptive Variable Length Coding
(CAVLC) entropy encoder in stage 5. At this point the bit
rate is very variable. Also in stage 5, the reconstructed MBs

(2)
System clockEncoder = Width in MBs ⋅ Height in MBs ⋅ 613 ⋅ framerate

are written to external memory as reference frame. Before
that, the MBs are filtered by an in-loop deblocking filter
(DBF) to reduce blocking artifacts. After stage 5, the rate
control block ensures a constant target bit rate. The encoder
does not support the encoding of B-frames despite possi-
ble higher coding efficiency, since this would increase the
latency by using succeeding images for prediction. This
contradicts requirement R4. Furthermore, it would raise the
complexity of the design which contradicts requirement R5.
The behavior of the MB pipeline across the stages is shown
in the Fig. 5.

3.1.1 Rate Control

In order not to exceed a constant target bit rate under all cir-
cumstances and thus meet the requirement R2, we combine
two different approaches. An encoder without rate control
generates a variable bit rate with a fixed QP ranging from
0 to 51, where 51 results in very low image quality but a
low bit rate. To generate a bitstream with constant data rate
the fixed QP has to be adjusted on MB-basis. Rate control
should optimize the QP so that the produced bit rate fits
the target bit rate as well as possible and on the other hand
achieves the best picture quality at that bit rate. Since the bit
rate depends on the image content and can therefore vary
considerably, a large number of QP changes would be inevi-
table even within a frame. The overall subjective quality
would suffer from these many QP changes and distortions
would occur even at higher target bit rates. Hence the strat-
egy for rate control should be:

– Obtain the target bit rate, as precise as possible.
– Choose a QP as low as possible to achieve best quality.
– Try to minimize variations of QP within one frame and

from frame to frame whenever possible.

To achieve a constant bit rate with this strategy a bitstream
buffer is required, which is written variably and read out
constantly with the target bit rate according to the FIFO
principle to compensate bit rate variations. This buffer

Figure 5 Encoder MB pipeline
behavior.

699Journal of Signal Processing Systems (2022) 94:693–708

1 3

is depicted in Fig. 6. Depending on the desired size, the
buffer can be implemented in the internal block RAM or
in an external memory. If the size of the output buffer is
rather large, more variations can be equalized within this
buffer than, when using a small buffer, so rate control can
allow more variations of the bit rate. The size of this output
buffer defines the overall end-to-end latency from encoder to
decoder so that for low-latency applications the buffer size
is limited. Since the rate control is not in all cases able to
hit the target bit rate, variations are allowed up to a certain
overall limit. This means, that we have combined CBR and
VBR towards a capped VBR rate control strategy.

Primary task of the rate control is to regulate the QP
based on the current value of the output buffer fullness so
that no buffer over- or underflow occurs by always following
the guidelines below (see Algorithm 1):

– At the start of a new sequence, the initial QP is calculated
based on the image resolution N and M, the frame rate

fps and the target bit rate tb, since no information about
the video footage is available. Because the first frame is
always intra encoded, the QP must be set high enough
(e.g. 45 for HD@12MBit) so that the bitstream buffer
does not overflow. When the target bit rate has a reason-
able value, the start QP decrements very fast and so the
image quality increases within some few frames.

– At the start of each frame, the calculated QP is modi-
fied according the determined buffer-level bl to ensure
a proper buffer fullness around 50%. When this level
reaches a threshold value of 60% or 80%, the QP is incre-
mented by one or two respectively to prevent a buffer
overflow. If the buffer has a low filling level below 12%
or 25%, the QP is decremented by two or one respec-
tively. The calculated QP is used for encoding the next
frame.

– After coding a MB, the buffer level bl is checked. If a
critical value of 87.5% is reached, the QP used for the
next MB is increased by one. If the selected buffer size
is quite small due to a hard requirement for low latency,
more regulation is needed to ensure an adequate buffer
level.

– After each frame, the frame bit size is checked and
adapted. According to the used QP, the size of the coded
frame cb will differ from the target frame tb size more
or less. If the difference is within ± 10% the QP is not
changed, to minimize distortion based on QP changes
from frame to frame. If the difference is larger, QP for
the next frame will be adapted based on the difference
to the target size and also on basis of the QPs of the two
previous frames QPl1 , QPl2 and their frame sizes fsl1 , fsl2.

Normally, an encoded video consists of a sequence of
I- and P-frames, where I-frame and especially IDR-frames
serve as synchronization point for the decoder. Intra frames
require a higher bit rate than P-frames because no motion
estimation is used. This leads either to peaks in the required
bandwidth or to quality degradation for each I-frame. Both
effects are undesirable. Therefore, apart from the very first
frame of a stream, we only use P-frames with embedded
stripes of I-MBs as shown in Fig. 7. The complete intra
update of the MBs is now done by several successive
P-frames, in the shown example 6 frames are needed. The
intra refresh mode (IRM) avoids the problem of large intra
encoded frames, because the high bit rate required for an
I-frame is divided among the P-frames. To allow a decoder
to still detect a synchronization point in the bitstream, we
use Supplemental Enhancement Information (SEI) message,
which provides the information how long a refresh cycles
takes and when to start displaying picture content. Receiv-
ing a recovery point SEI message automatically prevents
the decoder from waiting for an I/IDR-frame and prompts it
to immediately start decoding the received P-frames. As a Figure 6 Bitstream output buffer.

700 Journal of Signal Processing Systems (2022) 94:693–708

1 3

result of the more balanced bit rate in IRM the rate control
buffer can be smaller and generates less latency, thus fulfill-
ing the requirement R4.

3.1.2 Region of Interest

To ensure that the image quality is sufficiently good for ship-
wreck detection even after coding with limited bandwidth,
the encoder uses a number of ROI to improve the image
quality of interesting image areas. Within the ROI the MB
are encoded with a lower QP. Therefore the image quality is
higher there. Each ROI is defined as a rectangle over a start
position in X and Y direction plus the ROI width and height.
The coordinates must be set from outside the encoder. The
positioning of the ROI can either be done manually or via a
simple DCNN for object detection like YOLO [30].

When using ROI, a constant bit rate should still be guar-
anteed (see Sect. 3.1.1). This is necessary for communica-
tion channels of limited bandwidth. To achieve this, we
define a QP difference, by which the QP outside the ROIs is
increased, meaning a poorer image quality at a lower total
bit rate. Due to the lower bit rate the rate control notices
that the target bit rate is no longer reached. The QP is low-
ered and thus the bit rate in the ROIs is increased. After a
few frames, the control loop reaches the target bit rate again
despite the increased QP outside the ROIs. Thus the image
quality within the ROIs is increased and requirement R3 is
met. Since not only the ROIs are transferred, the complete
image is still available in lower quality for manual analysis
as required in R6. To further reduce the required bit rate, the
region outside the ROIs can be encoded without the chroma
channels. The feedback loop then further increases the qual-
ity within the ROIs.

3.1.3 External Memory Requirements

The temporal dependencies of P-frames makes it necessary
to store whole uncompressed frames in memory so that they
can be accessed later (i.e. reference frames). Since the size
of the internal FPGA BRAM (Block RAM) is not sufficient
for this task, external memory is utilized. In order to reduce
the number of accesses needed the reference frame is stored
as SMB with 4x4 pixels in the memory. Figure 4 shows that
the encoder requires three memory operations:

– read the luma search window (SW) data and read
the chroma SW data for Motion Compensation (both
through the IME block)

– read a part (lower SMB) of the adjacent upper MB that
could not be kept locally for the DBF and write back
the reconstructed MB.

– write the bitstream to the Rate Control buffer and read
from it.

These operations require a continuous memory of at least
128 MB. The memory has to fulfill specific throughput
requirements in order to successfully store the recon-
structed MB and read the necessary MBs of the active ref-
erence frame for inter prediction. This requirement results
from the following formula:

where:

– MBs/SW max is a worst case number of MBs that
needs to be read to refresh the SW, e.g. 6 in the case of
± 13 pixels search range.

– MBPF is the number of MBs per frame.
– FPS is the frame rate of the processed video.
– Chrfactor = 2 for the chroma channels because the inter-

nal format is 4:4:4 YCbCr.

For an HD image (with 8160 MBs) at 25 fps, the formulas
result in a required rounded up throughput of:

(3)
TPEncTotal = TPIME + TPMotionCompensation

+ TPWriteDBF + TPReadDBF + TPRateControl

(4)TPIME = 256Byte∕MB ⋅MBs∕SWmax ⋅MBPF ⋅ FPS

(5)

TPMotionCompensation =256Byte∕MB ⋅ Chrfactor ⋅MBs∕SWmax

⋅MBPF ⋅ FPS

(6)
TPWriteDBF =(64Byte∕TopMB + 256Byte∕LeftMB)

⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(7)
TPReadDBF = 64Byte∕MB ⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(8)TPRateControl = 2 ⋅ bitratepersecond

Figure 7 Propagation of the Intra refresh column throughout a video sequence.

701Journal of Signal Processing Systems (2022) 94:693–708

1 3

3.2 Decoder

The fully baseline profile compliant H.264/AVC decoder
includes three MB-based pipeline stages for entropy decod-
ing, coefficient reconstruction and in-loop filtering. The
decoder is implemented as vendor-independent VHDL
completely in hardware and without using a processor.
Each stage is decoupled by a MB double buffer as shown in
Fig. 8. Each MB is processed in a maximum of 640 clock
cycles, which again is directly derived from the hardware
description of the decoder. To ensure real-time processing,
the minimum required system clock is calculated as follows:

For the HD format with 30 fps this results in a minimum
clock frequency of 156.7 MHz. Above this frequency
requirement R1 for the decoder is satisfied.

The bitstream interface is connected to the Variable
Length Decoder (VLD) component in stage 1, which is
used for CAVLC entropy decoding. All necessary syntax
elements for intra and inter reconstruction, e.g. intra predic-
tion modes and inter motion vectors, are stored in a MB dou-
ble buffer, which can be accessed by the subsequent pipeline
stage. The second pipeline stage (stage 2) contains the Intra
Prediction (IPR), Inter Motion Compensation (MC) and
Residual Generation (RES), which form the intra and inter
reconstruction part of the decoder. Output of this stage is a
completely reconstructed MB with unfiltered coefficients.
The third pipeline stage (stage 3) contains an in-loop DBF,
which is used to improve the visual quality. Picture samples
are filtered with respect to current and adjacent MB param-
eters and already filtered neighbor samples. The decoded
video is output as 8 bit 4:2:0 YCbCr. The AXI master com-
ponent (AXI bus protocol [1]) processes all write and read

(9)
TPEncTotal = 314MBps + 627MBps + 196MBps

+ 40MBps + 20MBps = 1197MBps

(10)
System clockDecoder = Width in MBs ⋅ Height in MBs ⋅ 640 ⋅ framerate

requests of the connected components and drives the AXI
master interface.

The decoder needs 107 MB to store a maximum of 17
reference frames. To reduce the number of memory accesses
required, the reference data is stored in SMBs in the external
memory, in the same way as in the encoder. Three memory
operations take advantage of these reference frames:

– read Motion Compensation data. For each vector pro-
cessed it is necessary to read a 9x9 pixel block contain-
ing all pixel needed for interpolation from the memory.
Therefore 12x12 pixels (3x3 SMBs) will be read for each
SMB processed.

– read the lower SMB of the adjacent upper MB and write
back the reconstructed MB (like in the encoder).

– read video output data.

where:

– MBPF is the number of MBs per frame.
– FPS is the frame rate of the processed video.
– Chrfactor = 0.5 for the chroma channels.

For an HD image (with 8160 MBs) at 25 fps, the formulas
result in the rounded up throughput of:

3.3 Codec Latency

For the calculation of the overall codec latency Δtall accord-
ing to formula 1 for a 1920x1080p25 sequence (with 120
MB per line) we have to note that ΔtVideoInput and ΔtVideoOutput
depend on the camera respectively monitor used and their
connection. The delay of the transmission channel ΔtNetwork
is also unknown and typically varies significantly. Therefore

(11)
TPDecTotal =TPMotionCompensation + TPWriteDBF

+ TPReadDBF + TPVideoOutput

(12)
TPMotionCompensation =16Byte∕SMB ⋅ (1 + Chrfactor)

⋅ 9 ⋅MBPF ⋅ 16 ⋅ FPS

(13)
TPWriteDBF =(64Byte∕TopMB + 256Byte∕LeftMB)

⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(14)
TPReadDBF = 64Byte∕MB ⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(15)
TPReadVideoOutput = 256Byte∕MB ⋅ (1 + 0.5) ⋅MBPF ⋅ FPS

(16)
TPDecTotal =705.1MBps + 98MBps + 19.6MBps

+ 78.4MBps = 901.1MBps

Fig. 8 Decoder 3 stage pipeline block diagram

702 Journal of Signal Processing Systems (2022) 94:693–708

1 3

we do not specify these delays. The remaining latency is
fixed due to the MB pipeline and does not vary. Using larger
buffers results in higher latency. The remaining delays can
be determined as a minimum latency example at a clock rate
of 160 MHz for both the encoder and the decoder as follows:

• The double buffer at the input stores one MB line and
therefore adds 120 MB latency. Each of the 5 encoder
stages of the MB pipeline is adding another MB latency.
As a result the minimum possible encoder delay is

• The minimal output buffer size is one MB line. For 25
fps, this results in a latency of

• ΔtInputBuf should be as large as ΔtOutputBuf so the latency
is the same.

• The 3 decoder stages means 3 MB delay, so that

(17)

ΔtEncode =
(120 + 5MB) × 613cycles∕MB

160MHz
= 0.47ms

(18)ΔtOutputBuf =
40ms

8160MB
× 120MB = 0.59ms

(19)ΔtDecode =
(3MB) × 640cycles∕MB

160MHz
= 0.012ms

The total minimum delay is therefore:

4 Results

Tables 2 and 3 show the resource utilization of the
encoder on two different Intel FPGAs, the low-end FPGA
10CX220YF780E5G (C10) and the mid-range FPGA
10AX115N3F40E2SG (A10). Tables 4 and 5 present the
resources of the decoder for the same FPGAs. We have
tested the encoders and decoders in hardware on the A10
FPGA, the numbers for C10 represent pure fitting results.
We performed the synthesis and place and route process
using Quartus 19.4. For the encoder we used the balanced
setting, for the decoder the high performance effort setting
to achieve better timing. With [20] we have found only one
comparable AVC encoder with inter prediction implementa-
tion for FPGAs. It targets an older version of our Arria 10

(20)

Δtall = ΔtVideoInput + 0.47ms + 0.59ms

+ ΔtNetwork + 0.59ms + 0.012ms + ΔtVideoOutput

= 1.662ms + ΔtVideoInput + ΔtNetwork

+ tVideoOutput

Table 2 A10 device family
encoder resource utilization
with 160 MHz clock constraint
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

Video Input 1109 1.8 802816 54.1 58 12.9 0 0
ROI 289 0.5 0 0 0 0 0 0
Intra pipeline 7553 12.4 223104 15.0 119 26.5 33 50.8
Inter pipeline 38180 62.5 310748 21.0 188 41.9 32 49.2
DBF 6022 9.9 51876 3.5 45 10.0 0 0
CAVLC 4687 7.7 13904 0.9 16 3.6 0 0
Rate Control 2048 3.4 13056 0.9 9 2.0 0 0
Control 648 1.1 0 0 0 0 0 0
Memory IF 567 0.9 67312 4.5 14 3.1 0 0
Overall 61104 14.3 1482816 2.7 449 16.5 65 4.3

Table 3 C10 device family
encoder resource utilization
with 160 MHz clock constraint
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

Video Input 1118 1.9 802816 53.8 58 12.2 0 0
ROI 257 0.4 0 0 0 0 0 0
Intra pipeline 7437 12.4 225920 15.1 125 26.2 33 50.8
Inter pipeline 37648 62.5 316388 21.2 207 43.4 32 49.2
DBF 5877 9.8 52260 3.5 48 10.1 0 0
CAVLC 4671 7.8 13904 0.9 16 3.4 0 0
Rate Control 2021 3.4 13056 0.9 9 1.9 0 0
Control 606 1.0 0 0 0 0 0 0
Memory IF 562 0.9 67312 4.5 14 2.9 0 0
Overall 60198 74.9 1491656 12.5 477 81.3 65 33.9

703Journal of Signal Processing Systems (2022) 94:693–708

1 3

family (20 nm process) by using the Arria II family (40 nm)
and achieves a base clock of 100 MHz with 200 MHz in
some parts. The design requires on average 652 clock cycles
per MB in the worst case (Inter MB with intra 4x4 predic-
tion), which is slightly more than 613 cycles for our encoder,
which moreover never exceeds this limit. According to the
author, a throughput of 1080p30 is achieved. Following for-
mula 2, this requires a minimum clock of 159.6 MHz for the
MB pipeline, so the pipeline seems to work with 200 MHz.
With 77k ALUTs (Adaptive Look-Up Tables) this design
requires less ALUTs than our design with 132k ALUTs. The
amount BRAM used is with 148.6 kB slightly smaller than
our implementation for the A10 with 185.4 kB. With 66
DSPs [20] uses one DSP more than we do. The specified
power consumption refers to the ASIC (application-specific
integrated circuit) implementation and is therefore not com-
parable. However, technical parameters such as very low
latency and a data rate guaranteed under all circumstances as
well as the possibility of defining ROIs, which the encoder
in [20] does not offer, are particularly relevant for the pre-
sented application.

The percentage in the row Overall refers to the total
resources of the FPGA, the other percentages to the share in
the IP core. In the Tables 2 and 3 it can be seen that a large
part of the ALMs (Adaptive Logic Module) and the mem-
ory bits are used by the inter pipeline. However, the coding
gain still justifies the use of P-frames. In contrast, capabili-
ties such as Rate Control and especially ROIs require few

resources. In addition, it is evident that more internal RAM
blocks (M20K) are used in percentage terms than memory
bits. Obviously, the memory sizes used do not map well to
the 512 x 40 bit block RAM structures of the used FPGAs.
Since this is the bottleneck of the encoder implementation,
an optimization of this mapping seems reasonable. In con-
trast, as depicted in the Tables 4 and 5, the ALMs are the
bottleneck in the decoder. However, the decoder already
requires significantly fewer resources.

As shown in Table 6, even on a low-end FPGA like the
C10 it is possible to run either the encoder or the decoder
with a sufficient clock frequency for processing HD images
at 30 fps, proving the low complexity (requirement R5).
Since the resource utilization by other parts like video IO
or external memory depends on the board, we have not
specified them in the resource utilization tables. But due to
the increased resource usage it is possible that a Cyclone
FPGA is not sufficient anymore. The mid-class FPGAs
of the Arria family such as 10AX115N3F40E2SG offer
enough space for the peripherals. With an assumed maxi-
mum utilization of 70%, it is even possible to implement
4 encoders or 8 decoders together as the numbers in the
Tables 2 and 4 prove. In Table 6, we also listed the power
requirements of the IP cores at 160 MHz target clock. The
calculation was performed with an assumed toggle rate of
12.5 %. The higher power dissipation of the A10 results
solely from the higher static power dissipation due to the
larger FPGA.

Table 4 A10 device family
decoder resource utilization
with 160 MHz clock constraint
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

VLD 12568 38.3 318752 63.0 43 32.8 2 10.5
Video Out 908 2.8 8192 1.6 8 6.1 0 0
IPR 3068 9.3 57344 11.3 11 8.4 1 5.3
RES 2044 6.2 5760 1.1 6 4.6 16 84.2
MES 7416 22.6 29040 5.7 10 7.6 0 0
DBF 3338 10.2 52664 10.4 33 25.2 0 0
Control 2730 8.3 0 0 0 0 0 0
AXI IF 757 2.3 34404 6.8 20 15.3 0 0
Overall 32831 7.7 506156 0.9 131 4.8 19 1.3

Table 5 C10 device family
decoder resource utilization
with 160 MHz clock constraint
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

VLD 12402 37.9 318752 63.0 43 32.8 2 10.5
Video Out 905 2.8 8192 1.6 8 6.1 0 0
IPR 3073 9.4 57344 11.3 11 8.4 1 5.3
RES 2048 6.3 5760 1.1 6 4.6 16 84.2
MES 7488 22.9 29040 5.7 10 7.6 0 0
DBF 3336 10.2 52664 10.4 33 3.4 0 0
Control 2718 8.3 0 0 0 0 0 0
AXI IF 780 2.4 34404 6.8 20 15.3 0 0
Overall 32749 40.8 506156 4.2 131 22.3 % 19 9.9

704 Journal of Signal Processing Systems (2022) 94:693–708

1 3

In Fig. 9 is shown how the Y PSNR value for different
videos sequences (1920x1080@25fps) changes with the
achieved bit rate for the latency of one frame, which is
slightly below the constant target bit rate. As the bit rate
increases, the quality of the encoded video also increases,
which is expressed by a higher PSNR. With the three dif-
ferent sequences, the different PSNR show the influence of
the video content on the quality at the same target bit rate.
A sequence with high motion like Crowdrun achieves a
significantly lower PSNR at a similar bit rate compared to
a sequence with little motion like Sunflower. In Fig. 10 we
look at the influence of ROIs on the image quality of the
sequence with the lowest quality. The PSNR curve in the
middle (+) shows a coding without ROIs as reference. The
influence of four ROIs with 224x224 pixels each (approx.
10% of the overall HD image region) is shown by the other
two curves. The upper curve (∗) shows the PSNR only for
the ROIs and the lower curve (×) for the complete image
including ROIs. Our mechanism for treating interesting
areas allows us to achieve a significantly higher quality
(around 9 dB better) within these areas compared to a
sequence without ROI. But since the bit rate is constant,
this is achieved at the expense of the quality of the rest
of the image. There the PSNR is about 3 dB lower than
without ROIs.

5 System Integration

In the hardware design, the communication interfaces,
the internal bus system and the interfaces to the off-chip
memory must be implemented again for each board. To sim-
plify this process and to use reliable components, hardware
frameworks are used. We use the framework proposed by
the authors in [37] to make our H.264/AVC video codec
easily available over a standardized network interface as
Network-attached Accelerator (NAA). We configured the
framework as shown in Fig. 11 with two sockets allow-
ing two independent accelerators, e.g. an encoder and a
decoder to be operated in parallel. The video data to be
encoded from the camera (1 in Fig. 1) is streamed over a
40 Gbps network interface to the encoder. There, the stream
is encoded, packed into a transport stream (TS) [13] and
sent to the transmitting unit of the aerial link (3 in Fig. 1).
On the decoder side, the TS is streamed into the accelera-
tor via the network interface, unpacked from the TS and
decoded. The decoded video or the ROIs only are sent via
the network interface to a ML component (6 in Fig. 1). This
pipeline is well suited for embedded integration due to its

Table 6 Codec maximum clock and power dissipation (at 160 MHz
clock)

Device Clock Power

Encoder 10CX220YF780E5G 164.8 MHz 2647.9 mW
10AX115N3F40E2SG 204.4 MHz 3860.3 mW

Decoder 10CX220YF780E5G 180.7 MHz 1415.6 mW
10AX115N3F40E2SG 192.5 MHz 2483.9 mW

Figure 9 Y PSNR for different HD@25fps scenes with IRM.

Figure 10 Y PSNR for Crowdrun (HD@25fps) with IRM and 4
ROIs.

Figure 11 Network-attached accelerator with two sockets.

705Journal of Signal Processing Systems (2022) 94:693–708

1 3

simplicity and clear separation. In addition, the hardware
framework and the associated software framework can be
used in the data center environment. The data is exchanged
via the off-chip memory using Remote DMA via RoCEv2
(RDMA over Converged Ethernet). This setup serves us as
a test application.

The resource usage of the framework components is
shown in Table 7. Compared to the resource consumption
of the stand-alone encoder/decoder in the previous section,
the encapsulated components require more resources, mainly
due to clock domain crossing (CDC) to the interfaces of the
framework. As illustrated, the framework leaves the majority
of resources free for the accelerators as it uses only 13.2 %
of the ALMs (Adaptive Logic Module), 11.6 % of the M20K
Block RAMs and 0 DSPs. By omitting features such as error-
correcting code (ECC) and RoCEv2 or by using only one net-
work interface, further resources can be saved if necessary.

6 Conclusion and Future Work

In this paper we have described the architecture of a low
complexity H.264/AVC video codec, which has been opti-
mized regarding its usage in technical image processing
applications. We have focused on two major issues arising
from using video compression in these applications, which
are mainly providing low latency and avoiding compres-
sion artifacts. By offering the possibility to preserve par-
ticular image regions to be encoded with higher quality
demands compared to the remaining image, we have found
an interesting way to combine video coding efficiency with
the requirements of sophisticated image processing algo-
rithms such as DCNNs. Besides being a low-complexity
implementation paving the way for using mid-range or even

low-end FPGAs, we were able to fulfill the demanding low
latency requirements while still achieving moderate coding
efficiency and constant bit rate for using rate constrained
wireless links. Combining the IRM with an optimization
of the needed input/output buffers and our rate control
leads to sub frame latencies. Both parts of the video codec,
encoder and decoder, have been verified against the official
ITU [2] reference models and successfully implemented
on FPGAs. They will be used in the described applications
scenario given in Sect. 1. By integrating the video codec
into a hardware framework and its usage as NAA, we have
demonstrated a straightforward way to deploy it in both an
embedded and data center environment.

Our future work will be focused on two main areas. At first
a comprehensive testing of the overall system needs to be con-
ducted, especially incorporating our DCNNs, which will then
have been trained for the recognition of shipwrecked persons.
This has not been done yet, since labeling of the recorded
video data is still taking place. Another broad research topic
is the enhancement of our low-complexity rate control algo-
rithm to enhance the achieved coding efficiency of the codec.
Since we have developed an H.265/HEVC decoder, which has
been described in [35], we will work on the integration of our
concepts into a HEVC low latency video codec architecture
for high coding efficiency as well.

Acknowledgements We thank Prof. Dr. Andreas Zell from the Chair
of Cognitive Systems at the University of Tübingen for providing the
background water image in Fig. 1. This work has been partly devel-
oped in the AVALON project which is funded by the German Federal
Ministry for Economic Affairs and Energy (BMWi) with the reference
number 03SX481E.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Table 7 Network-attached
Accelerator resource utilization
(rounding errors possible).
Percentages refer to the
available resource amount

Bold emphasis represents the sum of the previous lines up to and including the prior bold emphasis

ALM % Memory bits % M20K BRAM % DSP %

UDP Stacks 10270 2.4 240352 0.4 64 2.4 0 0
RoCEv2 Stack 13534 3.2 1192 0.2 58 2.1 0 0
Memory Interconnect 3868 0.9 575280 1.0 60 2.2 0 0
CCI Interconnect 923 0.2 2528 0 6 0.2 0 0
Framework Management 601 0.1 432 0 4 0.1 0 0
Framework 29196 6.8 937872 1.7 192 7.1 0 0
DDR Controller (ECC) 8325 1.9 217472 0.4 42 1.5 0 0
MAC 19044 4.5 1093888 2.0 80 2.9 0 0
Framework+Controller 56565 13.2 2249232 4.0 314 11.6 0 0
Encoder+Wrapper 68792 16.1 1801056 3.2 487 18.0 66 4.3
TS Mux 1003 0.2 434176 0.8 29 1.1 0 0
Decoder+Wrapper 40926 9.6 648176 1.2 151 5.6 20 1.3
TS Demux 206 0 256 0 2 0.1 0 0
Overall 167492 39.2 5132896 9.2 983 36.2 86 5.7

706 Journal of Signal Processing Systems (2022) 94:693–708

1 3

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. AMBA AXI and ACE protocol specification (2014). [Accessed
October 27th, 2020] http:// infoc enter. arm. com/ help/ topic/ com. arm.
doc. ihi00 22d/ index. html

 2. H.264.2: Reference software for ITU-T H.264 advanced video
coding (2017). [Accessed October 27th, 2020] https:// www. itu.
int/ rec/T- REC-H. 264.2- 201602- I/ en

 3. Avgousti, S., Panayides, A. S., Jossif, A. P., Christoforou, E. G.,
Vieyres, P., Novales, C., Voskarides, S., & Pattichis, C. S. (2016).
Cardiac ultrasonography over 4g wireless networks using a tele-
operated robot. Healthcare Technology Letters, 3(3), 212–217.
https:// doi. org/ 10. 1049/ htl. 2016. 0043

 4. Belhadj, N., Turki, M., Marrakchi, Z., Ben Ayed, M. A., Masmoudi,
N., & Mehrez, H. (2013). MPSOC architecture for h.264/AVC
intra prediction chain on SOCLIB platform and FPGA technology.
In: 14th International Conference on Sciences and Techniques of
Automatic Control Computer Engineering - STA’2013 (pp. 216–
219). https:// doi. org/ 10. 1109/ STA. 2013. 67831 33

 5. Castro, C. A., Alqassis, A., Smith, S., Ketterl, T., Sun, Y., Ross,
S., Rosemurgy, A., Savage, P. P., & Gitlin, R. D. (2013). A wire-
less robot for networked laparoscopy. IEEE Transactions on Bio-
medical Engineering, 60(4), 930–936. https:// doi. org/ 10. 1109/
TBME. 2012. 22329 26

 6. Chen, J., Chang, H., Wang, J., & Guo, J. (2011). A dynamic qual-
ity-adjustable h.264 intra coder. IEEE Transactions on Consumer
Electronics, 57(3), 1203–1211. https:// doi. org/ 10. 1109/ TCE. 2011.
60188 75

 7. Chen, X., Hwang, J., Lee, K., & de Queiroz, R. L. (2015). Quality-
of-content (GOC)-driven rate allocation for video analysis in mobile
surveillance networks. In: 2015 IEEE 17th International Workshop
on Multimedia Signal Processing (MMSP) (pp. 1–6).

 8. Chen, Y., Chen, T., Tsai, C., Tsai, S., & Chen, L. (2009). Algo-
rithm and architecture design of power-oriented h.264/avc base-
line profile encoder for portable devices. IEEE Transactions
on Circuits and Systems for Video Technology, 19(8), 1118–
1128. https:// doi. org/ 10. 1109/ TCSVT. 2009. 20203 23

 9. Ding, L., Chen, W., Tsung, P., Chuang, T., Hsiao, P., Chen,
Y., Chiu, H., Chien, S., & Chen, L. (2010). A 212 mpixels/s 4096
x 2160p multiview video encoder chip for 3d/quad full HDTV
applications. IEEE Journal of Solid-State Circuits, 45(1), 46–58.
https:// doi. org/ 10. 1109/ JSSC. 2009. 20317 87

 10. Diniz, C., Zatt, B., Thiele, C., Susin, A., Bampi, S., Sampaio, F.,
Palomino, D., & Agostini, L. (2011). A high throughput h.264/
AVC intra-frame encoding loop architecture for hd1080p. In: 2011
IEEE International Symposium of Circuits and Systems (ISCAS)
(pp. 579–582). https:// doi. org/ 10. 1109/ ISCAS. 2011. 59376 31

 11. Hase, T., Hintermaier, W., Frey, A., Strobel, T., Baumgarten,
U., & Steinbach, E. (2011). Influence of image/video compres-
sion on night vision based pedestrian detection in an automotive

application. In: 2011 IEEE 73rd Vehicular Technology Conference
(VTC Spring) (pp. 1–5).

 12. Hsiang, H., Chen, K., Li, P., & Chen, Y. (2020). Analysis of the
effect of automotive ethernet camera image quality on object
detection models. In: 2020 International Conference on Artifi-
cial Intelligence in Information and Communication (ICAIIC) (pp.
021–026).

 13. Information technology–generic coding of moving pictures and
associated audio information–part 1: Systems. Standard, Interna-
tional Organization for Standardization, Geneva, CH (2019).

 14. Series H: Audiovisual multimedia systems, Infrastructure of
audiovisual services - Coding of moving video, Advanced video
coding for generic audiovisual services. Standard, International
Telecommunication Union, Geneva, CH (2012).

 15. Jung, J. S., Jo, Y. J., & Lee, H. J. (2011). A fast h.264 intra frame
encoder with serialized execution of 4 × 4 and 16 × 16 predic-
tions and early termination. Journal of Signal Processing Sys-
tems, 64(1), 161–175. https:// doi. org/ 10. 1007/ s11265- 010- 0574-6

 16. Kaijin, W., Zhang, S., Jia, H., Xie, D., & Gao, W. (2012). A flex-
ible and high-performance hardware video encoder architecture.
https:// doi. org/ 10. 1109/ PCS. 2012. 62133 68

 17. Keshaveni, N., Ramachandran, S., & Gurumurthy, K. S.
(2009). Design and implementation of integer transform and
quantization processor for h.264 encoder on FPGA. In: 2009
International Conference on Advances in Computing, Control,
and Telecommunication Technologies (pp. 646–649). https:// doi.
org/ 10. 1109/ ACT. 2009. 164

 18. Kthiri, M., Kadionik, P., Lévi, H., Loukil, H., Ben Atitallah, A.,
& Masmoudi, N. (2010). An FPGA implementation of motion
estimation algorithm for h.264/AVC. In: 2010 5th International
Symposium On I/V Communications and Mobile Network (pp.
1–4). https:// doi. org/ 10. 1109/ ISVC. 2010. 56548 26

 19. Kuo, H., Wu, L., Huang, H., Hsu, S., Lin, Y. (2011). A low-power
high-performance h.264/AVC intra-frame encoder for 1080phd
video. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 19(6), 925–938. https:// doi. org/ 10. 1109/ TVLSI. 2010.
20454 02

 20. Lee, Y. G., & Song, B. C. (2009). An intra-frame rate control algo-
rithm for ultralow delay h.264/advanced video coding (AVC). IEEE
Transactions on Circuits and Systems for Video Technology, 19(5),
747–752. https:// doi. org/ 10. 1109/ TCSVT. 2009. 20174 13

 21. Lin, Y., Ku, C., Li, D., & Chang, T. (2009). A 140-mhz 94 k
gates hd1080p 30-frames/s intra-only profile h.264 encoder. IEEE
Transactions on Circuits and Systems for Video Technology, 19(3),
432–436. https:// doi. org/ 10. 1109/ TCSVT. 2009. 20135 11

 22. Lin, Y., Li, D., Lin, C., Kuo, T., Wu, S., Tai, W., Chang, W., &
Chang, T. (2008). A 242mw 10mm2 1080p h.264/AVC high-profile
encoder chip. In: 2008 IEEE International Solid-State Circuits Con-
ference - Digest of Technical Papers (pp. 314–615). https:// doi. org/
10. 1109/ ISSCC. 2008. 45231 83

 23. Lin, Y-L. S., Kao, C-Y., Kuo, H-C., Chen, & J-W. (2010). VLSI
Design for Video Coding: H.264/AVC Encoding from Standard
Specification to Chip. Springer US. https:// doi. org/ 10. 1007/
978-1- 4419- 0959-6

 24. Liu, Z., Song, Y., Shao, M., Li, S., Li, L., Ishiwata, S., Nakagawa,
M., Goto, S., & Ikenaga, T. (2009). HDTV1080p h.264/AVC
encoder chip design and performance analysis. IEEE Journal of
Solid-State Circuits 44(2), 594–608. https:// doi. org/ 10. 1109/ JSSC.
2008. 20107 97

 25. Matsui, H., Ogawa, T., Mochizuki, A., Nakayama, H., Kodama, S.,
Moriya, A., Koto, S., & Ishiwata, S. (2011). An h.264 full HD 60i
double speed encoder IP supporting both MBAFF and field-pic
structure. In: Proceedings of 2011 International Symposium on
VLSI Design, Automation and Test (pp. 1–4). https:// doi. org/ 10.
1109/ VDAT. 2011. 57836 32

707Journal of Signal Processing Systems (2022) 94:693–708

http://creativecommons.org/licenses/by/4.0/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022d/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022d/index.html
https://www.itu.int/rec/T-REC-H.264.2-201602-I/en
https://www.itu.int/rec/T-REC-H.264.2-201602-I/en
https://doi.org/10.1049/htl.2016.0043
https://doi.org/10.1109/STA.2013.6783133
https://doi.org/10.1109/TBME.2012.2232926
https://doi.org/10.1109/TBME.2012.2232926
https://doi.org/10.1109/TCE.2011.6018875
https://doi.org/10.1109/TCE.2011.6018875
https://doi.org/10.1109/TCSVT.2009.2020323
https://doi.org/10.1109/JSSC.2009.2031787
https://doi.org/10.1109/ISCAS.2011.5937631
https://doi.org/10.1007/s11265-010-0574-6
https://doi.org/10.1109/PCS.2012.6213368
https://doi.org/10.1109/ACT.2009.164
https://doi.org/10.1109/ACT.2009.164
https://doi.org/10.1109/ISVC.2010.5654826
https://doi.org/10.1109/TVLSI.2010.2045402
https://doi.org/10.1109/TVLSI.2010.2045402
https://doi.org/10.1109/TCSVT.2009.2017413
https://doi.org/10.1109/TCSVT.2009.2013511
https://doi.org/10.1109/ISSCC.2008.4523183
https://doi.org/10.1109/ISSCC.2008.4523183
https://doi.org/10.1007/978-1-4419-0959-6
https://doi.org/10.1007/978-1-4419-0959-6
https://doi.org/10.1109/JSSC.2008.2010797
https://doi.org/10.1109/JSSC.2008.2010797
https://doi.org/10.1109/VDAT.2011.5783632
https://doi.org/10.1109/VDAT.2011.5783632

1 3

 26. Mukherjee, R., Chakrabarti, I., & Sengupta, S. (2012). FPGA
based architectural implementation of context-based adaptive
variable length coding (CALVC) for h.264/AVC. In: IET Inter-
national Conference on Information Science and Control Engi-
neering 2012 (ICISCE 2012) (pp. 1–4). https:// doi. org/ 10. 1049/
cp. 2012. 2417

 27. Mukherjee, R., Keyur, S., Sandeep, E., Chakrabarti, I., & Sengupta,
S. (2013). FPGA based implementation of quantization and its
inverse for h.264 codec. In: 2013 IEEE Conference on Informa-
tion Communication Technologies (pp. 986–989). https:// doi. org/
10. 1109/ CICT. 2013. 65582 40

 28. Pastuszak, G. (2014). FPGA architectures of the quantization and
the dequantization for video encoders. In: 17th International Sym-
posium on Design and Diagnostics of Electronic Circuits Systems
(pp. 290–293). https:// doi. org/ 10. 1109/ DDECS. 2014. 68688 12

 29. Pastuszak, G. (2015). Architecture design of the h.264/AVC
encoder based on rate-distortion optimization. IEEE Transac-
tions on Circuits and Systems for Video Technology, 25(11),
1844–1856. https:// doi. org/ 10. 1109/ TCSVT. 2015. 24029 11

 30. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You
only look once: Unified, real-time object detection. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 779–788). https:// doi. org/ 10. 1109/ CVPR. 2016. 91

 31. Reeba, K., & Perinbam, J. (2008). FPGA implementation of inte-
ger transform and quantizer for h.264 encoder. Signal Processing
Systems, 53, 261–269. https:// doi. org/ 10. 1007/ s11265- 008- 0163-0

 32. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., & Chen,
L. (2018). Inverted residuals and linear bottlenecks: Mobile
networks for classification, detection and segmentation. CoRR
abs/1801.04381. http:// arxiv. org/ abs/ 1801. 04381

 33. Siblini, A., Baaklini, E., Sbeity, H., Fadlallah, A., & Niar, S.
(2013). Efficient FPGA implementation of h.264 CACLV entropy
decoder. In: 2013 8th IEEE Design and Test Symposium (pp.
1–3). https:// doi. org/ 10. 1109/ IDT. 2013. 67271 16

 34. Song, B. C., Yi, Y., Lee, Y. G., Kim, N. H., Ko, J. H., Kim, T.
H., Lim, D. K., Ju, W. H., Moon, J. P., & Cho, K. (2012). 1080p
60 hz intra-frame video codec chip design and its implementation.
Journal of Signal Processing Systems, 67(3), 291–303. https:// doi.
org/ 10. 1007/ s11265- 010- 0564-8

 35. Stabernack, B., Möller, J., Hahlbeck, J., & Brandenburg, J. (2015).
Demonstrating an FPGA implementation of a full HD real-time
HEVC decoder with memory optimizations for range extensions
support. In: 2015 Conference on Design and Architectures for
Signal and Image Processing (DASIP) (pp. 1–2). https:// doi. org/
10. 1109/ DASIP. 2015. 73672 47

 36. Stabernack, B., & Steinert, F. (2021). Architecture of a low
latency h.264/AVC video codec for robust ml based image clas-
sification. In: Workshop on Design and Architectures for Signal
and Image Processing, DASIP ’21 (14th ed., pp. 1–9). Association
for Computing Machinery, New York, NY, USA. https:// doi. org/
10. 1145/ 34411 10. 34411 49

 37. Steinert, F., Schelten, N., Schulte, A., & Stabernack, B.
(2020) Hardware and software components towards the integra-
tion of network-attached accelerators into data centers. In: 2020
23rd Euromicro Conference on Digital System Design (DSD) (pp.
149–153). https:// doi. org/ 10. 1109/ DSD51 259. 2020. 00033

 38. Chen, T-C., Chien, S-Y., Huang, Y-W., Tsai, C-H., Chen, C-Y.,
Chen, T-W., & Chen, L-G. (2006). Analysis and architecture
design of an HDTV720p 30 frames/s h.264/AVC encoder. IEEE
Transactions on Circuits and Systems for Video Technology, 16(6),
673–688. https:// doi. org/ 10. 1109/ TCSVT. 2006. 873163

 39. Wei, L., Ding, D.d., Du, J., Yu, B. B., & Yu, L. (2011). An effi-
cient hardware design for HDTV h.264/AVC encoder. Journal of
Zhejiang University Science C, 12(6), 499–506. https:// doi. org/
10. 1631/ jzus. C1000 201

 40. Wu, J., Yuen, C., Cheung, N., Chen, J., & Chen, C. W. (2015).
Enabling adaptive high-frame-rate video streaming in mobile
cloud gaming applications. IEEE Transactions on Circuits and
Systems for Video Technology, 25(12), 1988–2001. https:// doi.
org/ 10. 1109/ TCSVT. 2015. 24414 12

 41. Zheng, J., Xu, C., & Guo, J. (2012). An effective approach for
hardware design of intra prediction in h.264/AVC. In: Anti-coun-
terfeiting, Security, and Identification (pp. 1–4). https:// doi. org/
10. 1109/ ICASID. 2012. 63253 13

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Fritjof Steinert received the Bach-
elor of Engineering in Electronics
and Communication Systems in
2010 and the Master of Engineer-
ing in Communication and Infor-
mation Technology in 2011 from
the University of Applied Sci-
ences Beuth-Hochschule für
Technik Berlin, Germany. In
2012, he joined the Fraunhofer
Institute for Telecommunica-
tions–Heinrich Hertz Institute in
Berlin as research associate, cur-
rently in the Embedded Systems
group in the Video Communica-

tions and Applications department. Since 2021 he is a PhD student at
the chair Embedded Systems Architectures for Signal Processing at the
University of Potsdam. His current research interests include the use
of hardware accelerator technologies mainly based on network tech-
nologies in data centers or embedded environments and their design,
especially for image processing.

Benno Stabernack received the
Diploma and Dr.-Ing. degrees in
electrical engineering from the
Technical University of Berlin,
Germany in 1996 and 2004,
respectively. In 1996 he joined
the Fraunhofer Institute for Tele-
communications–Heinrich Hertz
Institute (HHI), Berlin, Germany,
where as the head of the Embed-
ded Systems Group of the Video
Communication and Applications
department, he is currently
responsible for research projects
focused on hardware and software
architectures for image and video

processing algorithms. Since summer 2005 he is giving a lectures on
the design of application specific processors at the Technical University
of Berlin. Since October 2016 he holds the chair of “Embedded Sys-
tems Architectures for Signal Processing” at the University of Potsdam
as a joint appointment with the Fraunhofer Institute for Telecommuni-
cations–Heinrich-Hertz-Institute (HHI), Berlin, Germany. His current
research interests include VLSI architectures for video signal process-
ing, machine learning, application specific processor architectures for
embedded media signal processing and System-on-Chip (SOC) design.
He has been engaged in several national, international and European
research projects as well in the standardization process of ITU H.266
video coding standard.

708 Journal of Signal Processing Systems (2022) 94:693–708

https://doi.org/10.1049/cp.2012.2417
https://doi.org/10.1049/cp.2012.2417
https://doi.org/10.1109/CICT.2013.6558240
https://doi.org/10.1109/CICT.2013.6558240
https://doi.org/10.1109/DDECS.2014.6868812
https://doi.org/10.1109/TCSVT.2015.2402911
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/s11265-008-0163-0
http://arxiv.org/abs/1801.04381
https://doi.org/10.1109/IDT.2013.6727116
https://doi.org/10.1007/s11265-010-0564-8
https://doi.org/10.1007/s11265-010-0564-8
https://doi.org/10.1109/DASIP.2015.7367247
https://doi.org/10.1109/DASIP.2015.7367247
https://doi.org/10.1145/3441110.3441149
https://doi.org/10.1145/3441110.3441149
https://doi.org/10.1109/DSD51259.2020.00033
https://doi.org/10.1109/TCSVT.2006.873163
https://doi.org/10.1631/jzus.C1000201
https://doi.org/10.1631/jzus.C1000201
https://doi.org/10.1109/TCSVT.2015.2441412
https://doi.org/10.1109/TCSVT.2015.2441412
https://doi.org/10.1109/ICASID.2012.6325313
https://doi.org/10.1109/ICASID.2012.6325313

	Architecture of a Low Latency H.264AVC Video Codec for Robust ML based Image Classification
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Influence of Video Coding Quality on Image Processing Algorithms
	2.2 Video Coding Latency
	2.3 Hardware Architectures for Video Coding

	3 Low Latency Video Codec
	3.1 Encoder
	3.1.1 Rate Control
	3.1.2 Region of Interest
	3.1.3 External Memory Requirements

	3.2 Decoder
	3.3 Codec Latency

	4 Results
	5 System Integration
	6 Conclusion and Future Work
	Acknowledgements
	References

