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Abstract
The use of neural networks is considered as the state of the art in the field of image classification. A large number of different 
networks are available for this purpose, which, appropriately trained, permit a high level of classification accuracy.Typically, these 
networks are applied to uncompressed image data, since a corresponding training was also carried out using image data of similar 
high quality. However, if image data contains image errors, the classification accuracy deteriorates drastically. This applies in par-
ticular to coding artifacts which occur due to image and video compression. Typical application scenarios for video compression 
are narrowband transmission channels for which video coding is required but a subsequent classification is to be carried out on 
the receiver side. In this paper we present a special H.264/Advanced Video Codec (AVC) based video codec that allows certain 
regions of a picture to be coded with near constant picture quality in order to allow a reliable classification using neural networks, 
whereas the remaining image will be coded using constant bit rate. We have combined this feature with the ability to run with low-
est latency properties, which is usually also required in remote control applications scenarios. The codec has been implemented 
as a fully hardwired High Definition video capable hardware architecture which is suitable for Field Programmable Gate Arrays.

Keywords H.264 · Advanced Video Codec (AVC) · Low Latency · Region of Interest · Machine Learning · Inference · 
FPGA · Hardware accelerator

1 Introduction

Our application scenario is focused on the detection of per-
sons floating in water (shipwrecked) as a first step in a suc-
cessful sea rescue operation. The system is shown in Fig. 1. 
For this purpose an unmanned aerial vehicle (UAV) with a 
full HD (High Definition) camera pointing downwards is 
used to record the water surface. The intended UAV has a 
long flight duration and can fly up to 100 km away from the 
ground station. The video data is transmitted to the ground 
station via a radio link with a very limited bandwidth, 

especially with increasing distance to the station. Due to 
the limited bandwidth a video codec must be used. At the 
ground station, an operator searches the video image for 
persons in the water and other objects. For this, the operator 
is assisted by complex machine learning (ML) methods for 
the recognition of persons.

The proposed processing pipeline consists of: 

1. An HD camera which captures the scene.
2. A Region of Interest (ROI) generation based on the cap-

tured scene e.g. using simple ML methods.
3. Encoding the video with the recognized ROIs.
4. Transmission of the bitstream over a limited wireless air 

link to the ground station.
5. Decoding the video at the ground station.
6. Classification of objects in ROIs using more complex 

ML algorithms. Additional object detection over the 
entire image to possibly identify objects not detected in 
the UAV.
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7. Display of the recognized object classes as a label for 
visual support of the operator.

Due to the limited computing power in the UAV, only simple 
ML methods can be used to detect the ROIs. A more detailed 
analysis with complex ML algorithms is performed in the 
ground station. Several requirements for the video codec are 
derived from this scenario: 

R1: Real-time processing is necessary because the camera 
continuously streams video data.
R2: Since control data of the UAV is also transmitted via 
the radio link, rate control must be applied to ensure that 
the encoded video data does not exceed a defined band-
width. At the same time, the available bandwidth should 
be used in the best possible way for a good video quality.
R3: Since ML requires a high image quality with few 
coding artifacts for a reliable detection rate, potentially 
interesting regions should be detected in the UAV and 
encoded with a better quality.
R4: The encoding has to be done with low latency so that 
ROIs set manually by the operator cause a timely change 
of the encoded video.
R5: The codec should also run on low-end FPGAs (Field 
Programmable Gate Array) and therefore be implemented 
with low complexity.
R6:In order to be able to manually detect shipwrecked 
persons not detected in the UAV due to the simple ML 
algorithm, the entire image and not only the ROIs should 
be transmitted.

Other technical applications of video coding in the auto-
motive, railroad or marine sector have similar require-
ments. For example, in autonomous driving applications, 

ultra-low latency combined with high image quality in the 
regions of interest and constant data rate is relevant for 
ML based object recognition, e.g., of cyclists. At the same 
time, a large number of camera streams are to be trans-
mitted via a single network for cost reasons, so that the 
available bandwidth is limited and encoding is mandatory.

In this paper, which is based on our publication [36], we 
present the hardware architecture of a low-complexity, low-
latency video codec based on H.264/Advanced Video Coding 
(AVC). The codec can be implemented on low-cost FPGAs, 
yet still providing sufficient coding efficiency for the given 
application scenario and satisfying the stated requirements. 
We also show its integration into a distributed image process-
ing system. Compared to our conference paper, we extended 
the explanation of the process pipeline as well as related 
work and included the external memory requirements for 
encoder and decoder. To the results we added a more exten-
sive resource review, a comparison with related work, and 
analysis of power consumption. In addition, we presented the 
system integration of the codec into a hardware framework.

The structure of the paper is as follows: In Sect. 2 we 
present the influence of video coding quality on image 
processing algorithms. We also discuss the contributions 
of individual components of a signal processing pipeline 
to video coding delay and the importance of low latency. 
Section 3 describes the architecture of the low-latency, 
low-complexity video codec for FPGAs, separately for 
encoder and decoder. Section 4 provides our results and 
the related discussion of the FPGA implementation in 
terms of resource utilization, clock frequency and the 
influence of ROIs on image quality. In Sect. 5 we cover 
the integration of our codec into a distributed system via 
network interfaces. The remaining part of the paper is 
dedicated to a conclusion and our future work.
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Figure 1  Sea rescue application scenario.
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2  Background and Related Work

2.1  Influence of Video Coding Quality on Image 
Processing Algorithms

A fundamental problem with video coding is the fact that 
the drastic reduction in the data rate is based on lossy coding 
methods, i.e. as the compression rate increases, the image 
quality deteriorates and leads to visible coding artifacts. Due 
to the applied coding methods this means, that achieving 
a constant bit rate (CBR) results in varying video quality 
and when aiming for a constant video quality the resulting 
bit rate cannot be held constant (variable bit rate, VBR). 
Typically, CBR is preferred for transmission channels with 
a specific channel capacity, while VBR is often used in cases 
where consistent video quality is required, e.g. Blu-ray or 
other storage media. Using video coding in classical appli-
cations scenarios like video streaming, the coding quality 
will be judged by the viewer who is in most cases willing to 
accept artifacts in favor of using low bit rate transmission 
channels. In contrast to these scenarios technical applica-
tions typically apply image processing algorithms on the 
decoded video streams. In this case the resulting video 
quality must be held constant to achieve the best results. 
An often used measure to indicate the quality of video cod-
ing is PSNR (peak signal to noise ratio), where a higher 
value means better video quality. With the advent of the 
broad usage of DCNN (deep convolutional neural network) 
as image processing algorithms for various applications, 
our following simple experiment shows that the higher the 
PSNR, the higher is the resulting confidence of the classifi-
cation, which obviously deteriorates when using error-prone 
low bit rate channels.

Figure 2 shows three images that have been coded using 
H.264/AVC Baseline Profile with three different target 
PSNR values. In Table 1 the inference results of an ima-
genet-trained MobileNetV2 DCNN [32] using the three 
images depicted in Fig. 2 are given as global confidence for 
the predicted class. The example given in Table 1 is not suf-
ficient to make a general statement on the influence of video 
coding artifacts, but it is evident that a drastic degradation 
of the confidence is occurring. It is in that sense obvious 
that by using high-quality images for the training of neural 
network parameters, video coding artifacts typically are not 
taken into account. A number of papers have been published 
in which the problem has been analyzed in depth.

The authors in [12] examine the relationship between 
the recognition accuracy of different neural networks and 
the image quality delivered by a corresponding camera. An 

Figure 2  Example images from top to bottom with 33 dB PSNR Y, 
26 dB PSNR Y and 22 dB PSNR Y.

▸
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Ethernet-based camera is used, which also applies H.264/
AVC as the coding method. The application scenario in 
this case is the detection of vehicles in an automotive 
environment. An analysis of the recognition accuracy is 
carried out on the basis of different bit rates and differ-
ent image sizes. Here too, the authors report that the rec-
ognition accuracy depends on the data rates. In this use 
case very high data rates were used, at which the coding 
artifacts are relatively moderate. Since the camera pro-
vides a constant bit rate a high probability exists in this 
scenario, that the image quality can be greatly reduced in 
certain cases, which means a non-deterministic behavior 
of the following object detection algorithms. Since the 
paper focuses foremost on the analysis, no solution to the 
problem is given. The authors in [7] discuss the problem 
related to applying a people detection DCNN to decoded 
video data. In this scenario the authors take multiple cam-
eras with multiple streams into account, where the band-
width needs to be shared between the different cameras. 
Based on object detection in one particular video stream 
the quantization parameter QP of the corresponding video 
encoder will be changed by a central server that is aware 
of the overall bandwidth, which means in turn that the 
data rate will be adapted to the needed image quality. The 
overall system has been simulated and shows good results 
regarding the object recognition. One drawback is the 
backchannel needed to adjust the rate control of the dif-
ferent video encoders accordingly. In [11] the authors dis-
cuss the influence of video compression artifacts on a FIR 
(far infrared) video stream for the purpose of pedestrian 
detection based on night vision technology. The authors 
analyzed MJPEG (Motion-JPEG) and H.264/AVC. AVC 
shows better performance at the same bit rates, which is 
not surprising since the standard provides a much higher 
coding efficiency compared to MJPEG by using more cod-
ing tools and temporal prediction methods. Here no solu-
tion is given besides the fact, that the authors vote for a 
certain data rate limit used by the video encoder as well.

The presented H.264 codec features ROIs to provide 
improved image quality in interesting image areas. At the 
same time, maximum bandwidth is guaranteed.

2.2  Video Coding Latency

Besides video coding quality in terms of PSNR, the most 
interesting non-functional video coding parameter for tech-
nical applications is the achieved overall coding latency, 
which describes the time needed to process a video signal 
from the input of the encoder to the corresponding video 
signal at the output of the video decoder, often referred to as 
the so-called glass-to-glass delay. This parameter is mostly 
important for applications where an interaction between the 
receiver and the transmitter side takes place. In these appli-
cations latencies much lower than one frame period (e.g. 
for 25Hz frame rate the time period for one frame is 40ms) 
are required, which could be in the range of only several 
milliseconds. In the past, this problem has been typically 
solved by the transmission of uncompressed digital video 
signals such as LVDS (Low Voltage Differential Signaling) 
which provides the lowest latency possible. The drawback 
of this approach is the lack of a seamless integration into 
existing digital network infrastructures such as Ethernet due 
to the much higher bandwidth demanded or the requirement 
for a wireless link, which is typically not capable of high 
data rates in the Gbps range. E.g. in the automotive domain 
there is a strong need to reduce cost and weight by reducing 
the number of copper wires in future cars to optimize fuel 
economy or battery life and overall costs. Service integra-
tion like Advanced Driver Assistance Systems (ADAS) [11] 
leads to the demand of transmitting video signals digitally 
over the same in-car bus system typically dedicated to con-
trol information. Due to high data rates of uncompressed 
video and the limited bandwidth of the bus systems used 
e.g. optical Ethernet, compression of the video signal is 
mandatory while still providing the same latency as the 
equivalent uncompressed or analog video links/systems. 
Other examples for applications with similar requirements 
are telemedicine [3], endoscopic medical imaging [5], online 
video gaming [40] or real-time steering of robotic equip-
ment using wireless links for video transmission. The major 
burden when replacing digital uncompressed video links by 
video compression schemes is the desired low latency on 
one side and the video compression inherent accumulated 

Table 1  MobileNetV2 inference results

Original 33 dB PSNR Y 26 dB PSNR Y 22 dB PSNR Y

# confidence prediction confid. prediction confid. prediction confid. prediction

1 0.998468 104 (wallaby, brush kan-
garoo)

0.602415 104 0.078762 268 (Mexican hairless) 0.160643 847 (tank, ...)

2 0.000088 273 (dingo, ...) 0.034602 341 (hog, ...) 0.037112 341 0.064593 895 (warplane, ...)
3 0.000083 383 (Madagascar cat, ...) 0.027936 286 (cougar, ...) 0.030874 346 (water buffalo, ...) 0.033603 438 (beaker)
4 0.000082 373 (macaque) 0.023066 394 (sturgeon) 0.028397 150 (sea lion) 0.028306 403 (aircraft carrier, ...)
5 0.000063 105 (koala, ...) 0.016754 227 (kelpie) 0.026863 148 (killer whale, ...) 0.023474 660 (mobile home, ...)
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coding delay caused by the different involved buffers on the 
other hand. As depicted in Fig. 3 these incorporated sources 
for delay are:

where:

– Δtall is the overall delay / latency.
– ΔtVideoInput time to read in the video signal.
– ΔtEncode time to encode the captured video signal.
– ΔtOutputBuf  time the corresponding compressed data 

resides in the output buffer of the encoder.
– ΔtNetwork time needed to transmit compressed data ele-

ment over the network.
– ΔtInputBuf  time the corresponding compressed data resides 

in the input buffer of the decoder.
– ΔtDecode time to decode the received compressed data ele-

ment.
– ΔtVideoOutput time to send decompressed video signal to 

output device.

It is obvious, that besides the network latency, the major 
delay results from the codec and its corresponding buffers. 
Whereas the buffer size is mostly dependent on the mode 
(CBR or VBR) and the compression method used e.g. tem-
poral predictive or intra predictive coding, the delay result-
ing from the codec is defined by its architecture. Typically a 
hardware architecture relies on a MB-based processing pipe-
line where the resulting latency can be significantly lower 
compared to the delay introduced from the accompanied bit-
stream buffers. The size of the bitstream buffer results from 
the requirements regarding the generation of a constant data 
rate at the output of the video encoder. Compression meth-
ods based on temporal predictive methods typically show 
a significant variation in the output data rate whereas intra 
predictive coding methods provide a more constant bit rate 
at the price of a overall higher data rate and lower coding 
efficiency. Regarding the encoding delay both methods intra 
and motion compensated temporal predictive modes can 
achieve the same coding delay, by carefully controlling the 

(1)

Δtall = ΔtVideoInput + ΔtEncode + ΔtOutputBuf

+ ΔtNetwork + ΔtInputBuf + ΔtDecode

+ ΔtVideoOutput

bitstream buffers. In [20] the authors describe a rate control 
scheme, which has been applied to an H.264/AVC intra only 
encoder, which provides very low latency by controlling the 
output buffer on macroblock (MB) level.

In our proposed codec architecture, a very low latency 
of less than 2 ms is achieved for encoder, decoder and the 
minimum required buffer sizes combined.

2.3  Hardware Architectures for Video Coding

One possible solution to provide the lowest achievable cod-
ing latency is to avoid compression methods relying on 
temporal prediction. In this case only intra frame predictive 
methods will be used by the encoder leading to high data 
rates and latencies which can be below one frame period. 
Besides compression standards that only provide intra type 
coding methods as JPEG-2000 or M-JPEG, most video cod-
ing standards can be used by applying only intra modes. 
Based on the results presented in previous sections, we 
decided to develop an H.264 codec that on the one hand 
provides good video quality and on the other hand meets 
the strict latency requirements. As mentioned above, the 
lowest possible latency will be achieved using intra-only 
codec approaches. In [6] an architecture is presented by the 
authors based on a quality scalable architecture featuring 
the possibility to adapt the video coding performance to 
the clock requirements of the underlying system. As a chip 
implementation (90 nm process) it can by used to encode 
D1, HD720 and HD1080 video sequences with 30 fps at 
clock frequencies of 23 MHz to 43 MHz, 71 MHz to 116 
MHz and 152 MHz. Besides the high bandwidth inherent 
to intra-only codecs, it is characterized by the low latency 
required. The authors in [21] describe their architecture, 
which performs nearly with the same throughput numbers 
as our FPGA implementation. They accomplish 560 clock 
cycles/MB at a clock frequency of about 140 MHz to process 
1080p in real time. The implementation uses a quite old 
technology (130 nm). In [10] a codec architecture is given, 
which performs about the same, but in contrast to the previ-
ous mentioned implementations besides the ASIC design an 
FPGA implementation is described. Authors in [15, 19, 34] 
introduce very similar architectures, all having in common 
that they are based on a MB processing pipeline. There are 

Figure 3  Causes of video cod-
ing latency.
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two main advantages of this approach. First, this processing 
scheme keeps the amount of buffer memory needed small, 
which is very important for hardware implementations in 
general. Second, MB-based processing guarantees determin-
istic throughput numbers, something we strive for, especially 
in terms of low-latency processing. The problem with these 
approaches is, that the obtained data rates are quite high, 
which prevents us from using bandwidth limited wireless 
communications channels. To attain a better efficiency it is 
strongly desired to use all other available coding tools pro-
vided by the H.264 video coding standard. In particular, the 
use of inter predictive coding modes raises the coding effi-
ciency significantly, but as described in [38] it considerably 
increases the complexity. In [8, 9, 16, 22–25, 29, 39] a cou-
ple of dedicated hardware implementations for H.264 codecs 
supporting at least P- and in most cases also B-predictive 
coding modes are described. Another common feature of all 
these implementations is that they are not optimized towards 
low-latency processing, since the rate control algorithms in 
the codecs rely on huge buffer sizes in order to relax mode 
decisions. Common for all of the refereed implementations 
is the fact, that they have been implemented as dedicated 
hardware blocks for a given semiconductor technology. 
Fabricating a dedicated chip for the described application 
field was not possible due to limited amount of funding 
and project duration. We have designed our codec for an 
FPGA target platform instead. This solution can hardly be 
compared to dedicated chip design. Various FPGA related 
building blocks for H.264 video encoders can be found in 
the literature. In [27, 28, 31] the design space for H.264 

quantizers/dequantizers for FPGAs are discussed, which is 
also suitable for H.264 video decoders. An architecture for 
intra predictions is discussed in [41]. Other building blocks 
such as transform, entropy encoders or decoders and motion 
estimation can be found in [17, 18, 26, 33]. In [4] a codec 
architecture based on processor cores implemented on an 
FPGA is given. It results in similar performance points as 
processor based software implementations. In [29] results 
for a complete H.264 encoder is given, which has been 
developed as a dedicated hardware IP, but mapped to an 
FPGA for hardware verification purposes.

To the best of our knowledge, the presented codec archi-
tecture (encoder and decoder) is the only complete non-
commercial H.264 implementation that provides all fea-
tures for technical encoding applications with intra and inter 
encoding, very low latency even in inter mode, guaranteed 
rate control and ROIs.

3  Low Latency Video Codec

3.1  Encoder

The H.264/AVC baseline profile compliant video 
encoder  [14] is designed around a 5-stage MB pipeline 
as shown in Fig. 4 to encode incoming video data with a 
near constant bit rate in real-time for formats up to level 4.1 
(e.g. 1920x1080p30). The encoder is entirely implemented 
in hardware with vendor-independent VHDL (Very High 
Speed Integrated Circuit Hardware Description Language). 

Figure 4  Encoder 5 stage pipeline block diagram.

698 Journal of Signal Processing Systems (2022) 94:693–708



1 3

No processor is used. Each MB is processed within a stage 
with a constant delay of 613 clock cycles, which is a direct 
result of the maximum number of cycles specified by hard-
ware description to calculate one MB. Therefore the mini-
mum needed clock frequency for real-time encoding is cal-
culated as follows:

If the system clock frequency is reached, then real-time pro-
cessing is ensured and the requirement R1 is fulfilled. An 
HD video can thus be processed in real-time at a system 
clock of 150.1 MHz or higher.

In stage 1 the Video Input Interface converts the incom-
ing 4:2:0 YCbCr 8 bit video stream into a MB format. This 
way, a sub-marcoblock (SMB) can always be processed in 
only one external memory burst and the bandwidth can be 
used efficiently. After image data and quantization param-
eter (QP) have been adjusted according to the set ROIs 
(details in Sect. 3.1.2), the MBs are distributed to both the 
intra- and the inter-pipeline. In the inter-pipeline, motion 
estimation is first performed with pixel accuracy at stage 2 
(Integer Motion Estimation, IME), then with sub-pixel accu-
racy at stage 3 (Fractional Motion Estimation, FME) with 
a search window of ± 13 pixels. Within the search window 
the motion vectors are unrestricted. Finally, in stage 4 the 
Chroma Motion Estimation together with the Mode Decision 
and the Motion Vector Prediction is performed. In contrast, 
in the parallel intra-pipeline the stages 2 and 3 are only used 
for delay. The Intra Encoder in stage 4 accomplishes the 
intra prediction and transformation of the video MB by MB. 
It supports all 4x4 intra modes as well as 16x16 vertical, 
horizontal and DC modes. Plane Prediction is not supported, 
as it provides only 1% coding efficiency while almost dou-
bling the resources required for intra-coding. On MB basis, 
either the residual data of the intra (I) or inter (P) pipeline 
are taken as basis for generating a baseline compliant bit-
stream using a Context Adaptive Variable Length Coding 
(CAVLC) entropy encoder in stage 5. At this point the bit 
rate is very variable. Also in stage 5, the reconstructed MBs 

(2)
System clockEncoder = Width in MBs ⋅ Height in MBs ⋅ 613 ⋅ framerate

are written to external memory as reference frame. Before 
that, the MBs are filtered by an in-loop deblocking filter 
(DBF) to reduce blocking artifacts. After stage 5, the rate 
control block ensures a constant target bit rate. The encoder 
does not support the encoding of B-frames despite possi-
ble higher coding efficiency, since this would increase the 
latency by using succeeding images for prediction. This 
contradicts requirement R4. Furthermore, it would raise the 
complexity of the design which contradicts requirement R5. 
The behavior of the MB pipeline across the stages is shown 
in the Fig. 5.

3.1.1  Rate Control

In order not to exceed a constant target bit rate under all cir-
cumstances and thus meet the requirement R2, we combine 
two different approaches. An encoder without rate control 
generates a variable bit rate with a fixed QP ranging from 
0 to 51, where 51 results in very low image quality but a 
low bit rate. To generate a bitstream with constant data rate 
the fixed QP has to be adjusted on MB-basis. Rate control 
should optimize the QP so that the produced bit rate fits 
the target bit rate as well as possible and on the other hand 
achieves the best picture quality at that bit rate. Since the bit 
rate depends on the image content and can therefore vary 
considerably, a large number of QP changes would be inevi-
table even within a frame. The overall subjective quality 
would suffer from these many QP changes and distortions 
would occur even at higher target bit rates. Hence the strat-
egy for rate control should be:

– Obtain the target bit rate, as precise as possible.
– Choose a QP as low as possible to achieve best quality.
– Try to minimize variations of QP within one frame and 

from frame to frame whenever possible.

To achieve a constant bit rate with this strategy a bitstream 
buffer is required, which is written variably and read out 
constantly with the target bit rate according to the FIFO 
principle to compensate bit rate variations. This buffer 

Figure 5  Encoder MB pipeline 
behavior.
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is depicted in Fig. 6. Depending on the desired size, the 
buffer can be implemented in the internal block RAM or 
in an external memory. If the size of the output buffer is 
rather large, more variations can be equalized within this 
buffer than, when using a small buffer, so rate control can 
allow more variations of the bit rate. The size of this output 
buffer defines the overall end-to-end latency from encoder to 
decoder so that for low-latency applications the buffer size 
is limited. Since the rate control is not in all cases able to 
hit the target bit rate, variations are allowed up to a certain 
overall limit. This means, that we have combined CBR and 
VBR towards a capped VBR rate control strategy. 

Primary task of the rate control is to regulate the QP 
based on the current value of the output buffer fullness so 
that no buffer over- or underflow occurs by always following 
the guidelines below (see Algorithm 1):

– At the start of a new sequence, the initial QP is calculated 
based on the image resolution N and M, the frame rate 

fps and the target bit rate tb, since no information about 
the video footage is available. Because the first frame is 
always intra encoded, the QP must be set high enough 
(e.g. 45 for HD@12MBit) so that the bitstream buffer 
does not overflow. When the target bit rate has a reason-
able value, the start QP decrements very fast and so the 
image quality increases within some few frames.

– At the start of each frame, the calculated QP is modi-
fied according the determined buffer-level bl to ensure 
a proper buffer fullness around 50%. When this level 
reaches a threshold value of 60% or 80%, the QP is incre-
mented by one or two respectively to prevent a buffer 
overflow. If the buffer has a low filling level below 12% 
or 25%, the QP is decremented by two or one respec-
tively. The calculated QP is used for encoding the next 
frame.

– After coding a MB, the buffer level bl is checked. If a 
critical value of 87.5% is reached, the QP used for the 
next MB is increased by one. If the selected buffer size 
is quite small due to a hard requirement for low latency, 
more regulation is needed to ensure an adequate buffer 
level.

– After each frame, the frame bit size is checked and 
adapted. According to the used QP, the size of the coded 
frame cb will differ from the target frame tb size more 
or less. If the difference is within ± 10% the QP is not 
changed, to minimize distortion based on QP changes 
from frame to frame. If the difference is larger, QP for 
the next frame will be adapted based on the difference 
to the target size and also on basis of the QPs of the two 
previous frames QPl1 , QPl2 and their frame sizes fsl1 , fsl2.

Normally, an encoded video consists of a sequence of 
I- and P-frames, where I-frame and especially IDR-frames 
serve as synchronization point for the decoder. Intra frames 
require a higher bit rate than P-frames because no motion 
estimation is used. This leads either to peaks in the required 
bandwidth or to quality degradation for each I-frame. Both 
effects are undesirable. Therefore, apart from the very first 
frame of a stream, we only use P-frames with embedded 
stripes of I-MBs as shown in Fig. 7. The complete intra 
update of the MBs is now done by several successive 
P-frames, in the shown example 6 frames are needed. The 
intra refresh mode (IRM) avoids the problem of large intra 
encoded frames, because the high bit rate required for an 
I-frame is divided among the P-frames. To allow a decoder 
to still detect a synchronization point in the bitstream, we 
use Supplemental Enhancement Information (SEI) message, 
which provides the information how long a refresh cycles 
takes and when to start displaying picture content. Receiv-
ing a recovery point SEI message automatically prevents 
the decoder from waiting for an I/IDR-frame and prompts it 
to immediately start decoding the received P-frames. As a Figure 6  Bitstream output buffer.
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result of the more balanced bit rate in IRM the rate control 
buffer can be smaller and generates less latency, thus fulfill-
ing the requirement R4.

3.1.2  Region of Interest

To ensure that the image quality is sufficiently good for ship-
wreck detection even after coding with limited bandwidth, 
the encoder uses a number of ROI to improve the image 
quality of interesting image areas. Within the ROI the MB 
are encoded with a lower QP. Therefore the image quality is 
higher there. Each ROI is defined as a rectangle over a start 
position in X and Y direction plus the ROI width and height. 
The coordinates must be set from outside the encoder. The 
positioning of the ROI can either be done manually or via a 
simple DCNN for object detection like YOLO [30].

When using ROI, a constant bit rate should still be guar-
anteed (see Sect. 3.1.1). This is necessary for communica-
tion channels of limited bandwidth. To achieve this, we 
define a QP difference, by which the QP outside the ROIs is 
increased, meaning a poorer image quality at a lower total 
bit rate. Due to the lower bit rate the rate control notices 
that the target bit rate is no longer reached. The QP is low-
ered and thus the bit rate in the ROIs is increased. After a 
few frames, the control loop reaches the target bit rate again 
despite the increased QP outside the ROIs. Thus the image 
quality within the ROIs is increased and requirement R3 is 
met. Since not only the ROIs are transferred, the complete 
image is still available in lower quality for manual analysis 
as required in R6. To further reduce the required bit rate, the 
region outside the ROIs can be encoded without the chroma 
channels. The feedback loop then further increases the qual-
ity within the ROIs.

3.1.3  External Memory Requirements

The temporal dependencies of P-frames makes it necessary 
to store whole uncompressed frames in memory so that they 
can be accessed later (i.e. reference frames). Since the size 
of the internal FPGA BRAM (Block RAM) is not sufficient 
for this task, external memory is utilized. In order to reduce 
the number of accesses needed the reference frame is stored 
as SMB with 4x4 pixels in the memory. Figure 4 shows that 
the encoder requires three memory operations:

– read the luma search window (SW) data and read 
the chroma SW data for Motion Compensation (both 
through the IME block)

– read a part (lower SMB) of the adjacent upper MB that 
could not be kept locally for the DBF and write back 
the reconstructed MB.

– write the bitstream to the Rate Control buffer and read 
from it.

These operations require a continuous memory of at least 
128 MB. The memory has to fulfill specific throughput 
requirements in order to successfully store the recon-
structed MB and read the necessary MBs of the active ref-
erence frame for inter prediction. This requirement results 
from the following formula:

where:

– MBs/SW max is a worst case number of MBs that 
needs to be read to refresh the SW, e.g. 6 in the case of 
± 13 pixels search range.

– MBPF is the number of MBs per frame.
– FPS is the frame rate of the processed video.
– Chrfactor = 2 for the chroma channels because the inter-

nal format is 4:4:4 YCbCr.

For an HD image (with 8160 MBs) at 25 fps, the formulas 
result in a required rounded up throughput of:

(3)
TPEncTotal = TPIME + TPMotionCompensation

+ TPWriteDBF + TPReadDBF + TPRateControl

(4)TPIME = 256Byte∕MB ⋅MBs∕SWmax ⋅MBPF ⋅ FPS

(5)

TPMotionCompensation =256Byte∕MB ⋅ Chrfactor ⋅MBs∕SWmax

⋅MBPF ⋅ FPS

(6)
TPWriteDBF =(64Byte∕TopMB + 256Byte∕LeftMB)

⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(7)
TPReadDBF = 64Byte∕MB ⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(8)TPRateControl = 2 ⋅ bitratepersecond

Figure 7  Propagation of the Intra refresh column throughout a video sequence.
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3.2  Decoder

The fully baseline profile compliant H.264/AVC decoder 
includes three MB-based pipeline stages for entropy decod-
ing, coefficient reconstruction and in-loop filtering. The 
decoder is implemented as vendor-independent VHDL 
completely in hardware and without using a processor. 
Each stage is decoupled by a MB double buffer as shown in 
Fig. 8. Each MB is processed in a maximum of 640 clock 
cycles, which again is directly derived from the hardware 
description of the decoder. To ensure real-time processing, 
the minimum required system clock is calculated as follows:

For the HD format with 30 fps this results in a minimum 
clock frequency of 156.7 MHz. Above this frequency 
requirement R1 for the decoder is satisfied.

The bitstream interface is connected to the Variable 
Length Decoder (VLD) component in stage 1, which is 
used for CAVLC entropy decoding. All necessary syntax 
elements for intra and inter reconstruction, e.g. intra predic-
tion modes and inter motion vectors, are stored in a MB dou-
ble buffer, which can be accessed by the subsequent pipeline 
stage. The second pipeline stage (stage 2) contains the Intra 
Prediction (IPR), Inter Motion Compensation (MC) and 
Residual Generation (RES), which form the intra and inter 
reconstruction part of the decoder. Output of this stage is a 
completely reconstructed MB with unfiltered coefficients. 
The third pipeline stage (stage 3) contains an in-loop DBF, 
which is used to improve the visual quality. Picture samples 
are filtered with respect to current and adjacent MB param-
eters and already filtered neighbor samples. The decoded 
video is output as 8 bit 4:2:0 YCbCr. The AXI master com-
ponent (AXI bus protocol [1]) processes all write and read 

(9)
TPEncTotal = 314MBps + 627MBps + 196MBps

+ 40MBps + 20MBps = 1197MBps

(10)
System clockDecoder = Width in MBs ⋅ Height in MBs ⋅ 640 ⋅ framerate

requests of the connected components and drives the AXI 
master interface.

The decoder needs 107 MB to store a maximum of 17 
reference frames. To reduce the number of memory accesses 
required, the reference data is stored in SMBs in the external 
memory, in the same way as in the encoder. Three memory 
operations take advantage of these reference frames:

– read Motion Compensation data. For each vector pro-
cessed it is necessary to read a 9x9 pixel block contain-
ing all pixel needed for interpolation from the memory. 
Therefore 12x12 pixels (3x3 SMBs) will be read for each 
SMB processed.

– read the lower SMB of the adjacent upper MB and write 
back the reconstructed MB (like in the encoder).

– read video output data.

where:

– MBPF is the number of MBs per frame.
– FPS is the frame rate of the processed video.
– Chrfactor = 0.5 for the chroma channels.

For an HD image (with 8160 MBs) at 25 fps, the formulas 
result in the rounded up throughput of:

3.3  Codec Latency

For the calculation of the overall codec latency Δtall accord-
ing to formula 1 for a 1920x1080p25 sequence (with 120 
MB per line) we have to note that ΔtVideoInput and ΔtVideoOutput 
depend on the camera respectively monitor used and their 
connection. The delay of the transmission channel ΔtNetwork 
is also unknown and typically varies significantly. Therefore 

(11)
TPDecTotal =TPMotionCompensation + TPWriteDBF

+ TPReadDBF + TPVideoOutput

(12)
TPMotionCompensation =16Byte∕SMB ⋅ (1 + Chrfactor)

⋅ 9 ⋅MBPF ⋅ 16 ⋅ FPS

(13)
TPWriteDBF =(64Byte∕TopMB + 256Byte∕LeftMB)

⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(14)
TPReadDBF = 64Byte∕MB ⋅ (1 + Chrfactor) ⋅MBPF ⋅ FPS

(15)
TPReadVideoOutput = 256Byte∕MB ⋅ (1 + 0.5) ⋅MBPF ⋅ FPS

(16)
TPDecTotal =705.1MBps + 98MBps + 19.6MBps

+ 78.4MBps = 901.1MBps

Fig. 8  Decoder 3 stage pipeline block diagram
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we do not specify these delays. The remaining latency is 
fixed due to the MB pipeline and does not vary. Using larger 
buffers results in higher latency. The remaining delays can 
be determined as a minimum latency example at a clock rate 
of 160 MHz for both the encoder and the decoder as follows:

• The double buffer at the input stores one MB line and 
therefore adds 120 MB latency. Each of the 5 encoder 
stages of the MB pipeline is adding another MB latency. 
As a result the minimum possible encoder delay is 

• The minimal output buffer size is one MB line. For 25 
fps, this results in a latency of 

• ΔtInputBuf  should be as large as ΔtOutputBuf  so the latency 
is the same.

• The 3 decoder stages means 3 MB delay, so that 

(17)

ΔtEncode =
(120 + 5MB) × 613cycles∕MB

160MHz
= 0.47ms

(18)ΔtOutputBuf =
40ms

8160MB
× 120MB = 0.59ms

(19)ΔtDecode =
(3MB) × 640cycles∕MB

160MHz
= 0.012ms

The total minimum delay is therefore:

4  Results

Tables  2 and  3 show the resource utilization of the 
encoder on two different Intel FPGAs, the low-end FPGA 
10CX220YF780E5G (C10) and the mid-range FPGA 
10AX115N3F40E2SG (A10). Tables 4 and 5 present the 
resources of the decoder for the same FPGAs. We have 
tested the encoders and decoders in hardware on the A10 
FPGA, the numbers for C10 represent pure fitting results. 
We performed the synthesis and place and route process 
using Quartus 19.4. For the encoder we used the balanced 
setting, for the decoder the high performance effort setting 
to achieve better timing. With [20] we have found only one 
comparable AVC encoder with inter prediction implementa-
tion for FPGAs. It targets an older version of our Arria 10 

(20)

Δtall = ΔtVideoInput + 0.47ms + 0.59ms

+ ΔtNetwork + 0.59ms + 0.012ms + ΔtVideoOutput

= 1.662ms + ΔtVideoInput + ΔtNetwork

+ tVideoOutput

Table 2  A10 device family 
encoder resource utilization 
with 160 MHz clock constraint 
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

Video Input 1109 1.8 802816 54.1 58 12.9 0 0
ROI 289 0.5 0 0 0 0 0 0
Intra pipeline 7553 12.4 223104 15.0 119 26.5 33 50.8
Inter pipeline 38180 62.5 310748 21.0 188 41.9 32 49.2
DBF 6022 9.9 51876 3.5 45 10.0 0 0
CAVLC 4687 7.7 13904 0.9 16 3.6 0 0
Rate Control 2048 3.4 13056 0.9 9 2.0 0 0
Control 648 1.1 0 0 0 0 0 0
Memory IF 567 0.9 67312 4.5 14 3.1 0 0
Overall 61104 14.3 1482816 2.7 449 16.5 65 4.3

Table 3  C10 device family 
encoder resource utilization 
with 160 MHz clock constraint 
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

Video Input 1118 1.9 802816 53.8 58 12.2 0 0
ROI 257 0.4 0 0 0 0 0 0
Intra pipeline 7437 12.4 225920 15.1 125 26.2 33 50.8
Inter pipeline 37648 62.5 316388 21.2 207 43.4 32 49.2
DBF 5877 9.8 52260 3.5 48 10.1 0 0
CAVLC 4671 7.8 13904 0.9 16 3.4 0 0
Rate Control 2021 3.4 13056 0.9 9 1.9 0 0
Control 606 1.0 0 0 0 0 0 0
Memory IF 562 0.9 67312 4.5 14 2.9 0 0
Overall 60198 74.9 1491656 12.5 477 81.3 65 33.9
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family (20 nm process) by using the Arria II family (40 nm) 
and achieves a base clock of 100 MHz with 200 MHz in 
some parts. The design requires on average 652 clock cycles 
per MB in the worst case (Inter MB with intra 4x4 predic-
tion), which is slightly more than 613 cycles for our encoder, 
which moreover never exceeds this limit. According to the 
author, a throughput of 1080p30 is achieved. Following for-
mula 2, this requires a minimum clock of 159.6 MHz for the 
MB pipeline, so the pipeline seems to work with 200 MHz. 
With 77k ALUTs (Adaptive Look-Up Tables) this design 
requires less ALUTs than our design with 132k ALUTs. The 
amount BRAM used is with 148.6 kB slightly smaller than 
our implementation for the A10 with 185.4 kB. With 66 
DSPs [20] uses one DSP more than we do. The specified 
power consumption refers to the ASIC (application-specific 
integrated circuit) implementation and is therefore not com-
parable. However, technical parameters such as very low 
latency and a data rate guaranteed under all circumstances as 
well as the possibility of defining ROIs, which the encoder 
in [20] does not offer, are particularly relevant for the pre-
sented application.

The percentage in the row Overall refers to the total 
resources of the FPGA, the other percentages to the share in 
the IP core. In the Tables 2 and 3 it can be seen that a large 
part of the ALMs (Adaptive Logic Module) and the mem-
ory bits are used by the inter pipeline. However, the coding 
gain still justifies the use of P-frames. In contrast, capabili-
ties such as Rate Control and especially ROIs require few 

resources. In addition, it is evident that more internal RAM 
blocks (M20K) are used in percentage terms than memory 
bits. Obviously, the memory sizes used do not map well to 
the 512 x 40 bit block RAM structures of the used FPGAs. 
Since this is the bottleneck of the encoder implementation, 
an optimization of this mapping seems reasonable. In con-
trast, as depicted in the Tables 4 and 5, the ALMs are the 
bottleneck in the decoder. However, the decoder already 
requires significantly fewer resources.

As shown in Table 6, even on a low-end FPGA like the 
C10 it is possible to run either the encoder or the decoder 
with a sufficient clock frequency for processing HD images 
at 30 fps, proving the low complexity (requirement R5). 
Since the resource utilization by other parts like video IO 
or external memory depends on the board, we have not 
specified them in the resource utilization tables. But due to 
the increased resource usage it is possible that a Cyclone 
FPGA is not sufficient anymore. The mid-class FPGAs 
of the Arria family such as 10AX115N3F40E2SG offer 
enough space for the peripherals. With an assumed maxi-
mum utilization of 70%, it is even possible to implement 
4 encoders or 8 decoders together as the numbers in the 
Tables 2 and 4 prove. In Table 6, we also listed the power 
requirements of the IP cores at 160 MHz target clock. The 
calculation was performed with an assumed toggle rate of 
12.5 %. The higher power dissipation of the A10 results 
solely from the higher static power dissipation due to the 
larger FPGA.

Table 4  A10 device family 
decoder resource utilization 
with 160 MHz clock constraint 
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

VLD 12568 38.3 318752 63.0 43 32.8 2 10.5
Video Out 908 2.8 8192 1.6 8 6.1 0 0
IPR 3068 9.3 57344 11.3 11 8.4 1 5.3
RES 2044 6.2 5760 1.1 6 4.6 16 84.2
MES 7416 22.6 29040 5.7 10 7.6 0 0
DBF 3338 10.2 52664 10.4 33 25.2 0 0
Control 2730 8.3 0 0 0 0 0 0
AXI IF 757 2.3 34404 6.8 20 15.3 0 0
Overall 32831 7.7 506156 0.9 131 4.8 19  1.3

Table 5  C10 device family 
decoder resource utilization 
with 160 MHz clock constraint 
(rounding errors possible)

ALM % Memory bits % M20K BRAM % DSP %

VLD 12402 37.9 318752 63.0 43 32.8 2 10.5
Video Out 905 2.8 8192 1.6 8 6.1 0 0
IPR 3073 9.4 57344 11.3 11 8.4 1 5.3
RES 2048 6.3 5760 1.1 6 4.6 16 84.2
MES 7488 22.9 29040 5.7 10 7.6 0 0
DBF 3336 10.2 52664 10.4 33 3.4 0 0
Control 2718 8.3 0 0 0 0 0 0
AXI IF 780 2.4 34404 6.8 20 15.3 0 0
Overall 32749 40.8 506156 4.2 131 22.3 % 19 9.9
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In Fig. 9 is shown how the Y PSNR value for different 
videos sequences (1920x1080@25fps) changes with the 
achieved bit rate for the latency of one frame, which is 
slightly below the constant target bit rate. As the bit rate 
increases, the quality of the encoded video also increases, 
which is expressed by a higher PSNR. With the three dif-
ferent sequences, the different PSNR show the influence of 
the video content on the quality at the same target bit rate. 
A sequence with high motion like Crowdrun achieves a 
significantly lower PSNR at a similar bit rate compared to 
a sequence with little motion like Sunflower. In Fig. 10 we 
look at the influence of ROIs on the image quality of the 
sequence with the lowest quality. The PSNR curve in the 
middle (+) shows a coding without ROIs as reference. The 
influence of four ROIs with 224x224 pixels each (approx. 
10% of the overall HD image region) is shown by the other 
two curves. The upper curve ( ∗ ) shows the PSNR only for 
the ROIs and the lower curve ( × ) for the complete image 
including ROIs. Our mechanism for treating interesting 
areas allows us to achieve a significantly higher quality 
(around 9 dB better) within these areas compared to a 
sequence without ROI. But since the bit rate is constant, 
this is achieved at the expense of the quality of the rest 
of the image. There the PSNR is about 3 dB lower than 
without ROIs.

5  System Integration

In the hardware design, the communication interfaces, 
the internal bus system and the interfaces to the off-chip 
memory must be implemented again for each board. To sim-
plify this process and to use reliable components, hardware 
frameworks are used. We use the framework proposed by 
the authors in [37] to make our H.264/AVC video codec 
easily available over a standardized network interface as 
Network-attached Accelerator (NAA). We configured the 
framework as shown in Fig. 11 with two sockets allow-
ing two independent accelerators, e.g. an encoder and a 
decoder to be operated in parallel. The video data to be 
encoded from the camera (1 in Fig. 1) is streamed over a 
40 Gbps network interface to the encoder. There, the stream 
is encoded, packed into a transport stream (TS) [13] and 
sent to the transmitting unit of the aerial link (3 in Fig. 1). 
On the decoder side, the TS is streamed into the accelera-
tor via the network interface, unpacked from the TS and 
decoded. The decoded video or the ROIs only are sent via 
the network interface to a ML component (6 in Fig. 1). This 
pipeline is well suited for embedded integration due to its 

Table 6  Codec maximum clock and power dissipation (at 160 MHz 
clock)

Device Clock Power

Encoder 10CX220YF780E5G 164.8 MHz 2647.9 mW
10AX115N3F40E2SG 204.4 MHz 3860.3 mW

Decoder 10CX220YF780E5G 180.7 MHz 1415.6 mW
10AX115N3F40E2SG 192.5 MHz 2483.9 mW

Figure 9  Y PSNR for different HD@25fps scenes with IRM.

Figure  10  Y PSNR for Crowdrun (HD@25fps) with IRM and 4 
ROIs.

Figure 11  Network-attached accelerator with two sockets.
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simplicity and clear separation. In addition, the hardware 
framework and the associated software framework can be 
used in the data center environment. The data is exchanged 
via the off-chip memory using Remote DMA via RoCEv2 
(RDMA over Converged Ethernet). This setup serves us as 
a test application.

The resource usage of the framework components is 
shown in Table 7. Compared to the resource consumption 
of the stand-alone encoder/decoder in the previous section, 
the encapsulated components require more resources, mainly 
due to clock domain crossing (CDC) to the interfaces of the 
framework. As illustrated, the framework leaves the majority 
of resources free for the accelerators as it uses only 13.2 % 
of the ALMs (Adaptive Logic Module), 11.6 % of the M20K 
Block RAMs and 0 DSPs. By omitting features such as error-
correcting code (ECC) and RoCEv2 or by using only one net-
work interface, further resources can be saved if necessary.

6  Conclusion and Future Work

In this paper we have described the architecture of a low 
complexity H.264/AVC video codec, which has been opti-
mized regarding its usage in technical image processing 
applications. We have focused on two major issues arising 
from using video compression in these applications, which 
are mainly providing low latency and avoiding compres-
sion artifacts. By offering the possibility to preserve par-
ticular image regions to be encoded with higher quality 
demands compared to the remaining image, we have found 
an interesting way to combine video coding efficiency with 
the requirements of sophisticated image processing algo-
rithms such as DCNNs. Besides being a low-complexity 
implementation paving the way for using mid-range or even 

low-end FPGAs, we were able to fulfill the demanding low 
latency requirements while still achieving moderate coding 
efficiency and constant bit rate for using rate constrained 
wireless links. Combining the IRM with an optimization 
of the needed input/output buffers and our rate control 
leads to sub frame latencies. Both parts of the video codec, 
encoder and decoder, have been verified against the official 
ITU [2] reference models and successfully implemented 
on FPGAs. They will be used in the described applications 
scenario given in Sect. 1. By integrating the video codec 
into a hardware framework and its usage as NAA, we have 
demonstrated a straightforward way to deploy it in both an 
embedded and data center environment.

Our future work will be focused on two main areas. At first 
a comprehensive testing of the overall system needs to be con-
ducted, especially incorporating our DCNNs, which will then 
have been trained for the recognition of shipwrecked persons. 
This has not been done yet, since labeling of the recorded 
video data is still taking place. Another broad research topic 
is the enhancement of our low-complexity rate control algo-
rithm to enhance the achieved coding efficiency of the codec. 
Since we have developed an H.265/HEVC decoder, which has 
been described in [35], we will work on the integration of our 
concepts into a HEVC low latency video codec architecture 
for high coding efficiency as well.
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Table 7  Network-attached 
Accelerator resource utilization 
(rounding errors possible). 
Percentages refer to the 
available resource amount

Bold emphasis represents the sum of the previous lines up to and including the prior bold emphasis

ALM % Memory bits % M20K BRAM % DSP %

UDP Stacks 10270 2.4 240352 0.4 64 2.4 0 0
RoCEv2 Stack 13534 3.2 1192 0.2 58 2.1 0 0
Memory Interconnect 3868 0.9 575280 1.0 60 2.2 0 0
CCI Interconnect 923 0.2 2528 0 6 0.2 0 0
Framework Management 601 0.1 432 0 4 0.1 0 0
Framework 29196 6.8 937872 1.7 192 7.1 0 0
DDR Controller (ECC) 8325 1.9 217472 0.4 42 1.5 0 0
MAC 19044 4.5 1093888 2.0 80 2.9 0 0
Framework+Controller 56565 13.2 2249232 4.0 314 11.6 0 0
Encoder+Wrapper 68792 16.1 1801056 3.2 487 18.0 66 4.3
TS Mux 1003 0.2 434176 0.8 29 1.1 0 0
Decoder+Wrapper 40926 9.6 648176 1.2 151 5.6 20 1.3
TS Demux 206 0 256 0 2 0.1 0 0
Overall 167492 39.2 5132896 9.2 983 36.2 86 5.7
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