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Abstract
The SARS-CoV-2 virus causes a respiratory disease in humans, known as COVID-19. The confirmatory diagnostic of this 
disease occurs through the real-time reverse transcription and polymerase chain reaction test (RT-qPCR). However, the period 
of obtaining the results limits the application of the mass test. Thus, chest X-ray computed tomography (CT) images are 
analyzed to help diagnose the disease. However, during an outbreak of a disease that causes respiratory problems, radiolo-
gists may be overwhelmed with analyzing medical images. In the literature, some studies used feature extraction techniques 
based on CNNs, with classification models to identify COVID-19 and non-COVID-19. This work compare the performance 
of applying pre-trained CNNs in conjunction with classification methods based on machine learning algorithms. The main 
objective is to analyze the impact of the features extracted by CNNs, in the construction of models to classify COVID-19 
and non-COVID-19. A SARS-CoV-2 CT data-set is used in experimental tests. The CNNs implemented are visual geometry 
group (VGG-16 and VGG-19), inception V3 (IV3), and EfficientNet-B0 (EB0). The classification methods were k-nearest 
neighbor (KNN), support vector machine (SVM), and explainable deep neural networks (xDNN). In the experiments, the 
best results were obtained by the EfficientNet model used to extract data and the SVM with an RBF kernel. This approach 
achieved an average performance of 0.9856 in the precision macro, 0.9853 in the sensitivity macro, 0.9853 in the specificity 
macro, and 0.9853 in the F1 score macro.

Keywords COVID-19; non-COVID-19 · Computed tomography images · Transfer learning · Convolutional neural 
networks · Machine learning

1 Introduction

The subtype 2 coronavirus, also known as severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2), belongs to 
a family of viruses that cause respiratory diseases in humans 

[1]. The outbreak of coronavirus disease 2019 (COVID-19) 
caused the collapse of health systems in several countries. 
The infrastructure of public and private health centers did 
not endure the number of patients with severe symptoms of 
COVID-19, which contributed to the increase in the number 
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of victims. Thus, some governments have adopted large-
scale tests to obtain early diagnosis and reduce the effects 
of the disease on health systems.

The reverse transcription polymerase chain reaction test 
(RT-PCR) of the combined oral/nasal swab confirms the 
diagnosis of COVID-19 by detecting the genetic material 
of the virus in respiratory samples [1]. However, there are 
factors that hinder the application of this test, such as the 
genetic material of the virus becomes detectable generally 
in the first four or eight days after the onset of symptoms, 
and undetectable after fourteen days [1]; and due to the high 
complexity of the test, not all centers have suitable infra-
structure and technical expertise to perform [1, 2].

In general, different methods of artificial intelligence have 
successfully been applied in diverse medical research areas 
[3]. Medical images and videos have been adopted as a rel-
evant information source for medical diagnostic purposes, in 
which diverse machine learning algorithms are used to clas-
sify images or detect and describe some regions of interest 
in the analyzed images. Also, different techniques are used 
to improve image quality [4, 5]. In [6], a denoising filter 
is designed, which is based on local statistics to improve 
images quality that is important for providing a proper medi-
cal diagnosis of a disease.

The use of radiological medical images, such as chest radi-
ography (x-ray), chest ultrasound and chest computed tomog-
raphy (CT), has been adopted to assist in the early diagnosis 
of COVID-19 and to rule out the suspicion of diseases [2, 7], 
because, in severe cases of the disease, pneumonia is devel-
oped [8]. According to [9], the experimental results obtained 
using CT images were superior than those obtained using 
x-ray images. In addition, it is important to note that there are 
several chest CT datasets widely used for research purposes, 
recently applied in the diagnosis of COVID-19. Some stud-
ies demonstrated that chest CT images show some evidences 
of the development of COVID-19 in patients, as bilateral 
changes with ground-glass opacity with or without consoli-
dation and interlobular septal thickening [10]. The diagnosis 
of COVID-19 in symptomatic adult patients, through chest 
CT images, reaches 90% of the chances of positive evolution 
of the disease, that is, 90% of sensitivity [10]. According to 
Jaiswal et al. [11], only CT images cannot be used to iden-
tify which virus is causing viral pneumonia. However, when 
considering these images with the clinical symptoms, travel 
history and identification of contact with infected people, it 
can be verified that it is the SARS-CoV-2 [11, 12].

However, during an outbreak of a disease that causes 
breathing problems, radiologists may be overwhelmed with 
medical image analysis [2, 8, 13]. In this context, applying 
different machine learning models [14–17] during a pan-
demic is very useful, as it performs the automatic analysis 
of medical images. Deep learning models are the state of 
the art in identifying COVID-19 and other lung diseases by 

imaging [2, 11, 18–22]. In [23], a novel deep convolutional 
neural network method, named VGG16-T, is used to identify 
lung cancer in early stage using CT images.

In [24], the authors propose a method of deep learning 
called deep explainable neural networks (xDNN), which 
is efficient in terms of time and consumption of computa-
tional resources. In the first stage of the method, the authors 
applied a fully connected network layer visual geometry 
group-16 (VGG-16) [25] to extract the vectors of global 
characteristics of the images. The results obtained using a 
SARS-CoV-2 CT-scan dataset [26] and considering accu-
racy, F1 score and area under the ROC curve (AUC) were 
0.9738, 0.9731 and 0.9736, respectively. In [7], authors pro-
posed a model named PatchShuffle stochastic pooling neural 
network (PSSPNN) for classification between COVID-19, 
secondary pulmonary tuberculosis, community-captured 
pneumonia, and healthy subjects. This method is able to 
show the explainable heatmap, which displays association 
with lung lesions; their experimental results achieved a 
microaveraged F1 score of 0.9579.

This work uses transfer learning [27] to extract vectors of 
global characteristics of image, applying layers of interest 
from pre-trained convolutional neural networks (CNNs) of 
the Keras1 application programming interface (API): VGG-
16, VGG-19, Inception V3 and EfficientNet-B0. In Pathak 
et al. [28], experimental results have shown that a COVID-
19 classification model built with deep transfer learning 
achieves better results than other supervised learning mod-
els. In addition, the classification models are the result of the 
application of the xDNN algorithm and Scikit-learn2 API 
algorithms: k-nearest neighbor (KNN) and support vector 
machine (SVM) with linear kernels and radial base func-
tion (RBF). The main objective is to analyze the impact of 
features extracted by CNNs, in the design of COVID-19 and 
non-COVID-19 classification models. The analysis results 
are estimated by non-parametric statistical tests, specifically 
Friedman Aligned Ranks [29] and Finner [30].

The main contributions of this work are summarized as 
follows: 

1. Implementation of different pre-trained CNN models to 
extract image features and identifying the most appropri-
ated features using Keras API;

2. Implementation of a high precision classification mod-
els, which can assist the diagnostic of COVID-19 and 
non-COVID-19;

3. A comparative statistical analysis of the performance of 
the COVID-19 and non-COVID-19 classification mod-
els designed using image features extracted by CNNs;

1 https:// keras. io/ about/
2 https:// scikit- learn. org/ stable/ index. html
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4. A framework composed that permits select different 
combination of pre-trained CNN models and classifica-
tion models, identifying the best pre-trained CNN and 
classification models. The implementation code is avail-
able to the research community.

Hence, the present research intends to be useful in the clas-
sification of CT images that present COVID-19 character-
istics. Also, this work presented a detailed methodology in 
which transfer learning is used, and the best parameters are 
selected from a pre-trained CNN, and later used as input of 
a classification algorithm, obtaining high accuracy results. 
It is worthy to note that the code3 of the solution developed 
is free available for research purposes.

The article is organized considering the following struc-
ture. Section 2 covers studies related to the topic of this work. 
Section 3 describes the methodology of the objects to create 
and evaluate the proposed models. In Sect. 4, the results of 
the model validation are presented and compared. Finally, in 
Sect. 5, the final considerations of the work are presented.

2  Theoretical Reference

This section presents the characteristics that help to detect 
COVID-19 by CT scan and a summary of feature extraction 
techniques and machine learning applied in this work.

2.1  COVID‑19 detection based on computed 
tomography

CT images of the chest with COVID-19 are generated from the 
emission of radiation beams in the human body [31]. These 
images show important radiological patterns for the diagnostic 
of a radiologist and classification based on CT [32, 33]: 1) the 
initial stage is defined in the period of 0–4 days after the onset 
of the first symptom, whose ground-glass opacity (GGO) [34, 
35] can be seen subpleurally in the lower lobes of the lungs, 
distributed unilaterally or bilaterally [33]; 2) the progressive 
stage occurs in the period of 5–8 days with diffuse GGO [36], 
mosaic paving [37] and consolidation [38] distributed in multi-
ple bilateral lobes [33]; 3) the peak stage appears in the period 
of 9–13 days with dense consolidation [39] most prevalent 
[33]; 4) the infection control stage usually occurs after 14 days 
with the permanence of GGO and the absorption of consolida-
tion and mosaic paving [33].

According to [33], the related works in the literature 
are divided into three classification tasks: classification of 
COVID-19 and non-COVID-19; classification of COVID-19 
and pneumonia; and classification of the COVID-19 sever-
ity assessment. Unlike the first two tasks, the COVID-19 

severity assessment classification seeks to identify the degree 
of sequelae caused by the disease [40, 41], thus, all patients are 
infected with SARS-CoV-2. The classification of COVID-19 
and pneumonia seeks to separate patients infected with SARS-
CoV-2 from those with pneumonia caused by another agent [7, 
42–50]. The classification of COVID-19 and non-COVID-19 
seeks to distinguish patients diagnosed with infection caused 
by SARS-Cov-2, from those that present characteristics of 
classic pneumonia, healthy or with a diagnostic of other lung 
diseases [51–60]. In addition, some works presented differ-
ent methodologies [7] that are able to detect the lesion of the 
image indicating its severity.

In this context, this paper applies the classification task of 
COVID-19 and non-COVID-19. The validation of the built 
models is based on the SARS-CoV-2 CT-scan data set. This 
data set includes CT scans of patients infected with SARS-
CoV-2 and other lung diseases.

2.2  Feature extraction methods for transfer 
learning

The feature extraction pre-processor defines a set of data 
with the ability to influence the performance of a classi-
fication model [24, 61]. In traditional machine learning, 
an expert method is applied to extract a vector of features 
depending on a certain domain. With deep learning, this pre-
processing became inherent to the classification algorithm 
and to extract vectors from abstract features [24, 62, 63].

According to [28], deep learning models are applied 
in medical imaging systems, extracting features automati-
cally or using pre-trained networks. The transformation of a 
pre-trained neural network into a feature extraction method 
occurs after the removal of some layers. The application of 
this modified network configures a learning transfer pro-
cess. The transfer of learning is the enhancement of a new 
machine learning task, using the transfer of knowledge from 
an analogous task that has already been perfected [64].

The use of pre-trained networks with the data set Ima-
geNet is widespread in the literature [28, 65]. Thus, pre-
trained CNNs with this data set are applied to extract feature 
vectors in the identification of COVID-19. In [66] pre-
trained networks were applied to inception V3 and VGG-19 
with the wide and deep neural network (WDNN) and both 
reached 0.9847 and 0.9904 accuracy, respectively. In [26] 
the VGG-16 network was applied with xDNN and reached 
0.9738 accuracy. In [58] it was applied to network Efficient-
Net with a vote-based approach and reached 0.9899 accuracy 
of the test. Due to the good performances, these networks 
were applied in this work.

A description of each network is presented below:

• VGG: is an architecture that uses convolutional layers 
and the activation function rectified linear unit (ReLU). 

3 https:// github. com/ arthu rmteo doro/ image- featu re- extra ction- for- 
COVID- 19- class ifica tion
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The VGG-16 and VGG-19 architectures are variations of 
the VGG with 16 and 19 layers, respectively. The filter 
dimension of the convolutional layers is 3x3 [25, 67, 68]. 
Different variations of the VGG network model, suc as 
16 and 19, were applied in this work due to the simplicity 
of this architecture and because they are widely adopted 
in similar research; for instance, Soares et al. [26] used 
VGG-16 with xDNN.

• Inception: is a CNN architecture published as Goog-
LeNet, also known as inception V1 [69, 70]. The archi-
tecture was improved, and new versions were presented, 
such as inception V2 and V3. Inception V2 has added 
batch normalization layers to streamline training [69, 
71]. In relation to inception V3, factoring convolutions 
were added with larger spatial filters to improve com-
putational efficiency [69, 72]. The module inception is 
the main building block. The convolutional layers have 
different dimensions of the kernel, 1x1 and 3x3, and an 
operation of polling [69]. This architecture was utilized 
in our experimental tests, it was applied in parallel con-
volutional layers in its main block, as suggested in [73].

• EfficientNet: is a CNN architecture proposed by Tan and 
Quoc [74]. This architecture applies a scaling method 
that uniformly grows all dimensions of depth, width, and 
resolution efficiently, using a simple composite coeffi-
cient. Thus, a family of 8 convolutional networks was 
created, named EfficientNet-B0 to EfficientNet-B7. The 
main building block is the mobile inverted bottleneck 
convolution (MBConv). This architecture has few param-
eters, so it consumes less computational resources when 
compared to other CNNs [67, 74]. This architecture was 
used in our work, because it contains few parameters, 
and also because it obtained the best performance in the 
image classification from the ImageNet dataset, being 
8.4 × smaller and 6.1 × faster on inference, these perfor-
mance results were obtained in 2019 [74].

2.3  Supervised learning algorithms

Supervised learning is a machine learning task. This task 
uses essential information provided or acquired by human 
aid [75]. Thus, learning is obtained by classes (categories) 
identified by human specialists and examples of instances of 
each class. Classes with their instances make up the data set. 
The class and instance relationship is maintained in a subset 
of data called the training set, which is applied to learn a 
classification function. This classification function is used 
to classify unlabeled instances [76].

In the literature, different supervised learning techniques 
are applied in the identification of COVID-19 [24, 77, 
78]: convolutional neural network (CNN); support vector 
machines (SVM); logistic regression (LR); Naive Bayes 
(NB); linear discriminant analysis (LDA); k-nearest neigh-
bors (KNN); decision tree (DT) and random forest (RF).

In this work, the following algorithms were chosen:

• KNN: is a classifier where learning is by analogy. The 
training set has n-dimensional vectors with their respec-
tive classes, and each vector in this set represents a point 
in n-dimensional space [79]. The classification deci-
sion is based on classes of k-nearest neighbors of a new 
instance [80].

• SVM: is a binary vector classifier in an n-dimensional 
space. The objective of SVM is to find a hyperplane in 
an n-dimensional space that separates the examples into 
two distinct classes. The support vectors are the exam-
ples in the space (points) closest to the hyperplane. The 
SVM algorithm seeks to maximize the margin between 
the support vectors and the hyperplane [77, 81].

• xDNN: is a classifier formed by several layers with a 
clear semantic and functional meaning, according to 
Plamen and Soares [24]. The use of prototype-based 
“ IF⋯THEN  ” rules proposed by the authors makes it 

Figure 1  Proposed methodol-
ogy to create and evaluate the 
classification model.
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easier for users to understand how xDNN works. Proto-
types are representative training images that help users 
visualize, understand, and appreciate similarity to other 
validation images. In other words, the prototypes are 
local density peaks and empirically derived probability 
distributions [26]. Thus, xDNN offers an association 
between statistical learning and reasoning [24].

3  Methodology

Figure 1 represents the proposed methodology to classify 
the diagnostic of a patient with suspected COVID-19. The 
methodology was implemented in python using the Scikit-
learn and Keras machine learning algorithms APIs. Below, 
the steps applied to build the proposed model are presented:

1. Data set: contains images of COVID-19 and non-
COVID-19;

2. Feature extraction: CNN’s transformed, compressed, and 
reduced the information in the images. Thus, the Flatten 
layers transformed data matrices into vectors. The acti-
vation functions compressed (coded and transformed) 
the data to produce a reduced representation of these. 
In addition, the convolution and pooling operations lay-
ers reduced the dimensionality of the features map. The 
algorithms in this step return a features vector;

3. Training and test division: the set with feature vectors is 
randomly divided to perform stratified cross-validation 
with 10 folds of each model;

4. Machine learning: trains the model to classify the diag-
nostic of a patient with suspected COVID-19;

5. Classification model: it is the final result obtained in 
machine learning according to the training set. The sam-
ples from the test set, without the target classes, are clas-
sified by the model;

6. Diagnostic: it is the result of the classification model, 
based on an image of the test set with suspected COVID-
19. This classification is compared with the target class 
to measure the performance of each model. Performance 
is compared in a statistical analysis to identify the best 
classification models, the best pre-trained CNNs for each 
model, and the best pre-trained CNN to extract charac-
teristics from images in general.

3.1  Data set

The SARS-CoV-2 CT dataset [26] contains 2482 CT 
images. Of these, 1252 images belong to patients infected 
with SARS-CoV-2, and 1230 are from patients with other 
lung diseases. Thus, 50.44% of images belong to the class 
COVID-19 and 49.46% non-COVID-19. Therefore, the data-
set is balanced and did not need any pre-processing.

3.2  Feature extraction by pre‑trained CNN Models

From the data sets, the pre-trained models pre-processes 
the data, which the classification algorithms use to build 
the models and make the classifications. The CNN-based 
algorithms of the following functions were used to create the 
extraction models: VGG16, VGG19 and InceptionV3 (IV3) 
of the module tf.keras.applications; EfficientNetB0 (EB0) of 
model efficientnet.tfkeras. Two criteria were fundamental in 
the definition of the feature extraction layers: position closest 
to the layer that classifies and experimental tests consider-
ing the best performance in classification. The types of the 
layers chosen in the algorithms were:

• FC (Dense) is a fully-connected layer of the VGG16 
and VGG19 algorithms. This layer returns a feature vec-
tor with 4096 dimensions for each image and is used to 
extract features [82];

• Flatten: it is a leveling layer of the algorithms VGG16 
(VGG16 baseline), VGG19 (VGG19 baseline) and 
was applied to the block6d_add layer of EfficientNetB0 
(EB0). This layer converts the data into a vector [83]. The 
sizes of the vectors returned from the baseline methods 
VGG16 and VGG19 were 25088 dimensions. Regarding 
the EB0 method, the returned vector has 9408 dimen-
sions;

Table 1  Summary of the chosen layer of each applied CNN.

CNN Layer type Layer Name Output 
Size

VGG16 FC (Dense) FC2 4096
VGG16 

baseline
Flatten flatten 25088

VGG19 FC (Dense) FC2 4096
VGG19 

baseline
Flatten flatten 25088

IV3 GlobalAveragePooling2D mixed9 2048
IV3 baseline GlobalAveragePooling2D mixed10 2048
EB0 Flatten block6d_add 9408
EB0 baseline GlobalAveragePooling2D top_activation 1280

Figure 2  Confusion Matrix.
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• GlobalAveragePooling2D: this parameter represents a 
global pooling operation for spatial representation of 
the data, which is applied to replace the stage of fully 
connected layers in conventional CNNs. This opera-
tion generates a resource map for each class that will 
be classified [84]. This operation was used to obtain a 
drastic reduction of the dimensions of the feature maps 
in the layers, top_activation, mixed9 and mixed10 of the 
respective methods of the algorithms: EfficientNetB0 
(EB0 baseline) and InceptionV3 (IV3 and IV3 baseline). 
The sizes of the vectors returned for methods IV3 and 

IV3 baseline were 2048 dimensions. The vector size 
returned by the EB0 baseline method was 1280 dimen-
sions Table 1.

3.3  Models

The classification models were generated using data 
obtained from the feature extraction. Three machine learn-
ing algorithms were used to create the classification models: 
KNeighborsClassifier of the module sklearn.neighbors; SVC 

Table 2  Average performance 
of models in the classification of 
COVID-19 and non-COVID-19 
- Cross-validation.

The averages of the F1 macro with the same letters do not differ at the probability level of 5% by the Finner 
test
The best performances in the F1 score are with the letter “a”
The worst performances in the F1 score are with the letter “j”
The highest averages for each metric are in bold

Extractor Model Macro averages for each metric Rank

PR SE SP F1

EB0 SVC RBF 0.9856 0.9853 0.9853 0.9853 a
EB0 SVC linear 0.9855 0.9853 0.9853 0.9853 a
VGG16 baseline SVC linear 0.9815 0.9813 0.9813 0.9813 ab
EB0 xDNN 0.9794 0.9787 0.9787 0.9788 abc
VGG19 baseline SVC linear 0.9741 0.9737 0.9737 0.9737 abcd
EB0 KNN 0.9704 0.9696 0.9696 0.9697 abcde
VGG16 baseline xDNN 0.9670 0.9661 0.9661 0.9662 abcde
VGG19 baseline KNN 0.9655 0.9651 0.9651 0.9652 abcdef
VGG19 xDNN 0.9649 0.9646 0.9646 0.9647 abcdef
VGG16 xDNN 0.9630 0.9620 0.9620 0.9621 bcdefg
VGG16 baseline KNN 0.9606 0.9600 0.9600 0.9601 bcdefgh
VGG19 baseline xDNN 0.9612 0.9599 0.9599 0.9601 cdefgh
IV3 KNN 0.9605 0.9601 0.9601 0.9601 cdefgh
EB0 baseline xDNN 0.9603 0.9590 0.9590 0.9591 defgh
VGG16 SVC RBF 0.9596 0.9585 0.9585 0.9586 defgh
VGG16 SVC linear 0.9581 0.9570 0.9570 0.9571 defgh
VGG19 SVC RBF 0.9538 0.9531 0.9531 0.9530 efgh
VGG16 KNN 0.9529 0.9519 0.9519 0.9520 efgh
IV3 xDNN 0.9517 0.9509 0.9509 0.9510 efgh
VGG19 SVC linear 0.9515 0.9506 0.9506 0.9505 efgh
VGG19 KNN 0.9483 0.9481 0.9481 0.9480 fgh
EB0 baseline KNN 0.9461 0.9448 0.9448 0.9450 fgh
EB0 baseline SVC linear 0.9428 0.9424 0.9424 0.9425 ghi
IV3 baseline KNN 0.9353 0.9350 0.9350 0.9349 hi
EB0 baseline SVC RBF 0.9310 0.9305 0.9305 0.9304 ij
IV3 baseline SVC linear 0.9253 0.9238 0.9238 0.9238 ij
IV3 baseline xDNN 0.9182 0.9172 0.9172 0.9172 ij
IV3 baseline SVC RBF 0.9167 0.9159 0.9159 0.9157 ij
VGG19 baseline SVC RBF 0.9110 0.8938 0.8938 0.8932 ij
IV3 SVC linear 0.8952 0.8934 0.8934 0.8929 ij
IV3 SVC RBF 0.8952 0.8934 0.8934 0.8929 ij
VGG16 baseline SVC RBF 0.7903 0.6317 0.6317 0.5747 j
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module of sklearn.svm; and xDNN4. In general, the standard 
configuration parameters of the algorithms have not been 
changed, except for SVC which was applied two kernels, 
linear and RBF.

3.4  Classification measures

The applied measures belong to the module sklearn.metrics 
and were implemented in python. The metrics of precision 
(PR), sensitivity (SE), specificity (SP), F1 scores and their 
respective macro-averages, use the values of the variables in 
the confusion matrix of each model. Figure 2 presents a confu-
sion matrix.

The values of the variables true positives (TP) and true nega-
tives (TN), quantify the hits. Errors are quantified by the values 
of the variables false positives (FP) and false negatives (FN).

The metrics are defined in equations. PR calculates the 
probability of patients with positive results, actually having 
the disease [85]. The SE calculates the probability of a positive 
outcome of the disease [86]. SP, on the other hand, calculates 
the probability of negative results in patients without the dis-
ease [86]. The F1 score combines the values of precision and 
sensitivity, it balances the relative importance of each metric 
[76]. Finally, the macro averages of the metrics calculate their 
respective averages across classes [76, 87]. Thus, Eqs. 5, 6, 
7, and 8 define the macro precision, macro sensitivity (macro 
recall), macro specificity, and macro F1 score, respectively.

(1)PR =
TP

TP + FP

(2)SE =
TP

TP + FN

(3)SP =
TN

TN + FP

(4)F1 =
2TP

2TP + FN + FP

(5)PR(Macro) =
1

C

C
∑

i=1

TP

(TP + FP)

(6)SE(Macro) =
1

C

C
∑

i=1

TP

(TP + FN)

(7)SP(Macro) =
1

C

C
∑

i=1

TN

(TN + FP)

3.5  Validation of models and comparative 
statistical analysis of results

In the validation of the models, the set of features was 
divided into training and test data by the class StratifiedK-
Fold of the module sklearn.model_se-lection, to apply strati-
fied cross-validation. Stratified cross-validation guarantees 
the same class distribution in the evaluated sets. This valida-
tion divides the set of features into k subsets (folds). Subsets 
are used as sets of training and testing features, for each k 
different models.

(8)F1(Macro) =
1

C

C
∑

i=1

2TP

(2TP + FP + FN)

Table 3  Performance of the model with EB0 and SVC RBF in the 
classification of COVID-19 and non-COVID-19 by cross-validation 
fold.

The category values general are the macro-average for each metric

Fold k PR SE SP F1 Category

1 0.9900 0.9801 0.9897 0.9850 covid
0.9797 0.9897 0.9801 0.9847 non-covid
0.9848 0.9849 0.9849 0.9849 general

2 0.9708 1.0000 0.9696 0.9852 covid
1.0000 0.9696 1.0000 0.9846 non-covid
0.9854 0.9848 0.9848 0.9849 general

3 0.9708 1.0000 0.9696 0.9852 covid
1.0000 0.9696 1.0000 0.9846 non-covid
0.9854 0.9848 0.9848 0.9849 general

4 1.0000 0.9800 1.0000 0.9898 covid
0.9801 1.0000 0.9800 0.9900 non-covid
0.9900 0.9900 0.9900 0.9899 general

5 0.9900 1.0000 0.9897 0.9950 covid
1.0000 0.9897 1.0000 0.9948 non-covid
0.9950 0.9948 0.9948 0.9949 general

6 0.9801 0.9900 0.9795 0.9850 covid
0.9896 0.9795 0.9900 0.9846 non-covid
0.9849 0.9847 0.9847 0.9848 general

7 0.9708 1.0000 0.9693 0.9852 covid
1.0000 0.9693 1.0000 0.9844 non-covid
0.9854 0.9846 0.9846 0.9848 general

8 0.9900 1.0000 0.9897 0.9950 covid
1.0000 0.9897 1.0000 0.9948 non-covid
0.9950 0.9948 0.9948 0.9949 general

9 0.9607 0.9800 0.9591 0.9702 covid
0.9791 0.9591 0.9800 0.9690 non-covid
0.9699 0.9695 0.9695 0.9696 general

10 0.9800 0.9800 0.9795 0.9800 covid
0.9795 0.9795 0.9800 0.9795 non-covid
0.9797 0.9797 0.9797 0.9797 general

4 https:// github. com/ Plamen- Eduar do/ xDNN--- Python
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The results of the F1 macro-average of the models, in each 
cross-validation fold, were analyzed on the Web platform Sta-
tistical Tests for Algorithms Comparison (STAC) [88]. Due 
to the 32 models created and considering the 10 result values 
of each, the application Assistant estimated a non-parametric 
test of aligned rank. Thus, the statistical test Friedman Aligned 

Ranks was applied with a level of significance � = 0.05 , veri-
fying the null hypothesis that the averages of the results of the 
models are the same. This hypothesis was rejected and then 
the post-hoc test was applied Finner with a level of signifi-
cance � = 0.05 , verifying the null hypothesis that the average 
results of each pair of models compared are equal. The level 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Figure 3  Confusion matrices of the model with EB0 and SVC RBF - Cross validation.
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of significance, denoted by � = 0.05 indicates a 5% of risk to 
reject the null hypothesis when it is true. It means that there is 
a 5% of probability of predicting that the average performances 
of the algorithms are different when there is not a real differ-
ence [89].

4  Assessment and Results

In this section, the descriptions of the experimental evalua-
tion and results of the pre-trained models of the classifica-
tion of COVID-19 and non-COVID-19 will be presented, 
with the SARS-CoV-2 CT set. The objective is to validate 
the ability to generalize classification models with strati-
fied cross-validation and to identify the best classification 
model in the applied data set. The experiments measured 
the performance of the proposed models using the confusion 
matrix, the metrics of precision, sensitivity, specificity, F1 
score and their respective macro-averages, for each cross-
validation fold. The average performances of the models in 
each macro-average and the result of their comparison, refer-
ring to the average of the F1 score, are shown in the Table 2.

The Friedman Aligned Ranks test showed that the aver-
age of the F1 macro-average differs between the classifica-
tion models with p-value < 0.001 . Models with the same 
letters present the same averages in the F1 macro-average, 
at the probability level of 5% by the Finner test. The models 
that achieved the best performances are identified with “a”. 
So, in descending order, the worst models are with the letter 
“j”. This assessment identified the best CNNs to build each 
classification model. The best CNNs to build the best KNN 
models were EB0 and VGG19. Regarding the best SVC 
models with linear kernel, they were obtained with features 
provided by EB0, VGG16 baseline and VGG19 baseline. 
The best xDNN models were built with features provided 
by EB0, VGG16 baseline and VGG19. The best SVC model 
with RBF kernel was obtained with EB0 features. Therefore, 
EB0 is the best algorithm to extract features for the classi-
fiers, as it was the only one that managed to achieve the best 
performances with each classification algorithm.

In absolute values, the highest performance was for the 
model with EB0 and SVC RBF, which reached 0.9856 pre-
cision and 0.9853 sensitivity, specificity, and F1 score. The 
lowest performance was the model with VGG16 baseline 
and SVC RBF, which reached 0.7925 precision, 0.6382 sen-
sitivity and specificity, and 0.5856 F1 scores.

Figure 3 and Table 3 results by cross-validation fold are 
presented to verify the best performance of the model with 
EB0 and SVC RBF. The performances measured in the met-
rics demonstrate that the model can infer a correct diagnosis 
in both classes of each cross-validation fold.

The matrices present a high frequency of correctness in 
the first diagonal, composed of the frequencies of the cor-
rect identifications of COVID-19 (TP) and non-COVID-19 

(TN). Each matrix in the Fig. 3 was generated by package 
functions matplotlib.pyplot in Python.

The framework proposed using the model with EB0 and 
SVC RBF a-chieved similar performance to those obtained 
by the works and reported in [26, 90–92]. In [90] a cross-
validation with ten folds was used, as well as this work, 
and applied a method based on generative adversarial 
network (GAN), obtaining 0.9879 of F1 score. The other 
works used different methods to analyse the data obtained 
in relation to the considerations applied in this work. In 
[26], the model with VGG-16 and xDNN achieved a per-
formance of 0.973 in the F1 score. In [91], an optimized 
convolutional neural network model, called ADECO-
CNN, reached 0.996 of sensitivity, 0.992 of precision, and 
0.997 of specificity. In [92], a semi-supervised shallow 
neural network structure, called Parallel Quantum-Inspired 
Self-supervised Network (PQIS-Net), achieved a perfor-
mance of 0.948 considering the F1 score. It is worthy to 
note that some recent methods also have the additional 
advantage of identifying the region of lesion and its sever-
ity using a heatmap [7].

5  Conclusion

This work implemented pre-trained CNNs to extract the vec-
tors of global features from CT images. The vectors were 
used to design classification models for COVID-19 and non-
COVID-19. The Algorithms of CNNs applied were VGG16, 
VGG19, InceptionV3 (IV3) and EfficientNetB0 (EB0). The 
classification algorithms applied were KNeighborsClassi-
fier (KNN), SVC and Explainable Deep Neural networks 
(xDNN).

In the experimental evaluation, the performances of 
each model were compared in a statistical analysis using 
the Friedman Aligned Ranks and Finner tests. This analy-
sis identified the best classification models, the best pre-
trained CNNs to extract characteristics from images for each 
model, and the best pre-trained CNN in general. Thus, the 
KNN classifier achieved the best performance with EB0 and 
VGG19. The SVC linear classifier obtained the best perfor-
mance with EB0, VGG16 baseline, and VGG19 baseline. 
The SVC RBF classifier achieved the best performance with 
the features extracted by the EB0 algorithm. Finally, the 
XDNN classifier performed best with the features provided 
by EB0, VGG16 baseline, and VGG19. The SVC RBF with 
data extracted by EB0 was the model that obtained the high-
est average performances: 0.9856 in the precision macro, 
0.9853 in the sensitivity macro, 0.98553 in the specificity 
macro, and 0.9853 in the F1 score macro. In this scenario, 
the EB0 algorithm is the best to extract features for the clas-
sifiers, as it was the only one that achieved the best perfor-
mances in each classification model.
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Therefore, the use of algorithms based on transfer learn-
ing to extract characteristics from CT images was beneficial 
to identify COVID-19 and non-COVID-19, in the cross-
validation tests. With the exception of one model, the mod-
els achieved excellent results. The inferiority of the model 
with VGG16 baseline and SVC RBF can be attributed to the 
mapping to another larger space, carried out by the kernel. 
Another justification is the lack of variation in the param-
eters of the classification algorithm. In addition, the better 
performances of the models with EB0, when compared with 
the others, can be justified by the lack of variation in the 
parameters of the feature extraction algorithms.

In future works, the parameters variation of the feature 
extraction and classification algorithms will be carried out to 
try to reach the maximum performance in the identification 
of COVID-19 and non-COVID-19. In addition, the same 
approach will be applied to classify the stages of COVID-19. 
In addition, different methods to improve image quality will 
be used in future experiments.
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