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Abstract
In recent years, Convolutional Neural Network CNN have been incorporated in a large number of applications, including
multimedia retrieval and image classification. However, CNN based algorithms are computationally and resource intensive
and therefore difficult to be used in embedded systems. FPGA based accelerators are becoming more and more popular in
research and industry due to their flexibility and energy efficiency. However, the available resources and the size of the on-
chip memory can limit the performance of the FPGA accelerator for CNN. This work proposes an High-Level Synthesis
HLS library for CNN algorithms. It contains seven different streaming-capable CNN (plus two conversion) functions for
creating large neural networks with deep pipelines. The different functions have many parameter settings (e.g. for resolution,
feature maps, data types, kernel size, parallelilization, accuracy, etc.), which also enable compile-time optimizations. Our
functions are integrated into the HiFlipVX library, which is an open source HLS FPGA library for image processing and
object detection. This offers the possibility to implement different types of computer vision applications with one library.
Due to the various configuration and parallelization possibilities of the library functions, it is possible to implement a
high-performance, scalable and resource-efficient system, as our evaluation of the MobileNets algorithm shows.

Keywords High-level synthesis · Neural networks · FPGA · Hardware acceleration · Library

1 Introduction

Nowadays neural network applications are widely used in
new technologies such as artificial intelligence and robotics
[23]. Convolutional Neural Network (CNNs) [12] are a type
of deep neural networks, which are significantly successful
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in object detection [25] and image classification [21] due to
the ability to extract both spatial and temporal features [12].
However, the performance relies on the computing platform
and implementation. The first challenge in accelerating
CNNs is that they have a huge memory requirement, since
common CNN models use millions of trained parameters.
Furthermore, CNNs are computationally intensive with
over billions of operations for the inference. Due to these
challenges, GPUs [18], ASICs [4] and FPGAs [30] are
mainly used for accelerating the CNN inference. Because of
the advantages of high performance, energy efficiency and
flexibility, FPGAs are attracting the attention of researchers
to accelerate CNNs [27]. On the other hand, a straight
forward design for FPGAs written in VHDL or Verilog can
achieve a suitable performance. However, an effective and
precise hardware design requires a high time to market and
a lot of effort. Moreover, a flexible development framework
like Caffe [13] and TensorFlow [1] for CPU and GPU
is not available for FPGAs. To address this, High-Level
Synthesis (HLS) tools from FPGA vendors, such as Xilinx’s
Vivado HLS [34] or Intel’s OpenCL SDK [10], reduce the
programming difficulty and shorten the development time
remarkably, making FPGA-based solutions more popular.
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Our contribution consists of a generic, template-based
and open source HLS library for a fast implementation of
CNNs on FPGA-based embedded or HPC systems. The
library consists of 7 different layers, which are used in
common CNN algorithms. It operates on parameterizable
fixed-point data types and floating-point data types, and has
been optimized for performance and resource efficiency.
The different compile time parameters and data types of
the library functions offer multiple opportunities for an
optimized design and extensive design space exploration.
One benefit is that all functions are streaming capable to
allow a deep pipeline. Creating streaming applications with
multiple nodes or layers gives FPGAs the ability to achieve
higher performance and power efficiency for computer
vision algorithms compared to other architectures, such as
CPUs and GPUs, as Kalms et al. [14] or Qasaimeh et al. [24]
show. Furthermore, we have researched and implemented
different possibilities of parallelization in order to achieve a
high performance with an efficient use of resources, which
we show in this paper using our implementation of the
MobileNets algorithm [9]. Our library is integrated into
the HiFlipVX library, which is an open source HLS FPGA
library for image processing [17] and object detection [15].
This offers the possibility to design and implement different
kinds of computer vision applications with one library. Most
functions of the libraries are based on the OpenVX standard.
This simplifies the design of applications on heterogeneous
systems containing different types of architectures (e.g.
CPU, GPU and FPGA), due to the different existing
implementations from different vendors.

In the following, Section 2 provides information about
the related work, Section 3 describes the implementation
of the neural network library and MobileNets, Section 4
evaluates the achieved results and Section 5 contains
conclusion and outlook.

2 Related Work

State-of-the-art CNN architectures for large-scale visual
recognition use a multitude of layers with millions of
computations. FPGA designers for embedded applications
encountered three major challenges to efficiently map
CNNs on hardware such as a difficult programming frame-
work, limited FPGA resources and memory bandwidth.
Many implementations have been proposed to address the
above mentioned challenges on FPGAs. Wang et al. [33]
built an RTL library to map neural networks on FPGAs.
However, RTL implementations suffer from high costs and
time-to-market which makes RTL-based custom hardware
accelerators infeasible for most cases.

The availability of HLS tools, using OpenCL, C or C++,
from FPGA vendors (e.g. Vivado HLS [34] from Xilinx,

SDSoC [26] from Xilinx or the OpenCL SDK [10] from
Intel) reduces the programming hurdle and shortens the
development time of FPGA-based hardware accelerators.
Consequently, many HLS implementations have been
introduced for the acceleration from CNNs, like from
Tapiador et al. [30], Zhang et al. [37] or Venieris et al. [32],
to implement energy-efficient and effective HLS-based
neural network accelerators. While some papers present
approaches for cloud applications with sufficient resources
[3], others present designs for embedded applications
with limited resources [37]. For example, Yao et al. [3]
implemented an HLS-based library for cloud systems, like
the AWS. To address the resource limitation on FPGAs,
many optimizations and implementations were carried out
to reduce the resource usage. Suda et al. [28] propose an
implementation using HLS for a lighter data type (fixed-
point 16-bit) while our proposed work supports multiple
data types (32-bit floating-point and 8-bit, 16-bit or 32-bit
fixed-point with an adjustable size of the fraction part).

Guo et al. [7] proposed a flexible CNN accelerator
with bit-width reduction using quantization, improving
the performance of OpenCL-based FPGA accelerators for
CNNs. Liu et al. [19] integrated the pointwise separable
convolution, which is needed in different neural networks
like MobileNets. Some of the previous studies focused only
on the acceleration of the convolution layers of CNNs. For
example, Liu et al. [20] only used models with convolution
layers without any Fully Connected layer. Therefore, it is
hard to be used for accelerating different CNN algorithms.

Memory bandwidth issues in CNNs are discussed
by Zhang et al. [37] and Zhang et al. [39]. Guan
et al. [6] proposed FP-DNN, which is an end-to-end
framework that automatically generates optimized FPGA-
based implementations of deep neural networks (DNNs)
using an RTL/HLS hybrid library. Another HLS based
library is the Caffeine FPGA engine [38] that uses an
HLS-based systolic-like architecture to implement matrix
multiplication kernels. It allows changing parameters such
as the number of (PEs), precision, and feature map size.

The proposed CNN library is highly parametrizable, has
a rich set of functions and is therefore applicable for various
algorithm designs. All functions are streaming capable and
can be easily connected to each other. High performance
with an efficient use of resources can be achieved through
the streaming approach and the various parallelization
parameters. The integration of the proposed CNN library
into the HiFlipVX image processing library [17], which has
been extended for object detection [15], increases the range
of possible applications that can be implemented in the field
of computer vision. Following the OpenVX standard [5]
makes it easier to create a heterogeneous system consisting
of different architectures (e.g. CPU, GPU and FPGA)
from different vendors. Since the library does not require
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vendor-specific or other external libraries, it can be ported
to other platforms more easily. This also improves the
verification and integration process in frameworks like
Tensorflow [1] or Caffe [13].

3 Implementation

This section first describes the architecture and implemen-
tation of the different Neural Network layers. The library
contains 7 neural network functions, which are described in
Section 3.2. All functions are streaming-capable to exploit
the advantages of an FPGA. Section 3.3 describes how to
create an algorithm using the library components by using
MobileNets as an example. It also adds two additional
functions needed to create an efficient implementation.

3.1 The HiFlipVX Library

HiFlipVX is an open source [16] HLS FPGA library for
image processing [17], which has been extended for object
detection [15]. The library contains 46 C++ streaming-
capable functions, which are mostly based on the OpenVX
standard. OpenVX is an open, royalty-free standard for
cross platform acceleration of computer vision applications
[5]. The library functions are parametrizable using C++
templates and highly optimized for performance and FPGA
resources. In comparison to the xfOpenCV library from
Xilinx [36], it only consumed in average 39% FFs and 32%
Lookup Table (LUTs) for a selected set of functions [17].
In addition to the OpenVX standard, most functions support
different vectorization options (2x, 4x, 8x) and additional
data types (8-, 16- or 32-bit signed/unsigned integers). The
use of vectorization does not only increases performance,
but also the energy efficiency, as shown by Akguen et al. [2].

The functions of our proposed library were integrated
into the HiFlipVX library. They use the same data types and
the function headers have a similar structure. Therefore it
is easy to connect the functions of the two libraries, either
directly or e.g. by using data-width converters. Furthermore,
certain pre-processing for the CNNs can be done with the
functions of the HiFlipVX library, e.g. changing the image
size or the image format. The integration also makes it easier
to use existing OpenVX-based frameworks, which did not
observe CNNs, like AFFIX [29] or JANUS [22].

3.2 Neural Network Layers

One goal of the library was the streaming capability of
the library functions. Since all functions are pipelined, a
pipeline interval of 1 was a key objective to achieve an
optimized performance. Additionally, all functions in the

library have integrated vectorization, which can be applied
on their Input Feature Map (IFM) and/or their Output
Feature Map (OFM). Unsigned and signed 8-bit and 16-bit
fixed-point and 32-bit floating-point data types are possible
for the inputs, outputs, weights and biases, to be applicable
for many hardware designs. The size of the fraction can
be configured as a parameter of the function. For an 8-
bit unsigned integer data type, this value can be between 0
and 8. If the fixed-point position is set to 5, the fractional
part is 5 and the integer part is 3. Functions that need
trained coefficients buffer them on first use, if configured,
to reduce the amount of global memory access. The fixed-
point implementations contain policies for rounding and
overflow. If an overflow occurs data can either be truncated
or saturated to its maximum/minimum value. For fixed-
point arithmetic operations, the data can be rounded to zero
or the nearest number.

Seven different neural network layers were designed
and implemented: 3D Convolution, Depthwise Convolution,
Pooling, Activation, Batch Normalization, Fully Connected
and Softmax. The I/Os of the different layer functions are
the input vector, the output vector and, if required, the
weights vector and the biases vector. Since all functions
are streaming capable, we can use the simple AXI4-Stream
interface for the Xilinx implementation. It is a simple
protocol, with ready and valid signal for handshaking
and the corresponding data signal. The HLS interface
axis directive in the library functions automatically
creates this interface. For all interface parameters we
use the vx image data<DATA TYPE, VEC SIZE> of
the HiFlipVX library. It is a vector data type, with
two additional configurable signals for the AXI4-Stream
interface that can be activated by using macros. These
signals indicate the Start of Frame (SoF) (last signal) and
End of Frame (EoF) (user signal) and are needed when
connected to the DMA or Video DMA (VDMA) blocks
from Xilinx. The remaining library function parameters are
template parameters (e.g. input/output image size, kernel
size, IFM, OFM, etc.).

The library has been optimized and tested for Vivado
HLS [34] and SDSoC [26] 2019.1, but also works with other
versions. Internally SDSoC uses HLS, but builds a complete
system around the accelerated functions containing the
hardware and software layers. To create such a system,
SDSoC adds some restrictions that basically affect the
interfaces of the function. One of these limitations is that
only structs with more than 1 element are synthesizable.
This has been solved by automatically using native data
types instead of structs for these kind of interfaces. This
is also possible, since SDSoC adds the SoF and EoF
signals to the AXI4-Stream interface by itself. Furthermore,
interface arrays need a known amount of elements. The
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proposed library does not need vendor specific or external
libraries. For some mathematical operations or signals,
Xilinx libraries have been used for a resource efficient
implementation. By using a macro, alternatives are applied
if other tools are used.

3.2.1 3D Convolution

The process of 3D convolution is the most computational
intensive layer in most feed forward networks. The main
goal of the proposed image and loop dimension ordering
was to achieve a streaming capable function. Under this
constraint we developed a structure that is optimized for
performance and resource usage. Therefore, the ordering of
some dimensions is different from the OpenVX standard.
Listing 1 shows the general structure of the hardware
implementation, which is be explained throughout this
subsection. Therefore the total latency can be derived
from the total number of loop iterations plus the pipeline
stages. The order of the image and coefficient dimensions
is:

– Input Image: BAT CH × ROWsrc × COLsrc × IFM

– Output Image: BAT CH ×ROWdst ×COLdst ×OFM

– Weights: OFM × IFM × Ky × Kx

– Biases: (0) ∨ (OFM) ∨ (BAT CH × ROWdst ×
COLdst × OFM)

As shown, different sizes for the Bias are possible. A
stride is set, when input and output resolution differ. In
the proposed implementation the stride only effects the
condition when a result is written to the output. It has no
effect to the latency. However, loop iterations could also
be skipped in dependence of the stride. However, the used
HLS compiler only allows ”perfect loops”, which could

Listing 1 General structure of the 3D convolution function. Input
Image Resolution: (ROWsrc × COLsrc); Output Feature Map:
(OFM); Input Feature Map: (IFM); Output Vectorization: (Vo);
Input Vectorization: (Vi); Kernel Size: (Ky × Kx)

be a drawback of using HLS. The general equation for
calculating a 3D convolution is:

dsty,x,o =
IFM−1∑

i=0

Ky−1∑

n=0

Kx−1∑

m=0

×
(
src

(y+n− Ky
2 ),(x+m− Kx

2 ),i
· Wo,i,n,m

)
+Bo (1)

Parallelization The performance benchmark for most 3D
convolution layers is the number of multiplications pro-
cessed per second. For a multiplication mostly internal Dig-
ital Signal Processor (DSPs) are used on an FPGA. When
increasing the number of multiplications, the amount of data
that is needed simultaneously and thus the required memory
bandwidth increases. To implement an efficient streaming
capable function, data of the input image as well as the coef-
ficients should be buffered. This can limit the maximum
resolution of the image to be processed. These buffers are
usually implemented using Block RAM (BRAM). However,
BRAM has a limited bandwidth to read and write data. To
increase the bandwidth, data can be distributed over sev-
eral BRAMs. However, this can lead to fragmentation, if
the BRAM is not fully utilized and can therefore limit the
data to be stored. For this reason, fragmentation should be
kept as small as possible while increasing the amount of
multiplications.

Various loop variables are suitable for parallelization, as
illustrated in Listing 1. One possibility of parallelization
would be in the direction of the (COL) as in HiFlipVX.
However, this type of parallelization would increase the
bit-width of various buffers and therefore lead to a high
fragmentation of BRAM. Additional buffers would also
have to be introduced to restructure the input and output
data. Therefore, we have concentrated on the parallelization
of the inner loops, as shown by the parameters (Vo) and
(Vi) in Listing 1. Both (OFM) and (IFM) parallelization
would increase the bit-width of the coefficient buffer.
Additionally, the parallelization of (IFM) increases the bit-
width of the input buffers. In some cases (Vi) can be raised
to a certain point without causing additional fragmentation
of the input buffer.

Structure of Buffers Figure 1 shows the structure needed
to buffer the input data to achieve the sliding window
effect for the 3D convolution function. It also shows the
size of the different buffers, all of which have a depth of
(Vi) elements. Additionally, the image shows the read and
write operations between the different blocks by the dashed
and dotted lines. The line buffers store complete rows of
the image including all feature maps (COLsrc · IFM

Vi
). Its

height of ((Ky − 1) · Vi) elements is stored as 1 element
in the BRAM to reduce BRAM usage, since it can reduce
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Figure 1 The input stage buffers the input image for the 3D convolu-
tion function with a Ky × Kx window/kernel size (here 3 × 3) and an
input vector size of Vi . The input stage contains input registers on the
left (white), big line buffers (dark gray), small input/window buffers
(light gray) and sliding window registers on the right (white). The pro-
cess of buffering the input image can be separated into 4 pipelined

steps. 1. step reads new input vector of size Vi (dashed lines) while
computing the first Output Feature Map [o = 0] 2. step updates win-
dow registers (continuous lines). 3. step updates buffers (dotted lines).
4. step sends all data from the sliding window registers to the com-
pute stage (dashed lines). IFM = Input Feature Map; COLsrc = Input
Image Columns.

fragmentation. The input buffer is a line buffer that does not
have to store the entire image row. Instead, it is sufficient
to store the ( IFM

Vi
) elements of the current iteration of (x).

The sliding window updates its complete elements in each
clock cycle, because all feature maps of (x) are calculated
before the window is moved one element to the right. The
window buffers are needed for this, since only 1 element can
be read from each line/input buffer in a clock cycle. Each of
the (Ky · (Kx − 1)) window buffers has ( IFM

Vi
) elements.

The different computation steps of the 3D convolution are
described below in chronological order.

1) Read Input Vector: Reads vector of Vi elements from
the input image, if the following condition is met: (y ≤
ROWsrc) ∧ (x ≤ COLsrc) ∧ (o = 0).

2) Update Sliding Window: In this stage, the data is read
from the different buffers and stored in the sliding window,
as shown in Figure 1 by the dashed lines. Each element in
the sliding window of size (Ky × Kx) contains (Vi) vector
elements. The left column of the sliding window get its
data from the line buffers and the input buffer. If (o = 0)

new data is read from the input image instead of the input

buffer. The other elements of the sliding window get their
data from the window buffers. Additionally, the algorithm
checks whether valid data should be present in the buffers.
Otherwise a zero is loaded into the corresponding sliding
window elements, to apply zero padding. The proposed
implementation always applies zero padding of (�Kx

2 �) on

both sides in x-direction and of (�Ky

2 �) on both sides in
y-direction.

3) Update Buffers: This stage reads the data from the
window and writes it to the different buffers, as shown in
Figure 1 by the dotted lines. The input buffer receives its
data from the bottom left element in the window. Since the
input data can only be read once, it must be buffered. The
line buffer receives its data from the right column of the
window in the last iteration of (o = OFM

Vo
− 1). This moves

the data of the image one line up so that it is available again
at the next iteration of (x). The window buffer receives its
data from the left columns of the window in the last iteration
of (o = OFM

Vo
− 1). The sliding window effect results from

the offset reading and writing between the window buffer
and the window.
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Figure 2 Computation stages of the 3D convolution implementation.
The input comes from the sliding window of the input stage (Figure 1).
Some stages are for floating-point or fixed-point numbers only. Buffers
for weights/biases are marked in light gray. Reader functions (dark

gray) buffer weights/biases if configured. IFM = Input Feature Map;
OFM = Output Feature Map; Vi = Input Vector Size; Vo = Output
Vector Size; Kx × Ky = Kernel Size.

4) Compute Convolution: Figure 2 shows the computa-
tion stage of the 3D convolution process. As stated, some
of the blocks in the image are only used for fixed-point
or floating-point calculations. The gray blocks show the
data whose contents needs to be maintained between loop
iterations and stored in buffers. The weight and bias coeffi-
cients can be buffered within the function if the user sets the
appropriate parameter. On first use, they are read from the
interfaces and stored in the buffers. If the same coefficients
are needed again, they can be accessed from the buffers.

In the first step, the input data is taken from the sliding
window and multiplied by the corresponding weights. In
total (Vo × Vi) 2D-convolutions of the size (Ky × Kx) are
calculated. Then (Vi) 2D-convolutions of the different (Vo)

are added together to partially calculate the 3D convolution
of each (Vo).

The operation of calculating a sum over several loop
iterations violated the desired pipeline interval of 1 by a
factor of 5 when using floating-point numbers with the
Xilinx tools. Therefore, we convert floating-point numbers
for this summation to a value that is saturated to a 32-
bit fixed-point number. The user sets the parameter for
the fixed-point position of this variable. In the next step
the partial 3D convolutions are added to the final 3D
convolution until all 2D-convolutions are summed up. Then
the result is converted back if the final output should be a
floating-point number.

When using fixed-point numbers, the multiplication
in the 2D-convolution increases the fixed-point position.
Therefore, the value is shifted back to the fixed-point
position, while ensuring the overflow policy. This process is
done before adding the bias, because it has the same fixed-
point position as the output. After adding the bias, the result

is checked for overflow and saturated if the corresponding
policy is set.

4) Write Output Vector: Writes back a vector
of Vo elements to the output image, if the follow-

ing condition is met:
(
(y − �Ky

2 �) mod (ROWsrc−1
ROWdst−1 )

)
∧

(
(x − �Kx

2 �) mod (COLsrc−1
COLdst−1 )

)
∧

(
i =

(
IFM
Vi

− 1
))

. The

condition includes the stride computation, expressed with
the modulus operation. The value for the stride must be an
element of the natural numbers.

3.2.2 Depthwise Convolution

The Depthwise Convolution can be considered as a 2D
convolution that is applied to each feature maps of a 3D
input image separately. This layer is usually used together
with a “pointwise” convolution of (1 × 1), as in MobileNets
[9]. This means that for a (3 × 3) convolution, a (3 × 3)

pointwise convolution and a (1 × 1) pointwise convolution
is used. The advantage of this approach is that less
multiplications and weights are required for the convolution
process. Comparing it to a classic 2D convolution, it has a
similar effect to the separable filter shown in [17].

The amount of feature maps in the input and output
image are the same for this function. When comparing
with the structure of Listing 1, the loop over OFM is
eliminated. Consequently, the total latency is reduced by
that factor and there is only one parallelization term (Vi).
The rest of the basic structure in Listing 1 remains. The total
number of multiplications and weights is reduced by a factor
of OFM compared to a pointwise convolution. Therefore
fewer weights must be stored in the internal buffers. On
the other hand, the size of biases remains unchanged. It
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is still possible to choose between the different sizes of
biases. Furthermore, the stride computation remains the
same.

Compared to the structure in Figure 1 nothing changes
for the buffering of the input image and the sliding window.
As pointwise convolution only performs 2D convolution
operations, Figure 2 omits the summation blocks. This
eliminates the need for inter-loop summation and the
conversions for floating-point numbers. Except for the
amount of weights and convolutions, the rest of the structure
in Figure 2 remains. The conditions when a vector is
read from the input image or when it is written to the
output image only change in such a way that the following
conditions are omitted: (o = 0) for the input and (i =
( IFM

Vi
− 1)) for the output. This also implies that the stride

calculation remains the same.

3.2.3 Pooling

The purpose of the Pooling layer is to reduce the spatial
size of the image to reduce the number of parameters and
calculations in the neural network. The pooling operation
works independently on each feature map. Similar to a
2D convolution a window slides over an input image.
To calculate the output, the values in the window are
either averaged or the maximum value is taken. With the
help of a stride, pixels can be skipped so that the output
image becomes smaller than the input image. The following
equation is used to calculate the stride in x direction:

Stridex =
⌊

COLsrc + 2 · Padx − Kx

COLdst

⌋
(2)

The window (Kx×Ky) can have any size between (1×1)

and (ROW × COL). Like in the convolution filters zero
padding can be applied. The padding size (Padx,y) is in

the range between (0) and
⌊

Kx,y

2

⌋
. The calculated Stridex,y

is in the range between (1) and (Kx,y). The overall
structure of the function is very similar to the pointwise
convolution, without the need of buffering coefficients. The
total latency only differs slightly, since the padding size is
not fixed: ((ROWsrc+Pady)×(COLsrc+Padx)× IFM

Vi
).

For average pooling the sum of all window elements is
calculated and then multiplied by the normalization. For
fixed-point values an additional operation is needed that
shifts the result back to the desired fixed-point position
(FP ).

avg = ��sum ·
⌊

2FP

Ky · Kx

⌋

︸ ︷︷ ︸
normalization

� ·2−FP
︸ ︷︷ ︸
shif ting

� (3)

3.2.4 Activation

The Activation function is a crucial component in CNNs.
In general, the function is connected to each neuron in the
network and determines whether it should be activated or
not. Table 1 shows the 9 implemented activation functions,
which have been defined in the OpenVX standard. For
fixed-point numbers the overflow policy needs to be applied
to the following functions: sof trelu, square and linear .
In addition, an overflow can occur when calculating the
absolute function for a signed data type and if the value is
the smallest possible. For fixed-point numbers the rounding
policy must to be applied to the following functions:
logistic, sof trelu, square and linear . The logarithmic
and exponential activation functions are computed using
floating-point operations, due to the high range of possible
values and the resulting accuracy loss when using fixed-
point numbers. Therefore, conversions are needed for
fixed-point input and output images using multiplication
operations. As shown in the table, the hyperbolic tangent
function is calculated with 1 repeated exponential function
and 1 division to the reduce resource usage. The most
resource efficient fixed-point square root was the one from
the Xilinx HLS library. It is automatically selected, when
using Xilinx tools, otherwise HiFlipVX proposed functions
is used [17]. The activation function can be computed in
parallel (V ) in a SIMD manner on the 3D input image. The
latency of the hardware function is: ROWS ·COLS · IFM

V
+

P .

3.2.5 Batch Normalization

Batch Normalization is a technique to improve the stability
and performance in neural networks. The core idea is that
the inputs of each layer of an image are normalized so
that the mean output activation is zero and the standard
deviation is one [11]. The Batch Normalization calculates
a mini-batch (B) over a set of pixels values (xi): B =
{x1, x2, ..., xIFM}. Considering a three dimensional input
image (srcx,y,i), the mini-batch would be calculated over

Table 1 Implemented activation functions.

logistic f (x) = 1
e−x

hyperbolic tangent f (x) = a · tanh(b · x) = a · e2·b·x−1
e2·b·x+1

relu f (x) = max(0, x)

bounded relu f (x) = min(a, max(0, x))

soft relu f (x) = log(1 + ex)

abs f (x) = |x|
square f (x) = x2

square root f (x) = √
x

linear f (x) = a · x + b
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the third dimension of size IFM . It first calculates the mean
(μ) of the pixel values, as shown in Eq. 4. Using the the
mean value, the variance (σ 2) is calculated, as shown in
Eq. 5. Using the mean, variance and a set of pre-trained
values (γi, βi), the output image pixels are calculated, as
shown in Eq. 6.

μ = 1

IFM
·
IFM∑

i=1

xi (4)

σ 2 = 1

IFM
·
IFM∑

i=1

(xi − μ)2 (5)

yi = γi · xi − μ√
σ 2 + ε

+ βi (6)

A straightforward way to compute this function would
be in three separate loops iterating over the 3rd dimension,
nested in the loops iterating over the 1st and 2nd
dimensions. With this approach only one output pixel is
generated every 3 clock cycles for a parallelization degree
of zero. Therefore, we created three functions to compute
μ, σ 2 and yi , which are used in a pipelined manner inside
the three nested loops. As a result, the overall latency is as
follows: (ROWS ·COLS + 2) · IFM

V
+P . Two times IFM

V

additional clock cycles are required, since each mini-batch
must pass through these three stages in a pipeline manner.
The input data of a mini-batch (B) is stored in a buffer in the
first stage to be used for the next two stages. Since there are
3 stages, 3 consecutive input vectors of size IFM must be
stored in buffers. The weight vectors γ and β are read in the
third stage at the first use and buffered for the further use.

To calculate (μ) and (σ 2) a sum of values must
be computed. Like in the convolution filter, the sum is
computed using fixed-point numbers, because a floating-
point sum increases the latency by a factor of 5. Therefore,
floating-point numbers are converted and saturated to a 32-
bit wide integer value. Since the normalization ( 1

IFM
) is a

constant, it can be pre-computed to replace the division by a
multiplication. Both calculations are easy to vectorize, since
only the sum needs to be parallelized. For the parallelization
of the last stage which computes yi , the term 1√

σ 2+ε
can be

pre-computed once. This has a big impact on the resource
usage when vectorizing the function, since the division and
square root are the most resource consuming functions. Due
to the accuracy, 1√

σ 2+ε
is calculated using floating-point

numbers.
There are different variants of the Batch Normalization.

One of them avoids the calculation of (μ) and (σ 2). In
this variant, the two values are passed to the function as
additional parameters, as shown in Eq. 7. Since both values
are constants, the value of (ci) can be pre-calculated after
training the neural network. As a result, this variant of the

Batch Normalization is very resource-efficient. The latency
of the hardware function is: ROWS · COLS · IFM

V
+ P .

dsti = γi · (srci − μi) · ci + βi, ci = 1
√

σ 2
i + ε

(7)

3.2.6 Fully Connected

The Fully Connected layer is an essential component of
most CNNs. It is one of the last layers and is used for
the final classification decision. Simplified it is a 3D
convolution with a (1 × 1) kernel on an image with (1 × 1)

pixel. However, the IFM and OFM can be very large.
The weights, biases and input image are buffered on first
use. However, since each weight/bias is read only once per
image, it is recommended not to buffer them if the weight
matrix becomes too large. The summation of Eq. 8 has been
implemented using fixed-point numbers for the floating-
point implementation. Therefore, the multiplication result
is converted and saturated to a 32-bit wide number before
summation and converted back afterwards. Fixed-point
numbers were used, since a summation with floating-point
numbers increased the total latency by a factor of 5. The
fixed-point position is set by a parameter. Depending on the
degree of parallelization, V multiplications are calculated
in parallel and added together. After summation, the data
must be shifted back due to the fixed-point multiplication
according to the rounding policy. Then the bias is added.
When using fixed-point values, the result is converted back
to the output format according to the overflow policy. The
latency of the hardware function is: OFM · IFM

V
+ P .

dstof m =
IFM∑

if m=1

(srcif m · weightof m,if m) + biasof m (8)

3.2.7 Softmax

The Softmax layer normalizes an input vector into a
probability distribution and limits the output to a range
between 0 and 1. It is used to determine the probability of
several classes at once. The calculation shown in Eq. 9 is
done in two parts. The first part computes the sum and stores
the exponents of the inputs into a buffer. Due to the high
range of values in this function all operations are done using
floating-point operations. However, for the same reason
as in the previous functions, the summation is calculated
using fixed-point numbers. Therefore the exponent result
is converted and saturated into a 32-bit fixed-point number
before summation. For each element in the input vector,
(V ) exponents are calculated, stored and added to the
summation. The second part calculates the division of
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Eq. 9. For fixed-point numbers, the division result must
be shifted (multiplied) to the correct position according
to the rounding policy. Depending on the parallelization
degree, (V ) output elements are computed. The latency of
the hardware function is: 2 · IFM

V
+ P .

dstif m = esrcif m

∑IFM
i=1 (esrci )

(9)

3.3 MobileNets Architecture

MobileNets [9] were presented by Google Inc. and were
developed for mobile and embedded vision applications.
MobileNets utilizes a combination of depthwise separable
convolutions and pointwise convolution to form lightweight
deep neural networks. These networks also introduced two
global parameters for the width and resolution multiplier
to define different sizes of the networks. The different
networks based on these parameters have different latency
and accuracy. This allows using optimum networks to match
the design requirements of the system.

MobileNets architecture is based on depthwise separable
convolution as mentioned before. A standard convolution
can be factorized into a depthwise convolution and a
pointwise convolution. Depthwise separable convolution
separates filtering and combines inputs into two layers,
on contrary to a standard convolution. This factorization
of the convolution layer results in a reduction in model
size and computation requirements of the algorithm. This
concept is used in MobileNets in order to have light-
weighted neural networks. The first layer of MobileNets
is a full convolution layer. Later layers are a combination
of depthwise convolution and pointwise convolutions. All
convolutions are followed by a Batch Normalization layer
and activation layer (ReLU). The final Fully Connected
layer has no non-linearity and is followed by a Softmax
layer. Before the final Fully Connected layer an average
pooling is used to reduce the spatial resolution. In total
MobileNets has 28 layers.

Figure 3 shows the hardware implementation of the
different layers of MobileNets, which is parameterizable.
The different modules are interconnected, with module 1
containing the first layer and module 15 the last layer,
creating a very deep pipeline. The input of the first layer
in module 1 is connected to a data width converter and
gets its data from the global memory. To optimize the
memory bandwidth, it receives an e.g. 64-bit wide input
and converts it to the desired vector size (VIFM) of the 3D
convolution. The output vector (VOFM) is then converted
to the vectorization (VPW ) of the Batch Normalization and
activation layers. All layers and conversion units of the
pipeline are connected via very small FIFO buffers. They
are marked by a thicker line in the figure.

The modules 2 to 14 all have the same structure with
different parameter settings. The first three layers, which
include a depthwise convolution, Batch Normalization and
activation layer, all have the same degree of parallelization
(VDW). Again, the data for pointwise convolution must be
converted to (VIFM) and then to (VOFM). The last two
layers have a parallelization degree of (VPW ). With these
4 vectorization parameters (VDW , VIFM, VOFM, VPW ) the
optimal configuration for the desired amount of resources
can be found, as shown in the evaluation. Data width
converters can also be connected between the various
modules. However, they were not needed in the final
configuration.

Module 15 contains the last layer and its output is
therefore connected to a e.g. 64-bit wide DMA via a data
width converter. This module only needs the parameter
(VDW) for pooling and the parameter (VIFM) for the input
of the Fully Connected layer. The Softmax layer is not
computationally intensive enough to become a bottleneck.
In general, the vector parameters must be set so that no
single layer becomes a bottleneck, since the slowest layer
limits the speed of the others. The different modules contain
scatter engines to distribute all coefficients to the local
buffers. This allows all coefficients to be preloaded with
optimal utilization of the memory bandwidth. The scatter
engine also reduces the number of DMAs needed to access
memory to load new coefficients. They require data width
converters, since each local buffer has a different depth of
its elements depending on the degree of parallelization of
the corresponding layer. The HiFlipVX data converter can
also convert between widths that are not multiples of each
other. Therefore the data for the different local buffers must
be aligned to the data type of the scatter engine in global
memory.

3.4 High-Level Synthesis Directive Usage

In this work we use 8 different directives (pragma
HLS): inline, interface, data pack, dataflow,
stream, resource, pipeline, array partition.
All internal and callable library functions are inlined using
the inline directive.

The interface directive is only needed in wrapper
functions, which instantiate the library functions and set the
template parameters. There is an example test bench for
each function of the library and the different MobileNets
layers in the main file. When using Xilinx SDSoC no
interface directive is be needed. For the SDSoC tool
we set the ap fifo protocol for all ports. For Xilinx
Vivado HLS we set the AXI4-Stream (axis) protocol
as interface for the ports. It is a simple handshaking
protocol most Xilinx IP-Cores use. Additionally, we
deactivate the control port of all IP-Cores in Vivado HLS
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Figure 3 Block design of the MobileNets hardware implementation.
MobileNets has been separated into 15 modules. The modules are
directly connected to each other in the order of their numbering. Local

buffers are marked in light gray. Data movers blocks are marked in
dark gray. Multiple scatter units can be connected to the same DMA.

(ap ctrl none port=return). This port should not
be deactivated for SDSoC. The ( SDSCC ) macro is
globally set by the SDSoC tool and is used by our
library to automatically switch between the two Xilinx
tools. Setting the ap fifo ports and using the C99
style for arrays, our library does not need any specific
SDSoC directives (pragma SDS). As mentioned in
Section 3.2, we use the (vx image data<DATA TYPE,
VEC SIZE>) data type for the function ports, to apply
vectorization and set the last and user bits of the AXI4-
Stream protocol if needed. To achieve the full bandwidth,
all callable library functions use the data pack directive
for their ports. Additionally, we use the data pack
directive for our internal buffers and FIFOs, to reduce the
fragmentation of the utilized (BRAMs).

The dataflow directive enable task-level pipelining. It
is needed to create the streaming applications in the three
different MobileNets layers shown in Figure 3. To enable
streaming between the different functions of the MobileNets
layers, FIFOs are needed. Therefore, the stream directive
is used for these FIFOs using a depth of 8. The small
depth allows to use LUTs instead of BRAMs for the FIFOs,
since BRAM is often a limiting resource. Within all library
functions we use the pipeline directive with the goal to
achieve an initiation interval of one. Since all loops below
the pipeline directive are unrolled automatically, there is
no need of using the unroll directive.

Therefore, the resource directive is set to
FIFO LUTRAM for these FIFOs. For most internal buffers,
shown in Figures 1 and 2, we set the resource directive to
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use LUTs (RAM 2P LUTRAM) or BRAMs (RAM 2P BRAM)
depending on their size. RAM 2P BRAM has been used for
most weight and line buffers. RAM 2P LUTRAM has been
used for most bias, window and input buffers. The use of
the resource directives should be used with caution,
since it can also have a negative effect. In most cases it is
advisable to give the tool the choice, because then it can
select according to the total resource usage, bit-widths and
selected frequency. The array partition directive is
needed if the LUT and BRAM memories do not provide
the required bandwidth. E.g. to separate the window buffers
of Figure 1. The array partition directive is also
used quite often to completely partition C++ arrays into
registers, like for the white boxes in Figure 1.

4 Evaluation

In this section a detailed evaluation of the different
functions of the library is made. Different parameter settings
are evaluated to make general assumptions. Furthermore,
designing larger algorithms is evaluated using MobileNets.

4.1 Single Layers

This part evaluates the different layers of the proposed
library. We tested the design on a ZCU104 MPSoC FPGA
from Xilinx using the 2019.1 tool chain including SDSoC
and Vivado HLS. To obtain the implementation results,
we built a design with SDSoC and took the results of the
single functions from the Vivado project. All functions in
the library have several parameters which can be changed at
compile time. Table 2 shows the default configuration of the
parameters of the different layers tested in this evaluation.
The table also shows the high configurability of the library.

On the left side of the table are the normal parameters
of a neural network, which are also needed in non-FPGA
designs. Additionally we support 2 pooling types and 9
activation function types. In our terminology, batches are

Table 2 Default configurations for the changeable parameters of the
different layers.

batches 4 vif m 1

input 64x64 vof m 1

output 64x64 frequency 100 Mhz

IFM 32 data type uint8

OFM 32 bias data type uint8

bias size OFM fixed point position 8

kernel size 3x3 overflow saturate

pooling size 2x2 rounding to zero

padding size 1x1 buffer coefficients yes

images that are processed one after the other. Increasing
this parameter has the advantage that a function can read in
pixels of a new image before it has finished the calculation
of the last image. Coefficients can be buffered on first use,
which does not need to be repeated for the other input
images (batches). The batch size can be set for all functions
in the library. The input resolution can differ from the output
resolution, but has to be bigger. This is only possible for
the two convolution functions and the pooling function to
implement a stride. Only the 3D convolution and the Fully
Connected layers have both (IFM) and (OFM), all other
functions only have one feature map (IFM). For resolution,
batch amount and the feature map size we allow a value
between 1 and 2028. The bias size can be (0), (OFM) or
(BAT CHES·OFM) for the two convolution functions and
the Fully Connected layer. The kernel size can be changed
for the two convolution functions and is (n × m), where (n)

and (m) can be different but must be odd numbers and must
be in the range of 1 and 9. It is the same for the pooling
size, but the numbers can also be even. Pooling and padding
sizes can only be set for the pooling function. The padding
size can be between 0 and the half of the pooling size. The
convolution functions automatically use a padding, which is

the half of the kernel size
(⌊

Ky,x

2

⌋)
.

On the right side of the table there are parameters
that are more specific to the FPGA design, such as
frequency changes. The (VIFM) parallelization is used
in all functions. The (VOFM) parallelization is only
needed for 3D convolution and Fully Connected layers,
for exploration and to further improve the performance.
For both parallelization parameters we allow a value
between 1 and 128. We allow different data types for
the inputs/outputs and weights of the different layers
(int8, uin8, int16, uint16, float32). The
biases can have a different data type if fixed-point
numbers are used (int8, uin8, int16, uint16,
int32, uint32, float32). This approach has been
suggested by some CNN algorithm implementations. The
fixed point position determines the size of the fraction
and must be below the number of digits of the data type.
For signed data types, at least 1 bit is required for the
integer part. For arithmetic calculations, mainly for fixed-
point numbers, we must check for overflow and perform
the wanted rounding policy. If an overflow occurs data can
either be truncated or saturated to its maximum/minimum
value. For fixed-point arithmetic operations, the data can be
rounded to zero or the nearest number. Coefficients (weights
and biases) can be buffered during execution within the
function (buffer coefficients). In Figure 3, this
is done outside the function to increase efficiency of the
coefficient reading process.

To verify the correctness of the library functions, we
calculate the mean absolute percentage error (MAPE) of
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Table 3 MAPE (mean absolute percentage error) between the 32-
bit floating point baseline software implementation and the various
hardware implementations.

layers uint16 int16 float32

3D convolution 0.3413 0.6804 0.00003

depthwise conv. 0.0127 0.0261 0.00000

pooling (max) 0.0000 0.0000 0.00000

activation (relu) 0.0000 0.0000 0.00000

batch normalization 0.0390 0.1012 0.00004

fully connected 0.0000 0.3421 0.00000

softmax 0.2104 0.4245 0.00001

our hardware implementation compared to a floating-point
baseline one. Table 3 shows the results using the default
configuration and quantized random input numbers in the
range between 0 and 1, where {x ∈ R|0 ≤ x < 1}. The
calculation of MAPE has a problem if the divisor is zero.
Therefore we do not consider results where the divisor is
less than 10−6. The fixed-point positions for the data type
in the table are 16 (uint16), 15 (int16) and 24 (float32). The
MAPE of 0.68% for the 3D convolution is due to the high
number of multiplications and additions for each output
pixel. A similar behavior can be observed with the other
functions, where many variables have to be added and/or
multiplied together. The float32 computation can have a
very small error for the functions that have to calculate a
sum over several loops, because we had to use fixed point
arithmetic for this summation. Of course, if numbers had to
be saturated, the MAPE would be higher, but this was not
meant to be proven by this approach, since it is generally the
case for fixed point numbers.

Table 4 shows the resource utilization of the implemented
and synthesized (grey) designs using the default configura-
tion. In this table, the Softmax and Fully Connected layers
have 256 IFM and 256 OFM , since the resolution for
these layers is (1 × 1). As it can be seen from the table,
the difference between the estimated synthesis results from
SDSoC and the implemented results from Vivado is quite

large for FFs and LUTs. The implementation results in
the table do not include the additional blocks that SDSoC
integrates into the HW design. The DSP behavior is dif-
ferent because we let the tool decide whether to use LUTs
or DSPs for the arithmetic calculation, as this can vary
depending on the application. The Fully Connected layer
usually has many coefficients and therefore requires a lot
of BRAM. Therefore, it may make sense not to buffer
the weights, since each weight is only required once per
batch. The 3D convolution consumes more BRAM than
the depthwise convolution because it has to buffer more
coefficients.

In addition, the table shows the estimated latency per
batch. As it is well known, the process of 3D convolution
is the most computationally intensive part in many CNN
algorithms and must therefore be parallelized more. The
Softmax function is the least computationally intensive
function and could therefore be executed on a CPU in a
HW/SW co-design, as this function is also quite resource
intensive. By adding the proposed multi-stage pipelining
approach, Batch Normalization can calculate the three
internal functions almost in the same time as the activation
layer. Due to this approach and the computationally
intensive operations like division and square root, more
resources are needed. Depthwise convolution and pooling
require some additional cycles due to the line buffers.

Table 5 shows the resource usage of the implemented
design from the various activation functions using unsigned
16-bit data types. As expected, all functions that include an
exponent, logarithm, or division in their equation consume
more resources. Using exponential functions instead of
the hyperbolic functions could reduce resource usage. For
the square root function, there is an option for relaxed
mathematical calculation to reduce resource usage by
reducing the precision of the fraction part. The difference
in accuracy can be seen with a MAPE of 0.37 %. Due to
the accuracy, mainly floating point operations were used
for the computational-intensive functions. However, due to
quantization, there is still a small error rate left for these
functions.

Table 4 Resource utilization and latency per batch of implemented (black) and synthesized (grey) designs.

Fully Connected and Softmax layers have 256 IFM and 256 OFM
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Table 5 MAPE (mean absolute percentage error) and resource
utilization of the implemented design of the various activation
functions using unsigned 16-bit data types.

BRAM DSP FF LUT MAPE

logistic 0 15 1362 2146 0.00126

hyperbolic 0 17 1549 2370 0.02543

relu 0 0 26 17 0.00000

brelu 0 0 26 25 0.00000

softrelu 0 28 1418 2112 0.00144

abs 0 0 26 17 0.00000

square 0 1 28 28 0.00000

sqrt 0 0 164 384 0.00139

sqrt (relaxed) 0 0 113 243 0.36990

linear 0 0 26 25 0.00000

Figure 4 shows the relative resource usage for various
parameter settings compared to the default configuration.
As expected, a change in frequency mainly increases the

FFs (43% on average), but also the LUTs (8% on average).
However, it has no effect on the BRAMs or DSPs. For
designs with higher accuracy or for fast integration and
testing, the library also supports floating point numbers.
They have no effect on the latency of the various library
functions, except for additional pipeline stages, but have a
high impact on resource utilization: +432% LUTs, +784%
FFs and +423% DSPs. When using 16-bit fixed-point values
to increase accuracy, there is only a small increase for
LUTs (25%), FFs (17%) and DSPs (2%). This again shows
the importance of quantization in FPGAs. The BRAM
usage always scales with the bit width of the data type
used. Increasing the kernel size has a similar effect for 3D
and depthwise convolution. In both cases the DSPs grow
with the kernel size. The BRAM increase depends on the
coefficient size (ky × kx) and the line buffer amount of
(ky −1). LUTs and FFs are only increased by 85% and 65%
respectively for 2.78× the amount of weights.

A more detailed investigation of parallelization was done,
because finding the right parameters is important for an
efficient and performant design. The Batch Normalization

Figure 4 Relative resource utilization for various settings compared to the default configuration. Value is not reported if it is zero. 3D convolution
has a vectorization of vif m × vof m.
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layer scales well with parallelization because resource-
intensive functions do not need to be calculated multiple
times as described in Section 3.2.5. Only the increase
in DSPs approximates to a linear behavior. The DSPs
of all other functions scale linearly with the degree of
parallelization. The LUTs and FFs of the Pooling layer
scale less than linearly with the degree of parallelization.
The Fully Connected layer even shows a reduction of FFs
and BRAMs due to fragmentation. The 3D convolution has
a combined vectorization of (VIFM × VOFM). Different
combinations of (VIFM) and (VOFM) were tested to find an
optimized combination. The combined vectorization results
in a parallelization (V ) for 2 (1 × 2|2 × 1), 4 (4 × 1|4 ×
4|2 × 2), 8 (8 × 1|1 × 8|4 × 2|2 × 4) or 16 (16 × 1|1 ×
16|8×2|2×8|4×4). Some assumptions can be made when
comparing these combinations. The greater the imbalance
between (VIFM) and (VOFM), the more resources are used
on average. If, for the same (V ), (VIFM) is greater than
(VOFM), the average usage of LUTs and FFs increases
slightly by 6% and 10% respectively. On the contrary, a high
(VIFM) can cause more BRAM to be used if it worsens line
buffer fragmentation.

Additionally, one 3D convolution layer has been imple-
mented with a high parallelization to show the perfor-
mance improvement in comparison to a baseline imple-
mentation, which is running on the ARM processor of the
ZCU104 MPSoC at a frequency of 1.2 GHz in release mode
using the O3 optimization option. Using the same default

configuration with (VOFM = 8), (VIFM = 8) and a fre-
quency of 200 MHz, an acceleration of 260 was achieved
when the convolution function was executed on the real
system using SDSoC. The measurements were performed
with the ARM processor, on which no operating system is
running. The consumed resources for the convolution func-
tion are: 8858 LUTs, 7679 FFs, 576 DSPs and 66 BRAMs.
The BRAM has increased due to fragmentation and a high
demand of on-chip bandwidth. The execution time of the
hardware is 837μs, which includes the cache flushing and
data movement between the FPGA and DMA.

4.2 MobileNets

Before implementing the MobileNets layers onto hardware,
the optimal parameters must be set. When creating a deep
pipeline, the system normally is as fast as its slowest
component. Table 6 shows our offline calculations for an
optimal setting of the different modules containing the
MobileNets layers. All parameters, which are not reported
in the table use the default configuration. The parameter
values for the resolution and feature maps are set by the
algorithm. Using the latency equations of Section 4.1, the
estimated latency can be calculated. The number of pipeline
stages was ignored in this estimation as it has almost no
impact. The maximum latency in the right column shows the
bottleneck of the design. In the next step, the vectorization
(V ) settings discussed in Section 3.3 are adapted to improve

Table 6 Shows proposed vectorization (V ) setting for MobileNets layers of Section 3.3.

Resolution Parallelization Estimated Latency (clock cycles)

input output IFM OFM vdw vif m vof m vpw dwconv dwbn pwconv pwbn max

1 224x224 112x112 3 16 – 3 8 2 101250 100368 101250

2 112x112 112x112 16 32 2 8 8 4 102152 100368 100352 100368 102152

3 112x112 56x56 32 64 4 8 8 2 102152 25104 100352 100416 102152

4 56x56 56x56 64 64 2 8 16 2 103968 100416 100352 100416 103968

5 56x56 28x28 64 128 2 8 8 1 103968 25152 100352 100608 103968

6 28x28 28x28 128 128 1 8 16 1 107648 100608 100352 100608 107648

7 28x28 14x14 128 256 1 8 8 1 107648 25344 100352 50688 107648

8 14x14 14x14 256 256 1 8 16 1 57600 50688 100352 50688 100352

9 14x14 14x14 256 256 1 8 16 1 57600 50688 100352 50688 100352

10 14x14 14x14 256 256 1 8 16 1 57600 50688 100352 50688 100352

11 14x14 14x14 256 256 1 8 16 1 57600 50688 100352 50688 100352

12 14x14 14x14 256 256 1 8 16 1 57600 50688 100352 50688 100352

13 14x14 7x7 256 512 1 8 8 1 57600 13056 100352 26112 100352

14 7x7 7x7 512 512 1 8 16 1 32768 26112 100352 26112 100352

15 7x7 1x1 512 1000 1 8 1 1 25088 64000 2000 64000

Latency is calculated for functions in Figure 3 separately without pipeline stages. Depthwise (dw) & pointwise (pw) latency of Batch
Normalization (bn) & convolution are reported. Maximum latency of all functions within a layer is shown on the right
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Table 7 Final results of the three MobileNets modules shown in
Section 3.3 executed separately on the ZCU104.

module 1 module 2 module 15

ARM (ms) 34.166 53.221 9.944

FPGA (ms) 0.966 0.902 0.489

speed-up 35.4 59.0 20.3

LUT 11881 16914 10579

FF 13265 16660 5773

DSPs 237 140 27

BRAM 1 20 263.5

The FPGA runs at 200 MHz

the max latency, while keeping the available resources for
DSPs and BRAMs into account. Since these two resources
can be easily estimated and are in most cases the limiting
resources for CNNs. The activation layer is not taken into
account, since it has the same parallelization as the Batch
Normalization, but a slightly lower latency. In the table:
(vdw) refers to (dwconv) and (dwbn); (vif m) and (vof m)

refer to (pwconv); (vpw) refers to (pwbn). For module 15,
(dwconv) refers to the Pooling layer and (pwbn) to the
Softmax layer.

Table 7 shows the final implemented design executed
on the ZCU104 MPSoC in baremetal. A baseline software
implementation uses 32-bit floating point numbers and
runs on the ARM processor at a frequency of 1.2 GHz
in release mode using the O3 optimization option. Our
proposed implementation uses 8-bit unsigned numbers and
runs on the FPGA at a frequency of 0.2 GHz. The time
measurements have been done using the ARM processor. A
good speed-up has been achieved for the single modules.
Module 2 has the highest speed-up, since it has the highest
parallelization degree and contains most functions executed
in a streaming manner. For module 1 and 2 also a frequency
of 300 MHz was possible. When combining all modules to
a very deep pipeline this speed-up would be even higher.
When comparing the FPGAs computation time with the
estimated time of the slowest function in Table 6, there

Table 8 Comparison with a state-of-the-art implementation of
computational intensive layers of the SSD-MobileNets-V1 algorithm.

Layer 1 Layer 7 Layer 27 Layer 29

CPU [19] 2000.00 9000.00 5500.00 11000.00

Accelerator [19] 10.00 30.00 55.00 110.00

ARM Cortex A-53 82.89 339.41 377.65 82.64

Proposed 1 (VIFM × VOFM ) (3x2) 11.38 (8x8) 6.08 (8x8) 9.52 (2x4) 11.45

Proposed 2 (VIFM × VOFM ) (3x4) 5.95 (8x16) 3.38 (8x16) 4.92 (4x4) 5.89

All results are in ms. VIFM : Parallelization of the Input Feature Map. VOFM : Parallelization of the Output Feature Map

is some overhead for streaming multiple functions in a
pipeline, data moving between the DDR and cache flushing.
This overhead is 90.8%, 76.6% and 52.9% for the modules
1, 2 and 15. When executing the layers sequentially, these
numbers would be higher. To verify the propagation of the
error, the MAPE value was computed for 16-bit unsigned
fixed-point numbers. It was 0.21%, 0.79% and 0.78% for
the modules 1, 2 and 15. The resources listed in the table
contain only the modules and no DMAs. When considering
the ZCU104 the resource usage is sufficient to fit all layers.
For this case, the Ultra Rams would be needed and the Fully
Connected layer in module 15 should not buffer its weights.

4.3 Comparisons to Related Work

Hassan et al. [8] presented a HW/SW co-design implemen-
tation of AlexNet on an FPGA. They performed the first
layer of AlexNet on hardware and achieved 2147483647
clock cycles, which would be approximately 10.7 ms when
considering a frequency of 0.2 GHz. For comparison,
a similar convolution layer was implemented using our
library with the same frequency, same parameters and 8-bit
unsigned integer data types. The implemented convolution
layer had a latency of 3.31 ms, which is a speed-up of
3.23. For the same layer, our work shows almost 73% less
BRAM usage, demonstrating the proposed library’s ability
to reduce the memory consumption of large neural networks
on FPGAs.

Liu et al. [19] proposed and developed a CNN accelerator
for the Xilinx ZYNQ-7100 platform. They implemented the
SSD-MobileNets-V1 [31] layers as test application for their
proposed work. The proposed work is also HLS based and
uses Vivado HLS 2016.4. We implemented the most time
consuming SSD-MobileNets-V1 layers and compared them
with the work of Liu et al. in Table 8. For our hardware
and software implementations we used the Zynq ZCU102.
For measurements we executed the algorithms on the board
and measured them from the ARM processor. We show
the CPU and FPGA results of our work and of Liu et
al. [19]. Both implementations run at 100 MHz, to have
a fair comparison, but higher frequencies can be achieved
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with our implementation. The table shows the execution
times for different parallelization settings for IFM and OFM
of our implementation. The Proposed 2 settings should
be the maximum possible in terms of available resources,
if the complete algorithm is ported to the ZCU102 and
the different functions stream their results between each
other. If we compare the results of Layer 27 and Layer 29
of the SSD-Mobilenet-V1 network, our execution time is
11.2x and 18.7x times faster. When computing the complete
streaming network of SSD-Mobilenet-V1, Layers 1 and
27 would be the bottleneck. This is intended, since layers
1, 27, 29, 31 and 33 of SSD-Mobilenet-V1 are the only
layers with a 3 × 3 convolution kernel. Therefore, we
used these layers as roofline, since they consume more
DSPs than the other layers. For our work, we propose to
use a quantization technique, like the TensorFlow post-
training quantization [1]. This will allow us to use smaller
parameters thus saving resources and power. For our work,
we used unsigned 8-bit integers as data types for inputs,
outputs, weights and biases. Wu et al. [35] investigated the
mathematical aspect of quantization parameters on different
neural networks. Also, an 8-bit quantization workflow is
presented where an accuracy within 1% of the floating-point
baseline is maintained. Therefore quantized parameters with
smaller bit widths should be used instead of floating-point
parameters. As it maintains a reasonable accuracy, achieves
a higher speedup and saves resources.

5 Conclusion

In this work we have shown an HLS FPGA library
for neural networks. It contains 7 different streaming
capable functions to create large neural networks with deep
pipelines. Due to the high parameterization of its functions
the library is suitable for embedded and HPC systems. The
integration in HiFlipVX allows the use of further image
processing functions. Although the library was optimized
by Xilinx HLS directives, it was implemented in a way that
it is vendor independent. The different parameter settings
and parallelization possibilities were investigated in the
evaluation to make conclusions for the user. The evaluation
also shows the low error rate, high performance, scalability
and resource efficiency of the library. Using the MobileNets
algorithm we show how to efficiently create and optimize
larger designs. An efficient approach to transfer coefficients
and a way to find the optimal vectorization parameters
were shown. In future, we plan to enhance the library to a
framework, which uses the OpenVX graph-based approach.
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2. Akgün, G., Kalms, L., Göhringer, D. (2020). Resource efficient
dynamic voltage and frequency scaling on xilinx fpgas. In
International symposium on applied reconfigurable computing
(ARC) (pp. 178–192).

3. Chen, Y., He, J., Zhang, X., Hao, C., Chen, D. (2019). Cloud-
dnn: an open framework for mapping dnn models to cloud
fpgas. In Proceedings of the international symposium on field-
programmable gate arrays (FPGA) (pp. 73–82). https://doi.org/
10.1145/3289602.3293915.

4. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen,
T., Xu, Z., Sun, N., Temam, O. (2014). Dadiannao: a machine-
learning supercomputer. In 47th annual IEEE/ACM international
symposium on microarchitecture (pp. 609–622).

5. Giduthuri, R., & Pulli, K. (2016). Openvx: A framework for
accelerating computer vision. In SIGGRAPH ASIA 2016 Courses
(pp. 14:1–14:50). https://doi.org/10.1145/2988458.2988513.

6. Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen, X., Sun,
G., Zhang, W., Cong, J. (2017). Fp-dnn: An automated framework
for mapping deep neural networks onto fpgas with rtl-hls hybrid
templates. In 25th annual international symposium on field-
programmable custom computing machines (FCCM) (pp. 152–
159).

7. Guo, K., Sui, L., Qiu, J., Yu, J., Wang, J., Yao, S., Han, S.,
Wang, Y., Yang, H. (2018). Angel-eye: A complete design flow
for mapping cnn onto embedded fpga. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(1),
35–47.

8. Hassan, R., & Mostafa, H. (2020). Implementation of deep
neural networks on fpga-cpu platform using xilinx sdsoc Analog
Integrated Circuits and Signal Processing. https://doi.org/10.1007/
s10470-020-01638-5.

9. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., Adam, H. (2017). Mobilenets:

528 J Sign Process Syst (2021) 93:513–529

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://doi.org/10.1145/3289602.3293915
https://doi.org/10.1145/3289602.3293915
https://doi.org/10.1145/2988458.2988513
https://doi.org/10.1007/s10470-020-01638-5
https://doi.org/10.1007/s10470-020-01638-5


Efficient convolutional neural networks for mobile vision
applications. arXiv:1704.04861.

10. Intel (2020). Intel FPGA SDK for OpenCL Pro Edition:
Programming Guide 19.4.

11. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167.

12. Ji, S., Xu, W., Yang, M., Yu, K. (2013). 3d convolutional neural
networks for human action recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(1), 221–231.

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-
shick, R., Guadarrama, S., Darrell, T. (2014). Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the
22nd ACM international conference on multimedia (pp. 675–
678).
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