Journal of Signal Processing Systems (2021) 93:745-751
https://doi.org/10.1007/s11265-021-01644-4

Check for
updates

A LSTM-Based Anomaly Detection Model for Log Analysis

Zhijun Zhao' - Chen Xu' - Bo Li*?

Received: 22 October 2020 /Revised: 2 January 2021 / Accepted: 26 January 2021 / Published online: 5 February 2021

© The Author(s) 2021

Abstract

Security devices produce huge number of logs which are far beyond the processing speed of human beings. This paper introduces
an unsupervised approach to detecting anomalous behavior in large scale security logs. We propose a novel feature extracting
mechanism and could precisely characterize the features of malicious behaviors. We design a LSTM-based anomaly detection
approach and could successfully identify attacks on two widely-used datasets. Our approach outperforms three popular anomaly
detection algorithms, one-class SVM, GMM and Principal Components Analysis, in terms of accuracy and efficiency.

Keywords Anomaly detection - Log analysis

1 Introduction

The running state of the system is usually recorded in a log
file, used for debugging and fault detection, therefore the log
data is a valuable resource for anomaly detection. Log data is
natural time series data, contents and types of events recorded
by the log file also tend to be stable. Except for some highly
covert apt attacks, most of the attacks are not instantaneous
and have a fixed pattern, the log data will produce a pattern
when recording malicious behaviors, which provides the pos-
sibility to detect anomaly from the log sequence.

The traditional methods rely on the administrator to man-
ually analyze the log text. This kind of processes lead to a
large number of human power costs, and requires the system
administrator to understand the network environment and be
proficient in system architecture.

However, in order to avoid tracking by the security admin-
istrator, the logs generated by attacks are getting similar to the
logs generated by the normal access behaviors. In addition,
because of the large variety of applications and services, each
web node will generate a large number of logs, which results
in the log data file becoming extremely large. It may not be
possible to directly process these logs manually. These logs

> Bo Li
13121239987 @163.com

Jiaxing Hengchuang Electric Group Co.,Ltd, Information
Technology Brach, Zhejiang, China

School of Computer Science and Engineering, Beihang University,
Beijing, China

may contain signals of malicious behaviors, so it is necessary
to use some anomaly detection methods for analysis.

The existing automatic methods of anomaly detection
based on log data can be divided into two categories: super-
vised learning methods relying on tags, such as decision tree,
LR, SVM and unsupervised learning methods based on PCA,
clustering and invariant mining. Supervised learning has a
very good effect in detecting known malicious behavior or
abnormal state, but it cannot detect unknown attacks, as it
depends on prior knowledge. Unsupervised method can be
used to detect unknown exceptions, but most of the methods
need to improve the accuracy.

A exists research introduced use concept of the longest
common subsequence to reduce the number of matching pat-
terns obtained during the calculation [1], enabling simple clas-
sification of logs. Besides, Xu et al. uses association rules,
which are generated by trust scores, to mine frequent item sets,
and then detects attack behavior based on the association rules
[2]. Zhao et al. used a method based on character matching to
study the classification of system log, and determined the
correspondence between log type and character [3]. Seker.
S.E et al. took the occurrence frequency of letters as key ele-
ments to recognize log sequence, abstracting different types of
logs into different characters, and selects adaptive k-value
according to their characteristics [4]. The existing research
shows that there is a strong correlation between logs and their
character composition.

This model is based on LSTM sequence mining, through
data-driven anomaly detection method, it can learn the se-
quence pattern of normal log, and detect unknown malicious
behaviors, identify red team attacks in a large number of log
sequences. The model performs character-level analysis of the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-021-01644-4&domain=pdf
mailto:13121239987@163.com

746

J Sign Process Syst (2021) 93:745-751

log text directly, so there is no need to perform excessive log
processing, such as log classification, matching, etc., which
greatly simplifies the calculation complexity.

However, there are still some problems in the current mod-
el. For instance, it only performs character level analysis,
which may ignore some high-level features. A natural idea is
to analyze the logs hierarchically, but research founds that this
measure has not improved its performance [5], thus the rele-
vant methods need further study. In addition, since no log
correlation matching is performed, only abnormal log lines
can be alerted, and the anomaly level of each user cannot be
detected directly. A possible solution is to trace users through
log entries that are determined to be abnormal, but obviously it
is slightly verbose.

Contribution Through joint efforts, after discussing the exper-
imental together, Wenhao ZHOU completed the modification
of LSTM code and training of the model, Jiuyao ZHANG
completed the comparative experiments, and Ziqi YUAN
completed the writing of the article.

The first section of this paper introduces the background,
the goal of the model and the existing problems. The second
section introduces the methods used in the model, including
data processing methods, the specific structure of the LSTM
network, and the adjustment of parameters. The third section
compares this model with the methods in [5, 6] and illustrates
the advantages. The fourth section introduces the experiment,
including a detailed description of the data set, test indicators,
and comparison results compared with other methods such as
one-class SVM, GMM and PCA.

2 Anomaly Detection Approach

Our approach learns character-level behaviors for normal
logs, processing a stream of log-lines as follows:

(1) Initialize weights randomly

(2) Train the model with log data of the first n days

(3) For each day k (k>n) in chronological order, firstly
based on model My — |, which is trained by with log data
of the first k-1 days, produce anomaly scores for all
events in day k. Secondly, record per-user-event anom-
aly scores in rank order to analysts for inspection.
Thirdly, update model M, _; to My, as logs in day k
are used.

2.1 Log-Line Tokenization
The network log cloud be obtained from many sources. The

logs obtained from different sources are naturally generated in
different formats and record different information. In order to

@ Springer

expand the application scope of the model as much as possi-
ble, we consider each line of the logs as a string directly, and
take the character-level data as the input of LSTM directly.

Since only printable characters are considered, whose
range is from 0 x 20 to 0x7e, there are 95 characters in total.
Convert each word into its corresponding ASCII and subtract
30, so we get 0 for the beginning and 1 for the end. Then fill
the space with —1 to ensure the same length of each sequence
for training. An example is shown in Fig. 1.

2.2 LSTM Model

In order to calculate the anomaly score of each record, we
consider a calculation model for a single log line. RNN is a
common tool to deal with that kind of data. Specifically, we
use an LSTM network, whose input is the characters of each
log line, so as to predict the probability distribution of the next
character and infer the abnormal possibility of this log line, or
the user account.

Bidirectional Event Mode (BEM) For a log line with a character
length of K, let x(¢) be the character in position t, and h(¢) be
the hidden representation of the corresponding position of the
character. According to the relevant theory of LSTM [7], we
have the following relations

h(t) = o(t) - tanh(c(t)) (2.1)
C(I)Zf() c(r=1) +i(r) - g(2) (2.2)
8(1) = tanh(x(t)W(g,x) + h(1=1)W (g, h)) (2.3)
f(1)=o(()W(f x) +h(-=1)W(f, h) + b(f)) (2.4)
i(1) = o(x(t)W(i,x) + h(-=1)W (i, h) + b(i)) (2.5)
o(t) = o(x(t)W(o,x) + h(t=1)W(o, h) + b(0)) (2.6)

Among them, initial state h(0) and initial cell state ¢(0)are
preset as zero vectors, bullet symbol denotes element-wise
multiplication, and sigma represents logistic function with
standard parameters, that is

1
l14+¢e~

o(x) = (2.7)

05519181934384947191437192624206
343849471914 37192624201437192624
2014331433 143587867447 67 82145387
696971881-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
r-r-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1

Figure 1 Example of processed features of LSTM model.

J Sign Process Syst (2021) 93:745-751

747

Vector g represents the hidden value inferred from the cur-
rent input and the previous hidden state. Vectors f, i, o are the
standard forgetting gate, input gate and output gate in the
LSTM model. Matrix W and deviation vector b are the pa-
rameters used in the model.

In addition, since we can get all the contents of a log line
directly, and the characters in a certain position in a log line
are obviously related to their context content, we build a bidi-
rectional LSTM, or BiLSTM, which infers the character prob-
ability distribution in each position from the back to the front
meanwhile. For this reason, we add a new set of hidden vec-
tors h2(K + 1), h°(K)...h"(1), so the model could run the
LSTM equations in reverse at the same time. The superscript
b of reverse LSTM parameters shows its parameter matrix W.

The hidden value h is used to predict the characters in the
new position, and the result is p, specifically, we have

p(t) = sofimax(h(t=1)W(p) + h* (¢t + L)W’ (p) + b(p))
(2.8)

Compared with the ordinary one-way LSTM, it is obvious
that the hidden value h and matrix W of the reverse LSTM are
added to the prediction function, which enables us to predict
the character in a certain position through the positive and
negative directions at the same time.

Finally, the cross-entropy loss is defined as

1 K

= 2 H(x(1),p(1))

X (2.9)

to update the weights. We train this model using stochastic
mini-batch (non-truncated) back-propagation through time.

3 Related Work

The most relevant works are [5, 6].

Among them, [5] constructs a double-layer LSTM model
for Knet2016 dataset. Its lower layer is composed of a LSTM
network. On this basis, the hidden state of each token can be
used as the feature of this line to get the type of log-line, and a
LSTM model is constructed to complete the prediction of the
next log-line type. However, the experimental results show
that the double-layer structure does not improve the prediction
performance, its metrics are lower than the simple single-layer
model.

Due to the limitation of computing power, we have to used
less data, so we did not build a double-layer LSTM model, but
used a single-layer BILSTM model, through which the char-
acters that may appear can be predicted bidirectionally at the
same time. On the one hand, this ensures the detection effect

to a certain extent, on the other hand, it reduces the demand for
computing power directly.

[6] discusses the value and potential problems of many logs
in detail, and gives a new, comprehensive, real network secu-
rity data overview. This paper enumerates some kinds of logs
and counts word frequency and other information, but does
not give a detailed and feasible processing method. Each kind
of log has different format and reserved words. Even if we can
make a detailed analysis, it is difficult to find a common and
rapid method to make exception detection for different kinds
of logs.

Therefore, it is necessary for us to conduct character level
analysis and prediction, which can directly avoid the great
differences between different logs, and because the normal
log-line and anomaly log-line are obviously different in char-
acter level, it is guaranteed that this kind of method is correct.

4 Experimental Results
4.1 Data

We used the Los Alamos National Laboratory (LANL) cyber
security dataset (Kent 2016), which collected event logs of
LANL’s internal computer network for 58 consecutive days,
with more than 1 billion log lines, including authentication,
network traffic and other records. Fields involving privacy
have been anonymous. Besides normal network activities,
30 days of red team attacks were recorded.

[5] gives some statistical descriptions, and the parts we use,
which are the authentication event logs, are shown Table 1.
We used 3,028,187 loglines in 20 days, the first 14 days for
training, and the rest 6 days for testing, with 51 anomalous
loglines and 26 anomalous user-days.

After tokenization, the length of all log lines is filled to 112.

We also used insider thread test dataset (R6.2), which is a
collection of synthetic insider thread test datasets that provide
both background and malicious actor synthetic data. It covers

Table 1 Dataset statistics of Knet2016.

Field Example #unique labels
time 1 5,011,198
source user C625@DOM1 80,553
dest. User Ul47@DOM1 98,563
source pc C625 16,230
dest. pc C625 15,895
auth.type Negotiate 29

logon type Batch 10

auth. Orient LogOn

succes Succes

@ Springer

748

J Sign Process Syst (2021) 93:745-751

device interaction, e-mail, file system and other aspects of the
log content. We choose device access log and net access log to
use in the experiments. The fields and statistics of net access
log are summarized in Table 2a, while those of device access
log are shown in Table 2b.

We used 1,676,485 loglines in 21 days, the first 14 days for
training, and the rest 7 days for testing, with 530 anomalous
loglines and 530 anomalous user-days.

In the process of tokenization, it is found that length of the
loglines of net access dataset is up to 2500 characters. If all the
lines are filled to such a long sequence, it will undoubtedly
cost a very large amount of computation. Therefore, the URL
column only extracts domain name, and the introduction col-
umn of the page extracts its key phrases through rake algo-
rithm [8]. Finally, the length of the sequences is determined to
be 830.

Timescale For this work, we consider the following
timescales.

First of all, each line of the log records a relatively inde-
pendent action, for example, a user makes an identity authen-
tication, and the result is success or failure, so line is regarded
as a set of independent input. We call this timescale logline
level. As its name, logline level analysis will calculate the
anomaly score of each line.

Secondly, in order to compare with the baseline ex-
periments, we integrate all the actions recorded by the
log of each user in each day, the anomaly score of each
logline of a user in each day is aggregated to calculate
the anomaly score for the user in that day. As we use
the maximum anomaly score of a user, it is called user-
day-max level. This level indicates the possibility of
anomaly of a user in a specific day.

In addition, we use a normalization strategy. For the anom-
aly score of each line, it first subtracts the average exception
score of the corresponding user on the same day, and then be

calculated normally, so as to realize the normalization of the
original score. This normalized calculation method is known
as diff, so it is called user-day-diff level, marking the differ-
ence between maximum anomaly score and average score of a
user in a specific day.

4.2 Metric

We use AUC as the evaluation metric, which represents the
area under the receiver operator characteristic curve. It char-
acterizes the trade off in model detection performance be-
tween true positives and false positives.

The AUC value will not be greater than 1,the higher the
value, the better the performance of the model.

4.3 Baselines

According to [5], for the data we used, we define a multidi-
mensional aggregate feature vector for each user, as the basis
of comparative experiments.

We consider three baseline models, which are one class
SVM, GMM and PCA.

Data Processing In terms of data, we first filter out the abnor-
mal logs in the data set, keep only the normal logs, and take
70% as the training set; then take all the remaining 30% in the
original data set as the test set.

Specifically, the possibility of field value occurrence
is divided into common and uncommon, the object is
divided into single user and all users. Source PC name,
target PC name, target user, process name and the PC
name of the process are taken as the key fields of sta-
tistical information. The time is divided into all day, 0—
6, 6-12, 12-18 and 18-24.

Make Cartesian product on the probability, object-ori-
ented, key fields and time to get 100 features of

Table 2 Dataset statistics of

R6.2: (a) Network access log Field Example

fields and statistics and (b) device date

access log fields and statistics. user

pc
url
activity

content

Field
date
user

pc

file tree

activity

#unique labels
01/02/2010 6:21:31 726,611
ANC1950 3867
PC-4921 3867
http://icio.us/John.asp 132,352
WWW Visit 6
“Further consultation with post-production team” 54,946
Example #unique labels
01/02/2010 07:17:18 62,420
SDH2394 756
PC-5849 1287
R:\;R:\JKS2444 763
Connect 2

@ Springer

J Sign Process Syst (2021) 93:745-751

749

statistical information, and then the fields that often ap-
pear in the log, such as login result, which is success or
failure, are taken as the features to get 134-dimensional
feature vector in the end.

The daily log of each user is summarized. If there are only a
few different values in a certain field, such as login result, the
frequency of these values will be counted. If there are a large
number of different values in a certain field, such as PC name,
user name, etc., these values will be divided into common or
uncommon.

For a user, if the frequency of a value is less than 5%, it will
be classified as uncommon; otherwise, it will be classified as
common. For all users, if the frequency of a value is less than
the average in its field, it will be classified as uncommon;
otherwise, it will be classified as common. The information
of each dimension of the feature vector is counted to get the
feature vector of each user every day.

An example is shown in Fig. 2.

A. principal components analysis

PCA is used to learn the position representation of
the extracted feature vector, project the original data
from the original space to the principal component
space, and then reconstruct the projection to the original
space. If only the first principal component is used for
projection and reconstruction, for most data, the error
after reconstruction is small; but for outliers, the error
after reconstruction is still relatively large.

B. one class SVM

In the detection of logs, there are only two categories: nor-
mal and abnormal, and the normal data is much more than the
other. Therefore, one class SVM can be used to classify the
extracted features and complete the exception detection.

C. Gaussian Mixture Model

Gaussian Mixture Model (GMM) is one of the most prev-
alent statistical approaches used to detect anomaly by using
the Maximum Likelihood Estimates (MLE) method to per-
form the mean and variance estimates of Gaussian distribution

Field Example | # unique labels
time 1 5011198
source user | C625@DOMI 80553
dest. user U147@DOMI1 98563
source pc C625 16230
dest. pc C625 15895
auth. type Negotiate 29
logon type Batch 10
auth. orient LogOn 7
success Success 2

Figure 2 Example of processed features of baselines.

[9]. Several Gaussian distributions are joint together to ex-
press the extracted eigenvectors and find out the outliers.

5 Results and Analysis

Table 3a summarizes the detection performance on Knet2016
dataset, while the ROC curves are shown in Fig. 3.

Among all the methods, the best one is log-line level de-
tection of BEM, and that of user-day level are also satisfacto-
ry. The feature vectors used by baselines can be equivalent to
user-day level detection, it is shown that performance of BEM
model is better than that of baselines.

For baselines, the used feature vectors determine their per-
formance. At present, the vectors focus on the statistics of log
generated by a user in a day in different time periods [5]. If this
statistical method can’t directly reflect the pattern of anoma-
lous logs, the baselines trained with these vectors will not get
satisfactory results.

For BEM, it has achieved much better performance at
logline level than user-day level. A good performance in
logline level is easy to achieve, because the number of normal
logs is hundreds of thousands of times that of anomalous logs,
a few false positives will not make reduce the score too much.
That is also the reason why the AUC score of logline level in
[5] is so high.

In the calculation process at user-day level, we aggregate
the anomaly score of each logline as the anomaly score of a
user in a day. Proportion of normal and abnormal is reduced to
several thousand times after the aggregation, which makes it
more difficult to achieve higher AUC score. Besides, it may
be the aggregation of anomaly scores which causes the

Table 3 Detection performance: (a) Performance on Knet2016 and (b)
performance on R6.2 Detection performance: (a) Performance on
Knet2016 and (b) performance on R6.2.

Model or Level Tokenization AUC
PCA Vector 0.693
One-Class SVM Vector 0.684
GMM Vector 0.500
BEM logline Characters 0913
BEM user-day-max Characters 0.821
BEM user-day-diff Characters 0.711
Model or Level Tokenization AUC
PCA Vector 0.954
One-Class SVM Vector 0.869
GMM Vector 0.500
BEM logline Characters 0.984
BEM user-day-max Characters 0.984
BEM user-day-diff Characters 0.502

@ Springer

750

J Sign Process Syst (2021) 93:745-751

Field Example #unique labels
date 01/02/2010 6:21:31 726611
user ANCI950 3867
pc PC-4921 3867
url http://icio.us/John.asp 132352
activity WWW Visit 6
content "Further consultation 54946

with post-production

team"

(a)
Field Example #unique
labels

date 01/02/2010 07:17:18 | 62420
user SDH2394 756
pc PC-5849 1287
file tree R:\;R:\JKS2444 763
activity Connect 2

(b)

Figure 3 ROC curves for dataset Knet2016.

performance. A better computing method of users’ anomaly
score needs to be explored.

Table 5b summarizes the detection performance on R6.2
dataset, while the ROC curves are shown in Fig. 4. Notice that
several curves are completely coincident. So we recognize the
dataset used in this experiment is too small.

The result of user-day-diff method is not satisfactory. One
of the reasons may be that the proportion of normal and ab-
normal is too small.

Compared with the results of [5], we also come to the
conclusion that the effect of the model at logline level is better
than user-day level. However, [5] did not find the significant
difference between logline level and user-day level when
using the same data for training. This may be caused by the
large difference in the amount of training data. Due to the
limitation of computing power, we only use a small part of
the dataset to train the model, so only methods with 1R6.2le
demand for data can maintain the best effect.

The two kinds of logs are also analyzed respectively, and
the results are shown in Fig. 5. It can be seen that the results of
user-day-diff method are not caused by the combination of the
results of different logs.

44,7,0,19,18,74,15,8,27,24,2,0,0,0,2,0,0,0,0,0,0,0,
0,0,0,183,42,36,46,59,25,6,2,2,15,330,81,59,86,1

04,14,2,2,2,8,16,4,2,2,8,317,97,67,67,86,287,89,5
9,59,80,359,104,67,86,102,16,4,2,2,8,16,4,2,2,8,1
78,62,31,40,45,336,98,65,84,89,31,23,8,0,0,2,2,0,
0,0,0,0,0,0,0,0,0,3,13,324,0,114,0,0,7,0,0,0,0,0,0,

265,0,0,0,0,0,0,12,0,57,21,0,0,156,121,6,361,0

Figure 4 ROC curves for dataset R6.2.

@ Springer

Model or Level Tokenization AUC
PCA Vector 0.693
One-Class SVM Vector 0.684
GMM Vector 0.500
BEM logline Characters 0913
BEM user-day-max Characters 0.821
BEM user-day-diff Characters 0.711
(a)
Model or Level Tokenization AUC
PCA Vector 0.954
One-Class SVM Vector 0.869
GMM Vector 0.500
BEM logline Characters 0.984
BEM user-day-max Characters 0.984
BEM user-day-diff Characters 0.502
(b)

Figure 5 Separate ROC curves for dataset R6.2: (a) Device data and (b)
http data.

6 Conclusion

Based on the analysis of the logs content in datasets, we build
an anomaly detection model based on LSTM. Processing the
logs in Knet2016 and R6.2 datasets, training and testing the
model on the extracted log-line text, the results show that it
can correctly detect exceptions. Trough contrast experiments
we can say that its effect is better than other models, including
PCA, one class SVM and GMM.

However, the comparison between this model and other
classical model still needs further testing. On one hand, train-
ing and testing should be carried out on datasets with wider
sources and larger amount to obtain results which are more
general; on the other hand, isolation forest should be intro-
duced as a baseline for comparative experiments, because it
is not as the best performing anomaly measurement algorithm
in the recent DARPA insider thread detection program [10].

For the BEM itself, the use of dataset still needs to be
adjusted. For each user in a day, a fixed number of logs could
be selected for training to avoid oversized influence of any
single user. At present, there are only 64 cells in the LSTM
layer, more cells could be used in the next step.

A better calculation method of the anomalous score of a
user needs to be explored. Anomalous loglines contain infor-
mation of anomalous users, so a better integration method
could improve the detection effect of the model on user-day
level.

Through theoretical analysis, we give up the construction
of multi-layer model. This enables the model to work at a
lower computational power level. However, this does not
mean that multi-layer model has no significance.

[11] propose another training and prediction method for
log-line level, which also uses LSTM model. Through the

J Sign Process Syst (2021) 93:745-751

751

drain approach proposed by [12], the log-line is parsed to
obtain the category, which is used in sequence to predict the
distribution of the next log-line category after training by
LSTM.

Obviously, that kind of anomaly detection mode works in
log-line level, which is different from the model in this paper.
These two levels of prediction do not interfere with each other,
so it can be considered to a certain extent. For example, di-
rectly weight the results of the two, or use any resolution
method which is different from relying on the hidden value
of BiILSTM to extract log-line features to parse the log. In the
training of log-line feature sequence, this training can also be
conducted through BiLSTM.

Due to the limitation of computing power, the datasets are
not fully used, so the scale of the training data should be
expanded to obtain better results. In addition, in R6.2 dataset,
besides device access log and net access log, which are used,
there are also logon log, file access log, etc. The comprehen-
sive use of these logs will enhance the ability to detect anom-
alous users, and especially useful for identifying red team
users.

However, the comprehensive use of logs from different
sources requires further research. Obviously, logs from differ-
ent sources have different structures. Mixing these logs direct-
ly and training through character-level models may not yield a
good result. A natural idea is to detect these logs separately,
and then integrate these anomaly scores after obtaining the
anomaly scores of each user; another idea is to parse the logs
to category code [12], sort these codes by time, then use sev-
eral models to make predictions on the sequence. Obviously,
this method will lose part of the information.

In some sense, this is also a kind of hierarchical structure.
Whether calculating anomaly score of users by log category
and then integrate, or parsing by logline and then detect, it is to
synthesize existing information at a certain level, and then use
the comprehensive result to detect anomaly at a higher level.

All in all, the way of building hierarchical structure model
is worth further study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included

in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Y. Zhao, X. Wang, H. Xiao and X. Chi, Improvement of the Log
Pattern Extracting Algorithm Using Text Similarity, 2018 IEEE
International Parallel And Distributed Processing Symposium
Workshops (IPDPSW), Vancouver, BC, 2018, pp. 507-514.

2. Xu, K. Y., Gong, X. R., & Cheng, M. C. (2016). Audit log associ-
ation rule mining based on improved Apriori algorithm. Computer
Application, 36(7), 1847-1851.

3. Y. Zhao and H. Xiao, Extracting Log Patterns from System Logs in
LARGE, 2016 IEEE international parallel and distributed process-
ing symposium workshops (IPDPSW), Chicago, IL, 2016, pp.
1645-1652.

4. Seker, S.E., Altun, O., Ayan, U., & Mert, C. (2014). A novel string
distance function based on Most frequent K characters.
International Journal of Machine Learning & Computing, 4(2),
177-183.

5. Tuor A, Baerwolf R, Knowles N, et al. Recurrent neural network
language models for open vocabulary event-level cyber anomaly
detection. 2017.

6. Kent and Alexander D. Cyber security data sources for dynamic
network research, Dynamic Networks and Cyber-Security. 2016.

7. Hochreiter S. and Schmidhuber J.. Long Short-Term Memory,
Neural computation 9(8):1735-1780.

8. Rose S, Engel D, Cramer N, et al. Automatic keyword extraction
from individual documents, Text Mining: Applications and Theory.
John Wiley & Sons, Ltd, 2010, Automatic Keyword Extraction
from Individual Documents.

9. W. Contributors. Maximum Likelihood Estimation, available:
https://en.wikipedia.org/w/index.php?title=Maximum_likelihood
estimation&oldid=857905834, (2015).

10. Gavai, G., Sricharan, K., Gunning, D., Hanley, J., Singhal, M., &
Rolleston, R. (2015). Supervised and unsupervised methods to de-
tect insider threat from en-terprise social and online activity data.
Journal Of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, 6(4), 47-63.

11. Du M, Li F, Zheng G, et al. DeepLog: Anomaly Detection and
Diagnosis from System Logs through Deep Learning, Acm
Sigsac Conference on Computer & Communications Security
ACM, 2017.

12. HeP, ZhuJ, Zheng Z, et al. Drain: An online log parsing approach
with fixed depth tree, 2017 IEEE international conference on web
services (ICWS). IEEE, 2017.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

@ Springer

https://en.wikipedia.org/w/index.php?title=Maximum_likelihood_estimation&oldid=857905834
https://en.wikipedia.org/w/index.php?title=Maximum_likelihood_estimation&oldid=857905834
https://en.wikipedia.org/w/index.php?title=Maximum_likelihood_estimation&oldid=857905834

	A LSTM-Based Anomaly Detection Model for Log Analysis
	Abstract
	Introduction
	Anomaly Detection Approach
	Log-Line Tokenization
	LSTM Model

	Related Work
	Experimental Results
	Data
	Metric
	Baselines

	Results and Analysis
	Conclusion
	References

