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Abstract
Multicore processors serve as target platforms in a broad variety of applications ranging from high-performance computing
to embedded mobile computing and automotive applications. But, the required parallel programming opens up a huge
design space of parallelization strategies each with potential bottlenecks. Therefore, an early estimation of an application’s
performance is a desirable development tool. However, out-of-order execution, superscalar instruction pipelines, as well
as communication costs and (shared-) cache effects essentially influence the performance of parallel programs. While
offering low modeling effort and good simulation speed, current approximate analytic models provide moderate prediction
results so far. Virtual prototyping requires a time-consuming simulation, but produces better accuracy. Furthermore, even
existing statistical methods often require detailed knowledge of the hardware for characterization. In this work, we present a
concept calledMulticore Performance Evaluation Tool (MPET) and its evaluation for a statistical approach for performance
prediction based on abstract runtime parameters, which describe an application’s scalability behavior and can be extracted
from profiles without user input. These scalability parameters not only include information on the interference of software
demands and hardware capabilities, but indicate bottlenecks as well. Depending on the database setup, we achieve a
competitive accuracy of 20% mean prediction error (11% median), which we also demonstrate in a case study.

Keywords Parallelization · Performance Prediction · Scalability · Multicore Software Migration

1 Introduction

All common general-purpose processing architectures in
high-performance computing clusters, desktop CPUs, and
the embedded field are designed with parallel processors. As
they represent powerful and energy-efficient architectures,
embedded multicores serve as target platforms in a broad
range of applications like mobile computing or advanced
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driver-assistance systems [1]. Applying programmable
chips, in contrast to dedicated hardware, also allows the use
of flexible and maintainable software with the opportunity
of minimizing the time-to-market for new products. But,
the development of parallel software, required for parallel
processors, opens up a huge design space of varying
programming models and parallelization strategies [2],
which becomes even more complex for heterogeneous
devices like MPSoCs.

A variety of potential bottlenecks as well as the paral-
lelization strategy (e.g., data- or task-level parallelization,
and task granularity) may reduce an application’s perfor-
mance. Hence, not only classic parallelization errors, but
also insufficient programming strategies as well as improper
combinations of software demands and hardware char-
acteristics can easily deteriorate the runtime. Hardware
limitations like memory hierarchy and bandwidth, NoC
topology, or instruction-set architecture need to be consid-
ered. Additionally, the demands of software like memory
usage or synchronization behavior also influence the appli-
cation. Therefore, an early performance estimation is an
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important additive for parallel programming tools in hard-
ware/software co-design to calculate the chance of success
for optimizations. On the one hand, a naive estimation,
which only divides the total execution time by the number
of available cores can indeed mispredict the parallel execu-
tion time by orders of magnitude. On the other hand, due to
the manifold influencing factors, it is impossible to create a
perfect model of parallel executions. Therefore, in order to
assist programmers during their parallelization process with
useful programming hints, more sophisticated approaches
with less prediction errors are needed.

Existing prediction methods can be clustered into three
categories, which vary in their modeling effort, simulation
speed, and resulting prediction accuracy: Analytic methods
use approximate mathematical models of the architectural
capabilities like cache size or memory bandwidth, and soft-
ware characteristics like data locality or branch distances.
While existing analytic models require low parameteriza-
tion effort and serve good simulation speed, they provide
moderate prediction results. Virtual prototyping approaches
run existing software on emulated hardware, which either
requires a full detailed model of the executing hardware
or neglects important information in an abstract simulation.
Virtual prototyping requires a time-consuming simulation,
but produces better accuracy. Statistical methods can also
be seen as machine learning approaches, as they are based
on a database of performance measures (i.e., profiles) and
thereof estimate the performance. Potentially requiring a
long training phase, the accuracy of statistical methods
relies on database and feature quality.

Common prediction scenarios usually reflect one of the
following perspectives, also visualized in Figure 1.

– Migration prediction: The parallelized software is
fixed, but a suitable target platform is needed – either to
be built or selected from existing platforms.

– Scalability prediction: The platform is fixed, but a
sequential software needs to be parallelized, which
requires a well scaling parallelization strategy.

In this work, we present the concept of a statistical
approach on predicting the performance of parallel software
based on its scalability: Multicore Performance Evaluation
Tool (MPET). The scalability of a parallel program
describes the capability of distributing work over increasing

numbers of cores and the tendency of simultaneously
involving parallelization overhead, finally resulting in an
individual parallelization speedup. In our earlier research,
we found that all relevant behavioral characteristics and
bottlenecks, like the susceptibility to NUMA-node distance
(communication delay between distinct processor chips),
increase of work imbalance per additional core, and even
upper bounds of concurrency, can be found in the scalability
graph. Therefore, we use abstract parameters, which
describe the scalability behavior, to search proper prediction
candidates from a database and thereof reconstruct the
target performance. In contrast to other prediction methods,
this approach is purely based on characteristics extracted
from profiles and requires no modeling effort and user
input. Indeed, we do not train a prediction model,
but use distance metrics from feature vectors to use a
weighted interpolation without any training time. A simple
mathematical model is used to describe scaling curves, of
which trends can be expressed by only few parameters
that form the descriptive feature vector. Furthermore, our
model is able to consider effects like NUMA-node distances
and usage of hyperthreading as well, which enables precise
predictions with varying numbers of cores n instead of
only predicting the maximum speedup at n = nmax .
While we also present a benchmark set to create a database
of reference architectures, we specifically introduce the
following prediction steps:

1. Extraction of the feature vector from scaling curves
2. Selection of prediction candidates by distances
3. Prediction by weighted interpolation, reconstruction

Up to now, this prediction method requires benchmark
results of the target platform stored in a database. Therefore,
it is most accurate in predicting the performance on
existing platforms. Predicting a workload’s performance
on a hypothetic platform (e.g., by varying the number
of available CPU cores or its susceptability to memory
bottlenecks) reduces the reliability of prediction results.
By adding more prediction candidates and improving the
significance of provided benchmarks in our future research,
we aim at an improved confidence of predictions even on
hypothetic not-existing platforms.

The remainder of this article is structured as follows.
In Section 2, we give an overview on virtual prototyping

Figure 1 Common performance
prediction scenarios: scaling
behavior of not yet parallelized
software and parallel
performance after migrating
parallel software to another
platform.

(available)

parallel program

(not available)

parallel program
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techniques as well as analytic and statistical prediction
methods. Section 3 presents the contributed statistical
prediction method, which is evaluated in Section 4, while
we present prediction error measures, an evaluation on the
database quality, and a case study, in which we compare our
method with two reference methods. Section 5 concludes
this paper.

2 RelatedWork

In this work, we mainly focus on algorithms, which are
not intentionally limited in their scalability (e.g., due to a
defined maximum of the number of threads or tasks in the
implementation), but either make use of flexible task sizes
or dynamic numbers of tasks. Consequently, limitations of
the given workloads can be classified into the following
aspects, while realistic workloads can also suffer from an
unfavorable combination of those:

– Memory bound: The workload is mainly consuming
high amounts of memory and stresses the buses between
memory levels (i.e., RAM, caches, and registers).
These workloads require optimizations in data locality
(spatial and temporal) for both sequential and parallel
execution.

– Communication bound: The workload is mainly stress-
ing the inter-core communication network (e.g., NoC)
for instance due to synchronizations and locks or high
data-transfer rates between cores. These workloads
require optimizations in their parallelization strategies
and could for instance profit from more long-running
and independent tasks.

– Computation bound: The workload is mainly consum-
ing processor time and only refers to memory and
communication networks at a minimum. This is the best
scenario for a parallel execution, as it enables indepen-
dent tasks. Optimizations should focus on sequential
optimizations like SIMD vectorization, loop optimiza-
tion, and pointer-arithmetic.

These aspects are often used to evaluate a worst-case
estimation of the performance using a roof-line model as
for instance adapted to a so-called boat-hull prediction
model for GPU and multicore performance by Nugteren and
Corporaal [3]. But, parallel programming rather requires a
realistic prediction that neither over- nor under-estimates
the parallel execution. Furthermore, detailed information of
characteristics of the parallel runtime behavior is needed in
order to produce concrete optimization hints and specific
bottleneck analysis.

System modeling and prediction is a complex task
in all research areas, because models either need to
be extremely complex in order to cover most aspects

or potentially neglect important influences [4]. On the
way of defining an appropriate level of abstraction,
the search for basic parameters (principle components)
with maximum correlation to the system behavior is
most decisive. However, many systems exhibit interfering
parameters, which complicates the modeling – even more,
when the system appears as black box. If the database
consists of a sufficient number of measurement points,
machine learning (e.g., deep learning) algorithms that
automatically extract features, principle parameters, and
correlations are often used in other research fields. In the
field of processor and software modeling, the number of
measurement points is limited due to the costs of varying
hardware platforms and the development time of new
parallel software. Therefore, even statistical methods for
multicore performance prediction often use more traditional
(manually created) models for feature extraction. Hence,
instead of predicting arbitrary workloads on any processor
types, some approaches focus on characterization of basic
blocks like stencil codes, which define repetitive processing
patterns. Existing performance modeling techniques can be
clustered into three categories namely virtual prototyping,
analytic modeling, and statistical methods [5, 6], which vary
in their modeling and simulation effort as well as in the
resulting prediction accuracy, as compared in Figure 2.

2.1 Virtual Prototyping

Virtual prototypes emulate a full functioning hardware
platform in a software simulation that executes compiled
software binaries or even entire operating systems. While
these platforms can differ in their abstraction, a less precise
timing, but more function-oriented model can speedup
the simulation at reduced timing accuracy. Pluggable
components like memory controllers, CPUs, or network-
on-chips are implemented in system-level design languages
like SystemC, hardware description languages like VHDL,
or even in RTL. In order to model interactions between

Figure 2 Prediction accuracy versus simulation speed of different
prediction methods, existing models presupposed.
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components on varying abstraction levels, TLM offers a
communication centric approach.

Existing virtual prototyping frameworks like GEM5 [7],
Open Virtual Platforms [8], QEMU (quick emulator) [9],
or Cadence Incisive [10] also offer complete out-of-the-
box useable virtual platforms. QEMU for example offers
the possibility of quickly configuring an emulation of
different instruction-set architectures and also emulates
entire platforms like RaspberryPi or the Xilinx Ultrascale+.
QEMU uses a high level of abstraction (functional
simulation) and thus allows to evaluate an application’s
functionality in short simulation times. However, there are
existing approaches to add timing information to QEMU by
adding a timing database or TLM and SystemC modules.

GEM5 [7] is an open-source tool, which is widely used
in academia as well as in productive context. GEM5 uses
an extendable and modular system for virtual prototypes
and some components are even provided by original
vendors like ARM. Based on C++ components, a virtual
platform can be easily configured with a python API and
even heterogeneous architectures like heterogeneous CPU
clusters or GPU-equipped platforms can be created. As
configured systems represent full functioning platforms,
applications can be executed as bare-metal executable or
in a full operating system like Linux or Android. GEM5
also offers the possibility to extend the virtual prototypes
by TLM or SystemC modules. Butko et al. [11] presented
a case study for predicting the performance of an ARM
big.LITTLE platform (Cortex-A15 + Cortex-A7) with an
average prediction error of 20%.

2.2 Approximate Analytic Models

Analytic predictors build separate models of the hardware
capabilities and characterization of software demands
[12] to be combined in a mathematical evaluation.
Carlson et al. [13] evaluated mechanistic core models
for analytic predictions, which are usually based on
architecture-independent characterizations of the workload
(e.g., cache reuse histograms [14]). Other software metrics
like branch probability or loop trip count, which are used
in many approaches, can be extracted for example using
the LLVM compiler. Van de Steen et al. [15] predicted the
single-thread performance with an average error of 13%,
which was then extended for multicore prediction by De
Pestel et al. [16]. Another analytic processor model by
Jongerius et al. [17] (used in IBMExabounds) predict power
and performance, and was evaluated with a Xeon E5-2697
v3 and an ARM Cortex-A15. In this model, the singlecore
performance was predicted with an error of 59% and the
impact of using multicores with an additional error of 11%.

IBM Exabounds also creates platform independent appli-
cation profiles in LLVM. The module comes with a small
set of existing processor models, while the creation of a
new model requires detailed knowledge about the archi-
tecture. Exabounds creates comprehensive predictions for
runtime, CPI, cache-miss rates, and many more. A related
approach is integrated in the Silexica SLX paralleliza-
tion tools. SLX predicts performance from LLVM-based
application profiles and an XML processor-model. Addi-
tionally, SLX also predicts promising parallelizations, vec-
torizations, and offloadable sections of sequential pro-
grams. LLVM not only offers platform independent profiles
for third-party prediction approaches, but also integrates
the so-called MCA prediction tool since version 7. The
MCA tool uses profiles offered by LLVM and adds a
processor-pipeline model to predict the parallel runtime
behavior.

2.3 Statistical Methods

Statistical predictions make use of a database of previously
extracted runtime metrics, of which descriptive feature
vectors for workload and hardware are extracted separately
to be processed by machine learning (ML) (see Figure 3).
Hence, the search for descriptive features that allow a good
prediction such as performance counters or register usage
behavior is key. Statistical methods rely on significance
of features, but often extracted metrics of profiles lack of
interpretability due to their variations between architectures.
Therefore, many approaches focus on certain architecture
families, such as GPUs [18–20].

In [21], Ardalani et al. use microarchitecture-independent
characteristics as descriptive workload-features of CPU
code (see [22]) to predict performance of the corresponding
but not yet implemented GPU-kernel. In this method, a
set of machine learning algorithms is used in an ensemble
technique to predict with an average error of 27% on
a Maxwell and 36% on a Keppler architecture. Another
approach uses skeletons from CPU code to predict the
according performance on a GPU [23]. Wang et al. [24]
use performance results and processor classifications from
two common benchmarks SPEC and Geekbench to predict
the performance of x86-architectures for new platforms
as well as for new workloads. While these benchmarks
basically provide single-threaded sample codes, a principle
component analysis is used in this work to identify
meaningful feature vectors. While deep neural networks
showed better results than linear regression, an average error
of 5% (SPEC) and 11% (Geekbench) for predicting a new
core configuration and 26% (SPEC) and 14% (Geekbench)
for predicting a new workload were evaluated.
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Figure 3 Statistical prediction
using previously trained model
from machine learning (ML).

3 Scalability Based Prediction

Previous statistical predictions are based on separated
features �cHW of a platform P and �cSW of algorithmic
workload A, such that the parallel execution time of A

running on P is:

t = f (�cHW , �cSW ). (1)

First, we propose to not only consider the characteristics
under use of all available cores, but to also observe entire
scalability trends. Therefore, we profile the workload under
use of varying numbers of cores n, starting from sequential
execution t (n = 1) up to all cores n = nmax , resulting in t

depending on n

t (n) = f (�cHW , �cSW , n). (2)

As many runtime influencing effects play a role in the
parallel runtime behavior, we also propose to not predict
the execution time in one step, but to split it up by
abstract parallelization effects like work imbalance or
scheduling overhead and predict trends of all effects
separately. Thereby, we do not define explicitly separated
characteristics for hardware and software, but instead we
use from profiles extracted parameters, which

– have hardware and software influences,
– represent an abstract behavioral perspective,
– directly point out potential bottlenecks, and
– are easy to extract from profiles (no modeling effort).

Other statistical prediction approaches train a model
using machine learning that predicts from characteristics. In
contrast, we make use of the database as a whole, thereof
search prediction candidates by distance metrics between
characteristics and perform an interpolation between candi-
dates. Thereby, a characterization of a platform or workload
is defined as the combination of characteristics of multi-
ple benchmarks on a platform respectively the combination
of characterizations of a workload profiled on different
platforms.

Figure 4 presents the prediction workflow that uses a
database, which exhibits characterizing profiles from refer-
ence and target platforms. To characterize a platform, we
prepared benchmark workloads (parallel implementations)
Bi , each with varying characteristics (e.g., memory access
behavior, parallelization strategy). On an already known ref-
erence platform P (profiled with benchmarks Bi), a new
workload A can be tested to be ready to predict its perfor-
mance on any target platform Tj from database. A more
detailed visualization of this prediction process is shown
in Figure 6 and enabled prediction scenarios are depicted
in Figure 7. Consecutive parallel sections (e.g., separated
with barriers or explicit spawns) are considered as separate
workloads, as they mostly vary in their characteristics.

3.1 Scalability Characteristics

In our earlier work [25], we presented the middleware
layer MPAL (Modular Parallelization Abstraction Layer)
for parallel programming, which automatically extracts the
metrics that we use to build descriptive characterizations
(features), summarized in Table 1.

– Redundancy: Percentage increase of execution time
(sum of all parallel tasks

∑
i ti (n)) induced by memory

bottlenecks or caching (lock times excluded).
– Synchronizations: Time tlock(n) that a task spends on

waiting for a lock relative to available CPU time.
– Work imbalance: Percentage of the available CPU time,

which can not be used for task execution due to
improper work split (processor idle time).

– Scheduling overhead: Fraction of the available CPU
time needed to manage tasks. Considers task creation
ttc(n), task distribution tdist (n), task switch tsw(n), and
task team synchronization (join) tjoin(n).

In Section 4, we will present an evaluation of the mean-
ingfulness and validity of these parameters to be used as
descriptive features for characterization of parallel work-
loads. Thereby, exemplary workload characteristics from
our current database as well as an analysis of the correlation
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Figure 4 Prediction workflow that predicts a new workload A, profiled on a reference platform P , onto a known but not present target platform
T from database.

between derived distances and corresponding prediction
errors will be given.

These abstract parameters provide direct information on
the program’s parallel runtime behavior and bottlenecks.
For example, the scalability profile in Figure 5 illustrates
a strong influence of redundancy and work imbalance on
the parallel execution at only small scheduling overhead
(sum of scheduling influences: sched(n) = c(n) + d(n) +
s(n) + j (n)) and no locks, which can be the opposite in
other profiles. We predict these scalability behavior metrics
separately, while the resulting parallel execution time can be
reproduced as follows.

t (n) = t (1) · R(n)

n · U(n)
, with Utilization U(n) (3)

U(n) = 1 − sum(l(n), w(n), c(n), d(n), s(n), j (n)) (4)

We found, that all scalability curves for a parameter
p ∈ {R, l, w, c, d, s, j} have a simple trend over increasing
n that can be described with a function p with p(n) =
m · g(n) + b. While g(n) represents a general gradient
function, most parameters are currently modeled with a
linear increase (g(n) = n). Only the task distribution
is modeled with g(n) = n·(n+1)

2 (Gaussian sum), as the
waiting time for each additional thread, that needs to be
served with tasks, adds another delay n · x. b defines an

Table 1 Characterizing scaling parameters in parallel workloads. All
measures are normalized by the available CPU time t (n)·n respectively
t (1) and have no units

Redundancy: R(n) = [∑
i ti (n) − tlock(n)

]
/t (1)

Lock delays: l(n) = tlock(n)/(t (n) · n)

Work imbalance: w(n) = twi(n)/(t (n) · n)

Task creation: c(n) = ttc(n)/(t (n) · n)

Task distribution: d(n) = tdist (n)/(t (n) · n)

Task switching: s(n) = tsw(n)/(t (n) · n)

Task synchronization: j (n) = tjoin(n)/(t (n) · n)

offset, which can be set to zero for some parameters. Only
additional offsets (sudden increases) and adjustments of the
gradient need to be taken into account, when NUMA-node
communications occur or hyperthreads are used. Therefore,
after fitting these curves with the model in Equation 5,
each scalability parameter’s trend is fully described with
quantitative numbers in a 6-dimensional descriptive feature
�sp that is used to concatenate the final characterizing feature
vectors per profile.

p(n) = mbase · g(n) + bbase + nu(n) + ht(n) (5)

nu(n) =
{

mnu · g(n − nnu) + bnu n > nnu

0 else
(6)

ht(n) =
{

mht · g(n − nht ) + bht n > nht

0 else
(7)

In order to create the characterizing descriptive feature
vector �sc of a profile, we concatenate all parameter
description features �sp (column vectors) and the vector of
extracted performance counters �pc (column vector) (see
Equation 9). Indeed, the performance counter vector �pc

not only includes the pure extracted performance counters
themselves, but also some relative values like L1-Load-
Misses/Instructions. In current configuration, the resulting
descriptive column vector �sc includes up to 84 elements,
but some elements can be invalid as some platforms do not
have multiple NUMA-nodes, provide hyperthreads, or do
not offer requested performance counters. In this case, the
particular elements in �sc are tagged as invalid.

�sp = [mbase, bbase, mnu, bnu, mht , bht ]T (8)

�sc = [�sT
R, �sT

l , �sT
w, �sT

c , �sT
d , �sT

s , �sT
j , �pcT]T (9)

For load balancing purposes, the Linux kernel assigns
software threads to cores by increasing core-ID, with respect
to scheduling domains [26]. Thereby, CPUs typically rep-
resent their core-IDs in an order, which first assigns one
core-ID per physical core (no hyperthreading) over all
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Figure 5 Exemplary profile that
shows the introduced scalability
curves of a parallel section of a
stereo-vision algorithm on a
Xeon E5-2630 v3 processor.

NUMA-nodes. Hyperthreads are numbered with core-IDs
subsequently, such that nnu < nht and effects induced
by communications between NUMA-nodes (separate pro-
cessor chips) typically appear earlier in scalability plots
than hyperthreading effects. In the example in Figure 5, the
processor consists of two distinct processor dies (NUMA-
nodes), each with 8 physical cores (NUMA-communication
effective from n > nnu with nnu = 8) and two hyper-
threads per core (hyperthreading effective from n > nht

with nht = 16).
As mentioned before, this prediction approach basically

covers the modeling of theoretically scalable implementa-
tions (i.e., flexible task sizes or a dynamic number of tasks).
In fact, most realistic implementations are designed to be
scalable in order to realize a performance-portable appli-
cation. Therefore, this model covers all possible scalability
limitations with the mentioned scalability parameters to rep-
resent the full variety of scaling curves. In case of a not
parallelizable workload, the lack of scalability is also rep-
resented in scalability parameters and thus considered for
performance prediction.

3.2 Prediction

The prediction is split into two separate steps, which can
also be used separately: (1) prediction of the sequential
execution time t (1) and (2) prediction of the scalability
behavior �sc. Basically, both are predicted in a similar pro-
cess, which is schematically presented in Figure 6 that
shows signals, parameters, and switches, while all pro-
cessing steps will be explained separately in the following
pages. The proposed method enables the following pre-
dictions, while concrete prediction scenarios and therefore

required information from database will be explained later
and summarized in Table 3:

a. Performance prediction of a present workload A,
measured on a reference platform P , to another
benchmarked target platform T that is not present
(tP,A(n) → tT ,A(n)) (see Figure 7(a)). That includes
the prediction of t (1) and �sc.

b. Scalability prediction of not yet parallel workload A on
platform P using references from database (tP,A(1) →
tP,A(n)) (see Figure 7(b)). Adopting scaling features
of existing benchmarks, clustered by parallelization
strategies, estimates the parallelization success. As
sequential profiles provide no scaling features ( �pc

only), accuracy is limited.
c. Prediction of virtual workload V , where free param-

eters are for instance memory usage, lock synchro-
nizations, work distribution (tP,A(n) → tP,V (n))
(see Figure 7(c)). That allows to predict performance
impacts due to changes in current implementation of
workload A (e.g., after bottleneck analysis).

As a platform characterization basically consists of the
set of tested benchmarks, a virtual platform is hard to
predict. Free parameters for virtual platforms are those,
which are directly used in reconstruction of t (n): nnu,
nht , nmax .

3.2.1 Distances

The prediction starts with a search of prediction candidates
based on distances between scalability vectors. First, all
single elements of �sc (scalar element scm with dimension-
ID m) are normalized inside of the dimensions of the
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Figure 6 The prediction process with signals and data as well as a
selection of parameters and switches that can be used to optimize
the prediction. The process on the left shows how the database is

constructed. Prior to prediction, the target platform T is characterized
with benchmarks Bi . Profiles of A and Bi on reference platform P are
added at prediction time.

scalability vectors to the range [0, 1] before estimating
distances. We only store global absolute minimum and
maximum for final reconstruction of t (n) from the predicted
target feature vector.

maxm = max(scm(P, A), {scm(Tj , Bi)}) (10)

minm = min(scm(P, A), {scm(Tj , Bi)}) (11)

scm,norm = (scm − minm)/(maxm − minm) (12)

Generally, the distance D between two vectors is defined
as the geometric vector distance, which is normalized to
the maximum possible distance depending on the number
of valid dimensions, so that 0 ≤ D ≤ 1. In our first
experiments, the L2-norm is used, but dimensions are
ignored, where one or both elements in the vectors are
tagged as invalid. The number of valid dimensions, in which
none of both vector elements is tagged as invalid, is in the
following written as dim( �scα, �scβ). Therefore, in a space

Figure 7 Prediction scenarios enabled with the presented statistical
MPET predition method.

in which all value ranges are limited to 1, the maximum
possible distance is

√
dim( �scα, �scβ).

D( �scα, �scβ) =
∥
∥ �scα − �scβ

∥
∥
2√

dim( �scα, �scβ)
(13)

Hypothetical (reduced) example: The following example
demonstrates the calculation of the distance between two
reduced hypothetical vectors, only consisting of the base-
redundancy parameters (Rm,base, Rb,base) and last-level
cache-misses (LLC-M) as a performance counter measure:
⎛

⎝
Rm,base

Rb,base

LLC − M

⎞

⎠ �scα =
⎛

⎝
0.01
0.04
0.20

⎞

⎠ , �scβ =
⎛

⎝
0.20
0.01
inv.

⎞

⎠ (14)

In the Example, the LLC-M performance counters are
not available in �scβ (marked as invalid), which reduces
the number of dimensions that are respected in distance
calculation to 2, such that

D( �scα, �scβ) =
√

(−0.19)2 + (0.03)2√
2

= 0.136. (15)

In the following, we define the distance between scaling
vectors of workloads A and B profiled on platform P

as Da(P, A, B) and the distance between scaling vectors
of the same workload A profiled on platforms P and T

as Dp(A, P, T ). A distance Da(A, B) between workloads
A and B can be expressed as the average distance over
all platforms Tj in database, where both workloads are
profiled. A general distance Dp(P, T ) between platforms
P and T can be expressed as the average distance over
all workloads Bi from database that are profiled on both
platforms.

Da(P, A, B) = D( �sc(P, A), �sc(P, B)) (16)

Dp(A, P, T ) = D( �sc(P, A), �sc(T , A)) (17)

Da(A, B) = mean(Da(Tj , A, B)) (18)

Dp(P, T ) = mean(Dp(Bi, P, T )) (19)
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While the proposed scalability parameters are always
used for distance calculation, the set of performance coun-
ters varies between platforms according to their particular
availability. Generally, we always use basic performance
counters as well as some relative measures, which are
briefly (incomplete) summarized in Table 2. According to
the central approach of this work to use scalability infor-
mation as characteristics, we not only use performance
counters as a static number, but observe the entire scal-
ability trend and fit the proposed mathematical model
to receive 6 derived model parameters per performance
counter. In order to characterize a platform, TLB mea-
sures could add significant behavioral information, but TLB
counters are not available on most platforms. However, the
search for a perfect set of derived performance counters is
still subject of current research and will be improved in our
future work.

3.2.2 Candidates

Given a set of reference profiles (benchmarks Bi) from
the database, most promising candidates for predicting a
new workload A onto a target platform T are selected by
minimum distances. If A has only been profiled on one
reference platform P , workload candidates can be selected
by Da . If multiple reference platforms Px are available (as

Table 2 Some performance counters and relative measures used in the
prediction process (if available).

Abbr. Description

INSTR no. instructions

BR no. branches

BR-M no. branch-misses

L1-LD no. level-1 cache loads

L1-ST no. level-1 cache stores

L1-LDM no. level-1 cache load-misses

L1-STM no. level-1 cache store-misses

LLC-LD no. last-level cache loads

LLC-ST no. last-level cache stores

LLC-LDM no. last-level cache load-misses

LLC-STM no. last-level cache store-misses

etc.

BR / INSTR regularity of the code

BR-M / BR loop predictability

BR-M / INSTR relative induced pipeline stalls

L1-LD / INSTR data accesses (read)

L1-STM / L1-ST data regularity / evictions (write)

LLC-LD / INSTR global data usage (read)

L1-LD / LLC-LDM data locality

etc.

shown in Figure 8), which improves the prediction accuracy,
we consider Dp as well. While combining algorithmic and
platform distances to a tuple distance Dt , distances can be
seen as inverse likeliness, such that we calculate Dt as

Dt = 1 − [
(1 − Dp) · (1 − Da)

]
. (20)

Tuples can either be created by using workload and plat-
form individual distances, or by using mean distance for one
or both (Figure 8). Prediction candidates are then selected
by minimum tuple-distances. For example, a reference plat-
form P can be selected by mean distance Dp(P, T ) first,
whereas the workload candidate is selected by individual
distances on P by Da(P, A, Bi). To eliminate character-
istic peculiarity of only a certain prediction candidate, we
can use multiple prediction candidates, as described in the
subsequent paragraph. We tested multiple configurations,
whether candidates should be selected by mean or individ-
ual distances, and how many candidates are used. The final
setup is given in Section 4.

In addition to the enabled prediction scenarios that we
summarized in Figure 7, Table 3 presents an overview of
information that is required to be available in the database
to enable certain predictions:

1. With only sequential profile information stored in the
database (sequential execution time t (1) and perfor-
mance counters �pc(1)), an approximate estimation of
the sequential execution time after migration to another
platform can be realized.

2. Using the proposed behavioral scalability metrics (plus
performance counters for better results, which are
included in �sc), allows to predict the parallelization
speedup after a migration.

3. A full and precise migration prediction of the entire
scaling trend t (n) on a target platform T can be
achieved using both t1 and �sc.

4. Using classifications of the applied parallelization
strategies of the benchmark workloads, the speedup that
is to be expected after parallelizing a not yet parallel
implementation can be predicted for an available
reference platform P as well as for an unavailable target
platform T .

3.2.3 Reconstruction

If only one prediction candidate (B profiled on P and
T ) is chosen to predict the workload A onto T , a simple
factorized transformation is used to either generate the
sequential execution time t (1) or elements scm of the
scalability feature vector �sc (see Figure 8). Because the
predictions of t (1) and �sc follow the same rules (t (1) can
also be interpreted as an element of �sc), we henceforth
only describe the transformation for scaling vector elements
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Figure 8 Prediction scenario from two reference platforms and two benchmarks. Platform and algorithm individual distances and mean distances
are marked.

scm. In order to predict an scm, a transformation factor f

between A and B running on P is taken to reconstruct the
target value as follows.

scm(T , A) = scm(T , B) · f , with f = scm(P,A)
scm(P,B)

(21)

In case that multiple candidates are selected, we use a
kind of interpolation, which not allows extrapolations, such
that the variations in the characteristics of benchmarks must
also include extreme parameter ranges. For each parameter
to be predicted, we calculate a series of transformation
factors f (C), one for each candidate C. Afterwards,
factors can be weighted by their inverse distances (w =
1 − D) to the target and different weights have been
tested (mean or individual workload, platform, or tuple
distance). Because smaller distanced candidates potentially
have more similarities in their scalability, we added a further
normalizing penalty r(w), that decreases the influence
of more distanced candidates (linearly, square, or cubic)
between 100% at minimum distance wmin and 0% at
maximum distance wmax .

r(w) =
(

w − wmin

wmax − wmin

)k

, k ∈ {0, 1, 2, 3} (22)

Consequently, a final prediction of an element scm of the
scalability feature vector (or the sequential execution time

Table 3 Enabled prediction scenarios through different information in
database of benchmarks B and the workload A that is to be predicted
(t (1), �pc(1): sequential, �sc: scaling trend).

Scenario Benchmarks Workload Predictable

(P + T , B) (P, A) performance

migration predictions (A : P → T ):

1. (t (1)): t (1), �pc(1) t (1), �pc(1) ∼ tT ,A(1)

2: ( �sc): �sc �sc �scT ,A

3. (t (n)): t (1), �sc t (1), �sc tT ,A(1), �scT ,A

parallelization prediction (t (1) → t (n)):

4. (t (n)): t (1), �sc + class. t (1), �pc(1) ∼ �scP/T ,A

t (1)) can be calculated out of a number of candidates C

with

scm(T , A) =
∑

C [scm(C) · f (C) · r(1 − D(C))]
∑

C r(1 − D(C))
. (23)

In the current implementation of the prediction workflow,
the number of maximum used candidates is set as a
fix number, while there can be database constellations
that naturally add further limits to the set of available
candidates. For instance, if the parallel performance of a
workload is to be predicted on a platform that features
hyperthreads, but most candidates in database do not contain
ht-parameters, these candidates can therefore not serve
as prediction candidates. The choice between using less
or more candidates (platforms as well as workloads) is a
trade-off between two positions, which will be discussed in
Section 4.

3.3 Database

As prediction accuracy relies on database quality, the
basic idea is to have a large set of varying benchmarks
for more likely providing close prediction candidates. All
benchmarks and required libraries like MPAL [25] for
parallelization, profiling, and parameter extraction and PAPI
[29] for performance counter usage are compressed in a
tar-ball. A Makefile automatically extracts and compiles
libraries, executes benchmarks one by one, and compresses
all results in addition to the extracted characteristics (t (1)
and �sc) in a new tar-ball. The composition of benchmarks
exhibits implementations with different characteristics and
parallelization strategies. We use fix input-data sizes
and each parallel section is considered as individual
workload. While we used real-world algorithms from
the automotive area like stereo vision, or optical flow,
we also added standard benchmarks like speckle noise
reduction, or k-d tree implementations. Each of which
exhibits multiple parallel sections, which are considered
as separate workloads. The current set of 17 different
workloads includes varying parallelizations like domain
decomposition, nested and recursive spawns, and wavefront
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parallelism, as well as different lock and synchronization
situations.

Figure 9 illustrates the of varying workloads from
our benchmark set profiled on different platforms using
four selected parameters: work imbalance w, increase of
redundancy R, branches per instruction BR/INSTR, and
level-1 cache-misses per cache-load L1-LDM/L1-LD (i.e.,
miss-rate). Generally, some profiles show good scaling
trends and some show poor speedups, while all workloads
are influenced by effects of varying magnitudes and origins
on different platforms, as discussed in the following
(incomplete) list:

– In the example in Figure 9, branches per instructions
vary between workloads due to their algorithmic
demands and regularity of the code. In fact, the relative
number BR/INSTR mostly decreases for the Cortex-
A15, because its ARM instruction-set requires more
instructions for some calculations than x86 processors,
which increases the total number of issued instructions.

– The Cortex-A15 processor generally shows a higher
susceptability to work imbalance in comparison to
the i9-9900K and the Xeon Silver-4114 cores. An
analysis of the scaling trends shows a sudden increase
of the work imbalance especially at the use of the
maximum number of availabe cores, which indicates
high influences of the Linux kernel thread that blocks
ressources of one core.

– The L1-LDM/L1-LD ratio is different between work-
loads on the one hand. On the other hand, this mea-
sure always slightly decreases for the Cortex-A15 core,
which shows the variances of the cache implementations

in hardware. Effects, like prefetching internals, set-
associativity respectively eviction strategies, or varying
compiler optimizations to reduce miss rates, can cause
this behavior. The same effect was also measured in
[30] in a comparison a Cortex-A53 and an i7 920.

In general, the collection of workloads and the scaling
parameter representation can indeed denote platform-
and workload-characteristics and interference between
software demands and hardware capabilities. The current
composition of workloads in database covers different
characteristics as well as good and poor scaling trends. All
of these effects are represented in the scaling parameters,
such that well scaling and not parallelizable workloads can
be predicted. Adding microbenchmarks that stress certain
hardware features (e.g., inter-core communication) could
enhance the prediction, provide information on theoretical
performance peaks (e.g., in a roof-line model), and thereby
point out bottlenecks and optimization potentials.

The prediction accuracy highly depends on the quality of
the database. Therefore, we currently work on the creation
of a comprehensive database with significant benchmarks
and microbenchmarks as well as on mechanisms to
automatically eliminate profile outliers to improve the
prediction’s robustness.

4 Evaluation

Many prediction error numbers presented in literature lack
of comparability, as results are interpreted differently, which
was also elaborated by Hoefler and Belli [31] for parallel
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Figure 9 Characteristics of the parallel runtime behavior of selected
workloads from database (parallel section ofHOG pedestrian detection
[27] and SGM stereo vision [28]), which are profiled on different pro-
cessors. Scalability parametersw andR denote the percentage increase

per core of the available CPU time t (n) · n, while the relative perfor-
mance counter measures are percentage numbers themselves (initial
offset b measured at n = 1).



J Sign Process Syst

benchmarking results. While some authors give absolute
errors, others only present correlations of prediction and
measured results, or aggregate all predicted parallel sections
(positive and negative discrepancies) and only rate the
overall error. Therefore, we not only present accuracy of our
approach as geometric error (deviations between predicted
and measured times t (n) averaged by absolute error), which
reflects precision over the entire scaling trend. Additionally,
in a case study, we give comparative prediction errors of
Exabounds and GEM5.

4.1 Prediction Accuracy

To evaluate the prediction, we set up a database of varying
platforms from three different fields (server, desktop,
and embedded) of different ages and microarchitectures
(Table 4), to demonstrate the prediction across similar and
widely dissimilar platforms: old and new as well as varying
microarchitecture-types. We evaluated the prediction in
three steps: t (1), �sc (reconstructed parallelization speedup),
and full prediction (t (1) plus �sc). Since predictions of t (1)
and �sc can have positive or negative deviations, the error
of a full prediction does not represent the aggregation of
both, but errors may compensate each other. A prediction
is evaluated by eliminating the ground-truth from database
to be used for error-calculation after a prediction (1.6 s per
prediction), while all profiles in database are tested.

As mentioned before, there is a theoretical trade-off
between two options of either using more candidates for
an interpolative prediction or using less candidates with the
following qualities:

Table 4 Characterized platforms for prediction evaluation.

CPU cores thr. μ -arch. word size

Xeon Gold 6148 2 × 20 80 Skylake 64 bit

Xeon E5-2630 v3 2 × 8 32 Haswell 64 bit

Xeon E5-2680 2 × 8 32 Sandy Bridge 64 bit

Opteron 6220 2 × 8 16 Bulldozer 64 bit

Opteron 6172 2 × 12 24 K10 64 bit

Xeon E5620 2 × 4 16 Westmere 64 bit

i9-9900K 8 16 Coffee Lake 64 bit

i5-8500T 6 6 Coffee Lake 64 bit

i7-8550U 4 8 Kaby Lake 64 bit

i5-7300HQ 4 4 Kaby Lake 64 bit

i7-4771 4 8 Haswell 64 bit

i7-3667U 2 4 Ivy Bridge 64 bit

A53 (S905) 4 4 ARMv8 64 bit

A15 (Exynos 5422) 4 4 ARMv7 32 bit

A7 (BCM2836) 4 4 ARMv7 32 bit

– More candidates: This enables an interpolation of more
candidates, which on one hand reduces the impact
of outlier-candidates and thus reduces the probability
of high prediction errors. On the other hand, more
candidates with a potentially larger distance need to be
taken into account, which generally increases the mean
prediction error.

– Less candidates: This allows a more precise selection
of only few best matching candidates and thus most
often returns a very accurate prediction. But, in case of a
wrongly selected candidate, its impact on the prediction
is even higher, such that outliers can produce a much
higher prediction error in total.

To evaluate the impact of both options, we tested the
aforementioned database with different configurations,
while Figure 10 presents the prediction error of all (sorted)
prediction tests for two opposite options: using 1 or 10
candidates. The prediction of t (1) (Figure 10(a)) verifies
the theory, as the use of more candidates results in a higher
error for most candidates, but maximum errors of outliers
are limited in contrast to the use of only 1 prediction
candidate. Figure 10(b) shows a different behavior, where
the use of more candidates seem to improve the prediction in
general. In contrast, to the prediction of t (1), the scalability
prediction with multiple candidates uses a cubic distance
penalty (k = 3), which reduces the influence of more
distanced candidates. Because, this prediction approach
is especially optimized to predict scalability, calculated
distances show better correlations to resulting errors in
scalability prediction. Therefore, some outliers that produce
incorrect predictions of t (1) are wrongly rated with small
distance in the current configuration, which makes the
prediction of t (1) slightly less robust, which will be
optimized in our future work. This is why candidates are
differently weighted in the prediction of t (1) and �sc, as can
be seen in the following paragraph. In fact, the optimum
configuration appeared to be somewhere in between both
extreme configurations, such that we empirically selected
the limits somewhere between both trade-off extrema as
described in the following.

First, we tested a database composition in which all
platforms served as prediction candidates, which increases
the candidate count and potentially enables predictions from
other platform types (e.g., from a server core to embedded).
Then we predicted only inside each platform type (e.g., only
desktop). For predicting t (1), we used 5 workloads and 5
platforms to search for candidates, which were rated by
their averaged workload distance, but individual platform
distances. The transformation factor was weighted (w) by
averaged workload distances without extra penalty (k =
0). The scalability was predicted by sorting candidates
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Figure 10 Prediction errors of all tested predictions with either 1 or 10 candidates sorted by their prediction error.

by tuples of individual workload and platform distances
(3 platforms, 10 workloads). Transformation factors were
weighted (w) by workload individual distances with cubic
penalty (k = 3).

Table 5 presents geometric mean and median prediction
error, as well as min, max, and 70%, 80%, and 95%
percentiles over all predictions. While t (1) is predicted
with a geometric mean error of 15.4%, for all platforms
in database, the scalability achieves a mean error of
12.7%. Both predictions combined result in a full migration
prediction of a parallel workload with a mean error of
19.9%. As can be seen, the database setup influences the
prediction accuracy, such that a database of only server
cores reaches a mean error of 25.5%, but a prediction
with only desktop processors achieves 9.3%. Desktop
CPUs show good accuracy, but predictions of server
processors suffer from high variances and cores counts,
which increases prediction uncertainties. The small number
of reference platforms affects the prediction of embedded
processors. Overall, in contrast to a naive assumption of an
ideal speedup of n (resulting in 217% error in the example

Table 5 Prediction errors of different database-configurations. The
70% percentile denotes that 70% of all predictions return errors lower
or equal to the given value, etc)

error [%] av. med. min max 70% 80% 95%

all: t (1) 15.4 9.5 0.0 107.8 15.5 23.7 59.0

all: �sc 12.7 6.7 0.1 195.4 11.5 17.8 38.9

all: full 19.9 11.1 0.0 185.6 20.4 29.7 69.8

server: t (1) 18.0 10.7 0.0 116.6 20.8 23.7 70.5

server: �sc 16.0 11.0 0.3 101.1 17.7 22.9 57.8

server: full 25.5 16.3 0.2 103.7 29.7 46.4 72.1

desktop: t (1) 6.8 4.4 0.2 41.8 6.8 9.9 23.6

desktop: �sc 8.0 4.5 0.1 136.6 7.6 9.8 21.5

desktop: full 9.3 5.3 0.1 129.2 9.4 13.7 29.0

embed.: t (1) 28.9 20.4 2.0 112.6 33.9 39.1 108.6

embed.: �sc 3.2 2.4 0.0 16.6 4.1 4.5 11.7

embed.: full 29.0 21.8 0.0 111.2 32.8 39.7 100.8

in Figure 5), our method can precisely predict varying
concurrency influences and bottlenecks on all multicore
architectures.

Besides the given prediction-accuracy evaluation, which
already produces good predictions, which verify the
MPET method, we analyzed the correlation between the
determined distance between candidates and the resulting
prediction error. Figure 11 shows the average prediction
errors for a number of tested predictions while using
candidates of varying algorithmic distances Da for either
using only one candidate or an interpolation of multiple
candidates (same configuration as above). Considering
single-candidate predictions in Figure 11 shows, that there
is a clear correlation between the determined distance and
the resulting prediction error. The relation can be described
as: the lower the determined distance, the higher the
probability of a good prediction. This correlation proves
the significance of the used scalability features and thereof
derived distances. Furthermore, the use of the presented
interpolation technique enhances the prediction even at the
use of candidates with higher distances, as can be seen in
Figure 11.

As most influencing parameters on the parallel runtime
behavior, we determined the redundancy R(n) (∼ 50%),

Figure 11 Average prediction error for candidates of varying
algorithmic distances Da(P, A, B). (Distances of predictions with
multiple candidates have been averaged with candidate-individual
weights.)
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work imbalance w(n) (∼ 35%), and task distribution d(n)

(∼ 5%) on average. In addition to the scaling parameters
R(n), w(n), etc., we found the L1 cache accesses and
misses, as well as LLC cache accesses and misses as most
significant descriptive features for calculating distances.

4.2 Case Study

In a case study, which has been published as an extended
version in [32], we predicted the performance of a Xilinx
Zynq Ultrascale+ EG platform with a virtual prototype in
GEM5, an analytic processor model in Exabounds, and
our proposed statistical approach. This platform exhibits
four ARM Cortex-A53 cores running at 1.2 GHz and 4
GB RAM. We used all parallel sections (Si) of the linear
algorithmic pipelines of the Semi-Global Matching (SGM)
[28] for stereo-vision and the Histograms of Oriented
Gradients (HOG) [27] algorithm for pedestrian detection as
target workload.

ARM provides the ARM-HPI CPU-models [33] for an
ARMv8 architecture as ready-to-use simulation compo-
nents for GEM5, which only need to be configured with
timing parameters that we extracted from benchmarks and
data sheets. In spite of the provided processor models,
the creation of a virtual prototype takes some effort and
requires experienced developers. We set up a similar OS-
environment in the simulator and on the original board.
Simulating all algorithmic stages lasts over five hours, while
we used the MPAL profiling inside the simulation to extract
timings. The prediction with IBM Exabounds also neces-
sitates a parameterization of the target platform, such that
we used the same configuration as we used for the virtual
platform. In addition, an architecture-independent profile
of the algorithms was created in a 6 hours evaluation with
IBM Pisa (using LLVM). Feeding both independent descrip-
tions the platform configuration and workload profiles to the
Exabounds tool, the actual prediction only takes seconds.
For predicting the performance with the proposed statistical
approach, we make use of the database of prediction candi-
dates and add benchmark profiles of the target platform. We
also compared these methods against a naive approach in
which another platform is used as reference, which exhibits
the same processor (A53), and the measured performance
is simply scaled by frequencies of both, reference and tar-
get platform. Because, this naive approach resulted in much
higher prediction errors, it is not further discussed in the
following.

We observe absolute deviation in percent per parallel
section as well as the mean error over all algorithmic
stages (see Figure 12). The presented MPET approach
predicts the performance with a mean error of 19.0%
between both reference methods. The costly simulation of
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Figure 12 Prediction errors of all stages of a HOG pedestrian
detection (Px ) and an SGM stereo-vision (Sx ) predicted with GEM5,
Exabounds, and MPET.

GEM5 produces most accurare predictions with an average
error of 16.1%, while the approximate analytical model in
Exabounds produces the highest average error of 25.3%.
All presented error numbers in Figure 12 can be positive or
negative deviations, such that all three approaches neither
under- nor over-estimate the performance. Furthermore, all
three methods produce some accurate as well as erroneous
predictions. To summarize the results, we visualized the
mean prediction error, modeling effort (for creating a
prediction environment), and prediction time (simulation or
mathematical model scoring) in Figure 13.

4.3 Exemplary Predictions

Figure 14(a) presents the scaling curve of an algorithmic
stage S7, which was predicted as target workload A onto a
Ryzen 2400G target processor. The scaling curves of both
candidate workloads (here: S1 and S3 of SGM written as B1

and B2) profiled on the target platform need to be stored
in database already before prediction. Profiles of A and
Bi on two reference platforms (here: i9-9900K and E5-
2630 v3 written as P1 and P2) were used to calculate the
transformation factors f (P1/P2, B1/B2) to firstly predict
the sequential execution time t (1) and the scaling trend �sc

Figure 13 Classification of prediction tools used in the case study.
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Figure 14 Two exemplary predicted scaling curves with visualization
of two selected, most relevant candidated.

subsequently. In this example, the prediction of t (1) and
of the parallel runtime behavior �sc shows only minimum
deviations with a mean error over the trend t (1) . . . t (nmax)

of only 1%. It is worth noting, that even the hyperthreading
effects (for n > nht with nht = 4) could be predicted
very accurately. However, at the maximum number of cores
n = nmax = 8, the prediction error increases up to 9%,
which could be an influence of the kernel thread (prediction:
t (1) = 31.6 ms, t (nmax) = 10.8 ms, measured: t (1) =
32.6 ms, t (nmax) = 9.9 ms).

In the second example (shown in Figure 14(b)), the
algorithmic stage P3 of HOG pedestrian detection was
used as target workload A to be predicted onto a Xeon
E5620 as target platform. This prediction, which used S2
(HOG) and SRAD as B1 and B2 measured on an Opteron-
6172 and an Opteron-6220, resulted in a higher prediction
error of t (1) of 28%. For small numbers of cores, the
scaling behavior is predicted accurately, but the prediction
assumes more influences of the hyperthreading and NUMA-
effects as they were measured in the ground-truth for
higher numbers of cores. This results in a mean error over
the trend t (1) . . . t (nmax) of 18%, while the prediction of
t (nmax) shows an error of 25% (prediction: t (1) = 1.95 ms,
t (nmax) = 0.37 ms, measured: t (1) = 2.72 ms, t (nmax) =
0.45 ms).

4.4 Discussion and FutureWork

In its current version, the prediction process respects all
elements in the scaling vector with the same influence on
the resulting distance. Also, candidates are only weighted
by their distance, regardless of their number of valid
elements in the scaling vector, which indeed influences the
significance of the generated distance. In future work, it is
to be evaluated, whether additional weights can improve the
prediction (statically or dynamically adapted to the current
database).

– Candidate weights: As mentioned before, profile
outliers and the quality of the fitting process influences
parameter constellations and the prediction error
thereafter. Therefore, the error after reconstructing the
original profile from fitted parameters needs to be taken
into account and be used as confidence level in order to
decrease the influence of candidates of bad certainty in
their scaling behavior and according distance metrics.

– Parameter weights: In current state, after normalization,
distances are calculated by using all elements in
�sc with the same weight and influence. Depending
on many characteristics of the database composition,
like parallelization strategy and resulting parameters’
absolute influence on the scaling behavior, these
weights could be adapted in order to emphasize the
importance of certain parameters.

The presented concept demonstrated the feasibility of
a statistical cross-architecture prediction for multicore
applications even with small databases. Because only
few reference platforms are required to setup an initial
prediction environment that allows a prediction of the
parallel performance in a sufficient precision, this method
can help to support developers with information on
potential bottlenecks and parallelization hints. In our
ongoing research, we plan to integrate confidence levels
for instance by making use of model-fitting errors, used
candidates’ distances, or number of used candidates.
Providing a confidence with each prediction allows users
of this prediction method to decide to either accept a
prediction within the current range and trust-level or to add
more reference platforms to improve the significance of
predictions. Also, confidence levels of multiple prediction
results, each evaluated with different configurations (as
for instance shown in Figure 10), could be combined to
extract benefits of each configuration: reduced mean error
plus eliminated outliers. In addition, microbenchmarks will
be used in our future work to determine the theoretical
peak performance. Using these measures in a roof-line
model, helps to classify workloads by their limitations
(computation bound, communication bound, or memory
bound) and identify optimization potentials.
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The use of a too small database, which does not offer a
sufficient number of candidates, leads to a more likely selec-
tion of outliers as candidates. Therefore, we aim at a com-
prehensive benchmark set, which covers most paralleliza-
tion strategies and varying scaling trends. Our vision is
to create a shared online database, where the benchmark
set and the prediction method can be downloaded to be
used to characterize more platforms and new results can
be uploaded to be added to the public database. This can
help to offer a comprehensive and growing database to the
community.

5 Conclusion

This paper presents a statistical cross-architecture prediction
methodology MPET, which is based on abstract character-
istics that describe the parallel runtime behavior. It enables
a migration prediction of a parallel or sequential workload
from one platform to another and a scalability prediction
of a not yet parallelized implementation. Having reference
workloads of different parallelization strategies available, a
scalability of a sequential implementation can be estimated
even in early development phases. Fully virtual workloads
and virtual architectures can be modeled by modifying the
abstract scaling parameters, which directly form the scaling
trend. In spite of the low mathematical model complexity
compared with other prediction methods, we achieve bet-
ter results than analytical models like Exabounds. While a
large database with potentially closely located prediction
candidates can enhance the prediction accuracy, even the
relatively small database used in our evaluation generated
competitive precisions < 20% mean error. And a growing
benchmark set will further increase the accuracy. In contrast
to the reference methods that we used in the case study, our
method neither requires time-consuming simulations, nor
any user input for modeling and thus no developer training.
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Matthias Lüders received
his M.Sc. degree in elec-
trical engineering in 2018
from the Leibniz University
in Hanover. Since March
2019, he is a Ph.D. student
and research engineer at
the Institute of Microelec-
tronic Systems at the Leibniz
University in Hanover. His
research focuses multicore
performance prediction
methods in the context of
(heterogeneous) parallel
architectures for autonomous
driving systems, which was

part of the collaborative research project “PARIS” funded by the
German ministry of education and research (Bundesministerium für
Bildung und Forschung).

https://doi.org/10.1109/MM.2007.56
https://doi.org/10.1109/MM.2007.56
https://doi.org/10.1145/3284127
https://developer.arm.com/solutions/research/research-enablement-kits
https://developer.arm.com/solutions/research/research-enablement-kits


J Sign Process Syst

Christoph Riggers received
his B.Sc. degree in electri-
cal engineering from the Leib-
niz University of Hanover,
Germany in 2017. His bach-
elor thesis dealt with the
implementation and optimiza-
tion of synthetic aperture radar
image data generation algo-
rithms on a heterogeneous
multicore CPU. Since then,
he has been working as a
research assistant at the Insti-
tute of Microelectronic Sys-
tems at the Leibniz University
Hanover and worked on multi-

core optimization of a neural network used for autonomous driving.
He is currently working on his master thesis on multicore performance
prediction.

Holger Blume received his
Dipl.-Ing. degree in electrical
engineering from the Univer-
sity of Dortmund, Germany
in 1992. There he also fin-
ished his PhD on nonlinear
fault tolerant interpolation of
intermediate images in 1997.
From 1998 to 2008 he worked
as a senior engineer for the
Chair of Electrical Engineer-
ing and Computer Systems at
the RWTHAachen University.
There he finished his habili-
tation degree on design space
exploration for heterogeneous

architectures in 2008. In July 2008 he was appointed professor for
architectures and systems at the Institute of Microelectronic Systems
at Leibniz University Hanover. Prof. Blume is chairman of the German
chapter of the IEEE Solid State Circuits Society. His research interests
are in design space exploration for algorithms and architectures for
digital signal processing. Main application fields, which are addressed,
are biomedical applications and driver assistance systems.


	Multicore Performance Prediction with MPET
	Abstract
	Introduction
	Related Work
	Virtual Prototyping
	Approximate Analytic Models
	Statistical Methods

	Scalability Based Prediction
	Scalability Characteristics
	Prediction
	Distances
	Candidates
	Reconstruction

	Database

	Evaluation
	Prediction Accuracy
	Case Study
	Exemplary Predictions
	Discussion and Future Work

	Conclusion
	References


