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Abstract With security and surveillance, there is an
increasing need to process image data efficiently and effec-
tively either at source or in a large data network. Whilst
a Field-Programmable Gate Array has been seen as a key
technology for enabling this, the design process has been
viewed as problematic in terms of the time and effort needed
for implementation and verification. The work here pro-
poses a different approach of using optimized FPGA-based
soft-core processors which allows the user to exploit the task
and data level parallelism to achieve the quality of dedicated
FPGA implementations whilst reducing design time. The
paper also reports some preliminary progress on the design
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flow to program the structure. An implementation for a His-
togram of Gradients algorithm is also reported which shows
that a performance of 328 fps can be achieved with this
design approach, whilst avoiding the long design time, ver-
ification and debugging steps associated with conventional
FPGA implementations.

Keywords Image processing · FPGAs · Heterogeneous
multi-core architecture

1 Introduction

The emerging need for processing big data-sets of
high-resolution image processing applications demands
faster, configurable, high throughput systems with better
energy efficiency [8, 17]. Field-Programmable Gate Arrays
(FPGAs) can play an important role as they can provide
configurability, scalability and concurrency to match the
required throughput rates of the application under consid-
eration [27]. They have the potential for distributing image
processing to a computing platform which is located as
close as possible to the image source. This distributed pro-
cessing can act to reduce the need for bandwidth and power
on a large scale, which in turn reduces the communication
overhead and the amount of data needed to be stored.

Typically FPGAs work well with the applications
which require concurrency, high bandwidth and re-
programmability. However, FPGA design and verification
is time-consuming and requires that designers create system
implementations using Hardware Description Languages
(HDLs) such as VHDL and Verilog [6]. The HDL approach
allows a digital circuit to be precisely described, and with
timing constraints met, the design tools can then synthe-
sise, map, place and route the HDL design accordingly. The
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major issue is that this design process involves numerous
verification and debugging steps, which increases the time
to market from weeks to months, depending on the com-
plexity of the algorithm of interest [10]. In order to reduce
the required design time and effort, the two biggest FPGA
vendors, Xilinx and Altera, have created new High Level
Synthesis (HLS) tools which allow the designer to use high
level languages such as C [11] or OpenCL [25] to cre-
ate algorithmic representations for FPGA implementation.
There are also other high level synthesis routes reported in
open literature.

All of the HLS design tools, however, still rely on the
HDL synthesis route to produce the programming files,
so a synthesis and implementation route still has to be
performed for the targeted technology which can take up
to several hours. Moreover, every time a design change
is performed, this process has to be repeated. This paper
proposes an alternative approach based on developing a
highly efficient, RISC (Reduced Instruction Set Comput-
ing) processor called Image Processing PROcessor (IPPro)
[24]. The bespoke designed soft processors have guaranteed
performance and resource usage; they are also easily repro-
grammable and even allow potential support for run-time
reconfigurability. The proposed approach uses the CAL
dataflow language approach [14], providing a design route
to allow the user to decompose their design into a series of
small actors which allow the user to exploit task and data
parallelism existing in the algorithm [2, 3] and which can
then be compiled to IPPro architectures.

The novel contributions of the paper are:

– Overview of the IPPro processor which has been opti-
mised to match both the image processing algorithms
requirements and FPGA resources and which avoids the
need for long place and route implementation;

– Creation of a multi-core architecture with an inter pro-
cessor communication network which is targeted for
complex image processing systems;

– Development of a dataflow system based on the CAL
language which provides a route for users to produce
code for the processors;

– Profiling and implementation of a complex image pro-
cessing application namely, the Histogram of Oriented
Gradients (HOG) algorithm.

The paper is organized as follows. Section 2 reviews
related background work in the area of existing soft-core
processors and some information on dataflow languages
and tools, in particular, the RVC-CAL language. Section 3
briefly outlines our proposed, many-core, heterogeneous
architecture for implementing image processing applica-
tions. Section 4 describes the proposed dataflow framework
and how the programming paradigm is achieved. Section 5

presents a detailed case study for a HOG design example
implemented using the design framework and using soft-
processor architecture, for which a performance comparison
is also made. Section 6 concludes and reviews the proposed
approach.

2 Background

The reprogrammable design methodology proposed in this
paper removes the requirement for HDL entry, synthesis,
and place and route processes. The approach replaces the
reconfigurability property of FPGAs by a reprogrammable
model. In order to do this, an intermediate fine-grained
reprogrammable architecture is proposed which involves
programmable, multi-core processors and an associated
communication network. The proposed system consists of
RISC architectures which support Single Instruction Mul-
tiple Data (SIMD) operations, and various inter-processor
communication methodologies, to provide the required flex-
ibility and programmability. This reprogrammable archiec-
ture has been designed to be as compact as possible to
increase the efficiency of the use of the available FPGA
logic whilst also achieving high performance [24].

In this concept, if every single processor can be thought
of as an actor and between the actors data is fired through
the First In, First Out (FIFO) structures, the overall sys-
tem would suit the application domain and would be highly
applicable to model and program through a dataflow lan-
guage and framework. Dataflow languages in general have
the ability to express the parallelism, and also make it
easy to identify and resolve data dependencies to exploit
concurrency as much as possible. However, since an FPGA-
based platform is targeted with given limitations such as
restricted memory, a dataflow language-based framework
should consider these issues.

2.1 Soft-Core Processors

There are a number of state-of-the-art, soft-core processors
based on FPGA architectures. These include FlexGrip [1],
IDEA [7], and DSP48E-based MIMO (Multiple Input Mul-
tiple Output) processor [9]. FlexGrip maps pre-compiled
CUDA kernels on soft-core processors which are pro-
grammable, flexible and scalable and which can operate
at 100 MHz. The IDEA processor and MIMO processor
have a similar structure to our IPPro core discussed here,
as both use the Xilinx DSP48E1 processing unit as their
Arithmetic Logic Unit (ALU). The IDEA processor uses an
8-stage pipeline to achieve 407 MHz clocking frequency,
andMIMO processor supports a very specific instruction set
for Multiple InputMultiple Output (MIMO) communication
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Figure 1 IPPro architecture.

systems and is able to work at a clock frequency of 265
MHz.

Given the starting point of using a high-level, dataflow
language, there are a number of challenges behind creating
an efficient implementation. These include the control of
memory size, throughput and bottleneck analysis. The main
advantage for using an FPGA as a target implementation
platform is the high bandwidth, low latency memory access
which increases the throughput of the applications of inter-
est. On the other hand, whilst the availability of multiple
memories is attractive from an image processing implemen-
tation perspective, the overall memory is limited particularly
when compared to competing technologies such as GPUs.

The IPPro is our hand-coded RISC soft-core processor.
By using the Xilinx DSP48E1 primitive as an ALU and min-
imizing supporting logic, synthesis results show that it is
capable of running at 526 MHz on Xilinx SoCs using an
XC7Z020-3 [24]. It uses one DSP48E1, one BRAM and 330
Slice Registers (excluding input/output FIFOs) per proces-
sor. IPPro outperforms all other current FPGA based soft-
core solutions as it has been optimised for modern FPGA
technologies and provides a good balance between process-
ing elements and memory. It supports various instructions
and memory accesses and is capable of processing signed
16-bit operations. The IPPro processor architecture uses a
5-stage balanced pipelining and supports streaming mode
operation where the input and output data is read and written
back to FIFO structures, as shown in Fig. 1. This processor
is designed to be compact, reprogrammable, and scalable
to achieve high throughput rates which are comparable to
custom-made HDL designs.

IPPro keeps the balance between programmability and
the need to maintain the FPGA performance. Overall, it has
the following addressing modes:

– Local Memory – Local Memory (LM-LM)
– Local Memory – FIFO (LM-FIFO)
– Kernel Memory – FIFO (KM-FIFO)

The local memory is composed of general-purpose registers
used mainly for storing operands of instructions or pixels.
This memory currently contains 32 16-bit registers. A FIFO

is a single internal register of IPPro where the input and
output streams from/to an external FIFO are stored. Ker-
nel memory is a specialized location for coefficient storage
in windowing and filtering operations with 32 of 16-bit
registers.

An example of the supported instructions can be seen in
Table 1. This table shows the IPPro LM-FIFO addressing
mode instructions and some miscellaneous ones among oth-
ers. The IPPro instruction set is capable of processing basic
arithmetic and logical operations for different addressing
modes. In addition to the unary and binary instructions, it
also has support for trinary expressions such as MULADD,
MULSUB, MULACC and others. Given the limited instruc-
tion support and requirements from the application domain,
a coprocessor is added to provide better support for more
complex processes such as division and square root. A
more detailed description of the IPPro is given in references
[18, 24].

2.2 Dataflow Languages and Tools

The dataflow representation concept was introduced by
Sutherland [26] as a way to describe arithmetic opera-
tions. The graphical representation of the arithmetic oper-
ations makes it easier to distinguish the temporary vari-
ables, dependencies and input and output variables, and

Table 1 Example IPPro instructions.

LM-FIFO Misc

ADD LOR JMP GET

SUB LNOR BNEQ PUSH

MUL LNOT BEQ NOP

MULADD LNAND BZ BYPASS

MULSUB LAND BNZ

MULACC LSL BS

LXOR LSR BNS

LXNR MIN BNGT

MAX BGT
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most importantly here, data transfer rate between the pro-
cessing elements, i.e. actors. Dennis et al. [13] formally
described the concept of directed graphs with the flow of
data between edges of actors. A dataflow program consists
of actors and its firing rules, where every actor describes
the required arithmetic/mathematical operation to process
the input streams before passing the result(s) to the output
streams. The representation of actors in dataflow program-
ming models are given by directed graphs where the nodes
represent computations and in general, the arcs represent the
movement of data.

The main principles behind the dataflow design method-
ology are the concurrency, scalability, modularity and data-
driven properties. The term data-driven is used to express
the execution control of dataflow with the availability of the
data itself. In this context, an actor is a standalone entity
which defines an execution procedure. Actors communicate
with other actors by passing data tokens, and the execution
is done through the token passing. The combination of a set
of actors with a set of connections between actors constructs
a network. Within the defined networks, communication is
made using infinite size FIFO components.

In summary, a dataflow program is defined as a directed
graph of computational elements communicating through
ports. Since Sutherland’s proposition, dataflow program-
ming has been studied in detail and various languages have
been proposed for different target applications. Lustre [16]
is a synchronous dataflow language developed for program-
ming real-time systems and is used within an industrial
embedded software toolset called SCADE. Signal [19] is a
synchronous dataflow language and its compiler is devel-
oped for safe real-time system applications. Its semantics
are defined for multiple-clocked flows of data and events.
The MAPS framework concentrates on mapping multiple
dataflow applications onto heterogeneous MPSoCs using
design constraints for performance estimation and map-
ping. Ptolemy II is an open source dataflow system design
environment based on an actor-oriented design. It supports
process networks (PN), discrete-events (DE), synchronous
dataflow (SDF), synchronous/reactive (SR), rendezvous-
based models, 3-D visualization, and continuous-time mod-
els. CAL [14] has been developed for image processing
and used for FPGAs, hence it seemed a highly appropriate
choice for the approach proposed here and is described in
detail next.

2.3 RVC-CAL Dataflow Language

CAL [14] was developed by Eker and Janneck as a part
of the Ptolemy II project and is a high-level program-
ming language for writing actors where within these actors,

input streams are transformed to output streams. CAL offers
the necessary constructs for expressing parallel or sequen-
tial coding, bitwise types, a consistent memory model,
and communication between parallel tasks through queues.
The CAL computation model enables the programmer to
express applications as network processes making it an ideal
candidate to be used as a behavioural description for mod-
eling software and hardware processing elements. A subset
of CAL language is called Reconfigurable Video Coding
CAL or RVC-CAL where type limitations are applied and
advance features of CAL language are prohibited; it is the
language used in Orcc which is an open source dataflow
development environment and compiler framework, that
allows the transcompilation of actors and generates equiva-
lent codes depending on the chosen back-ends [28].

The RVC framework is a standard originally developed
forMPEG in order to provide a unified, high-level specifica-
tion of current and future MPEG video coding technologies
using dataflow models. In this framework, a decoder is
generated by configuring video coding modules which are
standard MPEG toolbox or propriety libraries. RVC-CAL is
used to write the reference software of library elements. A
decoder configuration is defined in the XML language by
connecting a set of RVC-CAL modules.

In general, an RVC-CAL based design is composed of
several files. The file types and their contents are as follows.

– Dataflow network (.xdf file): this is a textual descrip-
tion coded in .xml format constructing the network
of actors of the design and the flow of data between
them.

– Actors (.cal files): an actor processes a stream of
tokens received through its input ports and sends the
processed tokens through its output ports. A design can
have multiple actors connected to each other as speci-
fied in the dataflow network file. The basic structure of
an actor includes the input/output ports and one or more
actions. An action will be executed, i.e. fired, if all the
following activation conditions are met:

– All required input tokens are available;
– The guard expression holds true;
– No other action with higher priority can be

activated at this time;
– The action can be fired based on the action

schedule.

– Data file (.cal file): this is a special kind of .cal file
to define constants. These constants can be imported
into and used by any actor in the design.

A typical structure of an actor code containing two
actions is shown in the following.
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3 Many-Core Heterogeneous Architecture

This section describes the proposed heterogeneous archi-
tecture for the implementation of data-intensive, streaming-
based applications. This design has been focused initially
towards the All Programmable System on Chip (AP SoC)
devices, in particular, the Xilinx Zynq-7000 AP SoC. These
devices integrate a Processing System (PS) and a Pro-
grammable Logic (PL) portion in a single device. This work
makes use of both the PS and PL portions; some control-
ling applications and potentially some actors (depending on
the decision on software/hardware partitioning, as will be
described later) execute on PS, and the compute-intensive
actors are realised on a network of multi soft-cores imple-
mented on PL.

3.1 Inter Processor Communication Network

In programmable multi-core architectures, the data com-
munication architecture chosen to exchange data among
different cores is important, and the design choices made
can significantly impact system performance. With the use
of an inter processor communication network, the range
and complexity of the targeted applications will increase.
In most cases, adaptive algorithms running on multi-core

systems need to communicate with other cores to fulfill the
required memory and execution semantics.

From a hardware perspective, it provides flexibility, scal-
ability and bandwidth whereas from the software perspec-
tive, it defines what applications could efficiently map and
schedule on the underlying architecture [4]. In the case of
programmable architectures, the mapping and scheduling of
the application is realised during decomposition and com-
pilation which means that the underlying architecture has
direct implications on the framework development.

Image processing applications exhibit structures for dif-
ferent execution and memory access patterns [4, 22, 23],
some of which are classified in Table 2. These are mainly
algorithmic characteristics, and hence are platform indepen-
dent and equally valid for different computing platforms
CPU, GPU, FPGA etc.. These patterns can give an idea
about the level of connectivity, memory, scheduling and
mapping requirements of an application. If a certain type is
supported by the underlying architecture, it would be able
to run most of the algorithms that are similar within the
respective class.

The ideal architecture is one that could support map-
ping and scheduling of the mentioned patterns in order to
allow the ultimate goal of the IPPro architecture which
looks to accelerate a wide range of image processing
applications. These patterns have been implemented using
the stream- and dataflow-based computing paradigm. The
design choices have been driven from both sides of the
project flow, i.e. top to bottom (starting from high-level
description) and bottom to top (starting from physical
resources placement). This drives the development as
follows:

– Multiple to multiple core level connectivity;
– Area utilisation in terms of underlying FPGA logic;
– Maintenance of the balance between memory and

bandwidth;
– Maintenance of the critical path length to ensure high

performance.

The proposed multi-core processing network is currently
implemented as an array of 4 × C soft cores, where the
number of columns (C) is decided based on the available
resources of the target device. This architecture has evolved

Table 2 Execution and
memory access patterns [22]. Type Memory Pattern Execution Pattern

Pixel-Pixel (P2P) Pipelined One-one

Neighbour-Pixel (N2P) Coalesced Tree

Reduction to Scalar (R2S) Recursive Coalesced Reduction Tree

Reduction to Vector (R2V) Recursive Non-Coalesced Large Tree Reduction
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Figure 2 Interconnection
network of an array of cores.

from a detailed analysis of mapping a series of algorithms
onto a multi-core architecture. Figure 2 shows a simplified
basic unit of a network constructed as the interconnection of
4 × 2 cores. The larger network can be formed by extend-
ing and replicating this unit from either side. Every core
can control one multiplexer (mux) and one demultiplexer
(demux). The mux is connected to the input port of the core
where one of the four FIFOs can be selected to pass its
tokens to the core. Each FIFO is connected to every core
of the previous layer hence providing full connectivity. The
core is also in control of a demux connected to its output
port. Through this selection, it could send the partially-
processed tokens to any of the four cores located in the
following layer of the network.

The basic streaming-based operations for a core in such
a network is as follows:

1. An action in RVC-CAL will be fired only if all the
required tokens are available. The core will wait until
all these tokens are received from the expected source
cores through the input port.

2. With all the tokens available, the core will process the
tokens.

3. Every processed token will be sent through its out-
put port and shifted in the connected FIFO of the
destination core which expects this token.

4. This process will be repeated as long as the streaming-
based application keeps running.

For the above network to run, selection lines of muxes
and demuxes should be set correctly by the cores and
access to the FIFOs should be coordinated. Also the order
of the tokens passed through FIFOs should be preserved.
Such settings allow the architecture to be optimised from
an application specific perspective and then not changed.
This requires extra information about the connectivity of the
streaming based network, and orderly passing of the tokens.

These issues are dealt with during the compilation process
of a specific application, as will be explained later.

3.2 System-Level Design

Our initial implementation target technology for streaming-
based video processing applications is the Zynq-7000 AP
SoC. This device integrates the software programmability
of a dual-core ARM Cortex-A9 based PS and the hard-
ware programmability of PL. In general, our design involves
mapping the data flow control onto the PS (ARM cores), and
image-processing application on the multi-core processing
data path realised on PL to achieve real-time processing of
compute-intensive applications. It might be the case that the
full image-processing application is not realised on PL as
less computational demanding functions often only require
memory re-organisation. Implementing such functionality
at the PS level could be the most efficient method as it
could avoid passing large volumes of data between PL and
the ARM cores, thereby avoiding costly transport delays.
In general, the streaming pipeline architecture is designed
as represented in Fig. 3; the PL implements a video design
that consists of a capture pipeline, a multi-core processing
network, and a display pipeline.

A part of the system-level block diagram of this design,
which uses Xilinx proprietary IPs available for Zynq SoC

Figure 3 Streaming pipeline architecture.
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Figure 4 A portion of
system-level block diagram of
PL and PS of the design.

devices, is illustrated in Fig. 4. The capture pipeline includes
a VDMA with one write channel and is connected to the
HP0 write port. The VDMA writes the incoming video
frames through an HDMI receiver into buffers inside the
memory. The multi-core processing network is connected to
the HP2 read/write ports. A VDMA (with one read and one
write channel) reads pixels from memory and sends them to
the multi-core network for processing. The VDMA writes
the processed data back into memory through its write chan-
nel. The display pipeline is connected to HP0 read port. This
pipeline consists of the logiCVC display controller which
has an integrated DMA engine to read buffers from memory
and send the data to the monitor over HDMI.

4 Dataflow Framework

This section describes the proposed tool flow, concepts
and techniques for the implementation of image processing

applications, described in RVC-CAL dataflow language, on
AP SoC devices.

Our developed tool flow for the implementation of image
processing applications is shown in Fig. 5. The input to
the framework by the user is the behavioural descrip-
tion of an image-processing algorithm coded in the RVC-
CAL dataflow language. This behavioural implementation
is expected to be composed of multiple actors along with an
xdf dataflow network description. Some of these actors are
selected to execute in soft-cores (one actor per core) hence
providing concurrent execution of these actors, and the rest
to run in the host CPUs. By analysing the behavioural
description of the algorithm, the software/hardware parti-
tioning of the design is determined. The metrics involved in
this decision-making will be discussed later.

Once the actors are split based on their target execution
platform, the original xdf file no longer represents the net-
work topology of either of the two sets. Each set of actors
should be redesigned separately and their input/output ports

Figure 5 Simplified design
flow of a hardware and software
heterogeneous system.
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fixed and each set’s xdf dataflow network description
file generated. This can easily be done using the Orcc
Development Environment.

The actors to run on the host CPUs are compiled from
RVC-CAL to C using the C backend of Orcc Development
Environment. The actors to be accelerated using the pro-
posed IPPro-based multi-core network are first analysed for
decomposition and/or SIMD application, and then passed
through a compiler framework. Both of these important
steps will be discussed later. The compilation flow is com-
posed of three distinctive steps. The first step investigates
the xdf dataflow network file and assigns the actors to the
processors on the network and keeps a record of the settings
for each actor to communicate with the other ones to estab-
lish the data streams. The second step of the compilation
is the conversion of each actor’s RVC-CAL code to IPPro
assembly code. The final step is the generation of control
register values, mainly for AXI Lite Registers, and parame-
ters required by the developed C-APIs running on the host
CPUs.

While the interconnects and input/output ports ‘between’
the FPGA-targeted actors are handled by the compiler,
receiving image data by the first-level actors and sending the
results from the final-level actors back requires some devel-
opment work and creation of settings. Multiple controllers
(programmable by the host CPUs) are designed to provide
the interface to transfer the image data to the accelerators
and gather the results and transfer back to the host. This
part of the design is currently custom-designed or manually
handled in our implementation. The fully-programmable
implementation is a subject for future work.

With the host CPUs running part of the design and set-
ting control registers and C control functions parameters,
the IPPro binary codes of the other actors loaded to the
proper cores on the accelerator, and the interface between
the software/hardware sections set accordingly, the system
implementation is in place and ready to run.

4.1 Software/Hardware Partitioning and Decomposition
of the SIMD Application

An initial version of a performance analysis tool or pro-
filer has been developed and embedded in the partitioning
and decomposition tools in order to evaluate how well the
decomposed actors will perform on the new architecture.
Various static and dynamic profiling tools and techniques
exist in open literature, such as that in Simone et al. [5]
who proposed a very beneficial design space framework
for profiling and optimising algorithms which also works
with the Orcc development environment. This profiler is
built to work with HLS-based designs and is not applica-
ble to our processor-based approach. To develop a profiler

for our framework, a cost model i.e. a set of metrics has
been created as a means of quantifying the effectiveness of
the decomposition and mapping of actors to the IPPro net-
work architecture. To realise the cost model, architectural
parameters/constraints which should be satisfied to achieve
high-performance and area-efficient implementations need
to be identified and a method needs to be determined which
can quantify the identified metrics for performance/area
measurements by a profiler.

For a many-core heterogeneous architecture, the met-
rics/constraints which are the deciding factors in the
partitioning/decomposition process can be categorised
as ‘performance-based’ and ‘area-based’. The important
performance-based metrics are implemented and discussed
here. The area-based metrics are a subject for future work
and will be briefly discussed later. The three performance
factors to be considered are:

– Actor execution time which is the main factor affect-
ing performance and can be estimated from the actor’s
code. To find the exact execution time of an actor, it
needs to be compiled first and its instructions counted.
The actors with the longest delays which are parallelis-
able are suitable for acceleration.

– Overheads incurred in transferring the image data
to/from the accelerator also affect acceleration per-
formance. If an actor requires the entire image to be
available for processing or it produces large amount
of data to be transferred to the host CPUs, the perfor-
mance will probably improve by executing it in the host
CPUs.

– Average waiting time is that needed to receive the input
tokens and send the produced tokens to another actor,
although this could be included in the actor’s execution
time.

Given a dataflow network of a design such as the one
shown in Fig. 6 where actors’ execution times are reflected
in their shapes, the performance can be analysed by con-
sidering its pipeline execution structure. This design has a
total of 10 actors arranged in 6 columns where the number
of cores in every column varies between 1 and 4. A section
of the pipeline of this design is shown in Fig. 7. The three
communication overheads considered are:

– Overhead to transfer data from host CPUs to the accel-
erator and then distribute among cores (OH1);

– Overhead to transfer data between actors through FIFOs
(OH2) and;

– Overhead to collect the processed data and transfer it
back to the host CPUs (OH3).

Using this diagram, a main image processing per-
formance metric, frames/s (fps), can be approximated
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Figure 6 Dataflow block
diagram of an example design
consisting of 10 actors organised
in 6 columns. The width of
every actor is representative of
its execution time.

considering the following features (along with the abbrevi-
ation of each feature):

– D: the worst case delay (execution clock cycles) of all
the stages (columns);

– P: number of pixels in a frame;
– C: number of pixels consumed on every pass;
– F: hardware clock rate.

fps ≈ F

D × P
C

(1)

In this calculation, the average overhead of the longest
actor is included in its execution time. This overhead can
usually be ignored since the actor with the longest delay
should have its input tokens ready by the shorter actors
which are quicker. Considering Eq. 1, it can be concluded
that to improve the fps, we need to:

– Increase SIMD operations, by generating multiple
instances of the original design, using the same instruc-
tion memory for the corresponding instances and pro-
viding appropriate data distribution and collection con-
trollers. This will decrease P

C
.

– Decrease the execution times of cores by decompos-
ing them; this will increase the number of columns
in the design and hence the degree of parallelism will
increase. In the equation, this will result in decrease of
D. In Figs. 6 and 7, the decomposition of the actor with
the worst-case delay in 2nd column will improve the
performance.

The host CPU could be considered as one stage of the
dataflow and since its clock rate is higher than that of FPGA,
the assigned actor’s execution clock cycles could be higher

to run in parallel with the shorter actors executing on FPGA.
If multiple short actors (compared to the average execu-
tion time expected to satisfy the required performance) are
sequentially placed in the dataflow, they can be merged to
reduce the overhead of token transfer through FIFOs and
also reduce area utilisation as less cores will be used up by
the design. If these short actors are placed at the start or end
of the flow, they are the best candidates to be partitioned for
execution in the host CPU. The three final short actors in
Fig. 6 are merged and running in the host CPU, as indicated
in Fig. 7. If placed in the middle of the dataflow, the cost of
transmission to host CPU and then back to the FPGA will
typically be high and it would be better to accelerate it.

The behavioural description of an algorithm could be
coded in different formats:

– No explicit balanced actors or actions are provided by
the user.

– The actors include actions which are balanced without
depending on each other, e.g. no global variables in an
actor is updated by one action and then used by the
other ones. These actions need to be decomposed into
separate actors.

– The actors are explicitly balanced and only need to be
partitioned into software/hardware execution.

There are two different types of decomposition: ‘row-wise’
and ‘column-wise’. In row-wise decomposition, there is
no dependence among newly-generated actors while in
column-wise decomposition, the new actors are dependent
on each other. The first case mentioned above will most
likely result in column-wise decomposition and the second
one in row-wise. The row-wise implementation is pre-
ferred over column-wise, as in row-wise no overhead of

Figure 7 A section of the pipeline showing the impact of actor execu-
tion times on the performance of the design of Fig. 6. The three types
of overhead for data transfer/distribution to accelerator, data transfer

between cores in the accelerator, and data collection/transfer from
accelerator are represented respectively by OH1, OH2, and OH3.
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token transmission is incurred compared to the column-wise
where this overhead could be a limiting factor in the decom-
position process. A combination of these two can also be
implemented in certain conditions.

If the actors or actions are not balanced, a number of steps
should be taken to decompose it. The main step is to find
the basic blocks of the code. A basic block is a sequence
of instructions without branches, except possibly at the end,
and without branch targets or branch labels, except possibly
at the beginning. The first phase of decomposition is break-
ing the program into basic blocks. Some examples of basic
blocks in RVC-CAL are: If statement, while statement,
foreach statement, and assignments. Then the ‘balance
points’ of the actor should be found. The balance points
divide the actor into multiple sets of basic blocks such that
if each set is placed in a new actor, the overhead of trans-
ferring tokens among the sets will not create a bottleneck
and the performance requirements of the algorithm will be
satisfied. There could be more than one balance point avail-
able for grouping basic blocks in which the one with lower
overhead should be used.

Figure 8 shows an example actor ActorMain.cal
which does not meet the required performance and should
be decomposed. The basic blocks of the actor are high-
lighted in this code. There are two balance points which
satisfy the performance requirements; since either of them
divides the code into two sets of basic blocks where
the second one is dependent on the first one, this is a

Figure 9 Decomposition impact on the input/output ports of the
example shown in Fig. 8.

column-wise decomposition. A balance point should be
chosen which reduces the token transmission through
FIFOs; balance point 1 requires one extra token (LocVar1)
compared to balance point 2. Therefore balance point 2 is
the better choice.

A disadvantage of column-wise decomposition is that
the required unprocessed tokens by an actor should pass
through the preceding actors (for example Out4 :=
In3; assignment in Actor1.cal of Fig. 8), and the pro-
cessed output tokens produced by first-layer actors should
be passed through the following actors (for example Out1
:= In1; assignment in Actor2.cal of Fig. 8). This
adds to the token transmission overhead of the design.
Column-wise decomposition, however does not need any
changes to be made to the ports of surrounding actors. The
communication overhead for the example of Fig. 8 is shown
in Fig. 9.

Figure 8 An example column-wise decomposition process where ActorMain.cal is decomposed into Actor1.cal and Actor2.cal.
This example is only for demonstration purposes. The basic blocks are shown in dashed boxes and the changes are highlighted in colour.
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Figure 10 An example row-wise decomposition process where ActorMain.cal is decomposed into Actor1.cal and Actor2.cal. This
example is only for demonstration purposes. The basic blocks are shown in dashed boxes and the changes are highlighted in colour.

If an actor includes actions which are balanced and
independent of each other (with a linear scheduling), or
equivalently, the basic block sets inside ‘one’ action are
independent of each other around the balance point, the row-
wise decomposition can be applied. In the example shown
in Fig. 10, ActorMain.cal has two independent sets
of basic blocks around the balance point, hence row-wise
decomposition can be applied. This type of decomposition
does not increase the token transfer overhead when com-
pared against the original actor; it only changes the ports
through which the tokens are communicated with the adja-
cent actors in the dataflow graph; the connecting ports of
the neighbouring actors should change to fit the new struc-
ture. Figure 11 shows the decomposition impact on the port
declarations of this example.

4.1.1 Metrics

As mentioned earlier, the classification of metrics involved
in partitioning/decomposition is performance-based or

Figure 11 Decomposition impact on the input/output ports of the
example shown in Fig. 10.

area-based. In our implementation, we have considered the
main system-level performance-based features, however,
there are more metrics involved and the important ones are
reviewed in this section. Some of these metrics are currently
manually checked in our design, and automatic application
of them will be in our future work. For a many-core het-
erogeneous architecture, the metrics/constraints involved in
the partitioning/decomposition process can be categorised
as core-level, network-level, and system-level ones. The
important metrics of each level are discussed in the fol-
lowing and summarised in Table 3. To simplify the design
process and multi-core network, every decomposed actor is
limited to containing one action and being mapped to one
soft-core.

The important core-level metrics are as follows.

– Actor’s number of instructions: a decomposed actor
should have a functionality which can be described in
1000 instructions (limited by a single BRAM capacity).

– Actor’s average execution time: this is a measure of
average time needed to compute output tokens after
reading input tokens. The reciprocal of actor execution
time is its throughput which is a measure of the actual
flow of tokens into a core in terms of bits per second.

– Core code efficiency: this is a measure of code effi-
ciency in terms of the ratio of ALU instructions to non-
ALU instructions. Non-ALU instructions are mainly
token read and write from/to external FIFOs and NOP
instructions.

– Peak register usage: this is a measurement of the max-
imum number of registers of local memory used by an
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Table 3 Important metrics
used in decomposition phase Level Metric Max Changes will mainly affect:

Core Actor’s no. of instructions 1000 Peak register usage

Actor’s average execution time — Token prod./cons. rate

Core code efficiency <100 % Average degree of concurrency

Peak register usage 32 Actor’s no. of instructions

Core bandwidth — Core code efficiency

Network Core utilisation 100 % —

Token prod./cons. rate — Actor’s average execution time

Level of convergence 4 —

Level of divergence 4 —

Average degree of concurrency — Token prod./cons. rate

System Frame per second (fps) — —

actor including input, intermediate and output variables
in a single iteration. The current architecture register
limit is 32.

– Core bandwidth: the theoretical maximum data rate
achieved by a core which is directly proportional to the
ratio of the number of input tokens required by the core
to the number of instructions.

The important network-level metrics are as follows.

– Core utilisation: multi-core processor array is made up
of 4 × C interconnected IPPro cores, where C is the
number of columns. Each column is locally connected
to the next in the PL before passing its results back up
to the host (ARM) via the AXI bus. Mapping may not
utilise all 4 cores in each column of the data-path.

– Token production/consumption rate: this factor defines
the dynamics of memory requirements on the inter-
connect and workload division between actors and is
dependent on how the high level algorithm has been
decomposed. This is the rate at which tokens are pro-
duced or consumed by an actor over a period of
time.

– Level of convergence: this is a measure of the maximum
number of cores outputs that are connected to a single
consumer input through the interconnect. Consider-
ing the current interconnect, the consuming core can
only receive data from a maximum of four producing
cores.

– Level of divergence: this is similar to level of conver-
gence but is a measure of the maximum number of
consuming cores that are connected to a single core
output through the interconnect.

– Average degree of concurrency: this is a measure of
average number of actors running ALU operations con-
currently. Since the soft-cores run their code sequen-
tially similar to the conventional CPUs, the real per-
formance improvement of this design is the parallel
execution of multiple sequential runs.

The important system-level metric is as follows.

– Frame per second (fps): a high level analysis will report
on this for a particular algorithm and includes esti-
mated delays associated with the controllers and host
CPUmanagement software. If a system cannot meet the
required fps, it will be deemed as a failure. As discussed
earlier, Eq. 1 gives an estimation of its value to be used
in partitioning/decomposition processes.

4.2 Compiler Infrastructure

Our developed compiler infrastructure stage of dataflow
framework, shown in Fig. 5, is composed of three major
steps. The first step investigates the xdf dataflow network
file generated in the decomposition/SIMD application stage
and assigns the actors to the processors on the network and
keeps a record of the settings for each actor to communi-
cate with the other ones to establish the data streams. Also
an actor should send the tokens in a predefined order to
the target actors. The target actors also expect the tokens in
that order. This issue is resolved in this first step of com-
pilation process. The second step of the compilation is the
conversion of each actor’s RVC-CAL code to IPPro assem-
bly code. Target specific optimisations are also carried out at
this level. For instance, the IPPro is able to process MUL and
ADD operations in a single clock cycle. The compiler will
replace consecutive MUL and ADD operations with a single
MULADD operation.

As will be explained later, a Zynq device has been used
as a target in our project. The compiler is responsible to
generate the settings for the AXI Lite Registers based on
the algorithm, in order to help the controllers distribute the
tokens among the cores and gather the produced results.
Also some C control functions have been developed which
depending on the algorithm, manage the implementation of
the design. The parameters required by these functions are
also generated by this compiler.
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Figure 12 Our high level
system architecture.

5 Case Study: Histogram of Oriented Gradients
Algorithm (HOG)

This section presents the implementation of an applica-
tion use case, namely HOG, in order to evaluate the pro-
posed multi-core IPPro architecture as a programmable
acceleration solution. The development board chosen for
the HOG implementation is ZedBoard which features a
XC7Z020 Zynq device and contains a number of peripheral
interfaces. Industry standard AXI interfaces provide high
bandwidth, low latency connections between the two parts
of the device. The XC7Z020 Zynq is one of the smaller
devices in the Zynq-7000 range, and it is based on the Artix-
7 logic fabric, with a capacity of 13,300 logic slices, 220
DSP48E1s, and 140 Block RAMs (BRAMS). Additionally,
the Zynq device interfaces to a 256Mbit flash memory and
512MB DDR3 memory, both of which are found on the
board. There are two oscillator clock sources, one operating
at 100MHz, and the other at 33.33MHz.

Our generic high level system architecture for the pro-
posed solution is shown in Fig. 12. A desktop computer
is used for testing purposes. This computer can send com-
mands to the PS using the UART connection, which gives
console access to the Linux operating system. The Ethernet
connection can be used for larger data transfers to/from the
Zedboard such as image data.

The data communication between the PS and the PL is
provided by the HP ports since this gives a much higher
throughput than the GP ports. The GP ports are also used,

but only to provide read/write access to the AXI Lite Regis-
ter space inside the DMA Engine. This register space con-
tains registers which store the address and size of the current
data transfer, which allows the ARM processors to start a
data transfer between the PL and the Off Chip Memory
(OCM) by writing to these registers. The IPPro controller
also contains an AXI Lite Register space which allows the
ARM processors to control the function performed by the
controller among others.

To transfer the image data from the PS to the PL, the
OCM is mapped by the ARM processors allowing the image
to be copied across. This data can now be accessed by both
sections of the Zynq; the PS accesses the RAM through
the memory controller, which also gives the DMA Engine
access to the RAM through the HP ports. On the PL side
of the DMA Engine, the AXI-Streaming (AXIS) interface
is used; this is a unidirectional interface standard between
two points, so to provide access back to the OCM, a second
AXIS port is used. It is necessary to insert FIFO buffers onto
the AXIS data path to allow the DMA Engine to operate
at a higher throughput. An IPPro controller will receive the
data on one of these AXIS ports and output the processed
image on the other port. A Linux based operating system is
running on the ARM processors.

AXI Lite Registers in the IPPro controller allow the ARM
processors to control which operation is performed by the
controller. This allows a program running on the ARM pro-
cessor to read/write to registers inside the controller, which
means it can choose which operation to perform by writing

Figure 13 Input/output
controllers.
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Figure 14 HOG data
dependencies [18].

a control word into a register, or check the status of the
controller by reading from a different address. The AXI
Lite Registers currently implemented in the controller are as
follows:

– Control: allows the program to set the size of the image
and control which operation to be performed; in our cur-
rent implementation, the controller performs some lim-
ited operations such as a 3x3 or 5x5 kernel application
on a colour or gray-scale image (Read/Write).

– Status: allows the program to read whether the con-
troller is currently running or there has been an error
with the command (Read Only).

– Go: allows the program to start an operation defined by
the current value in the control register (Write Only).

The IPPro controller controls a channel controller and
a gather module, each having their own state machine and
receiving signals from the top level controller for proper
operation. Figure 13 shows a simplified hardware architec-
ture for the input and output controllers.

Channel controller is used to control the operations of a
network of 4 × 4 array of cores, where multiple channel
controllers are used when implementing SIMD operations.
At the top level, the IPPro controller dispatches the input
data to one or more channel controllers for SIMD imple-
mentation. For each of these channel controllers, the input
data could be a 16-bit value, which allows 16-bit grayscale
values to be used, or for RGB images, the data will only
be 8-bit. In our current implementation, the channel con-
trollers contain five row buffers to store the input data so
that the required window can be presented to the correct
IPPro; this supports maximum of 5-row windows. Dispatch-
ing this input data to the appropriate IPPro is handled by a
state machine.

Because the output data is coming from multiple IPPros,
a gather module is required to receive data from the proces-
sors in turn and send this data to the output port. In order
to achieve the required functionality, the gather module uses
a state machine to control the operations. It contains two

counts to control which channel controller, and which IPPro
within the channel controller the data is coming from.

Most of the design units explained in this paper have been
fully implemented and the initial version of the others are
available. The partitioning/decomposition unit is planned
and an early version is currently working. The compiler
from RVC-CAL to IPPro assembly has been fully devel-
oped and an initial version of the PS/PL implementation also
works. A case study was used then to validate the operation
and to demonstrate the applicability of our approach.

The case study presented is the HOG algorithm which is
a well known algorithm used for human detection by util-
ising the gradient orientation [12]. Details of the design are
given in [18] but this section concentrates on how it is imple-
mented and explored using our design flow. The application
of the main steps to HOG are discussed next.

5.1 Partitioning and Decomposition

As mentioned in Section 4.1, the behavioural code is parti-
tioned/decomposed into units such that the data dependency
between units is kept low and the required performance
is met. The common small image processing functions are
often the best candidates to be detected as individual actors.
The high-level behavioural description of the HOG algo-
rithm includes the six functional units shown in Fig. 14.
The decomposition tool detects these explicit functions and
breaks the code into these units in order to exploit the low
data dependency between them.

The HOG algorithm converts the pixel intensity infor-
mation to the gradient information, where gradients consist
of magnitude and direction as per the first two stages of
Fig. 14. Each of the detection windows is divided into cells
which are translated into histograms representing the gra-
dients in the cell as per the third stage. The histograms
from multiple cells are then normalised with each other
to generate a vector as shown in the fourth stage. Colla-
tion of the normalised vectors over the detection window in
stage five produces the HOG descriptor. In the final stage, a

Figure 15 Instruction profile
for a single detection
window [18].
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Figure 16 120 IPPro core
architecture generating HOG
descriptors from a stream of
gamma corrected pixels -
performance quoted per HD
frame generated [18].

pre-trained off-line Support Vector Machine (SVM)
receives the vectors and multiplies with its set weights to
achieve the human detection chain.

Three of the six functional blocks, ‘Compute gradients’,
‘Weighted vote into spatial and orientation cells, and Nor-
malise over overlapping spatial blocks’ were targetted to be
accelerated using the PL. The software/hardware partition-
ing tool offloads the non-native IPPro functions to the Zynq
ARM cores as they mostly require memory re-organisation.
As mentioned earlier, doing this at the host level is the most
efficient method as it avoids passing large volumes of data
between PL and the PS, thereby avoiding costly transport
delays.

The instruction profile and cumulative number of instruc-
tions to generate the HOG descriptors required for a single
detection window is shown in Fig. 15. To generate HOG

descriptors for one HD frame at single scaling and no over-
lapping, 270 detection windows are needed in this imple-
mentation. Input data in this instance is 8-bit grey-scale. The
number of instructions in this table are the total instructions
required to achieve a detection window HOG descriptor for
each stage. The total instructions for each function is mea-
sured by considering the number of instructions in every
actor of that function and the number of actors’ iterations
per detection window.

The IPPro architecture used here has a local memory size
of 64 × 16-bit and includes the division instruction in its
ISA. We implement the division as a parallel coprocessor in
order to provide a speed up while allowing the IPPro core to
continue its operation [18].

With the task-level parallelism of the three func-
tional units, data-level parallelism is also achieved by the

Table 4 The metrics used in
decomposition phase of HOG
algorithm.

Level Metric Max HOG

Core Actor’s no. of instructions 1000 Grads: 338

Binning: 295

Normalise: 2344

Actor’s average execution time — Grads: 64 μs

Binning: 56 μs

Normalise: 4.4 μs

Core code efficiency <100 % Grads: 46 %

Binning: 78 %

Normalise: 84 %

Peak register usage 64 Grads: 60

Binning: 60

Normalise: 36

Core bandwidth (Gbs−1) 4.2 Grads: 1.5

Binning: 1.58

Normalise: 0.13

Network Core utilisation 100 % —

Token prod./cons. rate — —

Level of convergence — —

Level of divergence — —

Average degree of concurrency — —

System Frame per second (fps) — 329 (for single scale)
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Table 5 Resources usage of
120 core IPPro design and
recent FPGA
implementations [18].

Ref Device Clock LUTs DSPs BRAMs Resolution fps

Our XC7Z020 530 MHz 47,720 120 120 1920 × 1080 328

[15] XC5VFX200T 270 MHz 3,924 12 26 1920 × 1080 64

[20] XC6VLX760 150 MHz 92,477 191 95 640 × 480 68

[21] XC5VLX50 44.85 MHz 17,383 no data 36 640 × 480 112

decomposition tool by creating core instances with the same
instruction code each handling a different window of the
frame. With 120 total number of the IPPro cores, organ-
ised as illustrated in Fig. 16, the core-level constraints are
satisfied. For this specific design, the network-level con-
straints were not applied as the core-level and system-level
measurements were the main focus. These measurements
are reported in Table 4. The HOG figures in this table are
from the 64 × 16-bit register file, optimised input window
aspect ratio and division coprocessor included. The ‘Nor-
malise’ function is a special case as it violates the constraint
of the number of instructions and is handled through manual
methods to demonstrate the principles and the concept.

5.2 Compilation from RVC-CAL to IPPro Instructions

The xdf dataflow network file generated in decomposition
stage along with each actor’s RVC-CAL code are processed
by the compilation tool to generate IPPro instructions. The
xdf file processing maps the actors onto cores and allows
the actors to configure the network properly. Depending on
the algorithm, the compiler also generates the settings for
the AXI Lite Registers and the parameters required by C
control functions running on ARM.

5.3 Implementation

This design maps data flow control and three functional
units onto an ARM core. The other three compute-intensive
functional units discussed above are mapped on multi-core
processing data path realised on PL. The design implemen-
tation approves the system fps metric determined in the
decomposition stage.

The resource usage and performance metrics for this
design with comparison to other recent implementations are
shown in Table 5. A performance of 328 fps can be achieved
by this design approach.

Two versions of the functional blocks were explored,
a hand-coded VHDL description which took 40 days to
code and which was validated using VHDL-based tools and
the other, an IPPro implementation. The IPPro design was
implemented before the compiler was implemented and it
took 10 days to generate the code and test. With the com-
piler, it was implemented in less than a day and iterated in

a matter of minutes. The design time savings are a result of
the deterministic coding and behaviour of the IPPro which
allow the user to compile the design quickly and accurately
calculate the functionality on a cycle by cycle basis. Whilst
this is not scientific, it gives some indication of design time
saving.

6 Conclusion

This paper presents a high level dataflow framework for
soft-core processors on FPGA for image processing appli-
cations. We have demonstrated the potential of replacing
the conventional hardware design route for FPGAs with
the use of custom designed soft-core processors and pro-
gramming these processors with a dataflow-based design
approach. The idea of decomposing and translating dataflow
programs written in RVC-CAL to IPPro assembly is pre-
sented through a case study, the HOG algorithm and it is
shown how the design approach reduces design time and
effort.

The overall design framework with limited optimisations
and limited memory access is currently operating and many
target based optimisations and profiling are done to improve
the mapping of future designs and thus improve efficiency,
allowing us to get near the same performance of any hand-
crafted design. Another important aspect of the design of the
processors and the framework is the programmable inter-
connect which will increase the flexibility and also the
capability to map more complex algorithm onto the plat-
form. However more flexible hardware will introduce new
challenges to the framework to reflect and optimise the use
of resources.
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