
A Fast H.264 Intra Frame Encoder with Serialized Execution
of 4×4 and 16×16 Predictions and Early Termination

Jin-Su Jung & Young-Joon Jo & Hyuk-Jae Lee

Received: 19 January 2010 /Revised: 12 December 2010 /Accepted: 13 December 2010 /Published online: 5 January 2011
The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract This paper presents a fast H.264 intra frame
encoder that processes a single macroblock of 1920×1080
size video in 334 cycles on average which is 20% faster
than the previous best design. The speed-up is mainly
achieved by early termination of either 4×4 intra prediction
or 16×16 intra prediction. The executions of intra 4×4 and
16×16 predictions are serialized and the second prediction
is terminated early by using the cost of the first prediction
as the stop criterion. A simple and efficient algorithm by
making use of spatial locality is proposed to select the
mode that is processed first. To avoid the bubble cycles
caused by this serialized execution of 4×4 and 16×16
predictions, the modified processing order presented in
(Jung et al. 2008) is employed for intra 4×4 prediction in
order to schedule dependent 4×4 blocks apart from each
other. To further reduce the execution time of 4×4
prediction, neighboring pixels with the same value are
grouped, and only one prediction mode in the group is
evaluated. Experimental results show that the PSNR drop is
0.0619 dB and the bitrate increase is 0.842% when
compared with the JM reference software. The additional
hardware cost to support the proposed methods is less

than eight thousand gates which are very small when
compared with the hardware size of a whole intra frame
encoder.

Keywords H.264 . Intra prediction . Intra frame encoder .

Early termination .Mode selection

1 Introduction

The H.264/Advanced Video Coding (AVC) standard [1]
introduces aggressive compression tools such as spatial
prediction, adaptive block size motion compensation and
4×4 block based prediction. As a result, the H.264/AVC
standard outperforms previous video coding standards in
compression efficiency [2]. Intra frame prediction is one
of those tools for compression enhancement that uses
neighboring pixels to predict the current coding block.
H.264/AVC compression with only intra frame prediction
is especially suitable for low cost and low power
applications such as a digital still camera or a video
recorder, which cannot afford the complexity of inter
frame prediction.

Extensive research efforts have been made to reduce the
computational complexity of intra prediction [3–12]. One
of the most popular techniques for complexity reduction is
an early decision of prediction modes among the nine
prediction modes for the 4×4 block size and the four
prediction modes for the 16×16 block size. A number of
previous techniques utilize the fact that a prediction mode is
strongly related to the edge, texture, or direction of the
contents of the block. Therefore, the contents of the block
are analyzed first, and then only a subset of prediction
modes are computed according to the contents [4–6]. In
other techniques for fast intra prediction, only one of the

This is an extended version of the paper presented at IEEE Workshop
on Signal Processing Systems in October 2009 in whichParts of
Section 3.D and Section 4 are already published.

J.-S. Jung :Y.-J. Jo :H.-J. Lee (*)
Inter-university Semiconductor Research Center,
Department of Electrical Engineering, Seoul National University,
Seoul, South Korea
e-mail: hjlee@capp.snu.ac.kr

J.-S. Jung
e-mail: janghack@capp.snu.ac.kr

Y.-J. Jo
e-mail: tigrage@gmail.com

J Sign Process Syst (2011) 64:161–175
DOI 10.1007/s11265-010-0574-6

4×4 and 16×16 predictions is evaluated [7–9]. The
smoothness of a macroblock is estimated and then 16×16
prediction is chosen when the block is smooth whereas 4×4
prediction is performed otherwise.

The complexity reduction techniques based on early
mode decision are widely used for the software implemen-
tation of intra prediction. However, they are seldom
employed by a hardware implementation because of two
main reasons. The first reason is that a precise early
decision often requires a complex algorithm which is too
expensive to be implemented in hardware. Thus, a
hardware-based mode decision using a relatively simple
algorithm often makes an inaccurate selection. To avoid a
performance drop-off by a wrong decision, an early
termination algorithm is employed in [10]. The risk of
performance drop is somewhat reduced in the early
termination scheme which does not completely discard the
unselected mode but terminates the computation only when
further computation of the unwanted mode leads to a very
small chance for the mode to be determined as the final
mode.

The second reason that prevents a hardware implemen-
tation from employing early mode decision is that the
hardware utilization may be decreased when early mode
decision is employed. For efficient utilization of hardware
resources for intra prediction, one of the main obstacles is
the dependence between consecutive 4×4 predictions. Intra
prediction of a 4×4 block depends on the reconstructed
pixels in its neighboring 4×4 blocks, and therefore, intra
prediction hardware must remain idle while the reconstruc-
tion of the neighboring blocks is being completed. Hence,
the execution of intra prediction and reconstruction are
often serialized. In [3, 11, 12], the idle cycles (often called
bubbles) are avoided by performing 16×16 intra prediction
(denoted by I16 hereafter) during the bubbles of 4×4 intra
prediction (denoted by I4 hereafter). This interleaved
execution of I4 and I16 is reasonable when both I4 and
I16 are always executed. However, this interleaved
execution makes it almost impossible to employ the early
mode decision between I4 and I16 because interleaved
execution implies that both I4 and I16 must be executed
in parallel.

This paper attempts to solve the hardware under-
utilization problem when an early mode decision/termina-
tion is employed and to achieve a speed-up of hardware-
based intra prediction without a significant degradation of
compression efficiency. To this end, I4 and I16 are executed
in a serial manner and the speed-up is achieved by early
termination of the mode that is processed second between
I4 and I16 with the termination criterion obtained from the
cost of the mode processed first. The processing order is
determined from the intra prediction modes of neighboring
macroblocks. The serialized execution of I4 after I16 (or

I16 after I4) prevents the widely-used technique that
interleaves I4 and I16 for removing bubble cycles of I4
[3, 11]. In order to reduce the bubble cycles even for the
serialized execution of I4 and I16, this paper employs
the modified processing order of I4 presented in [10]. In
the hardware implementation of intra prediction in [10],
the execution order of 4×4 blocks are changed to avoid
the dependence between consecutive intra predictions and
consequently allow consecutive executions of indepen-
dent intra predictions resulting in the reduction of the
bubble cycles without interleaved execution with I16. An
additional speedup technique is also proposed for the case
where predictor pixels have identical values (see Sec-
tion 3.5). As a result, the average execution time for a
single macroblock is reduced to 334 cycles for a 1920×
1080 size video whereas the previous best design requires
417 cycles.

The rest of this paper is organized as follows. Section 2
briefly introduces previous hardware-based intra prediction
techniques and Section 3 presents the proposed fast intra
prediction. Section 4 explains the details of the pipeline
schedule of the proposed intra prediction. Section 5
presents the hardware implementation of the proposed
pipeline and Section 6 gives comparisons with previous
works. Section 7 concludes the paper.

2 Previous Pipeline Schedules for Fast Intra Prediction

In the baseline or main profile H.264/AVC compression
standard, intra prediction is performed in two block sizes:
4×4 block for I4 prediction and 16×16 block for I16
prediction. In I4 prediction, a 16×16 macroblock is
decomposed into 16 4×4 blocks. Each of these 4×4 blocks
is predicted from its neighboring pixels. Figure 1(a) shows
a 4×4 block with its predictor pixels labeled from A to M.
The sixteen pixels labeled from a to p represent the 4×4
block to be predicted. Nine prediction modes are supported
in I4 prediction. Depending on the prediction mode, some
of the predictor pixels are chosen and used as the
predictors. Figure 1(b) shows the directions of eight
prediction modes. The number given with each arrow
represents the prediction mode number. One mode called
the DC prediction mode (Mode 2) is not shown in this
figure because it does not have a prediction direction but it
uses the average of upper and left predictor pixels. In I16
prediction, the entire 16×16 block is predicted with four
prediction modes: Horizontal, Vertical, DC, and Plane.
Similar to I4 prediction, the neighboring pixels of a 16×16
macroblock are used for the predictors of the I16
prediction. For 8×8 Chroma block, intra prediction is
performed in the same manner as I16 prediction. Details of
intra prediction are available in [11].

162 J Sign Process Syst (2011) 64:161–175

Figure 1(c) shows the processing order of the 16 4×4
blocks in a macroblock. In this figure, each small square
represents a 4×4 block and a large square represents a 16×
16 macroblock. The number inside the small square
represents the processing order of the 4×4 block prediction
defined in the H.264/AVC standard. There exists dependence
between consecutively-executed 4×4 blocks such that the
intra prediction of one block depends on that of the previous
4×4 block. For example, Block 1 depends on Block 0
because some of the predictor pixels of Block 1 belong to
Block 0. In other words, the intra prediction of Block 1
needs the pixels in Block 0. Note that the H.264 standard
requires these predictor pixels to be the reconstructed pixels
from the result of intra prediction of Block 0. Thus, Block 1
needs to wait for the completion of both intra prediction and
reconstruction of Block 0. This implies that there exists a
period between the intra predictions of Block 0 and Block 1
and the reconstruction of Block 0 is performed during this
period. This period is called a bubble in [11] as the hardware
resource for intra prediction remains idle during this period.

For a hardware-based intra prediction, previous research
efforts have focused on the utilization of hardware
resources during this bubble. In [11], the underutilization
is avoided by interleaving I4 prediction with I16 prediction.
Figure 2(a) shows the intra prediction presented in [11]. In
Fig. 2(a), B0 represents I4 prediction of Block 0 shown in
Fig. 1(c) whereas B1 and B15 represent I4 prediction of

Block 1 and Block 15, respectively. For I16 prediction, a
macroblock is decomposed into 16 4×4 blocks and intra
prediction is performed for each 4×4 block. In Fig. 2(a),
I16-B0 represents the first 4×4 block of I16 prediction.
This figure shows how I4 and I16 are performed from the
left to the right as the processing time proceeds. Note that a
macroblock is decomposed into 4×4 blocks and the
executions of I4 and I16 for each 4×4 block are
interleaved. The main reason for this interleaved execution
is to utilize the bubble cycles for the execution of I16.
Recall that I4 for B1 depends on the reconstruction of B0
and consequently bubble cycles are required between I4 for
B1 and B0. To avoid the waste of hardware resources
during these bubble cycles, they are used to perform I16-B0
[11]. This interleaved execution is one of the main
contributions presented in [11]. This figure also shows the
execution of Chroma prediction and DCTQ (Discrete
Cosine Transform and Quantization) operation for the best
Chroma and I16 mode. In the three rightmost boxes of the
figure, Chroma, I16-best and Chroma-best represent the
intra prediction of Chroma data, DCTQ for the best I16
mode, and the DCTQ for the best Chroma mode,
respectively. Further details are available in [11]. In this
schedule, the number inside parenthesis represents the
execution cycle. For example, B0 requires 36 cycles
whereas I16-B0 requires 12 cycles. In total, 1,060 cycles
are required to complete intra prediction of a single

a b c d

e f g h

i j k l

m n o p

A B C D E F G H

I

J

K

L

M

0

1

3
7

4
5

6

8

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

(a) (b) (c)

B0
(36)

B1
(36)

B2
(36)

… B14
(36)

B15
(36)

B15-TQ
(16)

I16-M0~M3
(256)

Chroma-M0~M3 / I16-Best
(128)

Chroma-Best
(36)

…

0 624

B3
(36)

B0
(36 cycles)

I16-B0
(12)

B1
(36)

I16-B1
(12)

B2
(36)

I16-B2
(12)

… B5
(36)

I16-B15
(12)

Chroma
(128)

I16-Best
(12)

Chroma-Best
(32)

0 1060
(a) Pipeline schedule in [11]

(b) Pipeline schedule in [10]

Figure 2 Previous pipeline schedules. a Pipeline schedule in [11]. b Pipeline schedule in [10].

J Sign Process Syst (2011) 64:161–175 163

Figure 1 Intra prediction of a 4×4 block. a 4×4 block labeled from a to m predicted from neighboring pixels labeled from A to M b eight
prediction directions c processing order of 16 4×4 blocks defined in the H.264/AVC standard.

macroblock. Note that the execution cycles depend on the
hardware architecture and this number is obtained with the
assumption that the hardware is implemented with 4-pixel
parallelism [10].

Another approach to avoid the underutilization during
bubbles is proposed in [10]. The speed up of I4 is achieved
with the modified processing order as shown in Fig. 3.
Recall that the processing order shown in Fig. 1(c) causes
the prediction of one 4×4 block to be dependent on the
pixels from the previously processed 4×4 block so that
bubble cycles need to be inserted between the executions of
the two blocks. For example, I4 for B1 requires the pixels
in block B0. Therefore, it is necessary to wait for the
reconstruction of B0 before I4 for B1 begins. In order to
avoid the dependence between consecutively executed 4×4
blocks, the intra prediction in [10] proposes to change the
processing order as shown in Fig. 3. In the new processing
order, the number of dependent blocks between
consecutively-executed blocks is significantly reduced. In
the original order, 12 blocks are dependent on their
previous blocks so that 12 bubbles are required [10]. In
the rescheduled order shown in Fig. 3, the number of
dependent blocks is reduced to five: two left dependencies
between Blocks 0 and 1 as well as Blocks 14 and 15, and
three up-right dependencies between Blocks 1 and 2,
Blocks 7 and 8, as well as Blocks 13 and 14. Left
dependencies affect six I4 modes (1, 2, 4, 5, 6, 8) whereas
up-right dependencies affect two I4 modes (3, 7). As the
up-right dependencies account for only two modes (I4
modes 3 and 7), these modes are not evaluated for Blocks
2, 8 and 14 (i.e., the best I4 mode is chosen among modes
0, 1, 2, 4, 5, 6, and 8). Consequently, no bubbles are
inserted for these blocks. As a result, only two bubbles are
placed between Blocks 0 and 1 as well as Blocks 14 and
15. The hardware resource designed for I4 is used
efficiently from the start to the end of I4 prediction with
only two bubbles during which the hardware remains idle.

In [10], additional speed-up is achieved by early
termination of I4 using the cost of I16 as the stop criterion.
This schedule is shown in Fig. 2(b). I4 and I16 are
performed in parallel as the upper pipeline represents the
I4 whereas the lower pipeline does I16 and Chroma
execution. In the upper pipeline, B0, B1, and B15,

represent Block 0, Block 1, and Block 15, respectively. In
the lower pipeline, I16-M0~M3 represents the execution of
the four prediction modes (from M0 to M3) for I16. The
next box Chroma-M0~M3/I16-Best represents the parallel
execution of the four prediction modes for Chroma
prediction and the DCTQ for the best I16 mode. Note that
the parallel executions of I4 and I16 require hardware
resources to be doubled when compared with them for the
pipeline in Fig. 2(a). As I16 requires less computation time
than I4, I16 completes earlier than I4. By using the final
cost of I16 as the stop criterion, the speed up of I4 is
achieved by early termination [10]. To this end, the cost of
I16 is compared with the expected cost of I4 estimated from
the intermediate result of I4 and then I4 is terminated early
whenever the estimated cost of I4 is larger than the cost of
I16.

The above two schemes attempt to have an efficient
schedule for I4 and I16 predictions for the speed-up of intra
prediction. Another approach for fast intra prediction is a
skip of prediction modes of I4. A modified three step
algorithm is the technique for hardware-based fast I4
prediction employed by the design in [3]. The algorithm
is shown in Fig. 4. In the first step, modes 0 and 1 are
performed. In the second step, modes 2, 3, and 4 are
performed. By the time modes 5 or 6 start, the costs of
mode 0 and 1 are available. In the final step, modes 5, 7 or
modes 6, 8 are selectively performed according to the costs
of mode 0 and 1. As a result, two I4 modes are always
excluded by this algorithm.

3 Proposed Fast Intra Prediction

This section presents a new fast intra prediction algorithm
that overcomes the limited speed up achieved by the
algorithm in [10]. The limitation of this schedule lies in
the fact that the early-termination rate of I4 is not high.
When the I4 mode is chosen as the final mode, the
execution of I4 cannot be terminated early because the cost

Mode 0, 1

Mode 2, 3, 4

Cost 0 > Cost 1

Mode 5, 7 Mode 6, 8

YN

Figure 4 A modified three step algorithm for intra prediction [3].

0 1 3 5

2 4 7 9

6 8 11 13

10 12 14 15

Figure 3 Modified processing
order of I4 predictions [10].

164 J Sign Process Syst (2011) 64:161–175

of I4 is smaller than the cost of I16. In general, the I4 mode
is chosen more frequently than the I16 mode. Therefore, the
early termination in the pipeline as shown in Fig. 2(b)
achieves limited speed-up. In order to overcome this
limitation, it is necessary to have a scheme that allows
the frequently-chosen mode is performed first so that the
resulting cost is used for the early termination of the
seldom-chosen mode. Section 3.1 presents the outline of
the algorithm whereas the details of the algorithm are
presented from Sections 3.2 to 3.5.

3.1 Flow of the Proposed Fast Intra Prediction

Figure 5 shows the sketch of the proposed algorithm. The
first step predicts the mode between I4 and I16 that is likely
to be chosen as the final mode. In this step, the prediction is
made by using the spatial correlation with neighboring
macroblocks (see Section 3.2 for details). If I4 is chosen
over I16, then I4 is performed before I16. I16 is terminated
early by using the cost of I4 as the stop criterion. On the
other hand, if I16 is chosen in the first step, then I16 is
performed before I4. Then, I4 is terminated early with the
cost of I16 as the stop criterion. In this way, the effect of
early termination on speed-up is maximized.

The advantage of the proposed schedule over the
previous schedule in Fig. 2(b) is that the selection between
I4 and I16 for early termination is possible whereas the
previous schedule always selects I4 for the candidate of
early termination resulting in a limited speed up in the case
where I16 is chosen as the final mode. Adopting 8-pixel
parallel hardware implementation, the previous pipeline can
process both I4 and I16 in parallel, with 4-pixel parallel
hardware dedicated to each of I4 and I16. As I4 takes
longer than I16, the hardware for I16 is often wasted when
I4 is not terminated early. On the other hand, the proposed
pipeline processes I4 with 8-pixel parallel hardware
dedicated to I4 almost twice faster than the previous
pipeline in Fig. 2 (b) does. This is because only 4-pixel
parallel architecture is used for I4 in the previous pipeline
(the other 4-pixel architecture is dedicated to I16). After I4,

the 8-pixel parallel hardware is dedicated to I16, and speed
up is achieved by early termination. Therefore, the
proposed pipeline schedule achieves better hardware utili-
zation than that in Fig. 2(b), leading to faster execution time
than the schedule in Fig. 2(b). Similarly, the proposed
pipeline uses 8-pixel parallel hardware for I16 first and then
later for I4 when I16 is over. The hardware under-utilization
is minimized with the proposed pipeline.

For further speed-up by reducing the number of
prediction modes for I4, this paper also employs the
modified three step algorithm which is proposed in [3].
Recall that the algorithm always discards two prediction
modes among the nine prediction modes without a much
degradation of R-D performance. The plane mode for I16
and Chroma predictions is omitted to reduce the complexity
of the hardware as in [3]. In addition, this paper proposes
two additional techniques: early termination among the I16
modes and additional prediction mode reduction for I4. The
details of these two additional techniques are discussed in
Sections 3.4 and 3.5, respectively.

3.2 Mode Selection Between I4 and I16

In the algorithm in Fig. 5, the first step is a selection
between I4 and I16. The selection is made by observing the
intra prediction modes of neighboring macroblocks. The
prediction modes of the upper and left macroblocks are
checked first, and I16 is selected if one of the two
neighboring modes is I16. Otherwise, I4 is selected. The
top-leftmost macroblock in a frame has no neighboring
macroblocks. In this case, I4 is always selected because
I4 is selected more frequently as the best mode than I16
does.

Table 1 shows the probability of the selected mode to be
finally chosen as the best mode. Four test sequences of size
1920×1080 are used. The high accuracy implies that the
selected mode is the best mode with high probability. As
shown in Table 1, the simple selection scheme achieves
very high accuracy, at least 79%, in these four test
sequences.

if (I16 selected) { // see Section III.B
 I16 prediction;
 Derive the threshold for early termination of I4
 I4 prediction with early termination (see Section III.C)
} else
 I4 prediction;
 Derive the threshold for early termination of I16
 I16 prediction with early termination (see Section III.D)
}

Figure 5 The sketch of the proposed intra prediction algorithm.

J Sign Process Syst (2011) 64:161–175 165

3.3 Early Termination of I4

When I16 is selected over I4, then I16 is performed first. In
this case, the cost of I16 is used as the stop criterion for the
early termination of I4. Then, the early termination
algorithm presented in [10] is employed. Figure 6(a) shows
the flow chart of the early termination. After the prediction
of each 4×4 block, the cost is added to the accumulated
costs of the prediction of previous 4×4 blocks. This
addition is represented by the block with C4accum(N)=C4
(N)+C4accum(N−1), where N represents the number of the
current 4×4 block, C4accum(N) represents the cost accumu-
lated for N 4×4 blocks, and C4(N) represents the cost of the
4×4 intra prediction of the Nth block. The cost of 4×4 intra
prediction is the sum of absolute transformed differences
(SATDs) of each 4×4 block. In the next step, the
accumulated cost is compared with the early termination
threshold, Th(N). The selection of the threshold is to be
discussed in details in the next paragraph. If the current
accumulated cost C4accum(N) is larger than the threshold Th
(N), the total cost of I4 is expected to be larger than that of
I16, and I4 is early terminated. If the accumulated cost is
smaller than the threshold, N is incremented by one and the
next iteration of the loop is performed again. If N reaches
16 without being early terminated, I4 is completed.

The threshold function, Th(N), determines the amount of
computation saving by early termination so that the
selection of Th(N) is important for an effective trade-off
between computation saving and compression efficiency.
The most rigorous threshold that ensures no loss in
compression efficiency would be the total cost of I16
which enforces I4 to simply terminate when the intermedi-
ate cost of I4 is larger than the total cost of I16. On the
other end, a flexible threshold is the intermediate cost of
I16 for the corresponding 4×4 blocks that enforces early
termination when the I4 intermediate cost is larger than the
I16 intermediate cost of the equivalent 4×4 blocks. The
threshold function used in [10] is a value between the two
thresholds and is defined as follows [10]:

ThðNÞ ¼ Cost I16
16

� ðN þMðNÞÞ ð1Þ

where CostI16 denotes the total cost of I16, N is the index of
the 4×4 block currently being processed, and M(N) is a

margin considering the cost variation of the remaining 4×4
blocks. From experimental results, M(N) is defined as
follows:

MðNÞ ¼ Mð0Þ � ð1� N=16Þ ð2Þ
where M(0) of 0.75 is experimentally chosen for the
early termination of I4 from the result of I16. The
computation of (1) is not very complex as it can be im-
plemented with a table look-up operation, one addition,
and one multiplication.

3.4 Early Termination of I16

When I4 is selected over I16, I16 is terminated early with
the cost of I4 used as the stop criterion. The early
termination of I16 is slightly different from I4 in that one
prediction mode of I16 is performed for the entire macro-
block and then the next prediction mode is performed.
Figure 6(b) shows the early termination of I16. In order to
share the hardware for both I4 and I16 efficiently, a
macroblock is decomposed into 4×4 blocks and then the
prediction and cost calculation are performed block by
block of size 4×4. At the end of the cost calculation of each
4×4 block, the cost is added to the accumulated cost and
then compared with the threshold, Th(N). When the
accumulated cost is greater than the threshold, the predic-
tion mode is terminated early. Then, the next prediction
mode is performed. The outer loop in Fig. 6(b) represents
the iteration for performing three prediction modes. Note
that the transform of DC coefficients in an I16 mode is not
included in Fig. 6(b) for simplicity. Also note that the
fourth prediction mode (Plane mode) is often excluded for
I16 prediction [3, 10, 12]. The function given in (3) is used
for the threshold

ThðNÞ ¼ Cost I4
16

� ðN þMðNÞÞ ð3Þ

where M(N) is the same as (2) with the value of M(0)
chosen as 0.5 by experiments.

I16 is performed mode by mode, and consequently, the
cost of one prediction mode is available before the start of
the next mode and it can be used as the stop criterion for
the early termination of the next mode. Thus, the early
termination of I16 is attempted from the second prediction
mode using the cost of the first prediction mode as the stop
criterion. For early termination to be effective, it is
important to choose the prediction mode to be performed
first. The processing order of the three I16 modes is decided
as follows. First, the best I16 mode of the left macroblock is
selected as the first mode to be performed. If the first mode
is chosen as 0, then the second and third modes are 1 and 2,
respectively. If the first mode is 1, the second and third
modes are 0 and 2, respectively. If the first mode is 2, the

Table 1 Accuracy of prediction between I4 and I16.

Test sequence Accuracy (%)

Blue sky 92.02

Tractor 90.07

Pedestrian area 79.24

Rush hour 79.13

166 J Sign Process Syst (2011) 64:161–175

second and third modes are 0 and 1, respectively. For the
threshold, the same function similar to (3) is used again and
the value of M(0) is chosen as 0.25 in this case. Note that
the reference cost (cost of I4) and M(0) are updated
whenever the cost of one prediction mode is smaller than
the cost of the previous best mode. For example, suppose
that the best mode becomes I16 after evaluating the first
mode which uses the cost of I4 for Th(N). Then, the second
I16 mode uses the cost of the first I16 mode, instead of the
cost of I4, as the stop criterion. Due to the change of the
termination type, M(0) is also changed to 0.25.

3.5 Prediction Mode Reduction

The modified three-step algorithm in [3] reduces the
number of I4 modes down to seven with less than 1%
increase in the bit rate. As this algorithm is simple enough
for hardware implementation, the intra prediction in this
paper also employs the modified three-step algorithm.

Further exclusion of the I4 prediction modes is achieved
by making use of the fact that adjacent pixels sometimes
have the same values. Recall that Fig. 1(a) shows the
predictor pixels labeled from A to M in the left, upper and
upper-right of a 4×4 block. If the values of the predictor
pixels are all the same, then the SATDs of all nine modes

are the same. Thus, it is not necessary to perform all nine
modes, but only one mode is necessary to be performed.
This mode is called the “representative mode” among the
modes with the identical predictors. With only the
representative mode to be predicted, the computational
complexity of I4 is significantly reduced. The complexity
reduction can be achieved even when all predictor pixels
are not identical, but when a certain group of prediction
modes are identical. For example, if predictor pixels from A
to D, from I to J, and M are all equal, modes 0, 1, 2, 4, 5, 6,
and 8 result in the same SATD. Thus, only one mode
among the seven modes is necessary to be performed.
Table 2 summarizes the relationship between the identical
predictor pixels and the prediction modes that result in the
same SATD. For example, the fourth row shows that
identical predictor pixels from A to H lead to the same
SATDs of modes 0, 3, and 7. Hereafter, the identical
predictor group is denoted by IPG and the IPG-based mode
selection algorithm is denoted by MS-IPG.

The modified three-step algorithm requires I4 modes 0
and 1 to be always executed whereas mode 0 or 1 may be
excluded in MS-IPG. Therefore, the modified three-step
algorithm cannot be performed when mode 0 or 1 is
excluded by MS-IPG. In this case, it is necessary to select
the algorithm between the modified 3-step algorithm and

C16accum(N) = C16(N) + C16accum(N-1)

C16accum(N) > Th(N)

N = 16

P = 4

End

Prediction

N = N + 1

P = P + 1

N = 1, Cost = 0

Yes

No

Yes

Yes

No

No

C4accum(N) = C4(N) + C4accum(N-1)

C4accum(N) > Th(N)

N = 16

End

Prediction & Mode decision

N = N + 1

N = 1, Cost = 0, Start

Yes

No

Yes

No

P = 1, Start

(a) Early termination of I4 prediction (b) Early termination of I16 prediction

Figure 6 Flowchart of intra prediction with early termination. a Early termination of I4 prediction b Early termination of I16 prediction.

Group number Identical predictor group I4 modes with identical SATD

0 A, B, C, D, E, F, G, H, I, J, K, L, M all modes

1 A, B, C, D, I, J, K, L, M 0, 1, 2, 4, 5, 6, 8

2 A, B, C, D, I, J, K, L 0, 1, 2, 8

3 A, B, C, D, E, F, G, H 0, 3, 7

4 I, J, K, L 1, 8

Table 2 Identical pixel group
and I4 prediction modes with
identical SATD.

J Sign Process Syst (2011) 64:161–175 167

the MS-IPG. As the modified 3-step algorithm excludes 2
prediction modes, the MS-IPG is more efficient only when
the number of excluded modes is larger than 2. As shown
in Table 2, the MS-IPG excludes more than two prediction
modes when the group number is between 0 and 3.
Therefore, the MS-IPG is chosen over the 3-step algorithm
when the group number is less than 4. Otherwise, the
modified 3-step algorithm is selected. In this manner, the
number of I4 modes is always smaller than or equal to 7.

4 Pipelined Execution of the Proposed Intra Prediction

4.1 Intra 4×4 Prediction

Figure 7 shows pipelined execution of the I4 of the first
three 4×4 blocks (Blocks 0, 1 and 2). The numbers at the
top of the figure represent execution cycles and the
numbers in the left are the processing orders of the seven
I4 modes. Mode 0 is performed at the beginning of I4
whereas Mode 7 or 8 is performed at the end of I4. The
execution of one mode consists of seven operations and
each box in Fig. 7 represents one operation. Box St
represents the start cycle in which neighboring pixels are
selected and predictors are generated. Box P represents
intra prediction operation whereas box D represents the
calculation of the difference between the predictors and
current block. T represents integer transform which requires
2 cycles for completion (T1 and T2). Box C and Box B
represent cost calculation and best I4 mode decision,
respectively. After I4 of Block 0 (which is the same as B0
in Fig. 3) is completed, the reconstruction of the best mode
for Block 0 begins at cycle 21 with quantization repre-
sented by Boxes Q1, and Q2. Then, inverse quantization
(IQ1 and IQ2) is performed at cycle 23 and 24. Note that
both Q and IQ require 2 cycles for completion. As 4-pixel
parallel hardware is implemented for the reconstruction,
inverse transform requires 4 cycles, from IT1 to IT4.
Finally, reconstruction (denoted by R) is performed in cycle

29. Because of the left dependence between Blocks 0 and 1,
Block 1 can start only after the last R is performed (in cycle
32) and therefore I4 of Block 1 must wait for the
completion of reconstruction of Block 0. As the last
reconstruction step is performed in cycle 32, the first ‘St’
step of Block 1 can begin in cycle 33 (not that this schedule
is not shown in the figure. Instead, the optimized schedule
illustrated in the next paragraph is shown). Note that the
last ‘St’ step of Block 0 (for prediction mode 7 or 8) is
performed in cycle 14, the idle cycle of 18 (=33−14+1) is
required between Block 0 and Block 1.

To reduce the bubble cycles, this paper proposes two
optimizations. The first optimization takes advantage of the
fact that four pixels are reconstructed in 1 cycle. The
reconstruction hardware is designed in such a way that the
rightmost four pixels are generated in the first cycle (cycle
29). Note that only the rightmost four pixels are necessary
for the generation of predictors for Block 1. Thus, after the
first reconstruction cycle, the IP of Block 1 can begin its
‘St’ operation. Thus, 3 cycles can be removed from the
bubble cycles between Blocks 0 and 1. The second
optimization is performed based on the reason that the
predictors for Mode 0 are irrelevant to the reconstructed
pixels in Block 0 (the predictors for Mode 0 are constructed
from the pixels in the upper 4×4 block). Thus, Mode 0 of
Block 1 can begin before the completion of the ‘R’ step of
Block 0. On the other hand, Mode 1 of Block 1 depends on
the reconstructed pixels of Block 0. Therefore, the ‘St’
operation of Mode 1 can begin after the first ‘R’ operation
of Block 0. Thus, the ‘St’ operation of Mode 1 can begin at
cycle 30 which implies that the ‘St’ operation of Mode 0
can begin at cycle 28, 2 cycles earlier than Mode 1. With
the two optimizations, five bubble cycles can be reduced.
However, just 4 cycles are removed from the bubble
deliberately and the ‘St’ operation of Mode 0 begins at
cycle 29 as shown in Fig. 7. The reason of the deliberate
removal of only 4 cycles is for a simple control of Chroma
scheduling which includes normal 4×4 block prediction
for 2 cycles and 2×2 DC Hadamard for 1 cycle.

Figure 7 Pipelined execution of intra 4×4 predictions for left and upper-right dependencies.

168 J Sign Process Syst (2011) 64:161–175

Therefore, bubble cycles need to be an odd number when
DC Hadamard is performed during the bubble whereas
bubble cycles need to be an even number otherwise.
Ignoring these rules causes additional buffer to store
temporal result of a 4×4 block to be used at the
beginning of the next bubble. As a result, 14 bubble
cycles are inserted between Block 0 and 1 as shown in
Fig. 7 (from cycle 15 to cycle 28 represented by the gray
area). Note that Block 15 is also dependent on its left
block (Block 14). Thus, the pipeline execution is almost
the same as that shown in Fig. 7. The only difference is
that it is not necessary to take into consideration of the
Chroma scheduling. Hence, 13 bubble cycles are inserted
between Block 14 and Block 15.

Due to the upper-right dependence between Blocks 1
and 2, a bubble is also inserted between the two blocks. For
the up-right dependence, Modes 0, 1, 2, 4, 5, 6, and 8 are
irrelevant with its previous block. Due to the restriction in
the processing order by the 3-step algorithm, Modes 5, 6,
and 8 cannot be scheduled first. Thus, Modes 0, 1, 2, and 4
can be scheduled before the reconstruction of the previous
block. As a result, eight bubble cycles are removed. The
first optimization applied for Blocks 0 and 1 cannot be
adopted in this case because Mode 0 needs the bottom four
pixels of Block 1 which are available only after the last
reconstruction step (Cycle 60). Thus, ten bubble cycles
(from 43 to 52) are inserted between Blocks 1 and 2 as
shown in Fig. 7. Note that there exist another two cases
(between Blocks 7 and 8 and also between Blocks 13 and
14) that have upper-right dependence. Thus, ten bubble
cycles are also inserted for these two cases.

Figure 8 shows the execution of Blocks 2, 3, and 4
which do not need bubbles caused by dependence.
Therefore, Block 3 begins its ‘St’ operation at cycle 15
which is the next cycle of the last ‘St’ operation of Block 2.
In this perfectly pipelined execution without any bubble,

the computation of each mode is completed in every 2
cycles. Note that there is left dependence between Blocks 2
and 4 so that Block 4 needs to wait for the reconstruction of
Block 2. This requirement does not cause additional slow-
down because the computation for Block 3 provides
enough delay between Blocks 2 and 4.

4.2 Pipeline Schedule of the Proposed Intra Prediction

Figure 9(a) and (b) show the two pipeline schedules in the
proposed intra prediction. In both schedules, the executions
of I4 and I16 are serialized. The first schedule shown in
Fig. 9(a) performs I4 first followed by I16 whereas the
second schedule in Fig. 9(b) performs I16 followed by I4.
Then, one of the two schedules is chosen depending on the
predicted modes of neighboring macroblocks as illustrated
in Section 3.2.

In Fig. 9(a), B0 and B1 represent the I4 predictions of
Blocks 0 and 1, respectively. The numbers inside parenthe-
ses of boxes represent the execution cycles. Note that the
execution time is twice faster than that in Fig. 2(b). This is
because the design in Fig. 9 employs 8-pixel parallel data
path entirely dedicated to I4 whereas the design in Fig. 2(b)
shares the data path by both I4 and I16, and consequently,
only 4-pixel parallel data path is used for I4. B2-7
represents the consecutive execution of I4 predictions from
B2 and B7 whereas B8-13 represents I4 predictions from
B8 and B13. During the execution of I4, five bubbles are
generated between B0 and B15. These bubbles are 14
cycles between B0 and B1, 10 cycles between B1 and B2,
10 cycles between B7 and B8, 10 cycles between B13 and
B14, and 13 cycles between B15 and B16 (see details about
these bubble cycles in the previous subsection). To avoid a
waste of hardware resources, these bubbles are interleaved
with Chroma and I16 predictions. For example, the bubble
between B0 and B1 is utilized with the execution of Mode

Figure 8 Normal pipelined execution of intra 4×4 predictions.

J Sign Process Syst (2011) 64:161–175 169

0 of the Chroma prediction (denoted by C-M0). In Fig. 9(a)
and (b), C-M0, C-M1 and C-M2 represent intra predictions
of Mode 0, 1, and 2 for Chroma data, respectively. It takes
17 cycles to process one mode of Chroma prediction (Each
of Chroma U and V has 4 4×4 blocks (64 pixels) and, with
eight pixel parallel implementation, 16 cycles are necessary
to process 128 Chroma pixels (64 pixels for each of U and
V). It takes additional 1 cycle to 2×2 transform the DC
coefficients of U and V, making 17 cycles to process each
mode). Recall that the bubble between B0 and B1 is only
14 cycles. Thus, C-M0 is not completed during the first
bubble cycles and the remaining computation for the C-M0
is performed in the second bubble between B1 and B2. The
fourth box from the left denoted by C-M0/M1 represents
the sequential execution of C-M0 (for 3 cycles) followed by
C-M1 (for 7 cycles). The remaining execution of C-M1 is
performed after the execution of B2-7. C-M2 is performed
for 10 cycles during the bubble between B13 and B14.
Then, the remaining 7 cycles of C-M2 are performed during
the bubble between B14 and B15. Recall that the bubble
cycles between B14 and B15 are 13 cycles. Thus, the
bubble includes 6 cycles after the completion of C-M2.
These remaining 6 cycles are consumed by the execution of
I16-M0 (the first mode of I16 prediction). The execution
order of the modes of I16 may vary (see Section 4.3). Thus,
I16-M0, I16-M1, and I16-M2 do not represent Mode 0, 1
and 2, of I16. Instead, they represent the I16 mode that is
executed first, second, and third, respectively.

Each mode of I16 takes 34 cycles (I16 prediction has 16
4×4 blocks which take 32 cycles to predict the 256 Luma
pixels and additional 2 cycles are required to generate the
4×4 transform of the I16 DC coefficients). Thus, the
remaining part of I16-M0 is performed after B15. Then, the
other modes of I16 predictions and DCTQ/reconstuction for
the best Chroma mode (C-Best) are performed. The
execution of C-Best requires 32 cycles to re-predict and
reconstruct 8 4×4 blocks. However, the prediction hardware

must remain idle for 16 cycles during C-Best computation
because 4-pixel parallel hardware is applied for reconstruc-
tion. To avoid these idle cycles, C-Best and I16 are performed
in an interleaved manner (Interleaved I16 and C-Best in
Fig. 9). Then, I16-Best in Fig. 9 represents the execution
cycles for the decision of the best I16 mode. This step is
necessary only when I16 is selected as the best macroblock
mode. It requires 64 cycles for prediction. Note that the 64
cycles for I16 selection are not needed when I4 is selected.

In the pipeline schedule shown in Fig. 9(b), the first two
modes of I16 (denoted by I16-M0/M1) are performed first.
Then, I4 and Chroma prediction are performed in the
interleaved manner as the schedule presented in Fig. 9(b).
This implies the third mode of I16 is not completed before
the start of I4. Thus, the stop criterion for I4 early
termination is chosen as the smaller cost of only the first
two modes. It is possible for the cost of the third mode is
less than the smaller cost of the first two modes. Thus, the
early termination rate of I4 may be slightly decreased by
this delayed evaluation of the third mode although
experimental results show that this decrease is not signif-
icant. During the execution of I4, the execution order from
B0 to B15 is the same as that shown in Fig. 9(a). Then, I16-
M2 and C-Best are performed in an interlaced manner. The
last two steps are same as those in Fig. 9(a).

The main advantage of the serialized execution of I4 and
I16 over the previous schedules is that an early mode
decision between I4 and I16 can be effectively used to
speed up the computation time of the unselected mode with
early termination. If I4 is selected over I16, then the first
schedule (Fig. 9(a)) is adopted so that I4 is performed first.
Then, I16 is terminated early by using the cost of I4 as the
stop criterion. On the other hand, if I16 is selected over I4,
then I16 is performed first and I4 may be terminated early
by using the result of I16. In a software-based implementation
of an early mode decision for H.264 intra prediction, it is often
the case that only the selected mode is executed. In this case,

(14)
C-M0/M1

(10)

C-Best
(2)

C-Best
(2)

C-Best
(2)

464

B0
(14)

C-M0
(14)

B1
(14)

C-M0/M1
(10)

B2-7
(84)

C-M1
(10)

B8-13
(84)

I16-M0
(6)

B14
(14)

C-M2
(7)

B15
(14)

Interlaced I16-M0 & C-Best
(44)

I16-Best
(64)

0

C-M2
(10)

C-Best
(2)

I16-M0
(2)

C-Best
(2)

I16-M0
(2)

… C-Best
(2)

I16-M0
(12)

I16-M1/M2
(68)

Idle
(7)

C-M0
(14)

C-M0/M1
(10)

C-M1
(10)

I16-M2
(6)

C-M2
(7)

I16-Best
(64)

0

C-M2
(10)

C-Best
(2)

C-Best
(2)

C-Best
(2)

I16-M0/M1
(68)

Idle
(7)

464

B0
(14)

C-M0
(14)

B1
(14)

C-M0/M1
(10)

B2-7
(84)

C-M1
(10)

B8-13
(84)

I16-M2
(6)

B14
(14)

C-M2
(7)

B15
(14)

Interlaced I16-M2 & C-Best
(44)

I16-Best
(64)

0

C-M2
(10)

C-Best
(2)

I16-M2
(2)

C-Best
(2)

I16-M2
(2)

… C-Best
(2)

I16-M2
(12)

I16-M0/M1
(68)

Idle
(7)

(a) Pipeline schedule when I4 processed before I16

(b) Pipeline schedule when I16 processed before I4

Figure 9 Proposed pipeline schedule. a Pipeline schedule when I4 processed before I16. b Pipeline schedule when I16 processed before I4.

170 J Sign Process Syst (2011) 64:161–175

the unselected mode is simply discarded. The performance
drop by this discard is often not very significant because a
software-based implementation often uses a sophisticated
algorithm to select the better mode. In the hardware-based
implementation as in this paper, a complicated algorithm is
not easy to design so that only a simple algorithm is allowed
for the selection of the better mode. As a result, the discard of
the unselected mode may often substantially degrade the
compression efficiency. To avoid such degradation, it is
desirable to use an early termination scheme which avoids the
discard of the unselected mode from the beginning. Instead,
the unselected mode is discarded by comparing the cost of the
selected mode with the estimated cost of unselected mode and
terminating the execution of the unselected mode only when
the estimated cost is greater than the cost of the selectedmode.

In both schedules, the optimal I4 order as shown in
Fig. 3 is adopted for the further speed-up for I14 execution.
One change made by the new pipeline schedules in
comparison with that in Fig. 2(b) is that the new schedules

do not exclude the two I4 modes (modes 3 and 7) for
blocks 2, 8, and 14. This is because of the observation that
the exclusion of the two I4 modes (modes 3 and 7) for
blocks 2, 8 and 14 as in Fig. 2(b) incurs a bitrate increase of
0.49%. The proposed schedules attempt to improve the
compression efficiency by avoiding this performance loss
and placing bubbles between up-right dependencies as well
as between left dependencies. As a result, the new
schedules place five bubbles instead of two as in Fig. 2(b).

4.3 Pipeline Schedule for MS-IPG

This subsection revisits the pipeline executions shown in
Figs. 7 and 8 and explains issues when MS-IPG is
employed. A decision whether to perform MS-IPG or the
modified three-step is made right after R (at cycle 30 in
Fig. 7). Since mode 0 is already performed at cycle 30 and
mode 0 is always a candidate for the representative mode,
mode 0 is always chosen as the representative mode.

Intra
Prediction
Generator

Diff DCT/DHT

QIQ

8 to 4

Best

Predictor

FIFO
Mode

Decision

IDCT/IDHTADD

Boundary Buffer

Reorder
Buffer

Neighbor
Pixel

Register

DC
register

IDC register

Source Buffer Best Mode Register

Prediction Phase : 8 pixel/cycle

Reconstruction Phase : 4 pixel/cycle

External Memory : 4 pixels/ cycle CAVLC EncoderFigure 10 Block diagram of
the intra prediction hardware.

I4_M I16_M I16_M_Intra

Current mode
Current best mode

I4 cost

I16 cost
X

N of I4

N of I16
(N << 4) | M’(N)

>

Terminate

Accumulated Cost

[24:0]

[7:0]

[31:8]

Figure 11 Early termination hardware.

Block hrec0 hrec1 hrec2 hrec3 hrec4 hrec5 vrec0 vrec1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 12 Reorder buffer and lifetime of reconstructed pixels.

J Sign Process Syst (2011) 64:161–175 171

For the up-right dependence as shown in Fig.7, 4 modes
are processed before R. Therefore three bubbles may be
generated after mode 0 if MS-IPG is selected after R. To
reduce these bubbles, MS-IPG is performed in a two-step
manner. In the first step, predictors of IPG 2 are compared at
the beginning of Block 2. This is possible because predictors
are available from the beginning of Block 2. If predictors of
IPG 2 are all identical, the bubbles can be replaced by modes
4, 5, and 6. Otherwise, the first four modes (mode 0, 1, 2,
and 4) are performed. In the second step predictors of IPG 3
are compared after R. Then, modes 3 and 7 are excluded if
up and up-right predictors are all identical. If the predictors
differ, the three-step algorithm is selected. Note that the
predictors of IPG 1 are also compared in the first step.
However, the bubble replacement scheme cannot be applied
in this case. For IPG 1, modes 3 and 7 are the candidate
modes for the replacement. However, these modes have to
be done after R because they require up-right predictors. As
no I4 mode can be scheduled in these bubbles, I16 blocks
are performed during the bubbles.

MS-IPG can also generate bubbles in the normal
pipeline schedule (Fig. 8). A block may depend on
predictors from two blocks ahead. For example, recon-
structed pixels of Block 2 are used as left predictors of
Block4 as shown in Fig. 8. Even if Block 3 ends early by
MS-IPG, Block 4 cannot start immediately after Block 3
because Block 4 has to wait for R of Block 2. Therefore,

bubble generation is unavoidable between Block 3 and
Block 4. This bubble is also filled by I16 blocks.

5 Hardware Implementation

The proposed intra prediction is implemented by program-
ming with Hardware Description Language. The block
diagram is shown in Fig 10. Similar to the organization in
[3], the prediction phase adopts eight pixel parallel datapath
which is double the width of the four pixel parallel datapath
for the reconstruction phase. The parallelism of datapath is
designed to alleviate the imbalance of prediction and
reconstruction hardware utilization [3, 11, 12]. For I4
prediction, the predicted pixels and transformed residuals
are buffered until all seven modes have been compared and
the best mode is decided. The mode decision algorithm is
modified to use DCT instead of the Hadamard transform to
reuse the transform coefficients for quantization and to
avoid regeneration of the best mode as proposed in [11].

Additional control logics are necessary to select the
processing order of I16 modes and also to determine
early termination which requires the computation of
Eqs. 1, 2 and 3. Equation 1 or 3 is implemented with a 1
adder and a 1 multiplier. Equation 2 is implemented with a
look-up table. As there are three kinds of early termina-
tions, three look-up tables are constructed. The processing
order in Fig. 3 requires additional buffers to store
neighboring pixels of 4×4 blocks. For example, Block 4
needs pixels from Blocks 0, 1, and 2. Thus, the results of
Blocks 0, 1, and 2 must be stored until the intra prediction
of Block 4 begins. Reconstructed pixels are stored in
different buffers (reorder buffers) in a manner that
minimizes the number of buffers.

The controller for the pipeline schedule is slightly more
complicated than that in other intra prediction implementa-
tions such as [3] because of the control overhead. The

Table 3 Gate counts of hardware modules.

Components Gate count

Boundary buffers 11720

Intra prediction 4185

Transform 10150

Mode decision 14207

FIFO 4165

Q and IQ 14414

Inverse transform 7640

Reconstruction controller 4488

Scheduler 5792

Early termination 806

Reorder buffers 1745

Total 79313

Video type I16 selection (%) I4 termination (%) I16 termination (%)

1920×1080 30.515 19.815 66.809

1280×720 9.479 4.607 75.823

352×288 9.659 6.055 72.656

Table 4 Early termination rates
for various image sizes.

Table 5 Performance improvement by identical pixel group.

Video type Number of excluded modes/MB

1920×1080 15.137

1280×720 3.484

352×288 8.679

172 J Sign Process Syst (2011) 64:161–175

controller is responsible for the switch of the pipeline
schedule between Fig. 9(a) and (b), comparison of neighbor
pixels for IPG, and control of early termination. The
hardware for early termination is designed as shown in
Fig. 11. The M(0) x (16−N) in Eq. 2 is denoted as M’(N) in
Fig. 11. M’(N) is pre-computed for all N and stored in a
table. I4_M, I16_M, I16_M_Intra are the three tables for I4
termination, I16 termination according to the I4 cost, I16
termination according to the I16 cost, respectively. The
table, N and reference cost are selected according to the
mode to be terminated (current mode) and the mode whose
cost is used as the reference cost (current best mode). The
remaining parts calculate the threshold for early termina-
tion. Figure 12 shows the reorder buffers (hrec0-5, vrec0-1)
explained in the previous paragraph. The hrec stores
bottommost pixels in a 4×4 block while vrec stores
leftmost pixels. The numbers in the left are the block
number in Fig. 3. The arrow represents lifetime of
reconstructed pixels. To minimize the number of buffers,
reconstructed pixels are stored as shown in Fig. 12.

The list of gate counts, synthesized using 0.13 μm
technology is shown in Table 3. The total gate count is
about 79 K. Note that VLC is not included in Table 3.
Extra modules required to implement the proposed
methods are Scheduler, Early termination, and Reorder
Buffers. As shown in the table, the hardware overhead of
the proposed intra prediction is less than eight thousand
gates which are very small when compared with the total
gate counts. Other hardware components including
boundary buffers and a reconstruction controller are same
as [3].

6 Comparison with Previous Works

Computation reduction of I4 and I16 by the proposed
early termination schedule is shown in Table 4. The test
sequences are Foreman, Mobile, Stefan, Weather for CIF-
size (352×288), Parkrun, Shields, Stockholm, Mobcal for
HD-size (1280×720), and Blue sky, Station, Rush hour,
Tractor for Full-HD-size (1920×1080) videos. Four QPs,
16, 20, 24, and 28 are used and the results have been
averaged over these four QPs. Table 4 shows that the I16
mode selection rate ranges from 9.5% to 30.5%. For the
macroblocks with I4 selected as the first mode, the early
termination rate of I16 varies from 66.8% to 75.8%. In the
other case, the early termination rate of I4 varies from
4.6% to 19.8%. For CIF-size videos, a high rate of I16
early termination is achieved whereas the I16 early
termination rate decreases as the video size increases.
This is an expected result because smaller images are
denser, and the prediction accuracy of I4 is higher for
smaller images. As the video size increases, the selection
rate of I16 over I4 increases. Furthermore, the prediction
accuracy of I16 also increases resulting in the increase of
I4 early termination rate. Therefore, I4 computation time is
reduced for large videos. Experimental results also show
that I16 selection decreases as QP decreases although they
are not presented in this paper. This implies that the speed-
up by I16 early termination increases for high quality
videos, and the speed-up by I4 early termination increases
for low quality videos. With the effective selection of the
mode between I4 and I16 for early termination, the
proposed early termination schedule in Fig. 9(a) and (b)

Design feature This work [3] [10] [11]

Gate count 79 Ka 94 K 126 K 85 K

Target size HD1080p HD1080p HD720p 720x480

Maximum cycles 464 cycles 441 cycles 624 cycles 1060 cycles

Average cycles for

1920×1080 334 cycles 417 cycles 475 cycles 1017 cycles

1280×720 342 cycles 409 cycles 587 cycles 1002 cycles

352×288 343 cycles 407 cycles 574 cycles 1001 cycles

Table 6 Comparison with pre-
vious designs.

a VLC is excluded in gate count
for this work

Table 7 PSNR and bitrate changes.

PSNR (dB) Bitrate (%)

Plane mode skip −0.0071 0.0974

DCT SATD 0.0008 0.0331

3-Step −0.0463 0.5547

MS-IPG 0.0231 −0.3991
Early terminations −0.0324 0.5561

Final result −0.0619 0.8422

Table 8 PSNR and bitrate comparison with [3].

PSNR (dB) Bitrate (%)

This work [3] This work [3]

1920×1080 −0.0577 −0.0446 1.2179 0.9063

1280×720 −0.0505 −0.0450 0.5526 0.5174

352×288 −0.0774 −0.0665 0.7559 0.6318

J Sign Process Syst (2011) 64:161–175 173

always achieves speed-up for various video quality or
video sizes.

Table 5 shows the speed up achieved by taking
advantage of MS-IPG presented in Section 3.5. The second
column shows the average number of the excluded modes
per a macroblock. Large images include a large number of
pixels with identical values and fifteen I4 modes are
excluded on average in 1920×1080 size videos. The
number of predictors with identical values increases as QP
increases although the results are not presented in this
paper. This is because pixels with similar magnitudes may
become the same values after quantization with large QP. In
these experiments, HD-size videos achieve less speed up
than CIF-size videos. This is because HD-size test videos
used in this paper include a number of detailed objects,
making their complexity almost as large as that of CIF-size
videos.

Comparisons with previous designs are provided in
Table 6. The architectures in [3], [10] and [11] require the
maximum clock cycles of 441, 624 and 1060, respectively
whereas the proposed design requires 464 cycles. As the
execution time of the proposed hardware reduces signifi-
cantly because of early termination and the mode selection
according to identical predictors, the average cycles for
various videos are smaller than the maximum cycle. For
Full-HD size videos, the proposed design requires 334
cycles on average which is only 80% of the required cycles
in [3].

The PSNR and bit rate changes of the proposed design
compared to H.264/AVC JM8.6 [13] are shown in Table 7.
The results obtained from three video sizes are averaged.
The performance drop is due to the aggregate influences by
(1) plane mode skip, (2) DCT based SATD mode decision,
(3) 3-step algorithm, (4) and early termination of I4 and
I16. Compared to [3], PSNR is degraded by optimization
(4). However, this degradation is compensated partly by the
mode selection based on MS-IPG. The PSNR is enhanced
because the mode selection by IPG sometimes substitutes
the 3-step algorithm. Note that the mode selection by MS-
IPG is lossless whereas that by the 3-step algorithm is lossy.
The proposed design suffers 0.0619 dB PSNR loss, and
0.842% bit rate increase. Table 8 compares the PSNR and
bit rate changes with the previous work [3]. As shown in
the table, the difference is negligible.

7 Conclusion

About 20% of the execution cycles for H.264 intra
prediction are saved by the proposed pipeline schedule,
early termination, and the mode selection based on IPG.
Experimental results show that the proposed schedule with
early termination is effective for various video sizes and

quality. The mode selection based on IPG also provides
substantial computation saving in large videos with large
QPs. In spite of the significant reduction in computation
time, PSNR drop is 0.0619 dB and the bit rate increase is
less than 0.842%. Although this paper is mainly for a
specific hardware, the proposed methodology can be
applied to a wide range of platforms.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264/ISO/
IEC 11496-10 AVC), Mar. 2003.

2. Puri, A., Chen, X., & Luthra, A. (2004). Video coding using the
H.264/MPEG-4 AVC compression standard. Signal Processing:
Image Communication, 19, 793–849.

3. Lin, Y. K., Ku, C. W., Li, D. W., & Chang, T. S. (2009). A 140-
MHz 94 K Gates HD1080p 30-Frames/s Intra-Only profile H.264
encoder. In IEEE Trans Circuits and Syst Video Technol, 19(3),
Mar.

4. Pan, F., Lin, X., Rahardja, S., et al. (2005). Fast mode decision
algorithm for intraprediction in H.264/AVC video coding. IEEE
Transactions on Circuits and Systems for Video Technology, 15
(7), 813–822.

5. Tsai, A. C., Wang, J. F., Lin, W. G., & Yang, J. F. (2007). A
simple and robust direction detection algorithm for fast H.264
intra prediction. In Proc. IEEE Int. Conf. Multimedia and Expo,
(pp. 1587–1590), Beijing, China, Jul.

6. Wei, Z., Li, H., & Ngan, K. N. (2007). An efficient intra mode
selection algorithm for H.264 based on fast edge classification. In
Proc IEEE Int Symp Circuits and Syst (pp. 3630–3633). New
Orleans, La, USA, May.

7. Kun, Z., Chun, Y., Qiang, L., & Yuzhou, Z. (2007). A fast block
type decision method for H.264/AVC intra prediction. In Proc.
Int. Conf. Advanced Communication Technology (vol. 1, pp. 673–
676). Gangwon-Do, Korea, Februrary.

8. Song, J. B., Li, B., Li, W., & Jiang, L. (2006). A novel fast intra
prediction algorithm applied in H.264/AVC. In Proc. Int. Conf.
Signal Process. (vol. 1, pp. 16–20). Beijing, China, November.

9. Yang, C. L., Lai-Man, P., & Lam, W. H. (2004). A fast H.264 intra
prediction algorithm using macroblock properties. In Proc. IEEE
Int. Conf. Image Process, (vol. 1, pp. 461–464). Singapore,
October.

10. Jung, J. S., Jin, G. H., & Lee, H.-J. (2008). Early termination and
pipelining for hardware implementation of fast H.264 intra
prediction targeting mobile HD applications. EURASIP Journal
on Advances in Signal Process, volume, Article ID 542735.

11. Huang, Y. W., Hsieh, B. Y., Chen, T. C., & Chen, L. G. (2005).
Analysis, fast algorithm, and VLSI architecture design for H.264/
AVC intra frame coder. IEEE Transactions on Circuits and
Systems for Video Technology, 15(3), 378–401.

12. Cheng, C. C., Ku, C. W., & Chang, T. S. (2006). A 1280×720
pixels 30 frames/s H.264/MPEG-4 AVC intra encoder. In Proc
IEEE Int Symp on Circuits and Syst, May.

13. Joint Video Team Reference Software JM8.6.

174 J Sign Process Syst (2011) 64:161–175

Jin-Su Jung received the M.S. degrees in The School of Electronic
and Electrical Engineering from Inha University, Incheon, Korea, in
2003. He is currently working toward the Ph.D. degree in Electrical
Engineering and Computer Science from Seoul National University,
Seoul, Korea. His research interests are in the area of computer
architecture and SoC design for multimedia applications.

Hyuk-Jae Lee received the B.S. and M.S. degrees in Electronics
Engineering from Seoul National University, Korea, in 1987 and
1989, respectively, and the Ph.D. degree in Electrical and
Computer Engineering from Purdue University at West Lafayette,
Indiana, in 1996. From 1998 to 2001, he worked at the Sever and
Workstation Chipset Division of Intel Corporation in Hillsboro,
Oregon as a senior component design engineer. From 1996 to
1998, he was on the faculty of the Department of Computer
Science of Louisiana Tech University at Ruston, Louisiana. In
2001, he joined the School of Electrical Engineering and
Computer Science at Seoul National University, Korea, where
he is currently working as an Associate Processor. He is a
founder of Mamurian Design, Inc., a fabless SoC design house
for mobile multimedia applications. His research interests are in
the areas of computer architecture and SoC design for multimedia
applications.

J Sign Process Syst (2011) 64:161–175 175

Young-Joon Jo received the B.S. degree in Electrical Engineering
from Seoul National University, Korea, in 2009. He is now a

Ph.D. student in Electrical and Computer Engineering at Purdue
University. His research interests include programming models,
compilers and runtimes for optimizing and parallelizing irregular
programs.

	A Fast H.264 Intra Frame Encoder with Serialized Execution of 4×4 and 16×16 Predictions and Early Termination
	Abstract
	Introduction
	Previous Pipeline Schedules for Fast Intra Prediction
	Proposed Fast Intra Prediction
	Flow of the Proposed Fast Intra Prediction
	Mode Selection Between I4 and I16
	Early Termination of I4
	Early Termination of I16
	Prediction Mode Reduction

	Pipelined Execution of the Proposed Intra Prediction
	Intra 4 × 4 Prediction
	Pipeline Schedule of the Proposed Intra Prediction
	Pipeline Schedule for MS-IPG

	Hardware Implementation
	Comparison with Previous Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

