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Abstract Wireless sensor nodes span a wide range of
applications. This paper focuses on the biomedical area,
more specifically on healthcare monitoring applica-
tions. Power dissipation is the dominant design con-
straint in this domain. This paper shows the different
steps to develop a digital signal processing architec-
ture for a single channel electrocardiogram application,
which is used as an application example. The target
power consumption is 100 μW as that is the power
energy scavengers can deliver. We follow a bottleneck-
driven approach: first the algorithm is tuned to the
target processor, then coarse grained clock-gating is ap-
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plied, next the static as well as the dynamic dissipation
of the digital processor is reduced by tuning the core to
the target domain. The impact of each step is quanti-
fied. A solution of 11 μW is possible for both radio and
DSP running the electrocardiogram algorithm.

Keywords Wireless sensor node · ASIP · Low power ·
Clock gating · ECG

1 Introduction

A new generation of biomedical monitoring devices is
emerging. The main challenge for this kind of devices is
low power dissipation. In this context a power budget of
only 100 μW is available for the whole system including
radio, digital processing and memories. This power is
taken from extremely small batteries with or without
energy scavengers. To reduce the power dissipation of
the radio data compression or feature extraction is used
to reduce the number of bits that must be transmit-
ted. Thus the bottleneck shifts towards the digital part
which is the focus of this paper.

The goal of our work is to create a low-power
C-programmable DSP, optimized for the application
domain via hardware support for application specific
instructions. As starting point a reconfigurable proces-
sor from Philips’ technology incubator Silicon Hive [11]
is selected. This technology includes a retargetable C
compiler making code development and portability for
these processors easy. This programmability is impor-
tant because of the wide range of applications that can
run on the nodes. Programmable nodes allow a lower
non-recurring engineering cost for the software and
the hardware.
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We differentiate between static and dynamic power
dissipation. The dynamic power is the power consumed
due to switching and the internal power, which is the
power used inside the cells due to short-circuit currents
and all the power used in the internal nets. It includes
the functional units, memories, controller and clock.
Current CMOS technology trends indicate that leakage
is becoming more dominant with every new process
generation. In our experiments leakage power soon
turns out to be an important factor, up to 100 μW of
leakage was measured. Our focus has gone both in re-
ducing static as dynamic power by minimizing the time
the processor is active. As a case study we examined
an ECG algorithm running on the proposed platform,
what we learned from this example led to more general
system level conclusions.

2 System Level Architecture

A generic sensor node consists of several subsystems
as depicted in Fig. 1. There is a digital processing
subsystem with level 1 local memory, a level 2 memory
subsystem, including RAM and non-volatile memories,
an array of sensors and possibly actuators, a radio sys-
tem and a power subsystem including a source and pow-
ermanager, which is responsible for waking up various
parts of the node when needed. This conceptual model
holds independent of specific chip or die boundaries
and leaves open several packaging technologies. If level
2 memories are kept off-die then multiple instances of
the sensor node can be made without having to create
a new chip.

In current systems the power is supplied by a small
battery or from energy scavengers. Battery powered
nodes have the disadvantage of requiring maintenance.
Different forms of energy scavenging are possible but in
this paper we assume a power budget of around 100 μW
[5]. This number includes power consumed by the radio
and the sensors, it is the global power budget of the
entire sensor node.

The digital subsystem must be programmable in or-
der to be able to run different algorithms such as ECG
or EEG analysis, or altogether new algorithms from the

Figure 1 Overview of the architecture of a wireless sensor node.

biomedical domain. Furthermore real time constraints
must be met especially when actuators are involved.

From a power dissipation point of view the most
important consumers are the radio, the memory and
the digital subsystem. Commercially available radios
consume 150 nJ/bit [13] and as a consequence the
transmission of raw data can be expensive. An algo-
rithm to reduce the amount of data via compression
or feature extraction usually is a better compromise
between computation and communication. In addition
to the radio most subsystems exploit duty cycling and
sleep modes to reduce the dissipation. Next the DSP
must be tuned to the application. Also the memory sub-
system can dissipate a lot of power. What is needed is
a hierarchical memory subsystem optimized for power
dissipation by reducing the size of the lowest level me-
mories. These design principles will now be discussed
in more detail and illustrated with an example, which is
explained first.

3 Electrocardiogram

The electrocardiogram is a well studied topic, for which
several interesting algorithms exist. An excerpt of a real
ECG signal is shown in Fig. 2a with the most important
points and events shown. The rhythm of the heart is
controlled by the sinoatrial node. Starting at the resting
point oxygen-rich blood from the lungs and oxygen-
deprived blood from the body is flowing into the two
atria. The P wave indicates the opening of the valves
between the atria and the ventricles. The PQ interval
gives the blood time to flow into the ventricles. At point
Q the ventricles contract. This causes the QRS com-
plex, the well know ‘peak’ of the electrocardiogram.
After this contraction the muscles depolarize. This is
visible as the small T wave. The blood flow is depicted
in Fig. 2b.

One of the most basic functions of electrocardiogram
analysis is the detection of the R peak. The location of
this peak is relevant because it allows to calculate the
heart rate. Furthermore if this location is known it is
less complicated to search for the other elements that
are harder to detect.

The algorithm we use is based on the opensource
ECG detection program from EP Limited [2–4]. This
code uses the Pan-Tomkins [10] method for R peak
detection. The Pan-Tomkins method is a filtering based
method to detect the frequency that is unique to the
steeper R peak.

The design of the code is straightforward. The raw
ECG samples from the sensor are first passed through
a series of filters. The intent is to get rid of all details
except the frequency of the QRS complex. The results
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Figure 2 The electro-
cardiogram and the blood
flow (a) an excerpt of a
real ECG signal (b) blood
flow (c) results of the filter
stage and beat detection.

(a) (b)

(c)

of the filter stage is seen as the bottom line in Fig. 2c. All
other elements have been removed and only the QRS
complex is still visible after this step. Next, this result
is presented to a beat detection algorithm, which is a
simple state machine that decides whether an R peak is
detected based on a variable offset trigger and the time
the previous R peak was detected.

There are 5 steps in the filtering process. The data is
channeled through a low-pass filter, a high-pass filter,
a derivative, absolute value and integrator function, in
that order. The effects of each filter stage are depicted
in Fig. 3. The low-pass filter removes the small artifacts.
It eliminates high frequency noise, even in the case of a
powerful magnitude. To demonstrate this a strong high

Figure 3 Output of the various filter stages.

frequency noise was added to the inputfile (the black
rectangle). After the low-pass filter stage it is still visible
but very small. The high-pass filter removes most of
the slow artifacts caused by breathing or movement.
After this stage the ECG is mostly flat except for the
QRS complex itself. From what remains the derivative
is taken. Since the rising and falling edges of the QRS
complex are very steep, it leads to a high and a low peak
in the derivative. The other waves will be attenuated
further. The ABS is needed for the integration stage,
without this stage the positive and negative peak would
cancel each other out. The integration stage calculates
the average of the waveform over a small period of
time, thereby smoothing out the peaks. After this stage
the QRS complex is visible as a smooth ‘hill’ all other
features and artefact’s are attenuated strongly.

lp(x)y = 2y[n − 1] − y[n − 2] + x[n]
− 2x[n − 5] + x[n − 10] (1)

hp(x)z = x[n − 13] − y[n] (2)

y[n] = y[n − 1] + x[n] − x[n − 26] (3)

der(x) = x[n] − x[n − 2] (4)

int(x) =
a<16∑

a=0

x[a]/16 (5)

f ilter(x) = int(abs(der(hp(lp(x))))) (6)
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These filter equations are only valid for a sample fre-
quency of 200 Hz.

A certain delay is caused by the filters and there is
further delay caused by the decision making stage in
order to avoid false positives. A false positive could
occur when there are strong T waves. This delay varies
between 300 ms and 500 ms. These two delays can be
see in Fig. 2c. The state machine code is only run when
a beat is detected. On average the filter code is running
99% of the time.

For reasons explained later, it is beneficial to run
the algorithm in batches. Because of the way the filters
were designed it was most efficient to have the filter
code run on a batch of 50 samples. This also made the
filtering code slightly faster because the compiler had
more scheduling freedom.

Extra software was written to provide additional pa-
rameters. From the location of the R peak the location
of Q and S can be calculated with a simple algorithm.
This allows the calculation of the duration of the QRS
complex, an important parameter in ECG analysis.
Furthermore statistics on R to R intervals are kept and
also an average heartbeat over a certain amount of
beats. This extra information comes at an additional
cycle cost. To have a consistent benchmark, only the
basic analysis code has been used in the calculations.

4 Implementation Using State-of-the-Art DSP

In order to do local processing, a digital signal processor
is required on the wireless sensor node. In this section
four modern processors, deemed suitable for use in
wireless sensor nodes, are benchmarked with the ECG
application described in the previous section.

4.1 Atmel ATMega

The Atmel ATMega128L [1, 9] is part of the Atmel
AVR family, a set of 8 bit RISC microprocessors. The
ATMega128L has a flash program memory of 128 kB,

which is in-system reprogrammable, 4 kB EEPROM
and 4 kB internal SRAM. The processor can operate
between 2.7 V and 5.5 V, and can be clocked with a fre-
quency up to 8 MHz. In our benchmark the processor
was powered with 2.7 V and clocked at 8 MHz. When
compiling the ECG code described in Section 3 using
AVR-GCC, the average amount of execution cycles
required to process one sample was 1223 cycles. This
means that the microprocessor will have an activity of
224.600 cycles per second. Power measurements show
a total power consumption of 1.363 mW. This was
achieved by putting the ATMega128L in the low power
“Standby Mode” when no processing was required.
Measurements were done on an STK500 + STK501
development board. The power consumption of the
board was determined by doing power measurements
without a processor in the socket. This power number
was subtracted from the total power measured with
a processor.

4.2 TI MSP430

The TI MSP430F149 [12] is designed as a 16 bit Von
Neumann architecture with combined instruction and
data bus, and is known for it’s very low idle power.
The MSP430F149 has a non-volatile program memory
of 60 kB, which is in-system programmable, and 2 kB
internal SRAM. The processor can operate between
1.8 V and 3.6 V, and can be clocked with a frequency
up to 4.15 MHz at 1.8 V and 8 MHz at 3.6 V. In our
benchmark the processor was powered with 1.8 V and
clocked at 32.768 kHz. When compiling the ECG code
with msp430-gcc, the average cycle count per sample
is 988 cycles, meaning that the processor is active for
197.600 cycles per second. Power measurements show a
total power consumption of 204 μW. This was achieved
by putting the MSP430F149 in “Low Power Mode 4”
during idle. The power measurements were performed
on an custom PCB with only a 32.768 kHz and the
MSP430F149 on board (Table 1).

Table 1 Overview platforms. ATMega128L MSP430F149 Coolflux PearlRay

Voltage 2.7 V 2.7 V 1.2 V 1.2 V
Frequency 8 MHz 32.768 kHz Core: 48 MHz 100 MHz

IO: 12 MHz
Data bus size 8 bit 16 bit 24 bit 32 bit
Program memory size 128 kB 60 kB 256 kB 32 kB
Data memory size 4 kB 2 kB DM X: 144 kB 32 kB

DM Y: 48 kB
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Table 2 Comparison of
state-of-the art signal
processors running ECG
algorithm.

Active power Idle power ECG IPS Total power

Atmel ATMega128L (8 MHz - 2.7 V) 20.6 mW 785 μW 244600 1.363 mW
TI MSP430F149 (32.768 kHz - 2.7 V) 31.9 μW ∼ 0 μW 197600 204 μW
NXP Coolflux (48 MHz - 1.2 V) 1.3 mW 2.23 mW 68800 2233 μW
Silicon Hive PearlRay (100 MHz - 1.2 V) 66.97 mW 858 μW 51900 861 μW

4.3 NXP Coolflux

The NXP CoolFlux [8] is designed as a Dual-Harvard
architecture containing two semi-independent 24-bit
datapaths (X and Y), with one shared program counter.
Intermediate addition and multiplication results are
stored in 56 bit accumulator register files. The processor
is designed for low power applications in mind, and
requires a power supply voltage between 0.7 and 1.2 V,
depending on the required clock frequency. In our
benchmark the processor core was clocked at 48 MHz,
the IO was clocked at 12 MHz and the whole system
was powered with 1.2 V. The CoolFlux development
board comes with connectors which allow direct mea-
surement of all processor currents without overhead
of other components on the test board. The Target
Compiler Toolkit was used as a compiler to map the
ECG application. With the compiled simulator Check-
ers, an average cycle count of 344 cycles per sample
was obtained. When running the ECG application on
the system, a total power consumption of 2.23 mW was
measured. Due to an error in the processor supplied
we were not able to switch to idle mode. This caused
a very high idle power consumption compared to the
other processors.

4.4 Silicon Hive PearlRay

The Silicon Hive PearlRay [6] is a 3 issue slot C pro-
grammable VLIW processor. This processor was not
supplied on Silicon, but power results were obtained
using worst case commercial power simulations on a
netlist after route simulation. In this simulation the
processor is clocked at 100 MHz, has an 128 bit wide
instruction memory of 2048 words and a 32 bit wide
data memory of 8192 words. The processor has fine
grained clock gating, but does not consist of special
idle power modes. A power simulation on the Pearl-
Ray processor running the ECG application showed a
power consumption of 861 μW, taking into account that
the processor had a lower power consumption while
idle. The compiler supplied with Silicon Hive, HiveCC,
obtained an average cycle count of 260 cycles.

5 Digital Signal Processor Optimization

5.1 Reference Core

Table 2 shows that current state-of-the art processors
are not directly usuable for this application, due to our
power constraints. Although the Silicon Hive PearlRay
has a higher idle power compared to the Atmel AVR
or the TI MSP430, it is the most viable starting point
to create a 100 μW solution. This since this processor
has a very high power efficiency (Table 3) and is recon-
figurable, i.e. there exists a parameterizable description
of the architecture and a C-compiler that can generate
code for any possible architecture instance supported
by the processor template.

The top level configuration file controls certain as-
pects of the processor: data widths, functional unit
placement, custom functional units, configurations of
the issue slots. . . We generated a default configuration
with 32 kB of data memory and 32 kB of program
memory. The processor is a VLIW with three issue
slots, 128 bit wide instructions and is synthesized for
a speed of 100 MHz. This speed is the ‘sweet spot’
for this design. Synthesizing the core for several clock
frequencies shows that speeds above 100 MHz make
the design grow exponentially in area and leakage as
depicted in Fig. 4.

The algorithm was optimized by recoding the filters
in such a way that their behavior was largely unaffected,
when several expensive divisions were replaced by
shifts. The PearlRay does not have a hardware divider
and relies on a software divider taking 25 cycles per
division. After these optimizations the cost of analyzing
one sample of ECG data at a 200 Hz sampling fre-
quency was 250 cycles, however when a beat is detected

Table 3 Power efficiency of state-of-the art signal processors
running ECG algorithm.

Voltage μW/MHz MIPS/mW

Atmel ATMega128L 2.7V 2.575 μW/MHz 0.4
TI MSP430F149 2.7V 974 μW/MHz 1.0
NXP Coolflux 1.2V 103 μW/MHz 9.7
Silicon Hive PearlRay 1.2V 69.7 μW/MHz 14.3
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Figure 4 Clock frequency vs. Area & Leakage.

this number is higher: 1200 cycles. A detection of a beat
occurs only once or twice every second so on average it
takes 198 · 250 + 2 · 1200 = 51900 cycles per second. If
the PearlRay is running at 100 MHz the duty cycle is
51900/100 · 106 = 0.05%.

Power figures for the processors, as seen in Table 5,
were obtained using Synopsys PrimePower with layout
extracted capacitances. As input a vector file from a
netlist simulation was used, which was generated us-
ing Cadence Ncsim. Simulations were based on the
processor netlist after layout on a 90 nm CMOS process
(Fig. 5).

The power dissipation of the PearlRay was analyzed
first. Three modes are identified: active, idle and sleep.
In active mode the processor is running a program
and processing samples. In idle mode the clock is still

Figure 5 Layout of the optimized PearlRay core.

Figure 6 Causes of power consumption over the time domain.

running. In sleep mode the only dissipation is due to
leakage.

Graphically sketched this is visible in Fig. 6. In this
diagram power consumption is plotted versus time. The
area of the bars represents the energy consumed. The
lightest bars represent the active energy, which can vary
dependent on the input sample. We also observed this
behavior in our ECG software. The middle bar is the
idle energy and the darkest block is the ever present
leakage energy.

PTot = PLeak+ fsample((PAct · tAct_avg) + (PIdle · tIdle_avg))

(7)

The ECG application is an example of an algorithm
that does not require a large portion of the processing
power that the reference core offers. Therefore the
developed processor is optimized for algorithms with a
low duty cycle. Table 4 shows the power characteristics
of the standard version of the PearlRay, which is used
as a reference. At first glance the active power is domi-
nant, but since the processor is only ‘active’ for a small
fraction of the time, the actual energy usage attributed
to active mode constitutes only to 0.4% of the total
energy consumption (Table 5). The power used in idle
mode is the dominant factor here.

Table 4 Standard version of the PearlRay used as a reference.

Source Power Duration Mean power

Active 6.87 mW 496 μW 3.41 μW
Idle 0.76 mW 1s−496 μs 758 μW
Leak 100 μW 1 s 100 μW

The last column shows the energy for one input sample and one
ECG computation. Total power 861.4 μW
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Table 5 PrimePower output
results for reference PearlRay
while active.

The coreio contains the
data memory.

P_Switch P_Int P_Leak P_Total %

imec_ref 1.46e-3 5.41e-3 1.00e-4 6.97e-3 100
core 9.11e-4 7.78e-4 9.53e-6 1.70e-3 24.4

dec 3.86e-5 1.75e-4 2.34e-7 2.13e-4 3.1
is_I0 1.00e-4 4.21e-5 9.67e-7 1.44e-4 2.1
is_I1 2.71e-4 1.56e-4 2.80e-6 4.30e-4 6.2
is_I2 8.96e-5 5.64e-5 9.61e-7 1.47e-4 2.1
rf_I0 4.69e-5 9.61e-5 1.35e-6 1.44e-4 2.1
rf_I1 1.03e-4 8.30e-5 2.07e-6 1.88e-4 2.7
rf_I2 3.24e-5 5.32e-5 8.07e-7 8.65e-5 1.2

coreio 2.21e-4 1.11e-3 5.01e-5 1.38e-3 19.8
genI1 2.69e-6 3.45e-5 7.15e-7 3.79e-5 0.5
genI2 3.54e-5 5.92e-5 2.69e-7 9.49e-5 1.4
genI3 1.47e-6 6.69e-5 1.38e-6 6.98e-5 1.0

pmem 4.14e-5 3.37e-3 3.90e-5 3.45e-3 49

5.2 Reduce Idle Mode Dissipation

To counter the effects of idle energy we use coarse
grained clockgating. The PearlRay reference core was
already using fine grained low-level clock gates but the
top level clock gate was not implemented. The top level
clock gate disconnects the clock from the entire clock-
tree, meaning that when this gate is open no switching
will occur in the processor. As a consequence an ex-
ternal piece of circuitry must revive the processor when
this is required. Such a clock gate was very important as
shown by the results in Table 6. After this optimization
the dominant energy component is leakage (96%).

5.3 Reducing Leakage

Now we are faced with dominant leakage power so
we analyze in which part of the processor the leakage
occurs. Our total leakage is 100 μW, of which 50 μW
is caused by the data memory, 40 μW by the program
memory and 10 μW by the processor itself. The large
majority of the leakage is in the memories. We tried
four things to improve this leakage.

– Reduce the size of that data memory to 2 kB.
Since the ECG program only requires 1.2 kB and
120 bytes of stack this was possible. This reduced
the leakage to 65.6 μW, a 34.5% improvement.

Table 6 Power results with a top level clockgate installed.

Source Power Duration Mean power

Active 6.87 mW 496 μs 3.41 μW
Idle 0 W 1 s−496 μs 0 W
Leak 100 μW 1 s 100 μW

Total power 103.41 μW.

– By removing one of the three issue slots in the
PearlRay processor and reducing the size of the im-
mediates, the width of the program memory could
be reduced from 128b to 64b. Due to the decrease
of parallelism the instruction count was increased
with 27%, but the instruction width was reduced by
50%, allowing us to reduce the program memory
from 32kB to 16kB. This resulted in a reduction of
leakage power to 82μW, a 18% improvement.

– The use of memory modules designed in a techno-
logy with a high threshold option (HighVt). This
drastically reduces the leakage of the memories.
They will become slower but speed was not really
a constraint and the memories still operated on
100MHz. Using these memories leakage was re-
duced to 16.2μW, a 84% improvement.

– Reduce the datapath from 32 bit to 16 bit. As the
samples are only 16 bit wide and all operations
occur on them, it is optimal to scale the core to
this width. This gave a moderate improvement in
leakage to 94.7μW, or 5.3%.

When combining these techniques together with
floorplan optimizations, the results shown in Table 7
were obtained, which reduced the leakage of the origi-
nal PearlRay processor to 5.45μW, a 94.5% improve-
ment. Furthermore scaling down the datapath to 16
bit also contributed to reduce the dissipation of the
active mode.

Table 7 Power result with anti-leakage techniques combined.

Source Power Duration Mean power

Active 4.7 mW 628 μs 2.95 μW
Idle 0 W 1 s−628 μs 0 W
Leak 5.45 μW 1 s 5.45 μW

Total power 8.4μW.
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6 System Level Optimization

In this section we describe system level optimizations
that are a work in progress. We are currently experi-
menting with power gating and level 2 memories that
can be used to save the state and shutdown the core.

6.1 Power Down the System

From Table 7 we conclude that the leakage is still
dominant. Therefore an interesting option is to power
down the core and to save the state to level 2 mem-
ory and restore it when the next batch of samples
have to be processed. There are positive and neg-
ative contributions to the power dissipation. In those
circumstances where the final net result is positive this
is an interesting option. It means a hierarchical memory
subsystem: small level 1 memories with a high number
of accesses and larger level 2 memories with a very
limited number of accesses. This is similar to a mem-
ory hierarchy in computer architectures but optimized
for power dissipation instead of performance. Level 2
memory (or part of it) is also used for other purposes,
e.g. to collect the samples that arrive while the core is
down or to store multiple applications, which are not
active simultaneously.

Let’s apply this to the ECG example. The state
includes not only data (1.2 kB) but also the program
(16 kB). This data is used to retain the state of the filters
and for several other variables such as the baseline drift.
An important decision is the granularity of switching
between modes. If we do this at a sample basis this
can become quite expensive. Assuming a low power
(level 2) SRAM memory in a 90 nm process and a
size of 32 kB the cost of an access is 0.875 pJ/B and
the leakage equals 2.5 μW. If the processor is powered
down after every sample the cost is 28.8μW, the calcu-
lation is detailed in Table 8. This can be improved by
grouping the samples in groups of 50, then the cost of
saving and restoring is also reduced by a factor 50 which
translates into an acceptable level of 3.0 μW. This can
even be further improved to 0.5 by using a non-volatile
memory (flash).

The swapping between level 2 and level 1 memories
can be done for complete applications but also for parts
of an application. The Pan-Tomkins algorithm for ECG
is a good example. As mentioned above it consists of
2 parts: the filtering and the feature extraction. Both
parts have similar code size. The filtering is executed
for every sample but the feature extraction is executed
with a low probability (0.5%), i.e. only when a beat is
detected, which is about once per second. Therefore
it is possible to reduce the level 1 code memory by

Table 8 Level 1 to level 2 state save calculation.

Cause Calculation Result

Granularity: 1 sample
Leak 2.5 μW
Rpm

a 16kB·8192·0.875pJ·200/s 22.94 μW
Wst

b 1200B·8· 0.875pJ· 200/s 1.68 μW
Rst

c 1200B·8· 0.875pJ· 200/s 1.68 μW
Total: 28.8 μW

Granularity: 50 samples
Leak 2.5 μW
Rpm 16kB·8192· 0.875pJ· 4/s 0.46 μW
Wst 1200B·8· 0.875pJ· 4/s 0.03 μW
Rst 1200B·8· 0.875pJ· 4/s 0.03 μW

Total: 3.02 μW

aRead program memory
bWrite state
cRead state

a factor of 2, which reduces the access energy. The
consequence is that the programmer or the compiler
must be aware of this, e.g. to insert statements for
code swapping.

6.2 Powergating Tradeoff

Power gating is a technique that allows at runtime
for components to be turned off. This is done by in-
stalling a PMOS transistor at the supply rail or a NMOS
transistor between the subsystem and the ground. It
became obvious during the optimizations to the Pearl-
Ray processor that the largest portion of the power
was consumed by leakage in the memories. It would
therefore be interesting to be able to shutdown these
memories during the idle period. The state is then saved
in external flash or SRAM, as is explained in Sections
6.3 and 6.1.

Now that we know that powergating can save en-
ergy by removing most of the leakage in the system,
we would like to find out in what cases exactly it is
interesting to apply this technique. Designs with power
gates consume more active power than designs with-
out power gate technology. This extra active power is
caused by the dissipation of the power switches. This
voltage drop can be limited by putting multiple power
switches in parallel. This causes however also a lower
resistance when the switch is turned off, and thus a
higher leakage when the system is idle. Furthermore it
should be noted that when a component is powered on,
there will be energy required to load the capacitance of
the system and there will be additional powerloss due
to possible short-term short currents in the circuit.

The power to just leave everything on is equal to

Pactive · Tactive + Pleak · Tleak (8)
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whereas the power consumed in a scenario with power
gating is

(Pactive_powergate + Pleak) · Tactive + Bootcost
Granularity

(9)

Tleak is the fraction of the time that the design leaks,
which is 1. Tactive is the fraction of the time that the
processing is working, or the duty cycle. The increased
active power number due to the power gates is signified
by Pactive_powergate. In these scenarios one can reduce the
effect of the Bootcost by trying to keep the devices in
a shutdown state for as long as possible. There might
be latency constraints on this. The factor by which this
rebooting can be delayed is denoted as Granularity.

For our ECG application we have chosen a granu-
larity of 50 samples for technical and latency related is-
sues. The design of the filter code allowed modifications
such that 50 samples (or multiples thereof) could be
processed in one batch with a minimum of processing
overhead. Adding the delay of 50 samples (250 ms),
the delay of the filters and beat detection gave a beat
detection latency of just under 1 s which is acceptable
for this application.

Rewriting the formula for given power numbers and
an unknown break-even granularity

Bootcost·(Tactive ·(Pactive−Pactivep −Pleak)+Pleak ·Tleak
)

(10)

or rewriting for a given granularity the maximum cost
of starting the processor is

Tactive · (Pactive − Pactivep − Pleak) + Pleak · Tleak

Granularity
(11)

Since we do not have figures for the cost of starting a
PearlRay from power down, the only extra information
we can calculate is the maximum power that a bootup
can consume before it is no longer interesting to pow-
ergate the processor and better to let it leak instead.
As it was not possible to simulate the effects of power
gating on power consumption we ignored this factor.
The actual number depends on the design and the area-
power trade-off in power gating technology.

When shutting down the memories or the processor
the state of that subsystem has to be saved. This data
transfer and retrieval also consumed a portion of the
power. It is explained more in the next subsection. For
this trade-off we assume that this cost is contained in
the general ‘bootup’ cost.

Table 9 Elements that play a role in the SRAM or Flash
trade-off.

Description

SRAM leakage Sleak a
Datasize Dsize b
Read/write cost SRAM Srwcost c
Programsize Psize d
Write cost flash FWcost e
Save&restore/sec f
Read cost flash FRcost h
Boot flash chip Fboot g

6.3 Flash or SRAM for State Saving

A final trade-off has to be made when deciding where
to save the state. Again we will see that this is largely
dictated by the application. More specifically, if the
power-down period is large enough then it will be worth
saving the state to flash, otherwise SRAM is preferred.

Several factors come into play, they have been given
shorthand names as shown in Table 9.

The cost of saving state to SRAM is

Sleak + (2Dsize · Srwcost + Psize · Srwcost) · f (12)

while the cost of writing to flash is

(Dsize · FWcost + Dsize · FRcost + Psize · FRcost + Fboot)· f

(13)

Rewriting the formula to find the break even point (in
time) between flash and sram yields

1

f
= be + bh + dh + g − 2bc + cd

a
(14)

By calculating this break even point the maximum
amount of state-saves per seconds are allowed before
the greater cost of reading and writing flash is more
than the leakage of the SRAM chip. Section 6.1 (in
Table 8) showed an example of the effect of choos-
ing the right granularity on the effectiveness of using
this technique.

6.4 Program Overlay

As can be seen from the results obtained from Table 8
for DSPs with a wide program memory the size of
the program can quickly become critical. A possible
improvement is to partition the program into smaller
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blocks which are loaded when needed. The ECG al-
gorithm for example consists roughly of a filtering part
and a decision making part. In terms of code size they
are approximately equal. The filtering part is needed
for every sample, but the decision making portion of
the code is for the most part only needed in 1% of the
cases. By only loading the part of the program that is
needed in the ECG example case up to 50% of power
can be saved in terms of useless copying of part of
the program code at the expense of having additional
code complexity. In larger, more complex programs
these gains could even be greater as in most cases 90%
of the functionality is provided by 10% of the code.
The programmer would then be responsible to load the
parts of the code that are needed.

6.5 Results

Table 10 shows a system level overview of the dif-
ferent components of the power consumption in μW.
Furthermore the application scope is widened. The
first four rows show an ECG application with different
assumptions. The first row shows the simple baseline
ECG case with 1 channel as discussed above. The sec-
ond row assumes 3 channels. The next one is again 1
channel but now a more complex algorithm for a more
extensive analysis including extra parameters (such as
Q&S peaks and average beat rate). The fourth one is
the same as the previous one but now for 3 channels.
The last two rows show FFT analysis on 1 and 10
channel(s) respectively. The different columns repre-
sent the different contributions to the power dissipa-
tion in μW. A 90 nm process is assumed. The second
column represents the radio power assuming 150 nJ/bit.
Columns 3 and 4 are related to the processor and show
the dissipation when active and the leakage. The next
column shows the dissipation due to state-saving and
restoring in a 32 KB level 2 SRAM memory. The last

Table 10 Power consumption with different assumptions, all
numbers represent micro watts.

Pradio Pactive Pidle Pstate Ptot L1 Ptot L1,L2

1ch 4.8 3.3 5.5 3.0 13.5 11.0
3ch 4.8 9.8 5.5 3.1 20 17.6
1ch+ 9.6 4.6 5.5 3.3 19.6 17.5
3ch+ 9.6 13.7 5.5 3.6 28.7 26.8
eeg1 2.16 2.1 5.5 3.0 9.8 7.3
eeg10 21.6 21.3 5.5 3.0 48.4 45.9

2 columns show the total dissipation for 2 different
scenarios. The last column assumes level 2 memory is
used and the processor put in power down mode. The
previous column assumes the opposite.

We conclude for various use scenarios different com-
ponents can have the largest contribution in power
consumption. Therefore it is not easy to predict and a
careful analysis is needed for each situation. The data
in Section 5 shows that the average power consumption
constraint of 100μW is feasible.

7 Conclusion

Power dissipation is the most important constraint for
wireless sensor nodes for healthcare applications. This
paper describes the different steps in the development
of an architecture using a single channel ECG appli-
cation as an example. It shows that a 100 μW solution
is feasible.

For minimum power dissipation there is an opti-
mum balance between computation and communica-
tion. Transmitting raw data is usually not optimal. A
significant reduction in the amount of transmitted bits
is obtained via compression or feature extraction. As
a consequence the bottleneck shifts towards the DSP.
Static as well as dynamic dissipation must be tackled.
Both components are reduced by tuning the core to the
target domain (application specific instructions, proper
memory sizes, etc.) In an optimized architecture the
level 1 memories have a limited size due to the high
number of accesses in active mode. When the processor
is inactive it can be powered down while the state is
saved in level 2 memory. This requires that the gran-
ularity is carefully chosen. Analyzing different ECG
applications it is shown that optimizing the digital
processing technology is important.

Therefore this is chosen as the focus of this paper.
Using ECG as a driver and adopting a bottleneck-
driven step-by-step approach a factor of 100 reduction
of power dissipation of the DSP core was measured via
simulations. This is a result of the following actions that
span the different design levels.

– Algorithm level: optimization and simplification of
the code.

– Architecture level: e.g. level 1 memory size reduc-
tion by a factor of 2 for instructions and a factor of
16 for data

– Gate level: e.g. clock gating.
– Technology with HighVt.



J Sign Process Syst (2009) 57:107–119 117

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Atmel (2008). Atmel ATMega128L Datasheet. www.atmel.
com.

2. De Nil, M., Yseboodt, L., et al. (2007). Ultra low power ASIP
design for wireless sensor nodes. IEEE ICECS. Piscataway:
IEEE.

3. Ekanayake, V. N., Kelly IV, C., & Manohar, R. (2005).
BitSNAP: Dynamic significance compression for a low-
energy sensor network asynchronous processor. In Proc.
ASYNC (pp. 144–154), March.

4. EP Limited (2008). EP Limited homepage. http://www.
eplimited.com.

5. Gyselinckx, B. (2008). Human++: Emerging technology for
body area networks. Boca Raton: CRC.

6. Halfhill, T. R. (2003). Silicon hive breaks out. Microprocessor
report. www.MPRonline.com. Accessed 1 Dec 2003.

7. Meyr, H. (2003). System-on-chip for communications: The
dawn of ASIPs and the dusk of ASICs. In Proc. IEEE Work-
shop on Signal Processing Systems (SIPS’03). Seoul, Korea,
Aug 2003.

8. NXP (2007). NXP Coolflux DSP. www.coolfluxdsp.com.
9. Pan, J., & Tompkins, W. J. (1985). A real-time QRS detec-

tion algorithm. IEEE Transactions Biomedical Engineering,
BME-32(3), 230–236.

10. Rangayyan, R. (2002). Biomedical signal analysis. New York:
Wiley. ISBN 0-471-20811-6.

11. Silicon Hive (2008). Silicon Hive homepage. http://www.
siliconhive.com.

12. Texas Instruments (2008). TI MSP430F149 Datasheet. www.
ti.com.

13. True System-on-Chip with Low Power RF Transceiver and
8051 MCU. TI Datasheet CC1110, SWRS033A.

Lennart Yseboodt currently works as researcher at Philips Re-
search Eindhoven, working on low power sensor node architec-

tures. He received his master’s degree from the TU Eindhoven
in 2007. His thesis was on a low power system level design for
low power wireless sensor nodes. He’s the author of a successful
open source project: EFSL. His main inetrest lie in digital
architectures and embedded software.

Michael De Nil currently works as researcher at IMEC
Netherlands, working on ultra-low power DSP architectures. He
received his master’s degree from the TU Eindhoven in March
2007. His master thesis was on ultra-low power ASIP design for
wireless sensor nodes, and was executed at Silicon Hive / IMEC.

Jos Huisken is currently principal researcher in IMEC
Netherlands involved in the ultra low-power DSP activities for
wireless autonomous transducer systems. After graduation in
1984 in University of Twente he joined Philips Reseach working
in VLSI design and high-level synthesis for DSP. As user of
architectural synthesis tools he created the first fully integrated
VLSI design for Digital Audio Broadcasting (DAB) baseband
processing and some IP blocks for the 3G mobile standard. The
architecture template driven design approach led in 2002 to the
creation of Silicon Hive, a spinout from Philips Research which
he left in 2008 to join IMEC.

http://www.atmel.com
http://www.atmel.com
http://www.eplimited.com
http://www.eplimited.com
http://www.MPRonline.com
http://www.coolfluxdsp.com
http://www.siliconhive.com
http://www.siliconhive.com
http://www.ti.com
http://www.ti.com


118 J Sign Process Syst (2009) 57:107–119

Mladen Berekovic has received the Dipl.-Ing. and Dr.-Ing de-
grees both from the University of Hannover, Germany, in elec-
trical and computer engineering.

He has been Research Assistant with the Institute for Micro-
electronic Systems at the University of Hanover where he worked
on several programmable video processor chips for MPEG-4 and
image processing. After his PhD he worked at IBM on processor
development and at IMEC as a senior researcher for advanced
architectures. At IMEC he was leading teams on reconfigurable
architectures and ultra-low-power DSPs. Prof. Berekovic was
part-time assistant professor at the computer engineering depart-
ment of Delft University of Technology, the Netherlands. Since
2007 he is professor at Technische Universität Braunschweig,
Germany.

His present research interests include low-power VLSI im-
plementations for signal processing, DSP and processor archi-
tectures for multimedia and wireless applications, reconfigurable
and dependable computing systems.

Prof. Berekovic is a member of the IEEE and ACM, and
served as a reviewer for several IEEE conferences and journal
publications including DAC, IEEE Trans. CSVT, ETRI Journal
and the Kluwer Journal of VLSI Signal Processing Systems. He
is member of the Editorial Board of Elsevier’s Journal on Micro-
processors and Microsystems, and in the program committees of
FPL, RAW, ARC, ARCS, SAMOS, Estimedia and VLSi-SOC.

Qin Zhao studied electrical engineering at Southeast University,
Nanjing, China. She obtained her Ph.D degree in Information
and Communication Systems Group at Eindhoven University
of Technology. Her research topic includes code generation for
embedded processors. Then she worked as software engineer
at Takumi Technology B.V. for two years. In 2006, she joined
Stichting IMEC Nederland as researcher. Her research interests

are compiler technologies, code generation and system level
design, etc.

Frank Bouwens received his Bachelor of Science from the Elec-
trical System Engineering department at the Zeeland University
of Professional Educational in 2003. He did his thesis at Philips
Semiconductors, Nijmegen, the Netherland on embedded auto-
motive system. He received a Master of Science degree in Com-
puter Engineering at the Delft University of Technology in 2006.
His Master thesis was in power and performance optimizations of
the coarse-grained reconfigurable architecture ADRES at IMEC
Leuven, Belgium. He is currently working at the Holst Centre for
Stichting IMEC-NL as a Researcher on ultra low power solutions
for DSPs. His research interests are energy efficient solutions for
embedded medical systems and hardware/software co-design.

Jos Hulzink received his Master of Science degree in Electrical
Engineering from the Eindhoven University of Technology in
2005. He graduated on a Master’s Thesis about the optimization
of Ultra Long Instruction Word processors for the Software De-
fined Radio (SDR) domain. Between 2005 and 2007 he worked
as a SDR Application Engineer and Processor Designer for
Silicon Hive. In 2007 he joined the Holst Centre (Eindhoven, the
Netherlands) as a researcher Ultra Low Power DSPs, where he
focuses on ultra low power, high performance processor architec-
tures for SDR applications.



J Sign Process Syst (2009) 57:107–119 119

Jef van Meerbergen (M’87–SM’92) received the M.S. degree in
electrical engineering and the Ph.D. degree from the Katholieke
Universiteit Leuven, Belgium, in 1975 and 1980, respectively. In
1979, he joined Philips Research Eindhoven, Eindhoven, The
Netherlands, where he started to design MOS digital circuits,

domain-specific processors, and general-purpose digital signal
processors. He was the Project Leader of the Sigma-Pi project
which delivered the first general purpose DSP within Philips.
In 1985, he started working on application-driven high-level
synthesis in the context of a European project in close cooper-
ation with Imec. Initially, this work was targeted toward DSP
applications and resulted in the AR|T system which is used to
design audio, video, and communication functions. Later, the
application domain shifted toward high-throughput streaming
applications for which the Phideo compiler was developed. This
compiler was used for the design of feature box ICs for 100-
Hz conversion for TV (Melzonic, Falconic) and for MPEG2
encoding (I.McIC). The Phideo paper received the best paper
award at the 1997 ED&TC conference. His current interests
are in design methods, heterogeneous multiprocessor systems,
reconfigurable architectures and Networks-on-Silicon. He is a
part-time professor at the Eindhoven University of Technology,
Eindhoven, The Netherlands. Dr. van Meerbergen is a Philips
Research Fellow and Associate Editor of Design Automation for
Embedded Systems Journal.


	Design of 100 \ubmuW Wireless Sensor Nodes for Biomedical Monitoring
	Abstract
	Introduction
	System Level Architecture
	Electrocardiogram
	Implementation Using State-of-the-Art DSP
	Atmel ATMega
	TI MSP430
	NXP Coolflux
	Silicon Hive PearlRay

	Digital Signal Processor Optimization
	Reference Core
	Reduce Idle Mode Dissipation
	Reducing Leakage

	System Level Optimization
	Power Down the System
	Powergating Tradeoff
	Flash or SRAM for State Saving
	Program Overlay
	Results

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


