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Abstract
Markerless methods for animal posture tracking have been rapidly developing recently, but frameworks and benchmarks
for tracking large animal groups in 3D are still lacking. To overcome this gap in the literature, we present 3D-MuPPET, a
framework to estimate and track 3D poses of up to 10 pigeons at interactive speed using multiple camera views. We train
a pose estimator to infer 2D keypoints and bounding boxes of multiple pigeons, then triangulate the keypoints to 3D. For
identity matching of individuals in all views, we first dynamically match 2D detections to global identities in the first frame,
then use a 2D tracker to maintain IDs across views in subsequent frames. We achieve comparable accuracy to a state of the art
3D pose estimator in terms of median error and Percentage of Correct Keypoints. Additionally, we benchmark the inference
speed of 3D-MuPPET, with up to 9.45 fps in 2D and 1.89 fps in 3D, and perform quantitative tracking evaluation, which
yields encouraging results. Finally, we showcase two novel applications for 3D-MuPPET. First, we train a model with data
of single pigeons and achieve comparable results in 2D and 3D posture estimation for up to 5 pigeons. Second, we show
that 3D-MuPPET also works in outdoors without additional annotations from natural environments. Both use cases simplify
the domain shift to new species and environments, largely reducing annotation effort needed for 3D posture tracking. To the
best of our knowledge we are the first to present a framework for 2D/3D animal posture and trajectory tracking that works in
both indoor and outdoor environments for up to 10 individuals. We hope that the framework can open up new opportunities
in studying animal collective behaviour and encourages further developments in 3D multi-animal posture tracking.
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1 Introduction

Pose estimation and tracking are among the fundamen-
tal problems in computer vision and a crucial task in
many visual tracking applications ranging from sports in
humans (Bridgeman et al., 2019) to the study of collective
behaviour in nonhuman animals (Couzin & Heins, 2023;
Koger et al., 2023). For the latter, accurate quantification of
behavior is critical to understand the underlying principles
of social interaction and the neural and cognitive under-
pinnings of animal behaviour (Bernshtein, 1967; Altmann,
1974; Berman, 2018; Mathis et al., 2018; Kays et al., 2015).
While researchers conventionally analyzed animal behaviour
manually using a predefined catalogue of behaviours using
ethograms, recent advances in computer vision, as well as
the increasing demands for large datasets involving the anal-
ysis of the fine-scaled and rapidly-changing behaviours of
animals, encouraged the development of automated track-
ing methods (Dell et al., 2014; Gomez-Marin et al., 2014;
Anderson&Perona, 2014;Mathis et al., 2018). In such appli-
cations, multi-object pose estimation is essential to observe
the dynamics of socially interacting animals because indi-
viduals in a group tend to be partially occluded. Notably,
with the recent advances in hardware and computer vision,
marker-based motion capture systems have enabled posture
tracking of single and multiple animals in controlled captive
environments (Nagy et al., 2023; Kano et al., 2022; Itahara
& Kano, 2022; Miñano et al., 2023; Itahara & Kano, 2023).
Such marker-based motion capture systems also facilitated
the curation of large-scale animal posture datasets (Naik et
al., 2023; Marshall et al., 2021) to develop markerless meth-
ods for posture tracking of single (Mathis et al., 2018; Pereira
et al., 2019; Dunn et al., 2021; Graving et al., 2019) and
multiple animals (Lauer et al., 2022; Pereira et al., 2022;
Waldmann et al., 2022). A crucial advantage of marker-
less over marker-based methods is that individuals do not
have to be equipped with markers, thus opening possibili-
ties for posture tracking and behavioural quantification of
unhabituated animals even in the wild (i.e., natural habitat).
Recently, with the success of 2D single animal markerless
pose estimation methods like LEAP (Pereira et al., 2019)
and DeepLabCut (DLC, Mathis et al. (2018)), this research
area has received increased attention in method development
for 2D tracking multiple animals (Lauer et al., 2022; Pereira
et al., 2022; Graving et al., 2019; Waldmann et al., 2022) and
3D postures (Günel et al., 2019; Joska et al., 2021; Dunn
et al., 2021; Giebenhain et al., 2022; Han et al., 2023). This
recent progress in markerless pose estimation also boosted
the research area of computer vision for animals, as exem-
plified by the fact that the CVPR workshop on “Computer
Vision for Animal Behavior Tracking and Modeling” (Zuffi
et al., 2023) has been taking place every year since 2021. Top-
ics of this workshop range from object detection (Duporge

et al., 2021), behavior analysis (Nourizonoz et al., 2020;
Bolaños et al., 2021), object segmentation (Chen et al., 2020;
Waldmann et al., 2022), 3D shape and pose fitting (Biggs et
al., 2019; Badger et al., 2020) to pose estimation (Labuguen
et al., 2021; Gosztolai et al., 2021; Waldmann et al., 2022)
and tracking (Romero-Ferrero et al., 2019; Pedersen et al.,
2020; Waldmann et al., 2022).

Despite recent progress in the field of computer vision
for animals, reliable tracking of multiple moving animals in
real-time and estimating their 3D pose tomeasure behaviours
in a group remain an open challenge. While frameworks for
multi-animal pose estimation and tracking in 2D (Lauer et
al., 2022; Pereira et al., 2022; Waldmann et al., 2022) are
common, frameworks for 3D multi-animal pose estimation
are generally lacking, with a few notable exceptions. We are
aware of only three frameworks that estimate the 3D pose of
more than one individual (two macaques Bala et al. (2020),
two rats/parrots Han et al. (2023), and four/two pigs/dogs An
et al. (2023)) in controlled captive environments, and finally
one framework (Joska et al., 2021; Nath et al., 2019) that
estimates 3D poses of single Cheetahs in the wild.

One limiting factor for the development of animal pose
estimation methods is the limited amount of annotated data
as ground truth for training and evaluation, especially com-
pared to human datasets (for example 3.6 million in Human
3.6M (Ionescu et al., 2014)), cf. also Sanakoyeu et al. (2020).
Using birds as an example, we are aware of only four datasets
for birds across different bird species (Welinder et al., 2010;
Van Horn et al., 2015; Badger et al., 2020; Naik et al., 2023).
The lack of annotated datasets not only limits the ability to
do thorough quantitative evaluation for new proposed meth-
ods, but biologists who want to make use of these methods
also require a large amount of laborious manual annotations.
DeepLabCut (Mathis et al., 2018), LEAP (Pereira et al.,
2019) and DeepPoseKit (Graving et al., 2019) overcome this
lack of training data using a human in loop approach where
a small manually labelled dataset is used to train a neural
network, then predict body parts (pre-labeling) of previ-
ously unlabeled material to generate larger training datasets.
Creatures Great and SMAL (Biggs et al., 2019) instead cre-
ates synthetic silhouettes for training and extracts silhouettes
with Wang and Yuille (2015), Wang et al. (2015) from real
data for inference. Hence, one way to circumvent the lack
of available annotated large-scale datasets for many animal
species is to develop methods that exploit few training data
in an efficient way. However, the drawback of this approach
is that these methods cannot be evaluated quantitatively in
detail due to the few annotated data that they leverage.

Wechoose pigeons as an example species not only because
it is a commonmodel species for animal collective behaviour
(e.g Yomosa et al., 2015; Nagy et al., 2010; Nagy et al.,
2013; Papadopoulou et al., 2022; Sasaki & Biro, 2017), but
also because of the recent introduction of a large scale multi-
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Fig. 1 3D Multi-Pigeon Pose Estimation and Tracking (3D-MuPPET)
is a framework for multi-animal pose estimation and tracking for lab
(left) and outdoor data (right).Left: estimated complex pose (beak, nose,
left and right eye, left and right shoulder, top and bottom keel and tail)

of pigeons recorded in a captive environment. Right: the image shows
an example with three pigeons recorded outdoors with estimated 3D
keypoints reprojected to camera view (colored dots)

animal 2D/3D posture dataset in 3D-POP (Naik et al., 2023).
This dataset opens up possibilities to propose and bench-
mark methods for 3D posture estimation and tracking due to
its size. Here, we extend I-MuPPET (Waldmann et al., 2022),
a recent framework proposed for interactive 2D posture esti-
mation and tracking of multiple pigeons, by incoporating
multiple views to obtain 3D information. We will first evalu-
ate the 2D framework proposed in I-MuPPET (Waldmann et
al., 2022) on the 3D-POP dataset, then introduce and evaluate
our extension to 3D. We also highlight the applicability of
the framework to data recorded in outdoor settings without
any further annotations.

Contributions In this paper, we present 3D-MuPPET, a
flexible framework for interactive tracking and 3D pose esti-
mation of multiple pigeons that works for data recorded both
in captivity and the wild. The framework is based on trian-
gulating 2D poses from multiple views to 3D, allowing 3D
reconstruction if a 2D posture estimation model and a multi-
view setup is available. Compared to a state of the art 3D
pose estimation method (Learnable Triangulation of Human
Pose; LToHP, Iskakov et al. (2019)) that requires ground truth
in 3D for training, 3D-MuPPET is less accurate (Root Mean
Square Error; RMSE of 24.0 mm vs. 14.8 mm, and Percent-
age of Correct Keypoints; PCK05 of 71.0% vs. 76.7% for
ours and LToHP respectively), but comparable in terms of
median error (7.0 mm vs. 5.8 mm for LToHP) and Percent-
age of Correct Keypoints (PCK10 of 92.5% vs. 94.3% for
LToHP). We track up to ten pigeons (the upper limit in Naik
et al. (2023)) with up to 9.45 fps in 2D and 1.89 fps in 3D, and
report detailed results for speed and accuracy. Additionally,
we highlight two use cases that showcases the flexibility of
our framework.

1. We demonstrate that it is possible to train on an annotated
dataset containing only a single pigeon to predict key-

points of a complex pose for multiple pigeons in a stable
and accurate way.

2. We demonstrate the ability to estimate 3D poses of
pigeons recorded outdoors, cf. Fig. 1, without any addi-
tional annotations.

Both applications provide alternatives for the domain shift to
other species or applications in the wild by reducing annota-
tion effort required for multi-animal posture estimation.

Finally, to evaluate pose estimation from data recorded
outdoors, we also presentWild-MuPPET, a novel 3D posture
dataset of 500 manually annotated frames from 4 camera
views collected in the wild.

To the best of our knowledge, we are the first to present a
markerless 2D and 3D animal pose estimation framework for
more than four individuals. Our approach is also not limited
to pigeons and can be applied to any other species, given 2D
posture annotations and a calibratedmulti-camera system are
available. In our supplemental material we also showcase the
applicability to other species like mice from Mathis et al.
(2018) and cowbirds from Badger et al. (2020) where 2D
posture annotations from one camera view are available. The
source code and data to reproduce the results of this paper
are publicly available at https://alexhang212.github.io/3D-
MuPPET/. We think that 3D-MuPPET offers a promising
framework for automated 3D multi-animal pose estimation
and identity tracking, opening up new ways for biologists to
study animal collective behaviour in a fine-scaled way.

2 RelatedWork

In this section, we explore existing work on both 2D and
3D posture estimation and multi-animal tracking, since 3D-
MuPPET makes use of 2D detections and triangulation for
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3D poses.We identify existingmethods, thenmajor gaps that
we hope 3D-MuPPET can fill.

2.1 Animal Pose Estimation

2D Single Animal Pose Estimation With the success of
DeepLabCut (Mathis et al., 2018) and LEAP (Pereira et
al., 2019), animal pose estimation has been developing into
its own research branch parallel to human pose estimation.
DeepLabCut andLEAPboth introduce amethod for labelling
animal body parts and training a deep neural network for pre-
dicting 2D body part positions. DeepPoseKit (Graving et al.,
2019) improved the inference speed by a factor of approxi-
mately two while maintaining the accuracy of DeepLabCut.
3D Bird Reconstruction (Badger et al., 2020) predicts 2D
keypoints and silhouettes to estimate the 3D shape of cow-
birds from a single view. However, other than the extension
of DeepLabCut inDeepLabCut-live (Kane et al., 2020), most
applications have focused on offline post-hoc analysis, which
limits any application that might require posture estimation
at interactive speeds (≥ 1 fps) to perform stimulus driven
behavior experiments e.g. VR for animals (Naik et al., 2020;
Naik, 2021).

2D Multi-Animal Pose Estimation DeepLabCut (Mathis
et al., 2018) is extended in Lauer et al. (2022) to predict
2D body parts of multiple animals and maintain identity by
temporal tracking. This extension uses training data with
annotations of multiple animals. The authors released four
datasets with annotations containing mice (n = 3), mouse
with pups (n = 2), marmosets (n = 2) and fish (n = 14).
SimilarlySLEAP (Pereira et al., 2022) provides several archi-
tectures to estimate 2D body parts of multiple animals. These
two approaches (Lauer et al., 2022; Pereira et al., 2022)
can track the poses of multiple animals and are trained on
multi-animal annotated data. However, manual annotations
for multi-animal data is often challenging and time con-
suming to obtain, largely constraining the development of
multi-animal methods.

3D Animal Pose Estimation To infer 3D poses of single
rodents from multi-view data, Dunn et al. (2021) developed
DANNCE, amethod similar to Iskakov et al. (2019) by learn-
ing the triangulation process from multiple views using a 3D
CNN. Similar to Iskakov et al. (2019), Dunn et al. (2021)
has a cost of longer run times due to its 3D CNN architec-
ture. Neural Puppeteer (Giebenhain et al., 2022) is a keypoint
based neural rendering pipeline. By inverse rendering the
authors estimate 3D keypoints from multi-view silhouettes.
While this method is independent from variations in texture
and lighting, most of their evaluation is performed using syn-
thetic data, and thus its applicability to real-world animal data
has not been extensively tested. Sun et al. (2023) proposes
a self-supervised method for 3D keypoint discovery in ani-
mals filmed from multiple views without reliance on 2D/3D

annotated data. This method uses joint length constraints and
a similarity measure for spatio-temporal differences across
multiple views.While there is no need for annotated data, this
method comes with a cost of lower accuracy. An et al. (2023)
fits a mesh model, which must be prepared for each species,
to 10 camera views for 3D pose estimation of four pigs, two
dogs and one mouse captured in indoor environments. For
Günel et al. (2019), Nath et al. (2019), Joska et al. (2021),
Bala et al. (2020), Karashchuk et al. (2021), Ebrahimi et al.
(2023), Han et al. (2023), Naik et al. (2023) the procedure to
obtain 3D poses is to use a 2D pose estimator (e.g. Newell
et al. (2016), Mathis et al. (2018)) and to triangulate to 3D
using the 2D keypoint predictions of multiple views. Just
like the proposed method, these 3D frameworks exploit 2D
keypoints and trigulation from multiple views.

All these methods are limited to the pose tracking of up to
four individuals, and no framework has been shown to track
the 3D poses of larger animal groups.

2.2 Multi-Animal Identity Tracking

Multiple animal tracking (Zhang et al., 2023), a variation
of multi-object tracking (MOT, Dendorfer et al. (2021)), is
important in order to maintain identities of animals through-
out behavioural experiments.

Romero-Ferrero et al. (2019) and Heras et al. (2019) use
the software idtracker.ai (Ferrero et al., 2017) to track up to
100 zebrafish in 2D at once. The software needs to know
the number of individuals beforehand since it performs indi-
vidual identification in each frame. TRex (Walter & Couzin,
2021) is capable of tracking up to 256 individuals while esti-
mating the 2D head and rear positions of animals. It achieves
real-time tracking using background subtraction. Zhang et
al. (2023) provides a multi-animal tracking benchmark in
the wild. The benchmark includes 58 sequences with around
25K frames containing ten common animal categories with
33 target objects on average for tracking. Pedersen et al.
(2020) provides a zebrafish tracking benchmark in 3D. The
benchmark includes 3D data of up to ten zebrafish recorded
in an aquarium.

Frameworks for Animal Pose Estimation and Identity
Tracking For applications in biological experiments of mul-
tiple individuals, the problem of posture estimation and
tracking often goes hand in hand, because the posture of mul-
tiple individuals alone will not be meaningful if the identities
are not maintained. Existing posture estimation frameworks
also provide identity tracking, but are often limited to 2D.

DeepLabCut (Lauer et al., 2022) splits the workflow in
local and global animal tracking. For local animal tracking
they build on SORT (Bewley et al., 2016)), a simple online
tracking approach. For animals that are closely interacting or
in case of occlusions they introduce a global trackingmethod
by optimizing the local tracklets with a global minimization
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problem using multiple cost functions on the basis of the
animals’ shape or motion. SLEAP (Pereira et al., 2022) also
uses a tracker based on Kalman filter or flow shift inspired by
Xiao et al. (2018) for candidate generation to track multiple
individuals.

In contrast to the previous two works (Lauer et al., 2022;
Pereira et al., 2022), we propose a posture estimation and
tracking framework in 2D and 3D, that focuses on online
tracking. We first initialize correspondences between cam-
eras using the first frame and then use a 2D tracker from
each view to maintain correspondences to reduce computa-
tion time. In addition, our framework works both on data
recorded in captive and outdoor environments.

3 Technical Framework

We first discuss the datasets that we use for this study,
describe the technical frameworkbehind3D-MuPPET, explain
how we extend the framework to two further use cases, and
finally discuss ablation studies and network training.

3.1 Datasets

We describe the indoor dataset (Naik et al., 2023) and the
additional datasets that we use for our two domain shifts
including our novel outdoor pigeon dataset.

3.1.1 3D-POP

For this study, we use the 3D-POP dataset (Naik et al., 2023),
a multi-view multi-individual dataset of freely-moving (i.e.
walking) pigeons filmed by both RGB and motion-capture
cameras. This dataset contains RGB video sequences from 4
views (4K, 3840 × 2160 px) of 1, 2, 5 and 10 pigeons. The
ground truth provided by the dataset for each individual is
a bounding box (on average 215 px wide and 218 px high
in 2D), 9 distinct keypoints in 2D and 3D (beak, nose, left
and right eye, left and right shoulder, top and bottom keel
and tail), and individual identities. For more details on the
curation and features of the dataset, we refer to Naik et al.
(2023).

From this dataset, we adopt a 60/30/10 (training/
validation/test) split based on 3D-POP (Naik et al., 2023),
by sampling a total of 6036 random images as our training
set from the sequences of 1, 2, 5 and 10 pigeons (25% for each
type). We ensure that an equal number of frames were sam-
pled from each sequence to avoid bias. As our validation set,
we sample 3040 frames separately from the training set fol-
lowing the same sampling method. As our test set for posture
estimation, we use 1000 frames, across four test sequences
of different individual numbers (1, 2, 5, 10 pigeons), each
250 frames long. We choose temporal sequences as the test

set to evaluate the complete 3D-MuPPET pipeline (cf. Fig. 2
and Sect. 3.2).

Finally, to perform quantitative evaluation onmulti-object
tracking in 2D and 3D,we use the 5 test sequences containing
10 pigeons provided in 3D-POP (Naik et al., 2023), ranging
between 1 to 1.5min in length.

3.1.2 Additional Datasets

We also extend 3D-MuPPET in two applications of domain
shifts of training a single individual model and tracking out-
doors, which corresponds to two additional datasets. For
discussion of the implementation of the two use cases, we
refer to Sect. 3.3.

Single Pigeon Dataset To test if training a model on 1
pigeon can be used to track multiple pigeons, we sample a
single pigeon training set from 3D-POP, using the same sam-
pling method as the multiple pigeon dataset (cf. Sect. 3.1.1)
but only from single pigeon sequences. The dataset contains
6006 and 3012 images for training and validation respec-
tively. We use the same 1000 frames of test sequences
(cf. Sect. 3.1.1) that contains both single andmulti-individual
data for quantitative evaluation.

Wild-MuPPET To evaluate tracking in the wild, we pro-
vide a novel dataset collected from pigeons foraging in an
outdoor environment. The data is collected from 4 synchro-
nized and calibrated cameras (4K, 30fps) mounted on tripods
in a rectangular formation, similar to 3D-POP (Naik et al.,
2023). We hope to mirror the 3D-POP setup to minimize the
differences between the indoor and outdoor datasets, with
the only difference being the outdoor environment.

The dataset consists of short sequences featuring between
1 to 3 pigeons under natural sunlight conditions. To provide
a quantitative evaluation of pose estimation performance in
the wild, we also sample and manually annotate 500 frames
from a single individual sequence, taken from all 4 views
(2000 frames in 2D). These annotated keypoints are then
triangulated to obtain 3D ground truth data. To the best of
our knowledge, this is the first calibrated multi-view video
dataset of more than one animal that is captured in fully out-
door settings (cf. Joska et al. (2021) for a 3D single Cheetah
dataset).

Finally, for additional network training and fine-tuning
(cf. Sect. 5.2), we further separated the dataset into an
80%/20% train-test split, resulting in 100 3D test frames
for evaluation.

For more details on data collection and calibration pro-
cedure used for the dataset, we refer to the supplementary
information.
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Fig. 2 3D-MuPPET. The framework consists of a pose estimation and
tracking module, into which we can readily slot any state of the art
pose estimator and tracking method. We identify all individuals in all
views (blue part) based on Huang et al. (2020) in the first frame only. In

the subsequent frames we track the identities (IDs) with SORT (Bew-
ley et al., 2016)). 3D-MuPPET predicts 3D poses together with IDs
from multi-view image input using triangulation. For details we refer
to Sect. 3.2

3.2 Pose Estimation and Identity Tracking

This work extends upon I-MuPPET (Waldmann et al.,
2022) and thus the core components of our framework are a
pose estimation module and a tracking module, into which
we can readily slot any state of the art pose estimator or track-
ing method, see Fig. 2. In the pose estimation module we use
three methods for comparison, i.e. a KeypointRCNN (He
et al., 2017), a modified DeepLabCut (DLC, Mathis et al.
(2018)) and amodified ViTPose (Xu et al., 2022).We choose
DLC and ViTPose because they are state of the art frame-
works for animal and human pose estimation respectively.
The choice of theKeypointRCNNallows for the domain shift
from single to multiple individuals, cf. Sect. 5.1. In addition
KeypointRCNN achieves the fastest inference speed formul-
tiple individuals (on average 7.5 fps and 1.76 fps for 2D and
3D poses respectively, cf. Tables 1 and 2 respectively). In
this way we present options for the pose estimator module in
terms of accuracy and speed, allowing researchers to choose
based on their application.

For the modified DLC and ViTPose, we adopt a top-
down approach, by first using YOLOv8 (Jocher et al., 2023)
to detect the individual pigeons in each frame and then
pass the cropped pigeon images into the single individual
DLC (Mathis et al., 2018) and ViTPose (Xu et al., 2022)
pipeline. For details, we refer to Mathis et al. (2018) and Xu
et al. (2022). In the following, we denote these models by
DLC* and ViTPose* (with an asterisk).

The KeypointRCNN is a PyTorch (Paszke et al., 2019)
implementation of aMask R-CNN (He et al., 2017), which is
modified to output nine keypoints for each detected instance
(individual), in addition to a confidence score (confidence of
the model about its prediction), label (background vs. object)
and bounding box. Like DLC (Mathis et al., 2018), this net-

work has a ResNet-50-FPN (He et al., 2016; Lin et al., 2017)
backbone that was pre-trained on ImageNet (Deng et al.,
2009). For details, we refer to He et al. (2017). The input to
the KeypointRCNN are RGB images (cf. Figure2) normal-
ized to mean and standard deviation of 0.5.

3D Posture EstimationWe use the 2D postures of all four
camera views obtained from KeypointRCNN, DLC* and
ViTPose* to acquire 3D keypoint estimates using triangu-
lation with sparse bundle adjustment. Since correspondence
matching errors during triangulation can lead to inflated error
metrics in terms of RMSE which do not reflect the actual
accuracy of the methods, we apply a Kalman filter (Kalman,
1960) to smooth our pose estimates. In the following, we
denote the three 3D-MuPPET posture estimation modules
by 3D-KeypointRCNN, 3D-DLC* and 3D-ViTPose*.

3D Mutli-Animal Identity Tracking For multi-animal
tracking, we first use SORT (Bewley et al., 2016)) to track
the identity of individuals in each of the four camera views in
2D.We chose thismethod sincewe are primarily interested in
online tracking and high inference speed, and SORT (Bewley
et al., 2016)) can run up to 260 fps. We use standard parame-
ters and a maximum age of 10 frames (refer to Bewley et al.
(2016)) for details).

To match each individual across views, we use a dynamic
matching algorithm based on Huang et al. (2020) in the first
frame to assign each SORT ID from each view to a global ID
(cf. blue part in Fig. 2). After the assignment, we maintain
the identities based on SORT tracking in 2D.We choose to do
identity matching in the first frame only to allow the whole
framework to be used in an online manner.

The dynamic matching algorithm first generates 3D pose
estimates for each possible pair of 2D poses, creating a large
3D pose subspace. Within the 3D pose subspace, we match
3D poses that are close together based on the Euclidean dis-
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tance, and assign 2D poses that contribute to the matched 3D
poses as the same individual. We match until the pairwise
distance threshold of 200 mm is reached. Since the algo-
rithm does not know the number of individuals in the scene,
we choose a conservative threshold of 200 mm to ensure
all individuals are matched. Note that the algorithm priori-
tizes matches with lower distance, hence a larger threshold
doesn’t lead to worse performance. For more details we refer
to Huang et al. (2020). After the dynamic matching is com-
pleted, we maintain the global ID in subsequent frames and
triangulate based on the 2D tracklets from SORT. Finally, if
a 2D tracklet in a certain camera view is lost or switched, we
skip the detections of the given camera.

3.3 Further Applications

Here,we discuss howwe adapt our framework for the two use
cases of training a single pigeon model and posture tracking
outdoors.

Single to Multi-Animal Domain Shift Annotating frames
of multiple individuals is often more labour intensive than
labelling frames with a single animal. Here, we explore this
idea by training a model using our single pigeon dataset
(cf. Sect. 3.1.2). For trianing and evaluation, we use the same
framework as for indoor posture tracking from Fig. 2 and
Sect. 3.2. However, in our pose estimation module we use
the KeypointRCNN because the YOLOv8 object detection
model in DLC* and ViTPose* cannot reliably generalize to
multiple pigeons when only trained on images of a single
pigeon.

Pigeons in the Wild Usually, the difference in the back-
ground between different datasets is one of the biggest
hurdles for generalizing a keypoint detection model trained
on an annotated dataset to other data of the same species.
Here, we propose a methodology to eliminate the effect of
the background to estimate postures of pigeons in the wild
without further annotation and fine-tuning. For training, we
make use of the samemulti-animal training set sampled from
3D-POP, cf. Sect. 3.1.1. But as an extra processing step,
we remove the influence of the background by using the
Segment-Anything-Model (SAM, Kirillov et al. (2023)), a
model that allows objects in an image to be segmented based
on a prompt of the object location (ground truth bounding
box). We then train our framework to predict keypoints on
masked images instead of crops from bounding boxes that
contains both the object and background.

For the choice of pose estimator module, we train both
ViTPose* andDLC* on themasked images because they per-
form similarly well on the 3D-POP dataset (cf. Table 2). To
remove confusion from the 3D-POP benchmarking results,
we refer to these 2 models as Wild-VitPose and Wild-DLC.

Finally, we evaluate the models on the 100 test frames of
our novel Wild-MuPPET dataset, cf. Sect. 3.1.2. We first use

a pre-trained MaskRCNN (He et al., 2017) to localize and
segment all objects with the “bird” class in the frame and
then pass them to the pose estimator. We do not use SAM
during inference because it does not provide category labels.
Unlike the evaluation on 3D-POP, we also do not perform
any temporal filtering since the Wild-MuPPET test set only
contains individually sampled frames.

3.4 Network Training and Ablation Studies

Data Augmentation In I-MuPPET (Waldmann et al., 2022),
we performed ablation studies on data augmentation for
pigeons. These ablation studies can be found in our sup-
plemental material. In this work, we use the same data
augmentation parameters to train the KeypointRCNNmodel
(cf. Sect. 3.2). This includes changing the sharpness with a
probability of 0.2, blurring the input imagewith a small prob-
ability of 0.2, randomly jittering the brightness by a factor
chosen uniformly from [0.4, 1.6], a flipping probability of
0.5 and a small scaling range of ±5%.

For DLC* (cf. Sect. 3.2), we use their default augmenta-
tion parameters (Mathis et al., 2018; Jocher et al., 2023) that
also include blurring and jittering.

And finally for ViTPose*, we also use the default aug-
mentation implementation (Xu et al., 2022) for our animal
posture tracking.

Training Hyperparameters To find out the best network
configuration for KeypointRCNN (cf. Sect. 3.2) we perform
several experiments (see supplemental material). From this
analysis we find that using a learning rate of 0.005 and reduc-
ing it by γ = 0.5 every given step size to reach afinal learning
rate of 0.0003 at the end of training works best.

For DLC* (cf. Sect. 3.2), we use a custom learning rate
schedule from 0.0001 to 0.00001 over 30000 iterations for
DLC, and default hyperparamters for all others (Mathis et
al., 2018; Jocher et al., 2023).

ForViTPose*, we use default hyperparamters and training
configuration (Xu et al., 2022), with a custom learning rate
of 0.00005.

Training Procedure For all trained neural networks, we
monitor the validation loss when training, with the final
weights chosen based on the epoch with the lowest valida-
tion loss overall to ensure the best performance and least
over-fitting. For DeepLabCut, we instead use RMSE accu-
racy provided by the package (Mathis et al., 2018), and for
ViTPose, we use the highest mean average precision (mAP)
score.

This procedure can lead to a different number of train-
ing epochs in each experiment. Nevertheless experiments are
comparable in the sense that eachmodel is trained to perform
best without over-fitting to the training data.
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4 Evaluation

We evaluate each module of 3D-MuPPET on test sequences
of the 3D-POP dataset. We separate our evaluation into three
parts, to provide an idea of how each component of the
framework performs. First, we evaluate keypoint estimation
accuracy in Sect. 4.2. Second, we evaluate identity tracking
accuracy and third, we evaluate inference speed. The latter
two evaluations are both in Sect. 4.3. We first briefly discuss
the evaluation metrics we use in Sect. 4.1, then report quan-
titative results on each of the components above. Finally, we
also show qualitative results on all tasks.

Since the current framework extends the work of I-
MuPPET (Waldmann et al., 2022), which relies on triangu-
lating 2D posture estimates into 3D, in Sect. 4.2 we evaluate
both 2D performance and 3D performance for all tasks to
provide insights into how errors propagate.

4.1 Metrics

Pose Estimation Two widely used metrics, also in human
pose estimation, are the Root Mean Square Error (RMSE),
in human pose estimation better known as Mean Per Joint
Position Error (MPJPE, cf. e.g. (Iskakov et al., 2019)), and
the Percentage of Correct Keypoints (PCK, cf. e.g. Yang and
Ramanan (2013)). DeepLabCut (Mathis et al., 2018) uses
the former, 3D Bird Reconstruction (Badger et al., 2020) the
latter to evaluate their animal pose estimation, hence we use
both here.

RMSE is calculated by taking the root mean squared of
the Euclidean distance between each predicted point and the
ground truth point, while PCK is the percentage of predicted
keypoints that fall within a given threshold (Badger et al.,
2020). We compute PCK05 and PCK10, where the threshold
is a fraction (0.05 and 0.1) of the largest dimension of the
ground truth bounding box for 2D and themaximumdistance
between any two ground truth keypoints in 3D. Compared to
RMSE, the PCK takes into account the size and scale of
the tracked animal, providing a more meaningful estimate of
keypoint accuracy compared to the RMSE.

Tracking There are three sets of tracking performance
measures that are widely used in the literature (Dendorfer et
al., 2021): theCLEAR-MOTmetrics introduced inBernardin
and Stiefelhagen (2008), the metrics introduced in Li et al.
(2009) tomeasure track quality, and the trajectory-basedmet-
rics proposed in Ristani et al. (2016). Here, we also report the
novel Higher Order Tracking Accuracy (HOTA), introduced
in Luiten et al. (2021) because the other metrics overempha-
size the importance of either detection or association. HOTA
measures how well the trajectories of matching detections
align, and averages this over all matching detections, while
also penalising detections that do not match (Luiten et al.,
2021).

For further details on the tracking metrics we refer
to Dendorfer et al. (2021), Luiten et al. (2021). A detailed
description of each reported metric is also available in the
supplementary material. For the evaluation, we use code pro-
vided by Luiten and Hoffhues (2020), Dendorfer (2020).

Inference Speed We also benchmark the inference speed
of our framework in 2D and 3D with all 1000 frames in the
test set from 3D-POP (Naik et al., 2023), cf. Sect. 3.1.1. For
this evaluation, we use a workstation with a 16GB Nvidia
Geforce RTX 3070 GPU, 11th Gen Intel(R) Core(TM) i9-
11900H @ 2.50GHz CPU, and Sandisk 2TB SSD.

Since each pose estimation module of 3D-MuPPET
(cf. Fig. 2) has different data and model loading proce-
dures, we include all processes (data loading, model loading,
inference, data saving) to get a realistic comparison of the
processing time. We loop three times over each inference
script and report the average speed in frames per second (fps).
We consider the framework as interactive if the inference
speed is ≥ 1 fps.

4.2 Pose Estimation

We report quantitative and qualitative results of 2D and
3D poses on the indoor pigeon data (cf. Sect. 3.1.1)
and compare 3D-MuPPET to a 3D baseline based on 3D
CNNs (Iskakov et al., 2019). Furthermore, to illustrate the
applicability to other species, we also compare the Key-
pointRCNN (cf. Sect. 3.2) to DLC (Mathis et al., 2018)
on their 2D odor trail tracking data and to 3D Bird Recon-
struction (Badger et al., 2020) on their 2D cowbird keypoint
dataset, both available in the supplementary materials.

3DBaselineFor a 3D comparison, we train the “Learnable
Triangulation of Human Pose” framework (LToHP, Iskakov
et al. (2019)), on the same trainingdataset specified inSect. 3.1.1.
We perform this comparison because the framework is state
of the art for human 3D posture estimation, and uses a
3D CNN architecture, which is shown to be more accu-
rate than simple triangulation (Iskakov et al., 2019). With
this comparison we can evaluate how well the triangulation
based 3D-MuPPET performs, since models like LToHP rely
on 3D ground truth datasets, which are rare in animal posture
tracking.

The framework predicts a 2D heatmap from each view
that is projected into a 3D voxel grid, then learns to predict
3D keypoints using a 3D CNN architecture. Since the model
requires a 3D root point as input, we train both an algebraic
and volumetric triangulation model by providing cropped
images of pigeon individuals based on ground truth bounding
boxes. During inference, we follow the same workflow as
in Iskakov et al. (2019) by first obtaining a root point estimate
(top keel) using the algebraic model, then run the volumetric
model to obtain 3D keypoint estimates. We refer to Iskakov
et al. (2019) for more details.
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Table 1 Quantitative evaluation of 2D pigeon poses

Metric/Method KP-RCNN DLC* ViTPose*

RMSE (px) ↓ 28.1 39.0 38.9

Median (px) ↓ 5.7 4.7 4.4

PCK05 (%) ↑ 82.4 89.1 91.1

PCK10 (%) ↑ 95.4 96.8 96.8

Mean Speed (fps) ↑ 7.5 3.0 2.1

We report the RMSE and its median (px), PCK05 (%) and PCK10
(%) for estimated 2D poses on the 3D-POP test sequences. Com-
parison between KeypointRCNN (KP-RCNN, cf. Sect. 3.2), modified
DeepLabCut (DLC*) and modified ViTPose (ViTPose*). *: We com-
bine YOLOv8 (Jocher et al., 2023) for instance detection with single-
object DLC (Mathis et al., 2018) and ViTPose (Xu et al., 2022).We also
report the mean 2D inference speed for the complete pipelines in fps.
For details on the inference speed we refer to Sect. 4.3. Upwards and
downwards arrows represent whether a higher or lower value is better,
respectively. Best results per row in bold

Fig. 3 Qualitative 3D results. Example frame from 3D-POP,
cf. Sect. 3.1.1. 2D (left side) and 3D (right side) pose estimates using 3D-
MuPPET

For model training, we train the algebraic model for 292
epochs and the volumetric model for 782 epochs with default
augmentation parameters, both models having lowest valida-
tion loss.

Finally, note that since LToHP is a single subject frame-
work, we make use of ground truth bounding boxes to crop
the image inputs during training and inference, with the goal
of providing a baseline for 3D posture estimation accuracy,
but not as a complete pipeline. Implementing a complete
pipeline for multi-animal 3D CNN based posture estimation
is outside the scope of this study, and can be a further applica-
tion of 3D-MuPPET,where it can replace the algebraicmodel
together with the ground truth bounding boxes by providing
root point estimate, bounding boxes and identities to the vol-
umetric model of LToHP.

Results We train the different posture estimation mod-
ules of 3D-MuPPET on multi-pigeon data from Naik et al.
(2023), cf. Sect. 3.1.1, and choose the best weights with
the lowest validation loss. We train the KeypointRCNN
(cf. Sect. 3.2) for 44 epochs. In the case of DLC* and ViT-
Pose* (cf. Sect. 3.2), we train YOLOv8 (Jocher et al., 2023)
for 27 epochs, ViTPose (Xu et al., 2022) for 175 epochs and
DLC (Mathis et al., 2018) for 86000 iterations.

Quantitative results for 2D pose estimation are in Table 1.
We find that ViTPose* performs best across most metrics
like median error (4.4 px) and PCK (PCK05 91.1%, PCK10
96.8%). When a more generous threshold is considered
in PCK10, both DLC* and ViTPose* are equally accurate
(PCK1096.8%).KP-RCNNhas the lowestRMSE, likely due
to reduced outliers since the RMSE metric is quite sensitive
to large outliers which is also reflected in a relatively small
median error compared toRMSE(RMSE28.1px,median5.7
px). This difference is likely due to bounding box detection
errors in the YOLOv8 model within DLC* and ViTPose*.

For 3D, when comparing between models in the posture
estimation module of 3D-MuPPET, 3D-ViTPose* performs
the best across all evaluation metrics with a RMSE of 24.0
mm, its median of 7.0 mm, PCK05 of 71.0% and PCK10
of 92.5%, cf. Table 2. This is not surprising since ViTPose*
already performs the best in 2D, cf. Table 1, and shows that
2D accuracy propagates into 3D.

We conclude that in applications where high accuracy is
needed, researchers should prefer 3D-ViTPose* for the pose
estimation module of 3D-MuPPET.

Comparing 3D-MuPPET with the 3D baseline in LToHP
(Iskakov et al., 2019), we find that LToHP has the best per-
formance across all metrics with a RMSE of 14.8 mm, its
median of 5.8 mm, PCK05 of 76.7% and PCK10 of 94.3%,
cf. Table 2. One of the reasons is that the bounding boxes of
the subjects are provided from the ground truth for LToHP,
removing the reliance on 2D and 3D multi-animal identity
tracking. In addition, the model can also learn the general 3D
structure of a pigeon instead of relying on 2D detection and
triangulation.

Nevertheless, we show that 3D-MuPPET produces com-
parable estimates compared to LToHP (cf. Figs. 3 and 4),
given a median difference of only 1.2 mm between the
best model in 3D-MuPPET (3D-ViTPose*) and LToHP,
cf. Table 2. This difference in error is very small in the context
of keypoints on a pigeon, and will likely not affect any down-
stream behavioural experiments. For example, the diameter
of the eye of a pigeon is on average around 10 − 13 mm
(Chard & Gundlach, 1938), which is much larger than the
difference between the model estimates.

4.3 Tracking Performance

Figures 4 and 5 show results of the 3D pose estimation and
tracking task for multiple pigeons. Further qualitative results
can be found in our supplementary video at https://youtu.be/
GZZ_u53UpfQ.

Quantitative Tracking EvaluationWe test our framework
quantitatively in 2Dand 3Donfive video sequences from3D-
POP, cf. Sect. 3.1.1. Each sequence contains ten pigeons (50
objects in total, 200 in 2D) and 10053 frames (40212 frames
in 2D). Since the sequences contain small gaps due to missed
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Table 2 Quantitative evaluation of 3D pigeon poses

Metric/Method 3D-KP-RCNN 3D-DLC* 3D-ViTPose* LToHP (Iskakov et al., 2019)

RMSE (mm) ↓ 25.0 25.0 24.0 14.8

Median (mm) ↓ 9.4 7.5 7.0 5.8

PCK05 (%) ↑ 53.2 66.1 71.0 76.7

PCK10 (%) ↑ 85.4 90.9 92.5 94.3

Mean Speed (fps) ↑ 1.76 0.72 0.51 0.38

We report the filtered (cf. Sect. 3.2) RMSE and its median (mm), PCK05 (%) and PCK10 (%) for the 3D poses on the 3D-POP test sequences.
Comparison between LToHP (Iskakov et al., 2019) and 3D-MuPPET (highlighted in gray). *: We combine YOLOv8 (Jocher et al., 2023) for
instance detection with single-object DLC (Mathis et al., 2018) and ViTPose (Xu et al., 2022). We also report the mean 3D inference speed for the
complete pipeline in fps. For details on the inference speed we refer to Sect. 4.3. Upwards and downwards arrows represent whether a higher or
lower value is better, respectively. Best results per row in bold. See text for a discussion of the results

Fig. 4 Qualitative results. Example frames from 3D-POP (Naik et al., 2023) for multi-pigeon pose estimation and tracking in 3D, reprojected to
2D view. Green lines connect the body, red lines the head keypoints. Some frames are cropped for a better view

detections in motion capture (see Naik et al. (2023) for more
details), we use linear interpolation to fill all gaps before
evaluation. For evaluationwe useViTPose* (cf. Sect. 3.2; the
most accuratemodel fromSect. 4.2) and themetrics specified
in Sect. 4.1. Note that for sequence 59, we remove the first
3 s (90 frames) since 2 pigeons are initially outside the track-
ing volume which causes the first frame identity matching
(see Sect. 3.2) to fail.

Detailed 2D results for a detection confidence thresh-
old of 0.5 are shown in Table 3. Overall, we achieve good
resultswith our frameworkon the2Dvideo sequences includ-
ing a HOTA of 86%, 98% multi-object tracking accuracy
(MOTA), 90% multi-object tracking precision (MOTP), a
recall of 98%, 99% precision, 99% mostly tracked (MT),
and 0% mostly lost (ML) trajectories, 0.08 false positives
per frame (FPF), and a IDF1 of 94% (metrics specified
in Sect. 4.1 and our supplemental material).

In Table 4 we report detailed 3D tracking results of the
bottom keel joint for the five sequences where we set the
maximum allowed distance between detections and ground
truth positions in Dendorfer (2020) to 30 mm. We choose 30
mm as this threshold is well within the body size of a pigeon,
while taking into account the possible distance an individual
can move within one frame. Overall, we achieve good 3D
results with 3D-MuPPET including 85% multi-object track-
ing accuracy (MOTA), 90% mostly tracked (MT), and 0%
mostly lost (ML) trajectories (metrics specified in Sect. 4.1
and our supplemental material).

Inference Speed Finally, we benchmark the inference
speed of the pipeline, and we show that 3D-MuPPET can
estimate 2D and 3D postures at interactive speeds (defined
by ≥ 1 fps). Tables 5 and 7 provide detailed inference speed
estimates for different numbers of individuals for 2D and
3D respectively, and we see that inference speed decreases

123



International Journal of Computer Vision

Table 3 Quantitative tracking evaluation in 2D

Test seq HOTA↑ MOTA↑ MOTP↑ Rcll↑ Prcn↑ MT↑ ML↓ FPF↓ IDS↓ Frag↓ IDF1↑
11, view 1 0.82 0.92 0.90 0.96 0.96 0.90 0 0.39 2 14 0.92

11, view 2 0.84 0.92 0.88 0.96 0.96 0.90 0 0.41 0 7 0.96

11, view 3 0.84 0.92 0.89 0.96 0.96 0.90 0 0.41 0 11 0.96

11, view 4 0.85 0.94 0.90 0.97 0.97 1 0 0.26 3 29 0.95

19, view 1 0.90 0.99 0.92 0.99 1 1 0 0 2 13 0.97

19, view 2 0.93 1 0.92 1 1 1 0 0 0 1 1

19, view 3 0.92 1 0.91 1 1 1 0 0 0 4 1

19, view 4 0.89 0.99 0.92 0.99 1 1 0 0 4 11 0.94

30, view 1 0.83 0.96 0.92 0.97 1 1 0 0.03 9 25 0.88

30, view 2 0.90 0.99 0.93 0.99 1 1 0 0.03 8 15 0.96

30, view 3 0.89 0.99 0.89 0.99 1 1 0 0.03 2 7 0.99

30, view 4 0.87 0.99 0.91 0.99 1 1 0 0.02 6 13 0.95

48, view 1 0.87 1 0.89 1 1 1 0 0 1 14 0.96

48, view 2 0.90 1 0.90 1 1 1 0 0.02 0 6 1

48, view 3 0.91 1 0.91 1 1 1 0 0 0 4 1

48, view 4 0.91 1 0.90 1 1 1 0 0 0 3 1

59, view 1 0.77 0.98 0.89 0.98 1 1 0 0.02 8 33 0.82

59, view 2 0.80 0.97 0.90 0.97 1 1 0 0.02 12 40 0.84

59, view 3 0.79 0.98 0.89 0.98 1 1 0 0.02 8 28 0.87

59, view 4 0.80 0.97 0.89 0.97 1 1 0 0.02 8 40 0.89

Combined 0.86 0.98 0.90 0.98 0.99 0.99 0 0.08 73 318 0.94

We test 20 video sequences quantitatively with the metrics specified in Sect. 4.1 and our supplementary materials. Upwards and downwards arrows
represent whether a higher or lower value is better, respectively. The threshold for the confidence score of ViTPose* (cf. Sect. 3.2) is set to 0.5

Table 4 Quantitative tracking evaluation in 3D

Seq MOTA↑ MT↑ ML↓ IDS↓ Frag↓
11 0.92 1 0 0 173

19 0.89 0.90 0 0 214

30 0.92 1 0 0 225

48 0.93 1 0 0 245

59 0.57 0.60 0 8 334

Combined 0.85 0.90 0 8 1191

We test five sequences quantitatively with the metrics specified
in Sect. 4.1. For detailed explanations on abbreviations and metrics,
please refer to our supplemental material. Upwards and downwards
arrows represent whether a higher or lower value is better, respectively.
See text for a discussion of the results

Table 5 2D inference speed

Method/Num. of Ind 1 2 5 10

KP-RCNN 7.50 8.07 8.02 6.22

DLC* 3.85 3.42 2.75 2.03

ViTPose* 3.22 2.61 1.57 0.99

Benchmark for the complete pipelines (including data loading, model
loading, inference, data saving). We report the inference speed (fps) for
the 2D models, cf. Sect. 3.2. Best results per column in bold. See text
for a discussion of the results

Table 6 2D inference speed

Batch size Frame rate [fps]

1 pigeon 2 pigeons 5 pigeons 10 pigeons

1 8.24 8.13 8.03 6.77

2 8.70 8.54 8.27 6.91

4 8.90 8.81 8.43 7.09

8 9.10 8.96 8.61 7.17

16 9.45 9.29 8.88 7.29

Benchmark for our in-memory pipeline using the KeypointRCNN,
cf. Sect. 3.2. We benchmark our pipeline with our video sequences
preloaded in memory and report values for different batch sizes
Best results per column in bold

Table 7 3D inference speed

Method/Num. of Ind 1 2 5 10

3D-KP-RCNN 1.89 1.84 1.73 1.59

3D-DLC* 0.93 0.84 0.65 0.47

3D-ViTPose* 0.79 0.64 0.38 0.24

LToHP (cf. Sect. 4.2) 0.83 0.44 0.17 0.08

Benchmark for the complete pipelines (including data loading, model
loading, inference, data saving). We report the inference speed (fps)
for the 3D models. Best results per column in bold italic, 3D-MuPPET
versions highlighted in italic. See text for a discussion of the results
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with increasing number of individuals across all models (at
most by 2.23 fps for ViTPose* in 2D, cf. Table 5, and 0.75
fps for LToHP in 3D, cf. Table 7). Overall, we see that the
mean inference speed is the fastest for the KeypointRCNN,
reaching 7.5 fps in 2D and 1.76 fps in 3D, cf. Tables 1 and 2
respectively.

To push the inference speed of the KeypointRCNN even
further, we also benchmark the scenario where we pre-load
the video sequence in memory and are thus independent of
disk I/O, with otherwise the same procedure, see Table 6 for
results. We report values for batch sizes up to 16, restricted
by the hardware that we use, cf. Sect. 4.1. The maximum
speed is at a batch size of 16 with an interactive speed of
about 7− 9 fps depending on the number of pigeons present
in the video sequence.

We conclude that researchers prioritizing inference speed
for multi-animal posture estimation and tracking may con-
sider the KeypointRCNN for the pose estimation module
in 3D-MuPPET.

The speed evaluation shows that our pipeline can poten-
tially be applied to closed-loop experiments (see Naik
(2021)), based on the requirements of the researcher. For
example, if an experiment requires general position and ori-
entation of pigeons in closed-loop, inference speeds of 1.76
fps (cf. Table 2; can be pushed even further by preloading
the data in memory and processing batches, cf. Table 6)
might be sufficient. However, we do note that the current
inference speed estimates do not include video acquisition
time, so researchers considering such applications will need
to develop a multi-view video acquisition framework inde-
pendently.

There is another framework that also performs 2D key-
point predictionof complexposes and tracking: SLEAP(Pereira
et al., 2022). Their inference speed benchmark procedure and
hardware are comparable to 3D-MuPPET, cf. Sect. 4.1. A
rough comparison yields that SLEAP (Pereira et al., 2022) is
about an order of magnitude faster than the KeypointRCNN
(SLEAP up to ∼ 800 fps; numbers read off from Pereira et
al. (2022), Figs. 2b, 3e and Extended Data Fig. 6c). Consid-
ering the fact that the image resolution provided in 3D-POP
is higher than the one of the flies and mice (3840 × 2160 px
vs. 1280× 1024 px) and thus we process more data through
the whole pipeline. While our framework solves the substan-
tially harder taskof a ‘generalist’ approachof training a single
model that works on all datasets, SLEAP uses a ‘specialist’
paradigm where small, lightweight models have just enough
representational capacity to generalize to the low variability
typically found in scientific data (Pereira et al., 2022). The
approach of our framework comes with an additional cost
of computing resource requirements. However, we hope to
offer a framework that works with both low and high vari-
ability data at the same time. Depending on the application,
one can easily change the pose estimator of our framework

Table 8 Quantitative results for our single to multi-aninal domain shift

Metric/Num. of Ind 1 2 5 10

2D

RMSE (px) ↓ 8.6 20.1 57.2 272.5

Median (px) ↓ 4.3 6.0 7.7 17.9

PCK05 (%) ↑ 90.5 76.9 66.7 42.9

PCK10 (%) ↑ 98.7 93.4 83.6 53.9

3D

RMSE (mm) ↓ 11.1 26.9 93.2 434.3

Median (mm) ↓ 6.9 6.0 15.4 246.7

PCK05 (%) ↑ 70.4 54.1 30.2 11.4

PCK10 (%) ↑ 94.9 82.4 60.3 19.7

We report RMSE and its median (px and mm in 2D and 3D respec-
tively), PCK05 (%) and PCK10 (%) for estimated 2D and 3D posture
from the 3D-POP dataset using the KeypointRCNN trained with sin-
gle pigeon data. Upwards and downwards arrows represent whether
a higher or lower value is better, respectively. We report results for
sequences containing different number of individuals (1, 2, 5, and 10),
cf. Sect. 3.1.2

(cf. Sect. 3.2 and Fig. 2) to achieve frame rates comparable
to SLEAP.

5 Applications

We showcase the flexibility of 3D-MuPPET by presenting
two domain shifts. First we show that 3D-MuPPET can be
trained on annotated data that contains only single individu-
als and applied to multi-animal data which can reduce the
annotation effort needed for new species or experimental
setups (also see our supplemental material for 2D single
mouse and cowbird pose estimation). Secondly, we show
that 3D-MuPPET is robust to an indoor to outdoor environ-
ment domain shift by applying a model trained on indoor
data to data from outdoors without further fine-tuning.

5.1 Single to Multi-animal Domain Shift

We train the KeypointRCNN (cf. Sect. 3.3) for 30 epochs
on the single-pigeon dataset specified in Sect. 3.1.2. Results
can be found in Table 8, showing difference in error across
different number of individuals.

Overall, the single pigeon model performs well in 2D, but
not as well in 3D, with the model not being able to generalize
for 3D tracking of 10 pigeons. For sequences with 1 and
2 individuals, the performance is similar to using a multi-
animal dataset for both 2D and 3D (cf. Tables 1, 2 and 8).
For example, when comparing results of 2 individuals using
the single pigeon model (Table 8) with the KeypointRCNN
trained with multi-pigeon data (averaged over 1, 2, 5, 10
individuals, Table 2), we achieve a RMSE for the single-
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Fig. 5 Qualitative results of pigeons in the wild. Example frames for 3D multi-pigeon pose estimation and tracking in the wild, reprojected to 2D
view. Notably, we did not fine-tune 3D-MuPPET (here with Wild-DLC) on our novel Wild-MuPPET data recorded in the wild, cf. Sect. 3.3

pigeon model of 26.9 mm vs. multi-pigeon of 25.0 mm with
a median for single-pigeon of 6.0 mm vs. multi-pigeon of
9.4 mm.

For sequences with 5 and 10 individuals, performance dif-
fers. In 2D, we observe outliers as evident from the large
RMSE values (5 individuals: 57.2 px, 10 individuals: 272.5
px), but from the median and PCK values from the multi-
pigeon model (median of 5.7 px, PCK10 of 95.4%), the
single-pigeon model show comparable accuracy for 5 indi-
viduals (median of 7.7 px, PCK10 of 83.6%), and good
accuracy for 10 individuals (median of 17.9 px, PCK10 of
53.9%).

For 3D posture estimation, we expect accuracy to propa-
gate from 2D estimation errors, as shown in the multi-animal
model evaluation (cf. Tables 1 and 2), but we show that while
3D error is still low at 15.4 mm (median error) for 5 indi-
viduals, the model fails to generalize in 3D for 10 pigeons
(median of 246.7 mm).

We think there are two main reasons that the model fails
to generalize to 10 pigeons. Firstly, the detection of the bird
individuals is less robust with the single pigeonmodel, where
10 pigeons are not always detected from all frames, and can
affect the first frame identity matching and subsequent 2D
tracking in the 3D-MuPPET pipeline. So, an incorrect 2D
tracklet in one view can already increase the 3D error while
additional ID switches in further camera views further dete-
riorate the 3D accuracy. This is reflected in Table 8 where
the median error is ∼ 16× higher for 10 compared to 5 indi-
viduals in 3D while it is “only” ∼ 2× higher in 2D; the 2D

errors from different views potentiate in 3D. Another reason
is occlusions, where the model struggles to predict keypoints
when the objects are too occluded, which is often the case in
the 10 pigeon sequences. This shortcoming is also expected
since the model was only trained on single pigeon data.

Nevertheless, we highlight that training a model with only
single pigeon data can allow 2D and 3D posture estimation of
up to 5 pigeons, which can simplify the domain shift to new
species or systems, because annotating single animal data is
less labour intensive than multi-animal annotations.

While less reliable in 3D, we show that the single-pigeon
can predict keypoints in 2D reliably, so if researchers wish to
annotate multi-individual data, the single-individual model
can also be used as a pre-labelling tool. This can further
reduce annotation time by first predicting keypoints from the
2D frame and manually correcting faulty detections, similar
to methodologies provided in Pereira et al. (2022), Mathis et
al. (2018), Graving et al. (2019).

5.2 Pigeons in theWild

We train the Wild-ViTPose model for 124 epochs and Wild-
DLC for 93000 iterations.

In Table 9 we report quantitative results on the test set of
our novel Wild-MuPPET dataset. We first show that Wild-
ViTPose (ViTPose* is the most accurate model in Sect. 4.2)
does not generalize well for pigeons in the wild, compared to
Wild-DLC, likely due to differences in augmentation param-
eters (median error of 146.0 mm and 15.0 mm respectively).
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Table 9 Quantitative evaluation
of 3D pigeon poses in our novel
Wild-MuPPET dataset

Metric/Method Wild-ViTPose Wild-DLC DLC-Fine-tuned DLC-Scratch

RMSE (mm) ↓ 166.0 53.4 58.2 45.0

Median (mm) ↓ 146.0 15.0 11.4 12.7

PCK05 (%) ↑ 0 25.1 44.7 40.1

PCK10 (%) ↑ 0.2 74.4 81.3 77.4

We report RMSE and its median (mm), PCK05 (%) and PCK10 (%) for the 3D poses of pigeons in the wild,
on the 100 test frames in the Wild-MuPPET dataset cf. Sect. 3.1.2. Wild-ViTPose and Wild-DLC are models
trained on masked images from 3D-POP using ViTPose (Xu et al., 2022) and DLC (Mathis et al., 2018)
respectively, without additional annotations from the wild. DLC-Fine-tuned and DLC-Scratch are trained on
sampled images from Wild-MuPPET training set (cf. Sect. 3.1.2), with DLC-Fine-tuned using Wild-DLC as
initial weights. See text for a discussion of the results
Best results per row in bold

However, for Wild-DLC, we show that the model performs
well onWild-MuPPET, with a median accuracy of 15.0 mm,
only with training data of pigeons indoors, cf. Sect. 3.1.2.
Additionally, we also use Wild-DLC for inference in a 3
pigeon sequence in the wild, which reflects our promising
quantitative results, cf. Fig. 5 and supplementary video.

To further explore how amodel trained on pigeons indoors
can aid the domain shift to the wild, we also fine-tune
the Wild-DLC model (named DLC-Fine-tuned) using sam-
pled 2D frames from the training set of Wild-MuPPET
(see cf. Sect. 3.1.2). To compare whether initializing model
weights using data of pigeons indoors can lead to better
accuracy in the wild, we also trained a DLC model from
scratch, without fine-tuning (namedDLC-Scratch), using the
same outdoor image dataset, cf. Sect. 3.1.2. Fine-tuning takes
61000 iterations, and training from scratch takes 99000 iter-
ations to reach lowest validation loss.

We show that both fine-tuning and training from scratch
improves the performance of Wild-DLC (cf. Table 9), and
both methods yield comparable accuracy. However, the fine-
tuned model performs slightly better than the model trained
from scratch (median of 11.4 mm vs. 12.7 mm respectively).
Finally, we note that while keypoint estimation accuracy in
the latter two cases is comparable, fine-tuning requires less
iterations for the model to converge, allowing reduced train-
ing time for domain shifts across datasets.

All together, our two applications show that 3D-MuPPET
isflexible and robust, promising to openupnewways for biol-
ogists to study animal collective behaviour in a fine-scaled
way with multi-animal 3D posture tracking.

6 Limitations and FutureWork

Keypoint detection can fail e.g. due to self-occlusions or
occlusions from other individuals (cf. Fig. 6), which can
affect the triangulation procedure. This may have caused
outliers present in 2D and 3D keypoint evaluation, as indi-
cated by the high RMSE values in contrast to their median

Fig. 6 Limitations. Cropped frames of failure cases from 3D-
POP (Naik et al., 2023) data for 2D pose estimation using the
KeypointRCNN (cf. Sect. 3.2), due to occlusions. Blue denotes the
ground truth, red denotes the prediction

errors. While we use a Kalman filter to smooth 3D pos-
ture estimates, the method can fail when there are multiple
consecutive frames of error. Other filtering and smoothing
methods that consider temporal consistency in an offline
fashion can alleviate this problem if online processing is not
required (e.g. Lauer et al. (2022), Joska et al. (2021)).

For pigeons in the wild, we limit the pigeon segmenta-
tion to Kirillov et al. (2023) and He et al. (2017) and the
tracking to Bewley et al. (2016)), other methods available
like Bekuzarov et al. (2023) and Yang et al. (2023) for seg-
mentation and Karaev et al. (2023) for tracking might boost
the performance. Using another tracker might also boost our
single to multi-animal domain shift when dealing with 10
individuals.

Finally, our current tracking approach relies on all sub-
jects being present in the first frame for first frame re-
identification, as well as all subjects staying in frame for
the whole sequence. Future work can improve upon the
tracking algorithm e.g. by using visual features for re-
identification (Wojke & Bewley, 2018; Ferreira et al., 2020;
Waldmann et al., 2023).

7 Conclusion

In this work we present 3D-MuPPET, a framework to esti-
mate 3D poses of multiple pigeons from a multi-view setup.
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We show that our framework allows complex poses and tra-
jectories of multiple pigeons to be tracked reliably in 2D and
3D (cf. Tables 1 and 2) at interactive speeds with up to 9.45
fps in 2D and 1.89 fps in 3D. While our results are compara-
ble to a state of the art 3D pose estimator in terms of median
error and Percentage of Correct Keypoints, cf. Table 2, 3D-
MuPPET achieves a faster inference speed, cf. Tables 5 and
7, and only relies on training a 2D posture estimation model.
Additionally, we perform the first quantitative tracking eval-
uation on 3D-POP and obtain good results, cf. Tables 3 and
4.

In applications where a higher accuracy is needed,
researchers should prefer 3D-ViTPose* for the pose estima-
tion module of 3D-MuPPET, cf. Fig. 2. Researchers that pri-
oritize inference speed for multi-animal posture estimation
and tracking or are interested in the single to multi-animal
domain shift may consider the KeypointRCNN for the pose
estimation module in 3D-MuPPET.

Finally, we demonstrate that training a pose estimation
module on single pigeon training data yields comparable
results compared to a model trained on multi-pigeon data
for up to 5 pigeons (cf. Sect. 5.1), as well as showing that
a model trained with indoor data can be generalized to data
in the wild, cf. Sect. 5.2. This highlights the potential of a
domain shift to new species and environments without the
need for laborious manual annotation.

3D-MuPPET is the first 3D pose estimation framework for
more than four animals that also works with data recorded
in the wild, cf. Sect. 3.2. While previous work (Bala et al.,
2020; Han et al., 2023; An et al., 2023) has demonstrated 3D
pose estimation for up to four animals, 3D-MuPPET shows
that it is possible to track the 3D poses of up to 10 pigeons
if a 2D posture estimation model and a multi-camera setup
is available. Our work offers a promising and flexible frame-
work opening up new ways for biologists to study animal
collective behaviour and we hope that this leads to further
systematic progress in the field.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-024-02074-
y.
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