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Abstract
Video sequences exhibit significant nuisance variations (undesired effects) of speed of actions, temporal locations, and
subjects’ poses, leading to temporal-viewpoint misalignment when comparing two sets of frames or evaluating the similarity
of two sequences. Thus, we propose Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE) for sequence pairs. In
particular, we focus on 3D skeleton sequences whose camera and subjects’ poses can be easily manipulated in 3D. We
evaluate JEANIE on skeletal Few-shot Action Recognition (FSAR), where matching well temporal blocks (temporal chunks
that make up a sequence) of support-query sequence pairs (by factoring out nuisance variations) is essential due to limited
samples of novel classes. Given a query sequence, we create its several views by simulating several camera locations. For
a support sequence, we match it with view-simulated query sequences, as in the popular Dynamic Time Warping (DTW).
Specifically, each support temporal block can be matched to the query temporal block with the same or adjacent (next)
temporal index, and adjacent camera views to achieve joint local temporal-viewpoint warping. JEANIE selects the smallest
distance among matching paths with different temporal-viewpoint warping patterns, an advantage over DTW which only
performs temporal alignment. We also propose an unsupervised FSAR akin to clustering of sequences with JEANIE as a
distance measure. JEANIE achieves state-of-the-art results on NTU-60, NTU-120, Kinetics-skeleton and UWA3DMultiview
Activity II on supervised and unsupervised FSAR, and their meta-learning inspired fusion.

Keywords Dynamic time warping · Few-shot action recognition · Unsupervised · Supervised · Fusion · MAML · Sparse
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1 Introduction

Action recognition is a key topic in computer vision, with
applications in video surveillance (Wang, 2017; Wang et al.,
2019b, 2024b), human-computer interaction, sport analysis
and robotics. Many pipelines (Tran et al., 2015; Feicht-
enhofer et al., 2016, 2017; Carreira & Zisserman, 2017;
Koniusz et al., 2013; Lin et al., 2018; Wang et al., 2020b;
Koniusz et al., 2022; Wang & Koniusz, 2024; Wang et al.,
2021; Wang, 2023; Rahman et al., 2023; Zhang et al., 2024;
Wang et al., 2024b; Li et al., 2023a) perform (action) classifi-
cation given a large amount of labeled trainingdata.However,
manually labeling videos for 3D skeleton sequences is labo-
rious, and such pipelines need to be retrained or finetuned
for new class concepts. Popular action recognition networks
such as the two-stream neural network (Feichtenhofer et al.,
2016, 2017;Wang et al., 2017) and 3DConvolutional Neural
Network (3DCNN) (Tran et al., 2015; Carreira&Zisserman,
2017) aggregate frame-wise and temporal block representa-
tions, respectively. However, such networks are trained on
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large-scale datasets such as Kinetics (Carreira & Zisserman,
2017; Wang et al., 2019c; Wang & Koniusz, 2021; Wang et
al., 2024a) under a fixed set of training classes.

Thus, there exists a growing interest in devising effec-
tive Few-shot Learning (FSL) models for action recognition,
termed Few-shot Action Recognition (FSAR), that rapidly
adapt to novel classes given few training samples (Mishra et
al., 2018; Xu et al., 2018; Guo et al., 2018; Dwivedi et al.,
2019; Zhang et al., 2020b; Cao et al., 2020;Wang&Koniusz,
2022b). FSARmodels are scarce due to the volumetric nature
of videos and large intra-class variations.

In contrast, FSL for image recognition has been widely
studied (Miller et al., 2000; Li et al., 2002; Fink, 2005; Bart&
Ullman, 2005; Fei-Fei et al., 2006; Lake et al., 2011) includ-
ing contemporary CNN-based FSL methods (Koch et al.,
2015; Vinyals et al., 2016; Snell et al., 2017; Finn et al.,
2017; Sung et al., 2018; Zhang & Koniusz, 2019) which use
meta-learning, prototype-based learning or feature represen-
tation learning. Just in 2020–2024, many FSL methods (Guo
et al., 2020; Dvornik et al., 2020; Wang et al., 2020a; Licht-
enstein et al., 2020; Luo et al., 2021; Fei et al., 2020; Guan
et al., 2020; Li et al., 2020; Elsken et al., 2020; Cao et al.,
2020; Tang et al., 2020;Koniusz&Zhang, 2022; Zhang et al.,
2022a; Zhu & Koniusz, 2022; Lu & Koniusz, 2022; Zhu &
Koniusz, 2023b; Kang et al., 2023; Shi et al., 2024; Zhang et
al., 2021, 2020b, 2022c, b; Lu & Koniusz, 2024) have been
dedicated to image classification or detection. In contrast, in
this paper, we aim at advancing few-shot action recognition
of articulated set of connected 3D body joints, simply put,
skeletal FSAR.

With the exception of very recent models (Liu et al.,
2017, 2019; Memmesheimer et al., 2021, 2022; Ma et
al., 2022; Wang & Koniusz, 2022b; Zhu et al., 2023b),
FSAR approaches that learn from skeleton-based 3D body
joints are scarce. The above situation prevails despite action
recognition from articulated sets of connected body joints,
expressed as 3D coordinates, does offer a number of advan-
tages over videos such as (i) the lack of the background
clutter, (ii) the volume of data being several orders of mag-
nitude smaller, and (iii) the 3D geometric manipulations of
skeletal sequences being algorithm-friendly.

Video sequences may be captured under varying cam-
era poses where subjects may follow different trajectories
resulting in subjects’ pose variations. Variations of action
speed, location, and motion dynamics are also common. Yet,
FSAR has to learn and infer similarity between support-
query sequence pairs under the limited number of samples
of novel classes. Thus, a good measure of similarity between
support-query sequence pairs has to factor out the above vari-
ations. To this end, we propose a FSAR model that learns
on skeleton-based 3D body joints via Joint tEmporal and
cAmera viewpoiNt alIgnmEnt (JEANIE). We focus on 3D

skeleton sequences as camera/subject’s pose can be easily
altered in 3D by the use of projective camera geometry.

JEANIE achieves good matching of queries with support
sequences by simultaneously modeling the optimal (i) tem-
poral and (ii) viewpoint alignments. To this end, we build on
soft-DTW (Cuturi & Blondel, 2017), a differentiable variant
of Dynamic Time Warping (DTW) (Cuturi, 2011) (Fig. 5 is
an overview how DTW differs from the Euclidean distance).
Given a query sequence, we create its several views by sim-
ulating several camera locations. For a support sequence,
we can match it with view-simulated query sequences as in
DTW. Specifically, with the goal of computing optimal dis-
tance, each support temporal block1 can be matched to the
query temporal block with the same temporal block index
or neighbouring temporal block index to perform a local
time warping step. However, we simultaneously also let each
support temporal block match across adjacent camera views
of the query temporal block to achieve camera viewpoint
warping. Multiple alignment patterns of query and support
blocks result inmultiple paths across temporal and viewpoint
modes. Thus, each path represents a matching plan describ-
ing between which support-query block pairs the feature
distances are evaluated and aggregated. By the use of soft-
minimum, the path with the minimum aggregated distance is
selected as the output of JEANIE. Thus,whileDTWprovides
optimal temporal alignment of support-query sequence pairs,
JEANIE simultaneously provides the optimal joint temporal-
viewpoint alignment.

To facilitate the viewpoint alignment in JEANIE, we use
easy 3D geometric operations. Specifically, we obtain skele-
tons under several viewpoints by rotating skeletons (zero-
centered by hip) via Euler angles https://en.wikipedia.org/
wiki/Euler_angles, or generating skeleton locations given
simulated camera positions, according to the algebra of
stereo projections http://www.cse.psu.edu/~rtc12/CSE486/
lecture12.pdf.

We note that view-adaptive models for action recogni-
tion do exist. View Adaptive Recurrent Neural Network
(Zhang et al., 2017, 2019) is a classification model equipped
with a view-adaptive subnetwork that contains the rota-
tion/translation switches within its RNN backbone and the
main LSTM-based network. Temporal Segment Network
(Wang et al., 2019e) models long-range temporal structures
with a new segment-based sampling and aggregationmodule.
However, such pipelines require a large number of training
samples with varying viewpoints and temporal shifts to learn
a robust model. Their limitations become evident when a
network trained under a fixed set of action classes has to be

1 In fact, we bundle several neighboring frames into a temporal block,
and perform alignment between support-query sequence pairs by tem-
porally aligning temporal blocks rather than individual frames.
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Fig. 1 Skeletal FSAR (simplified overview) takes episodes of query
and support sequences, splits them into temporal blocks (X1, ...,Xτ

and X′
1, ...,X

′
τ ), passes them to the Encoding Network to obtain fea-

tures � = [ψ1, ...,ψτ ] and � ′ = [ψ ′
1, ...,ψ

′
τ ′ ], and the Comparator

which typically uses some distance measure d(·, ·), regularization �

and the similarity classifier �(·, ·)

adapted to samples of novel classes. Our JEANIE does not
suffer from such a limitation.

Figure 1 is a simplified overview of our pipeline which
can serve as a template for baseline FSAR. It shows that
our pipeline consists of an MLP which takes neighboring
frames forming a temporal block. Each sequence consists
of several such temporal blocks. However, as in Fig. 2, we
sample desired Euler rotations or simulated camera view-
points, generate multiple skeleton views, and pass them to
the MLP to get block-wise feature maps fed into a Graph
Neural Network (GNN) (Kipf ambWelling, 2017; Sun et al.,
2019; Wu et al., 2019; Klicpera et al., 2019; Wang et al.,
2019d; Zhu & Koniusz, 2021; Zhang et al., 2023a, b). We
mainly use a linear S2GC (Zhu & Koniusz, 2021; Zhu et
al., 2021; Zhu & Koniusz, 2023a; Wang et al., 2023a), with
an optional transformer (Dosovitskiy et al., 2020), and an
FC layer to obtain block feature vectors passed to JEANIE
whose output distance measurements flow into our similarity
classifier. Figure3 is a detailed overview of our supervised
FSAR pipeline.

Note that JEANIE can be thought of as a kernel in Repro-
ducing Kernel Hilbert Spaces (RKHS) (Smola & Kondor,
2003) based on Optimal Transport (Villani, 2009) with a
specific temporal-viewpoint transportation plan. As kernels
capture the similarity of sample pairs instead of modeling
class labels, they are a natural choice for FSL and FSAR
problems.

In this paper, we extend our supervised FSAR model
(Wang & Koniusz, 2022a) by introducing an unsupervised
FSAR model, and a fusion of both supervised and unsu-
pervised models. Our rationale for an unsupervised FSAR
extension is to demonstrate that the invariance properties of
JEANIE (dealing with temporal and viewpoint variations)
help naturally match sequences of the same class without
the use of additional knowledge (class labels). Such a set-
ting demonstrates that JEANIE is able to limit intra-class
variations (temporal and viewpoint variations) facilitating
unsupervised matching of sequences.

Fig. 2 Onemayuse (left) stereo projections to simulate different camera
views or simply use (right) Euler angles to rotate 3D scene

For unsupervised FSAR, JEANIE is used as a distance
measure in the feature reconstruction term of dictionary
learning and feature coding steps. Features of the tempo-
ral blocks are projected into such a dictionary space and the
projection codes representing sequences are used for similar-
ity measure between support-query sequences. This idea is
similar to clustering training sequences into k-means clus-
ters (Csurka et al., 2004) to form a dictionary. Then the
assignments of test query sequences to such a dictionary
can reveal their class labels based on labeled test support
sequence falling into the same cluster. However, even with
JEANIE used as a distance measure, one-hot assignments
resulting from k-means are suboptimal. Thus, we investigate
more recent soft assignment (Bilmes, 1998; Gemert et al.,
2008; Koniusz & Mikolajczyk, 2011; Liu et al., 2011) and
sparse coding approaches (Lee et al., 2006;Yang et al., 2009).

Finally, we also introduce a simple fusion of supervised
and unsupervised FSAR by alignment of supervised and
unsupervised FSAR features or by MAML-inspired (Finn
et al., 2017) fusion of unsupervised and supervised FSAR
losses in the so-called inner and outer loop, respectively.

Below are our contributions:

i. We propose JEANIE that performs the joint alignment
of temporal blocks and simulated camera viewpoints of
3D skeletons between support-query sequences to select
the optimal alignment path which realizes joint tempo-
ral (time) and viewpoint warping. We evaluate JEANIE
on skeletal few-shot action recognition, where matching
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Fig. 3 Our 3D skeleton-based FSAR with JEANIE. Frames from a
query sequence and a support sequence are split into short-term tem-
poral blocks X1, ...,Xτ and X′

1, ...,X
′
τ ′ of length M given stride S.

Subsequently, we generate (i) multiple rotations by (Δθx ,Δθy) of each
query skeleton by either Euler angles (baseline approach) or (ii) sim-
ulated camera views (gray cameras) by camera shifts (Δθaz,Δθalt )

w.r.t. the assumed average camera location (black camera). We pass
all skeletons via Encoding Network (with an optional transformer) to
obtain feature tensors Ψ and Ψ ′, which are directed to JEANIE. We

note that the temporal-viewpoint alignment takes place in 4D space
(we show a 3D case with three views:−30◦, 0◦, 30◦). Temporally-wise,
JEANIE starts from the same t = (1, 1) and finishes at t = (τ, τ ′) (as
in DTW). Viewpoint-wise, JEANIE starts from every possible camera
shift Δθ ∈ {−30◦, 0◦, 30◦} (we do not know the true correct pose) and
finishes at one of possible camera shifts. At each step, the path may
move by no more than (±Δθaz,±Δθalt ) to prevent erroneous align-
ments. Finally, SoftMin picks up the smallest distance (Color figure
online)

correctly support and query sequence pairs (by factor-
ing out nuisance variations) is essential due to limited
samples representing novel classes.

ii. To simulate different camera locations for 3D skeleton
sequences, we consider rotating them (1) by Euler angles
within a specified range along axes, or (2) towards the
simulated camera locations based on the algebra of stereo
projection.

iii. We propose unsupervised FSAR where JEANIE is used
as a distance measure in the feature reconstruction term
of dictionary learning and coding steps (we investigate
several such coders). We use projection codes to repre-
sent sequences. Moreover, we also introduce an effective
fusion of both supervised and unsupervised FSAR mod-
els by unsupervised and supervised feature alignment
term or MAML-inspired fusion of unsupervised and
supervised FSAR losses.

iv. As minor contributions, we investigate different GNN
backbones (combined with an optional transformer), as
well as the optimal temporal size and stride for tem-
poral blocks encoded by a simple 3-layer MLP unit
before forwarding them to GNN. We also propose a sim-
ple similarity-based loss encouraging the alignment of
within-class sequences and preventing the alignment of
between-class sequences.

We achieve state-of-the-art results on few-shot action
recognition on large-scale NTU-60 (Shahroudy et al., 2016),
NTU-120 (Liu et al., 2019), Kine- tics-skeleton (Yan et al.,
2018), and UWA3D Multiview Activity II (Rahmani et al.,
2016).

2 RelatedWorks

Below, we describe 3D skeleton-based AR, FSAR
approaches, and Graph Neural Networks.
Action recognition (3D skeletons). 3D skeleton-based
action recognition pipelines often use GCNs (Kipf amb
Welling, 2017), e.g., spatio-temporalGCN (ST-GCN) (Yan et
al., 2018), Attention enhanced Graph Convolutional LSTM
network (AGC-LSTM) (Si et al., 2019), Actional-Structural
GCN (AS-GCN) (Li et al., 2019), Dynamic Directed GCN
(DDGCN) (Korban & Li, 2020), Decoupling GCN with
DropGraphmodule (Cheng et al., 2020b), Shift-GCN (Cheng
et al., 2020a), Semantics-Guided Neural Networks (SGN)
(Zhang et al., 2020a), AdaSGN (Shi et al., 2021), Context
Aware GCN (CA-GCN) (Zhang et al., 2020a), Channel-wise
Topology Refinement Graph Convolution Network (CTR-
GCN) (Chen et al., 2021), Efficient GCN (Song et al., 2022)
and Disentangling and Unifying Graph Convolutions (Liu
et al., 2020). As ST-GCN applies convolution along links
between body joints, structurally distant joints, which may
cover key patterns of actions, are largely ignored. While
GCN can be applied to a fully-connected graph to capture
complex interactions of body joints, groups of nodes across
space/time can be capturedwith tensors (Koniusz et al., 2016,
2022), semi-dynamic hypergraph neural networks (Liu et
al., 2020), hypergraph GNN (Hao et al., 2021), angular fea-
tures (Qin et al., 2022b), Higher-order Transformer (HoT)
(Kim et al., 2021) and Multi-order Multi-mode Transformer
(3Mformer) (Wang & Koniusz, 2023). PoF2I (Huynh-The
et al., 2020) transforms pose features into pixels. Recently,
Koopman pooling (Wang et al., 2023b), an auxiliary fea-
ture refinement head (Zhou et al., 2023), a Spatial-Temporal
Mesh Transformer (STMT) (Zhu et al., 2023a), Strengthen-
ing Skeletal Recognizers (Qin et al., 2022a), and a Skeleton
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Cloud Colorization (Yang et al., 2023a) have been proposed
for 3D skeleton-based AR.

However, such models rely on large-scale datasets to train
large numbers of parameters, and cannot be adapted with
ease to novel class concepts whereas FSAR can.
FSAR (videos).Approaches (Mishra et al., 2018; Guo et al.,
2018; Xu et al., 2018) use a generative model, graph match-
ing on 3D coordinates and dilated networks, respectively.
Approach (Zhu & Yang, 2018) uses a compound mem-
ory network. ProtoGAN (Dwivedi et al., 2019) generates
action prototypes. Recent FSARmodel (Zhang et al., 2020b)
uses permutation-invariant attention and second-order aggre-
gation of temporal video blocks, whereas approach (Cao
et al., 2020) proposes a modified temporal alignment for
query-support pairs via DTW. Recent video FSAR models
include a mixed-supervised hierarchical contrastive learning
(HCL) (Zheng et al., 2022), Compound Prototype Match-
ing (Huang et al., 2022), Spatio-temporal RelationModeling
(Thatipelli et al., 2022), motion-augmented long-short con-
trastive learning (MoLo) (Wang et al., 2023c) and Active
Multimodal Few-shot Action Recognition (AMFAR) frame-
work (Wanyan et al., 2023).
FSAR (3D skeletons). Few FSAR models use 3D skeletons
(Liu et al., 2017, 2019; Memmesheimer et al., 2021, 2022;
Yang et al., 2023b). Global Context-Aware Attention LSTM
(Liu et al., 2017) focuses on informative joints. Action-Part
Semantic Relevance-aware (APSR) model (Liu et al., 2019)
uses semantic relevance among each body part and action
class at the distributed word embedding level. Signal Level
Deep Metric Learning (DML) (Memmesheimer et al., 2021)
and Skeleton-DML (Memmesheimer et al., 2022) encode
signals as images, extract CNN features and use multi-
similarity miner loss. New skeletal FSAR includes Disen-
tangled and Adaptive Spatial-Temporal Matching (DASTM)
(Ma et al., 2022), Adaptive Local-Component-Aware Graph
Convolutional Network (ALCA-GCN) (Zhu et al., 2023b)
and uncertainty-DTW (Wang & Koniusz, 2022b).

In contrast, we use temporal blocks of skeleton sequences
encoded by GNNs under multiple simulated camera view-
points to jointly apply temporal and viewpoint alignment of
query-support sequences to factor out nuisance variability.
Graph Neural Networks. GNNs modified to act on the
specific structure of 3D skeletal data are very popular in
action recognition, as detailed in “Action recognition (3D
skeletons)” at the beginning of Sect. 2. In this paper, we
leverage standard GNNs due to their good ability to repre-
sent graph-structured data. GCN (Kipf amb Welling, 2017)
applies graph convolution in the spectral domain, and enjoys
the depth-efficiency when stacking multiple layers due to
non-linearities. However, depth-efficiency extends the run-
time due to backpropagation through consecutive layers. In
contrast, a very recent family of so-called spectral filters do
not require depth-efficiency but apply filters based on heat

diffusion ongraph adjacencymatrix.As a result, these are fast
linear models as learnable weights act on filtered node rep-
resentations. Unlike general GNNs, SGC (Wu et al., 2019),
APPNP (Klicpera et al., 2019) and S2GC (Zhu & Koniusz,
2021) are three such linear models which we investigate for
the backbone, followed by an optional transformer, and an
FC layer.
Transformers in action recognition. Transformers have
become popular in action recognition (Plizzari et al., 2021;
Zhang et al., 2021a, b; Girdhar et al., 2019; Plizzari et al.,
2020). Vision Transformer (ViT) (Dosovitskiy et al., 2020)
is the first transformer model for image classification but
transformers find application even in recent pre-training
models (Haghighat et al., 2024). The success of transform-
ers relies on their ability to establish exhaustive attention
among visual tokens. Recent transformer-based AR mod-
els include Uncertainty-Guided Probabilistic Transformer
(UGPT) (Guo et al., 2022), Recurrent Vision Transformer
(RViT) (Yang et al., 2022), Spatio-TemporAl cRoss (STAR)-
transformer (Ahn et al., 2023), DirecFormer (Truong et
al., 2022), Spatial-Temporal Mesh Transformer (STMT)
(Zhu et al., 2023a), Semi-Supervised Video Transformer
(SVFormer) (Xing et al., 2023) and Multi-order Multi-mode
Transformer (3Mformer) (Wang et al., 2023c).

In this work, we apply a simple optional transformer block
with few layers following GNN to capture better block-level
dependencies of 3D human body joints.
Multi-view action recognition.Multi-modal sensors enable
multi-view action recognition (Wang et al., 2020b; Zhang
et al., 2017). A Generative Multi-View Action Recognition
framework (Wang et al., 2019a) integrates RGB and depth
data byViewCorrelationDiscoveryNetworkwhile Synthetic
Humans (Varol et al., 2021) generates synthetic training data
to improve generalization to unseen viewpoints. Someworks
use multiple views of the subject (Shahroudy et al., 2016;
Liu et al., 2019; Zhang et al., 2019; Wang et al., 2019a)
to overcome the viewpoint variations for action recognition.
Recently, a supervised contrastive learning framework (Shah
et al., 2023) for multi-view was introduced.

In contrast, our JEANIE performs jointly the temporal
and simulated viewpoint alignment in an end-to-end FSAR
setting. This is a novel paradigm based on improving the
notion of similarity between sequences of support-query pair
rather than learning class concepts.

3 Approach

To learn similarity and dissimilarity between pairs of
sequences of 3D body joints representing query and support
samples from episodes, our goal is to find a joint viewpoint-
temporal alignment of query and support, and minimize or
maximize thematching distance dJEANIE (end-to-end setting)
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Fig. 4 (top) In viewpoint-invariant learning, the distance between query
features Ψ and support features Ψ ′ has to be computed. The blue arrow
indicates that trajectories of both actions need alignment. (bottom) In
real life, subject’s 3D body joints deviate from one ideal trajectory,
and so advanced viewpoint alignment strategy is needed (Color figure
online)

Fig. 5 Euclidean dist. vs. DTW. (top) Feature vectors ψ t and ψ ′
t

of query and support frames (or temp. blocks) are matched along
time t : dEuclid (�,� ′) = ∑

t d
2(ψ t ,ψ

′
t ). (bottom) For DTW, a path

with minimum aggregated distance is selected as dDTW (�,� ′) =∑
t d

2(ψm(t),ψ
′
n(t)), and m(t) and n(t) parameterize query and sup-

port indexes. One is permitted steps ↓, ↘, → in the graph. We expect
dDTW ≤ dEuclid

for same or different support-query labels, respectively. Fig-
ure 4 (top) shows that sometimes matching of query and
supportmaybe as easy as rotatingone trajectory onto another,
in order to achieve viewpoint invariance. A viewpoint invari-
ant distance (Haasdonk & Burkhardt, 2007) can be defined
as:

dinv(Ψ ,Ψ ′)= Inf
γ,γ ′∈T

d
(
γ (Ψ ), γ ′(Ψ ′)

)
, (1)

where T is a set of transformations required to achieve
a viewpoint invariance, d(·, ·) is some base distance, e.g.,
the Euclidean distance, and Ψ and Ψ ′ are features describ-
ing query and support pair of sequences. Typically, T may
include 3D rotations to rotate one trajectory onto the other.
However, a global viewpoint alignment of two sequences is
suboptimal. Trajectories are unlikely to be straight 2D lines in
the 3D space so onemay not be able to rotate the query trajec-
tory to align with the support trajectory. Figure 4 (bottom)
shows that the subjects’ poses locally follow complicated
non-linear paths, e.g., as in Fig. 5 (bottom).

Thus, we propose JEANIE that aligns and warps query /
support sequences based on the feature similarity. One can
think of JEANIE as performing Eq. (1) with T containing

all possible combinations of local time-warping augmenta-
tions of sequences and camera pose augmentations for each
frame (or temporal block). JEANIE unit in Fig. 3 realizes
such a strategy. Figure6 (discussed later in the text) shows
one step of the temporal-viewpoint computations of JEANIE
in search for optimal temporal-viewpoint alignment path
between query and support sequences. Soft-minimum across
all such possible alignment paths can be equivalently written
as an infimum over a set of specific transformations in Eq.
(1).

Below, we detail our pipeline, and explain the proposed
JEANIE, Encoding Network (EN), feature coding and dic-
tionary learning, and our loss function. Firstly, we present
our notations.
Notations.IK stands for the index set {1, 2, ..., K }. Concate-
nation of αi is denoted by [αi ]i∈II , whereas X:,i means we
extract/access column i of matrix D. Calligraphic mathcal
fonts denote tensors (e.g., D), capitalized bold symbols are
matrices (e.g., D), lowercase bold symbols are vectors (e.g.,
ψ), and regular fonts denote scalars.
Prerequisites. Below we refer to prerequisites used in
the subsequent chapters. Appendix A explains how Euler
angles and stereo projections are used in simulating differ-
ent skeleton viewpoints. Appendix B explains several GNN
approaches that we use in our Encoding Network.

AppendixCexplains several feature coding and dictionary
learning strategies which we use for unsupervised FSAR.

3.1 Encoding Network (EN)

We start by generating K × K ′ Euler rotations or K × K ′
simulated camera views (moved gradually from the esti-
mated camera location) of query skeletons. Our EN contains
a simple 3-layer MLP unit (FC, ReLU, FC, ReLU, Dropout,
FC), GNN, optional Transformer (Dosovitskiy et al., 2020)
and FC. The MLP unit takes M neighboring frames, each
with J 3D skeleton body joints, forming one temporal block
X ∈ R

3×J×M , where 3 indicates 3D Cartesian coordinates.
In total, depending on stride S, we obtain some τ tempo-
ral blocks which capture the short temporal dependency,
whereas the long temporal dependency is modeled with our
JEANIE. Each temporal block is encoded by the MLP into a
d× J dimensional feature map:

X̂=(MLP(X;FMLP ))T ∈R
J×d . (2)

We obtain K×K ′×τ query and τ ′ support feature maps, each
of size J × d. Each maps is forwarded to a GNN. For S2GC
(Zhu & Koniusz, 2021) (default GNN in our work) with L
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Fig. 6 JEANIE (1-max shift). We loop over all points. At (t, t ′, n)

(green point) we add its base distance to the minimum of accumulated
distances at (t, t ′−1, n−1), (t, t ′−1, n), (t, t ′−1, n+1) (orange plane),
(t−1, t ′−1, n−1), (t−1, t ′−1, n), (t−1, t ′−1, n+1) (red plane) and
(t−1, t ′, n−1), (t−1, t ′, n), (t−1, t ′, n+1) (blue plane) (Color figure
online)

layers, we have:

̂̂X= 1

L

L∑

l=1

(
(1−α)SlX̂+αX̂

)∈R
J×d , (3)

where S is the adjacency matrix capturing connectivity of
body joints, whereas 0 ≤ α ≤ 1 controls the self-importance
of each body joint. Appendix B describes several GNN vari-
ants we experimented with: GCN (Kipf ambWelling, 2017),
SGC (Wu et al., 2019), APPNP (Klicpera et al., 2019) and
S2GC (Zhu & Koniusz, 2021).

Optionally, a transformer2 (described below in “Trans-
former Encoder”) may be used. Finally, an FC layer returns
Ψ ∈ R

d ′×K×K ′×τ query feature maps and Ψ ′ ∈ R
d ′×τ ′

support feature maps. Feature maps are passed to JEANIE
whose output is passed into the similarity classifier. The
whole Encoding Network is summarized as follows. Let
support maps Ψ ′ ≡ [ f (X ′

1;F), ..., f (X ′
τ ′ ;F)] ∈ R

d ′×τ ′

and query maps Ψ ≡ [ f (X1,1,1;F), ..., f (XK ,K ′,τ ;F)] ∈
R
d ′×K×K ′×τ . For M query and M support frames per block,

X∈R
3×J×M and X′ ∈R

3×J×M . We also define:

f (X;F)=
FC(Transf(GNN(MLP(X;FMLP );FGNN );FTr );FFC ),

(4)

where F ≡[FMLP ,FGNN ,FTr ,FFC ] is the set of parame-
ters of EN (including an optional transformer).
Transformer Encoder. Vision transformer (Dosovitskiy et
al., 2020) consists of alternating layers of Multi-Head Self-
Attention (MHSA) and a feed-forward MLP (2 FC layers
with a GELU non-linearity intertwined). LayerNorm (LN) is
applied before every block, and residual connections after
every block. If transformer is used, each feature matrix

2 Our transformer is similar toViT (Dosovitskiy et al., 2020) but instead
of using image patches, we feed each body joint encoded by GNN into
the transformer.

X̂ ∈ R
J×d per temporal block is encoded by a GNN into

̂̂X ∈ R
J×d and then passed to the transformer. Similarly

to the standard transformer, we prepend a learnable vector
ytoken ∈R

1×d to the sequence of block features X̂ obtained
from GNN, and we also add the positional embeddings
Epos ∈ R

(1+J )×d based on the standard sine and cosine func-
tions so that token ytoken and each body joint enjoy their own
unique positional encoding. One can think of our GNN block
as replacing the tokenizer linear projection layer of a stan-
dard transformer. Compared to the use of FC layer as linear
projection layer, our GNN tokenizer in Eq. (5) enjoys (i)
better embeddings of human body joints based on the graph
structure (ii) no learnable parameters. From the tokenizer, we
obtain Z0∈R

(1+J )×d :

Z0 = [ytoken;GNN(X̂)] + Epos, (5)

and feed it into in the following transformer backbone:

Z′
k = MHSA(LN(Zk−1)) + Zk−1, k = 1, ..., L tr (6)

Zk = MLP(LN(Z′
k)) + Z′

k, k = 1, ..., L tr (7)

y′ = LN
(
Z(0)
L tr

)
where y′ ∈ R

1×d (8)

f (X;F) = FC(y′T ;FFC ) ∈ R
d ′

, (9)

where Z(0)
L tr

is the first d-dimensional row vector extracted

from the output matrix ZL tr ∈ R
(J+1)×d , and L tr controls

the depth of the transformer (the number of layers), whereas
F ≡ [FMLP ,FGNN ,FTr ,FFC ] is the set of parameters of
EN. Finally, f (X;F) from Eq. (9) becomes equivalent of
Eq. (4) with the transformer.

3.2 JEANIE

Prior to explaining the details of the JEANIE measure, we
briefly explain details of soft-DTW.
Soft-DTW (Cuturi, 2011;Cuturi&Blondel, 2017).Dynamic
Time Warping can be seen as a specialized “metric” with a
matching transportation plan3 acting on the temporal mode
of sequences. Soft-DTW is defined as:

dDTW(Ψ ,Ψ ′)= Sof tMinγ

A∈Aτ,τ ′

〈
A, D(Ψ ,Ψ ′)

〉
, (10)

where Sof tMinγ (α)=−γ log
∑

i

exp(−αi/γ ). (11)

The binaryA∈Aτ,τ ′ encodes a path within the transportation
plan Aτ,τ ′ which depends on lengths τ and τ ′ of sequences
Ψ ≡ [ψ1, ...,ψτ ] ∈ R

d ′×τ , Ψ ′ ≡ [ψ ′
1, ...,ψ

′
τ ′ ] ∈ R

d ′×τ ′
.

3 In analogy to terminology used inOptimalTransport (e.g., theWasser-
stein distance), we call it a transportation plan. Also, notice that
Soft-DTW may violate some of the metric axioms.
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Algorithm 1 Joint tEmporal and cAmera viewpoiNt alIgn-
mEnt (JEANIE).
Input (forward pass): Ψ ,Ψ ′, γ >0, dbase(·, ·), ι-max shift.
1: r:,:,: =∞, rn,1,1=dbase(ψn,1,ψ

′
1), ∀n∈{−η, ..., η}

2: � ≡ {−ι, ..., 0, ..., ι} × {(0, 1), (1, 0), (1, 1)}
3: for t ∈Iτ :
4: for t ′ ∈Iτ ′ :
5: if t �=1 or t ′�=1:
6: for n∈{−η, ..., η}:
7: rn,t,t ′ = dbase(ψn,t ,ψ

′
t ′ )

8: +Sof tMinγ

(
[rn−i,t−j,t ′−k ](i, j,k)∈�

)

Output: Sof tMinγ

(
[rn,τ,τ ′ ]n∈{−η,...,η}

)

D ∈ R
τ×τ ′
+ ≡ [dbase(ψm,ψ ′

n)](m,n)∈Iτ ×Iτ ′ is the matrix of
distances, evaluated for τ ×τ ′ frames (or temporal blocks)
according to some base distance dbase(·, ·), i.e., the Euclidean
distance.

In what follows, we make use of principles of soft-DTW,
i.e., the property of time-warping. However, we design a joint
alignment between temporal skeleton sequences and sim-
ulated skeleton viewpoints, which means we achieve joint
time-viewpoint warping (a novel idea never done before).
JEANIE. Matching query-support pairs requires temporal
alignment due to potential offset in locations of discrim-
inative parts of actions, and due to potentially different
dynamics/speed of actions taking place. The same concerns
the direction of actor’s pose, i.e., consider the pose trajectory
w.r.t. the camera. Thus, the JEANIEmeasure is equippedwith
an extended transportation planA′ ≡Aτ,τ ′,K ,K ′ , where apart
from temporal block counts τ and τ ′, for query sequences,
we have possible ηaz left and ηaz right steps from the initial
camera azimuth, and ηalt up and ηalt down steps from the ini-
tial camera altitude. Thus, K =2ηaz+1, K ′ =2ηalt+1. For the
variant with Euler angles, we simply have A′′ ≡Aτ,τ ′,K ,K ′
where K = 2ηx + 1, K ′ = 2ηy + 1 instead. The JEANIE
formulation is given as:

dJEANIE(Ψ ,Ψ ′)= Sof tMinγ

A∈A′

〈
A,D(Ψ ,Ψ ′)

〉
, (12)

whereD∈R
K×K ′×τ×τ ′
+ ≡[dbase(ψm,k,k′ ,ψ ′

n)] (m,n)∈Iτ×Iτ ′
(k,k′)∈IK×IK ′

,and

tensor D contains distances evaluated between all possible
temporal blocks.

Figure 6 illustrates one step of JEANIE. Suppose the given
viewing angle set is {−40◦,−20◦, 0◦, 20◦, 40◦}. For the cur-
rent node at (t, t ′, n) we evaluate, we have to aggregate its
base distance with the smallest aggregated distance of its
predecessor nodes. The “1-max shift” means that the pre-
decessor node must be a direct neighbor of the current node
(imagine that dots on a 3Dgrid are nodes connected by links).
Thus, for 1-max shift, at location (t, t ′, n), we extract the
node’s base distance and add it together with the minimum

of aggregated distances at the shown 9 predecessor nodes.
We store that aggregated distance at (t, t ′, n), and we move
to the next node. Note that for viewpoint index n, we look
up (n−1, n, n+1) neighbors. Extension to the ι-max shift
is straightforward. The importance of low value of ι-max
shift, e.g., ι = 1 is that low value of ι promotes the so-called
smoothness of alignment. That is, while time or viewpoint
may be warped, they are not warped abruptly (e.g., the sub-
ject’s pose is not allowed to suddenly rotate by 90◦ in one
step then rotate back by −90◦. This smoothness is the key
preventing greedy matching that would result in an overop-
timistic distance between two sequences.

Algorithm 1 illustrates JEANIE. For brevity, let us tackle
the camera viewpoint alignment along the azimuth, e.g.,
for some shifting steps −η, ..., η, each with size Δθaz .
The maximum viewpoint change from block to block is ι-
max shift (smoothness). As we have no way to know the
initial optimal camera shift, we initialize all possible ori-
gins of shifts in accumulator rn,1,1 = dbase(ψn,1,ψ

′
1) for

all n ∈ {−η, ..., η}. Subsequently, steps related to soft-
DTW (temporal-viewpoint matching) take place. Finally,
we choose the path with the smallest distance over all
possible viewpoint ends by selecting a soft-minimum over
[rn,τ,τ ′ ]n∈{−η,...,η}. Notice that elements of the accumulator
tensor R ∈ R

(2ι+1)×τ×τ ′
are accessed by writing rn,t,t ′ .

Moreover, whenever either index n − i , t − j or t ′ − k
in rn−i,t−j,t ′−k (see algorithm) is out of bounds, we define
rn−i,t−j,t ′−k = ∞.
Free Viewpoint Matching (FVM). To ascertain whether
JEANIE is better than performing separately the temporal
and simulated viewpoint alignments, we introduce an impor-
tant and plausible baseline called Free Viewpoint Matching.
FVM, for every step of DTW, seeks the best local viewpoint
alignment, thus realizing a non-smooth temporal-viewpoint
path in contrast to JEANIE. To this end, we apply soft-DTW
in Eq. (12) with the base distance replaced by:

dFVM(ψ t ,ψ
′
t ′ )

= Sof tMinγ
m,n∈{−η,...,η}

dbase
(
ψm,n,t ,ψ

′
m′,n′,t ′

)
, (13)

where Ψ ∈ R
d ′×K×K ′×τ and Ψ ′ ∈ R

d ′×K×K ′×τ ′
are query

and support feature maps. We abuse slightly the notation by
writing dFVM(ψ t ,ψ

′
t ′ )

as we minimize over viewpoint indexes
inside of Eq. (13). Thus, we calculate the distance matrix
D∈R

τ×τ ′
+ ≡[dFVM(ψ t ,ψ

′
t ′)](t,t ′)∈Iτ ×Iτ ′ for soft-DTW.

Figure 7 shows the comparison between soft-DTW (view-
wise), FVM and our JEANIE. FVM is a greedy matching
method which leads to complex zigzag path in 3D space (we
illustrate the camera viewpoint in a single mode, e.g., the
azimuth for ψn,t , and no viewpoint mode for ψ ′

t ′ ). Although
FVM is able to produce the path with a smaller aggregated
distance compared to soft-DTW and JEANIE, it suffers from
obvious limitations: (i) It is unreasonable for poses in a given
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Fig. 7 A comparison of paths in 3D for soft-DTW, Free Viewpoint
Matching (FVM) and our JEANIE. For a given query skeleton sequence
(green color), we choose viewing angles between −45◦ and 45◦ for the
camera viewpoint simulation. The support skeleton sequence is shown
in black color. a soft-DTW finds each individual alignment per view-
point fixed throughout alignment: dshortest=4.08. Notice that each path
“stays” within the same view–it does not cross into other views. b FVM
is agreedymatching algorithm that in each time step seeks the best align-

ment pose from all viewpoints which leads to unrealistic zigzag path
(person cannot jump from front to back view suddenly): dFVM =2.53.
c Our JEANIE (1-max shift) is able to find smooth joint viewpoint-
temporal alignment between support and query sequences. We show
each optimal path for each possible starting position: dJEANIE = 3.69.
While dFVM = 2.53 for FVM is overoptimistic, dshortest = 4.08 for
fixed-view matching is too pessimistic, whereas JEANIE strikes the
right matching balance with dJEANIE=3.69 (Color figure online)

sequence to match under extreme sudden changes of view-
points. (ii) Even if two sequences are from two different
classes, FVM still yields the smallest distance (decreased
inter-class variance).

3.3 Loss Function for Supervised FSAR

For the N -way Z -shot problem, we have one query fea-
ture map and N × Z support feature maps per episode. We
form a mini-batch containing B episodes. Thus, we have
query feature maps {Ψ b}b∈IB and support feature maps
{Ψ ′

b,n,z}b∈IB
n∈IN
z∈IZ

. Moreover,Ψ b andΨ ′
b,1,: share the same class,

one of N classes drawn per episode, forming the subset
C‡ ≡ {c1, ..., cN } ⊂ IC ≡ C.

Specifically, labels y(Ψ b) = y(Ψ ′
b,1,z),∀b ∈ IB, z ∈ IZ

while y(Ψ b) �= y(Ψ ′
b,n,z),∀b ∈ IB, n ∈ IN\{1}, z ∈ IZ . In

most cases, y(Ψ b) �= y(Ψ b′) ifb �=b′ andb, b′ ∈IB . Selection
ofC‡ per episode is random. For the N -way Z -shot protocol,
we minimize:

l(d+, d−)=(
μ(d+)−{μ(TopMinβ(d+))})2 (14)

+(
μ(d−)−{μ(TopMaxN Zβ(d−))})2, (15)

where

⎧
⎪⎪⎨

⎪⎪⎩

d+ =[dJEANIE(Ψ b,Ψ
′
b,1,z)]b∈IB

z∈IZ

d− =[dJEANIE(Ψ b,Ψ
′
b,n,z)]b∈IB

n∈IN\{1}
z∈IZ

,

and d+ is a set of within-class distances for the mini-batch
of size B given N -way Z -shot learning protocol. By anal-

ogy, d− is a set of between-class distances. Function μ(·)
is simply the mean over coefficients of the input vector, {·}
detaches the graph during the backpropagation step, whereas
TopMinβ(·) and TopMaxN Zβ(·) return β smallest and
N Zβ largest coefficients from the input vectors, respectively.
Thus, Eq. (14) promotes the within-class similarity while Eq.
(15) reduces the between-class similarity. Integer β ≥0 con-
trols the focus ondifficult examples, e.g.,β =1 encourages all
within-class distances in Eq. (14) to be close to the positive
target μ(TopMinβ(·)), the smallest observed within-class
distance in the mini-batch. If β > 1, this means we relax
our positive target. By analogy, if β = 1, we encourage all
between-class distances in Eq. (15) to approach the nega-
tive target μ(TopMaxN Zβ(·)), the average over the largest
N Z between-class distances. If β > 1, the negative target is
relaxed.

3.4 Feature Coding and Dictionary Learning for
Unsupervised FSAR

Recall from Sect. 1 that unsupervised FSAR forms a dic-
tionary from the training data without the use of labels.
Assigning labeled test support samples and test query into
cells of a dictionary lets infer the query label by associating
query with the support sample (to paraphrase, if they share
the same dictionary cell, they share the class label).

In this setting, we also use a mini-batch with B episodes.
Thus, B query samples and BN Z support samples give the
total of N ′ = B(N Z+1) samples per batch for feature cod-
ing and dictionary learning. Let dictionary M∈R

d ′·τ∗×k and
dictionary-coded matrix A ≡ [α1, ...,αN ′ ] ∈R

k×N ′
. Let τ ∗

be set as the average number of temporal blocks over training

123



International Journal of Computer Vision

Algorithm 2 Unsupervised FSAR (one training iteration by
alternating over variables).
Input: Υ ≡ {Ψ b}b∈IB ∪{Ψ ′

b,n,z}b∈IB
n∈IN
z∈IZ

: query/support seq. in batch;F :

EN parameters; M and A; alpha_iter and dic_iter: numbers
of iterations for updating A and M; ω,ωDL and ωEN: the learning rate
for A, M and F respectively; B: size of the mini-batch.
1: for i = 1, ..., alpha_iter: (fix M and update A)
2: A := A − ω∇ALunsup(Υ ; A, M,F)

3: for i = 1, ..., dic_iter: (fix A and update M)
4: M :=M−ωDL∇MLunsup(Υ ; A, M,F)

5: F := F−ωEN∇FLunsup(Υ ; A, M,F) (fix M & A, update F)
Output: F and M

Fig. 8 Unsupervised FSAR uses the JEANIE measure as a distance
between feature map � of a sequence and its dictionary-based recon-
structionMα. LcSAperforms feature coding to obtain dictionary-coded
α. DL learns the dictionary M

sequences. For dictionary M and some codes A, the recon-
structed feature map is given as MA ∈ R

d ′·τ∗×N ′
. In what

follows we reshape the reconstructed feature map so that
MA ∈ R

d ′×τ∗×N ′
. The feature map per sequence is given

as Ψ ∈ R
d ′×K×K ′×τ×N ′

. All query and support sequences
per batch form a set Υ ≡ {Ψ b}b∈IB ∪ {Ψ ′

b,n,z}b∈IB
n∈IN
z∈IZ

with

N ′ feature maps which we select by writing Ψ i ∈ Υ where
i = 1, ..., N ′. They are obtained from Encoding Network
the same way as for supervised FSAR except that both query
and support sequences now are equipped with K × K ′ view-
points. Algorithm 2 and Fig. 8 illustrate unsupervised FSAR
learning with JEANIE. In short, we minimize the following
loss w.r.t. F , M and A by alternating over these variables:

Lunsup(Υ ; A, M,F)

=
N ′
∑

i=1

d2JEANIE(Ψ i (F), Mαi ) + κ�(αi (F), M,Ψ i ),

(16)

where F ≡ [FMLP ,FGNN ,FTr ,FFC ] is the set of param-
eters of EN associated with Ψ , that is, feature maps depend
on these parameters, i.e., we work with a function Ψ (F) not
a constant.

Similarly to the Euclidean distance, dJEANIE(·, ·) in Eq.
(16) pursues the reconstruction of the feature map Ψ i by the
linear combination of dictionary codewords, given as Mαi .
The reconstruction error d2JEANIE(Ψ i , Mαi ) is encouraged to
be small. However, unlike the Euclidean distance, JEANIE
ensures temporal and viewpoint alignment of sequences
Ψ i with the dictionary-based reconstruction Mαi . Con-
straint �(αi , M,Ψ i ) is a regularization term depending on
the selection of feature coding method. Such a regular-
ization encourages discriminative description, i.e., similar
and different feature vectors obtain similar and different
dictionary-coded representations, respectively. Appendix C
provides details of several feature coding and dictionary
learning strategies which determine �. In our work, the
default choice is Soft Assignment and Dictionary learning
from Appendices C.1 and C.2 due to their simplicity and
good performance. As the Soft Assignment code (Ni et al.,
2022) was adapted to use JEANIE, we kept their number of
iterations alpha_iter= 50, dic_iter= 5. Dictionary
size k = 4096 was optimal, whereas τ ∗ ranged between 30
and 60 for smaller and larger datasets, respectively.

During testing, we use the trained model F and the learnt
dictionary M, pass test support and query sequences via
Eq. (16) but solve only w.r.t. A by till A converges. Subse-
quently, we compare the dictionary-coded vectors of query
sequences with the corresponding dictionary-coded vectors
of support sequences by using some distance measure, e.g.,
the �1 or �2 norm. We also explore the use of kernel-based
distances, e.g., Histogram IntersectionKernel (HIK) distance
and Chi-Square Kernel (CSK) distance, as they are designed
for comparing vectors constrained on the �1 simplex (Soft
Assignment produces the �1 normalised codes α). The con-
struction of the kernel distance involves a transformation
from similarities to distances.

Let α and α′ be some dictionary-coded vectors obtained
by the use of JEANIE in Eq. (16). Then for a kernel function
k(α,α′), the induced distance between α and α′ is given by

d(α,α′) = k(α,α) + k(α′,α′) − 2k(α,α′). Let ‖α‖2 =
‖α′‖2=1.TheHIKdistance for kHIK(α,α′)=∑d ′

i=1 min(αi , α
′
i )

is given as dHIK(α,α′) = 2 − 2kHIK(α,α′). The CSK dis-

tance for kernel kCSK(α,α′)=∑d ′
i=1

2αiα′
i

αi+α′
i
is dCSK(α,α′)=

2−2kCSK(α,α′).
The closest nearest neighbor match of test query to ele-

ments of the test support set determines the test label of the
query sequence.

3.5 Fusion of Supervised and Unsupervised FSAR

Our final contribution is to introduce four simple strate-
gies for fusing our supervised and unsupervised FSAR
approaches to boost the performance. As supervised learning
is label-driven and unsupervised learning is reconstruction-
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Algorithm 3 Fusion of Supervised and Unsupervised FSAR
by MAML-inspired Setting (one training iteration).
Input: Γ ≡ {X b}b∈IB ∪ {X ′

b,n,z}b∈IB
n∈IN
z∈IZ

: query/support blocks in batch;

F : EN parameters;M and A;alpha_iter and dic_iter: numbers
of iterations for updating A and M; ω,ωDL and ωEN: the learning rate
for A, M and F respectively; B: size of the mini-batch.

1: Υ ≡ {Ψ b}b∈IB ∪ {Ψ ′
b,n,z}b∈IB

n∈IN
z∈IZ

where

{
Ψ b = f ∗(X b;F)

Ψ ′
b,n,z = f ∗(X ′

b,n,z;F)

(obtain feature maps for global parameters F)
2: (F̂, M) = Algorithm 2(Υ ,F, M, A, (unsupervised FSAR)

alpha_iter,dic_iter, ω, ωDL, ωEN)

3: Υ̂ ≡ {Ψ̂ b}b∈IB ∪ {Ψ̂ ′
b,n,z}b∈IB

n∈IN
z∈IZ

where

{
Ψ̂ b = f ∗(X b; F̂)

Ψ̂
′
b,n,z = f ∗(X ′

b,n,z; F̂)

(obtain feature maps for parameters F̂ from the unsupervised step)
4: d̂

+ =[dJEANIE(Ψ̂ b, Ψ̂
′
b,1,z)]b∈IB

z∈IZ

(within-class distance)

5: d̂
− =[dJEANIE(Ψ̂ b, Ψ̂

′
b,n,z)]b∈IB

n∈IN\{1}
z∈IZ

(between-class distance)

6: F :=F−ωEN∇F l (̂d
+
, d̂

−
)

Output: F and M

driven, we expect both such strategies produce complemen-
tary feature spaces amenable to fusion.

In what follows, we make use of both support and query
feature maps defined over multiple viewpoints (Ψ ,Ψ ′ ∈
R
d ′×K×K ′×τ ):

Ψ ′ ≡ f ∗(X ′;F)≡[ f (X ′
1,1,1;F), ..., f (X ′

K ,K ′,τ ′ ;F)],
Ψ ≡ f ∗(X ;F)≡[ f (X1,1,1;F), ..., f (XK ,K ′,τ ;F)].

Aweighted fusion of supervised and unsupervised FSAR
scores. The simplest strategy is to train supervised and unsu-
pervised FSAR models separately, and combine their pre-
dictions during testing. We call such a baseline as “weighted
fusion”. During the testing stage, we combine the distances
of supervised and unsupervised models as follows:

dfused=ρ dJEANIE(Ψ q ,Ψ
′
n,z) + (1 − ρ)dα(αq ,α

′
n,z), (17)

where dα(·, ·) is the distancemeasure for dictionary-encoded
vectors, e.g., the �1 norm, HIK distance or CSK distance, 0 ≤
ρ ≤ 1 balances the impact of supervised and unsupervised
models, respectively.
Finetuning unsupervisedmodel by supervised FSAR. For
this baseline strategy, we firstly train the model using unsu-
pervised FSAR, and then we finetune the learnt unsupervised
model by using supervised FSAR. During testing stage, we
evaluate on supervised learning, unsupervised learning and
a fusion of both based on Eq. (17). In this case, one EN is
trained which results in two sets of parameters–the first set
is based on unsupervised training and the second set is based
on supervised finetuning. We call it “finetuning unsup.”

MAML-inspired fusion of supervised and unsupervised
FSAR. Inspired by the success of MAML (Finn et al., 2017)
and categorical learner (Li et al., 2023b), we introduce a
fusion strategy where the inner loop uses the unsupervised
FSAR (Eq. (16)) and the outer loop uses the supervised learn-
ing loss (Eq. (14) and (15)) for themodel update. Algorithm3
details our MAML-inspired fusion strategy, called “MAML-
inspired fusion”.

Specifically, we start by generating representations with
several viewpoints. For each mini-batch of size B we form
a set with N ′ feature maps which are passed to Algo-
rithm 2 which updates EN parametersF towards F̂ that help
accommodate unsupervised reconstruction-driven learning
(so-called task-specific gradient where the task is unsuper-
vised learning). We then recompute N ′ feature maps based
on parameters F̂ . Finally, we apply supervised loss on such
feature maps but we update now parameters F which means
that parameters F are tuned for the global label-driven task
with help of unsupervised task.

Intuitively, it is a second-order gradient model. Specif-
ically, one takes the gradient step in the direction pointed
by the unsupervised loss to obtain task-specific EN param-
eters. Subsequently, given these task-specific parameters,
task-specific feature maps are extracted and passed into the
supervised loss to perform the gradient descent step in the
direction pointed by the unsupervised loss to obtain update
of global EN parameters.
Fusion by alignment of supervised and unsupervised
feature maps. Inspired by domain adaptation (Koniusz et
al., 2017, 2018; Tas & Koniusz, 2018), Algorithm 4 in
Appendix D is an easy-to-interpret simplification (called
“adaptation-based”) of the above MAML-inspired fusion.
Instead of complex gradient interplay between unsupervised
and supervised loss functions, we explicitly align “super-
vised” feature maps towards “unsupervised” feature maps.

4 Experiments

4.1 Datasets and Protocols

Below, we describe the datasets and evaluation protocols on
which we validate our FSAR with JEANIE.

i. UWA3DMultiview Activity II (Rahmani et al., 2016) con-
tains 30 actions performed by 9 people in a cluttered
environment. The Kinect camera was used in 4 distinct
views: front view (V1), left view (V2), right view (V3),
and top view (V4).

ii. NTU RGB+D (NTU-60) (Shahroudy et al., 2016) con-
tains 56,880 video sequences and over 4 million frames.
This dataset has variable sequence lengths and high intra-
class variations.
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iii. NTU RGB+D 120 (NTU-120) (Liu et al., 2019) contains
120 action classes (daily/health-related), and 114,480
RGB+D video samples capturedwith 106 distinct human
subjects from 155 different camera viewpoints.

iv. Kinetics (Kay et al., 2017) is a large-scale collection
of 650,000 video clips that cover 400/600/700 human
action classes. It includes human-object interactions such
as playing instruments, as well as human-human inter-
actions such as shaking hands and hugging. As the
Kinetics-400 dataset provides only the raw videos, we
follow approach (Yan et al., 2018) and use the estimated
joint locations in the pixel coordinate system as the input
to our pipeline. To obtain the joint locations, we first
resize all videos to the resolution of 340 × 256, and
convert the frame rate to 30 FPS. Then we use the pub-
licly available OpenPose (Cao et al., 2017) toolbox to
estimate the location of 18 joints on every frame of the
clips. As OpenPose produces the 2D body joint coordi-
nates andKinetics-400 does not offermulti-view or depth
data, we use a network of Martinez et al. (Martinez et al.,
2017) pre-trained on Human3.6M (Ionescu et al., 2014),
combined with the 2D OpenPose output to estimate 3D
coordinates from 2D coordinates. The 2D OpenPose and
the latter networkgive us (x, y) and z coordinates, respec-
tively.

Evaluation protocols. For the UWA3D Multiview Activity
II, we use standard multi-view classification protocol (Rah-
mani et al., 2016; Wang et al., 2020b), but we apply it to
one-shot learning as the view combinations for training and
testing sets are disjoint. ForNTU-120,we follow the standard
one-shot protocol (Liu et al., 2019). Based on this protocol,
we create a similar one-shot protocol for NTU-60, with 50/10
action classes used for training/testing respectively. To eval-
uate the effectiveness of the proposed method on viewpoint
alignment, we also create two new protocols on NTU-120,
for which we group the whole dataset based on (i) horizontal
camera views into left, center and right views, (ii) vertical
camera views into top, center and bottom views. We conduct
two sets of experiments on such disjoint view-wise splits
(i) (100/same 100): using 100 action classes for training,
and testing on the same 100 action classes (ii) (100/novel
20): training on 100 action classes but testing on the rest
unseen 20 classes.AppendixHprovidesmore details of train-
ing/evaluation protocols (subject splits, etc.) for small-scale
datasets as well as the large scale Kinetics-400 dataset.
Stereo projections. For simulating different camera view-
points, we estimate the fundamental matrix F (Eq. (19)),
which relies on camera parameters. Thus, we use the Cam-
era Calibrator fromMATLAB to estimate intrinsic, extrinsic
and lens distortion parameters. For a given skeleton dataset,
we compute the range of spatial coordinates x and y, respec-
tively.We then split them into 3 equally-sized groups to form

Fig. 9 The impact of viewing angles in (a) horizontal and (b) vertical
camera views on NTU-60

roughly left, center, right views and other 3 groups for bot-
tom, center, top views. We choose ∼15 frame images from
each corresponding group, upload them to the Camera Cali-
brator, and export camera parameters. We then compute the
average distance/depth and height per group to estimate the
cameraposition.OnNTU-60andNTU-120,we simplygroup
the whole dataset into 3 cameras, which are left, center and
right views, as provided in Liu et al. (2019), and then we
compute the average distance per camera view based on the
height and distance settings given in the table in Liu et al.
(2019).

4.2 Ablation Studies

We start our experiments by investigating various architec-
tural choices and key hyperparameters of our model.
Camera viewpoint simulations. We choose 15 degrees as
the step size for the viewpoints simulation. The ranges of
camera azimuth and altitude are in [−90◦, 90◦].Where stated,
we perform a grid search on camera azimuth and altitude
with Hyperopt (Bergstra et al., 2015). Below, we explore
the choice of the angle ranges for both horizontal and verti-
cal views. Figure 9a, b (evaluations on the NTU-60 dataset)
show that the angle range [−45◦, 45◦] performs the best, and
widening the range in both views does not increase the per-
formance any further. Table 1 shows results for the chosen
range [−45◦, 45◦] of camera viewpoint simulations. (Euler
simple (K + K ′)) denotes a simple concatenation of fea-
tures from both horizontal and vertical views, whereas (Euler
(K×K ′)) and (CamVPC(K×K ′)) represent the grid search
of all possible views. The table shows that Euler angles for
the viewpoint augmentation outperform (Euler simple), and
(CamVPC) (viewpoints of query sequences are generated by
the stereo projection geometry) outperforms Euler angles in
almost all the experiments on NTU-60 and NTU-120. This
proves the effectiveness of using the stereo projection geom-
etry for the viewpoint augmentation.
Block size M and stride size S. Recall from Fig. 1, that each
skeleton sequence is divided into short-term temporal blocks
which may also partially overlap.

Table 2 shows evaluationsw.r.t. block size M and stride S,
and indicates that the best performance (both 50-class and 20-
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Table 1 Experimental results
on NTU-60 (left) and NTU-120
(right) for different camera
viewpoint simulations

# Training Classes NTU-60 NTU-120

10 20 30 40 50 20 40 60 80 100

Euler simple (K+K ′) 54.3 56.2 60.4 64.0 68.1 30.7 36.8 39.5 44.3 46.9

Euler (K×K ′) 60.8 67.4 67.5 70.3 75.0 32.9 39.2 43.5 48.4 50.2

CamVPC (K×K ′) 59.7 68.7 68.4 70.4 73.2 33.1 40.8 43.7 48.4 51.4

The best result is in bold

Table 2 The impact of the
number of frames M in
temporal block under stride step
S on results (NTU-60). S= pM ,
where 1− p describes the
temporal block overlap
percentage

M S = M S = 0.8M S = 0.6M S = 0.4M S = 0.2M

50-cls 20-cls 50-cls 20-cls 50-cls 20-cls 50-cls 20-cls 50-cls 20-cls

5 69.0 55.7 71.8 57.2 69.2 59.6 73.0 60.8 71.2 61.2

6 69.4 54.0 65.4 54.1 67.8 58.0 72.0 57.8 73.0 63.0

8 67.0 52.7 67.0 52.5 73.8 61.8 67.8 60.3 68.4 59.4

10 62.2 44.5 63.6 50.9 65.2 48.4 62.4 57.0 70.4 56.7

15 62.0 43.5 62.6 48.9 64.7 47.9 62.4 57.2 68.3 56.7

30 55.6 42.8 57.2 44.8 59.2 43.9 58.8 55.3 60.2 53.8

45 50.0 39.8 50.5 40.6 52.3 39.9 53.0 42.1 54.0 45.2

Higher p means fewer overlap frames between temporal blocks
The best result is in bold

class settings) is achieved for smaller block size (frame count
in the block) and smaller stride. Longer temporal blocks
decrease the performance due to the temporal information
not reaching the temporal alignment step of JEANIE. Our
block encoder encodes each temporal block for learning the
local temporal motions, and aggregate these block features
finally to form the global temporal motion cues. Smaller
stride helps capture more local motion patterns. Consider-
ing the accuracy-runtime trade-off, we choose M = 8 and
S=0.6M for the remaining experiments.
GNN as a block of Encoding Network. Recall from
Sect. 3.1 and Appendix B that our Encoding Network uses a
GNN block. For that reason, we investigate several models
with the goal of justifying our default choice.

We conduct experiments on 4 GNNs listed in Table 3.
S2GC performs the best on large-scale NTU-60 and NTU-
120, APPNP outperforms SGC, and SGC outperforms GCN.
We also notice that using GNN as a projection layer per-
formsbetter than singleFC layer used in standard transformer
by ∼5%. We note that using the RBF-induced distance for
dbase(·, ·) of JEANIE outperforms the Euclidean distance.
We choose S2GC as a block of our Encoding Network and
we use the RBF-induced base distance for JEANIE and other
DTW-based models.
ι-max shift. Recall from Sect. 3.2 that the ι-max controls the
smoothness of alignment.

Table 4 shows the evaluations of ι for the maximum shift.
We notice that ι=2 yields the best results for all the experi-
mental settings on both NTU-60 and NTU-120. Increasing ι

does not help improve the performance. We think ι relies on

(i) the speeds of action execution (ii) the temporal block size
M and the stride S.

4.3 Implementation Details

Before we discuss our main experimental results, below we
provide network configurations and training details.
Network configurations. Given the temporal block size M
(the number of frames in a block) and desired output size
d, the configuration of the 3-layer MLP unit is: FC (3M →
6M), LayerNorm (LN) as inDosovitskiy et al. (2020),ReLU,
FC (6M → 9M), LN, ReLU, Dropout (for smaller datasets,
the dropout rate is 0.5; for large-scale datasets, the dropout
rate is 0.1), FC (9M → d), LN. Note that M is the temporal
block size and d is the output feature dimension per body
joint.
Transformer block. The hidden size of our transformer (the
output size of thefirst FC layer of theMLP inEq. (7)) depends
on the dataset. For smaller scale datasets, the depth of the
transformer is L tr = 6 with 64 as the hidden size, and the
MLP output size is d = 32 (note that the MLP which pro-
vides X̂ and the MLP in the transformer must both have the
same output size). For NTU-60, the depth of the transformer
is L tr=6, the hidden size is 128 and the MLP output size is
d=64. For NTU-120, the depth of the transformer is L tr=6,
the hidden size is 256 and the MLP size is d = 128. For
Kinetics-skeleton, the depth for the transformer is L tr = 12,
hidden size is 512 and the MLP output size is d = 256.
The number of heads for the transformer of UWA3D Multi-
view Activity II, NTU-60, NTU-120 and Kinetics-skeleton
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Table 3 Evaluations of GNN
(block of Encoding Network)

FC layer GCN SGC APPNP S2GC S2GC
(Eucl.) (RBF)

NTU-60 (50-class) 51.2 56.0 68.1 68.5 75.6 78.1

NTU-120 (20-class) 23.3 27.9 30.7 30.8 34.5 37.2

The best result is in bold

Table 4 Experimental results
on NTU-60 (left) and NTU-120
(right) for ι-max shift

NTU-60 NTU-120

10 20 30 40 50 20 40 60 80 100

ι=1 60.8 70.7 72.5 72.9 75.2 36.3 42.5 48.7 50.0 54.8

ι=2 63.8 72.9 74.0 73.4 78.1 37.2 43.0 49.2 50.0 55.2

ι=3 55.2 58.9 65.7 67.1 72.5 36.7 43.0 48.5 49.0 54.9

ι=4 54.5 57.8 63.5 65.2 70.4 36.5 42.9 48.3 48.9 54.3

The best result is in bold

is set as 6, 12, 12 and 12, respectively. The output size d ′
of the final FC layer in Eq. (9) are 50, 100, 200, and 500
for UWA3D Multiview Activity II, NTU-60, NTU-120 and
Kinetics-skeleton, respectively.
Training details. The parameters (weights) of the pipeline
are initialized with the normal distribution (zero mean and
unit standard deviation).We use 1e-3 as the learning rate, and
the weight decay is set to 1e-6. We use the SGD optimizer.
We set the number of training episodes to 100K for NTU-
60, 200K for NTU-120, 500K for 3D Kinetics-skeleton, and
10K for UWA3D Multiview Activity II. We use Hyperopt
(Bergstra et al., 2015) for hyperparameter search on valida-
tion sets for all the datasets.

4.4 Discussion on Supervised Few-Shot Action
Recognition

NTU-60. Table 5 (Sup.) shows that using the viewpoint
alignment simultaneously in two dimensions, x and y for
Euler angles, or azimuth and altitude the stereo projec-
tion geometry (CamVPC), improves the performance by
5–8% compared to (Euler) with a simple concatenation
of viewpoints, a variant where the best viewpoint align-
ment path was chosen from the best alignment path along
x and the best alignment path along y. Euler with (sim-
ple concat.) is better than Euler with y rotations only ((V)
includes rotations along y while (2V) includes rotations
along two axes). We indicate where temporal alignment
(T) is also used. When we use HyperOpt (Bergstra et al.,
2015) to search for the best angle range in which we
perform the viewpoint alignment (CamVPC), the results
improve further. Enabling the viewpoint alignment for sup-
port sequences (CamVPC) yields extra improvement, and
our best variant of JEANIE boosts the performance by
∼2%.

We also show that aligning query and support trajectories
by the angle of torso 3D joint, denoted (Traj. aligned) are
not very powerful. We note that aligning piece-wise parts
(blocks) is better than trying to align entire trajectories. In
fact, aligning individual frames by torso to the frontal view
(Each frame to frontal view) and aligning block average of
torso direction to the frontal view (Each block to frontal
view) were marginally better. We note these baselines use
soft-DTW.

NTU-120. Table 6 (Sup.) shows that our proposed method
achieves the best results on NTU-120, and outperforms
the recent SL-DML and Skeleton-DML by 6.1% and 2.8%
respectively (100 training classes). Note that Skeleton-DML
requires the pre-trained model for the weights initializa-
tion whereas our proposed model with JEANIE is fully
differentiable. For comparisons, we extended the view adap-
tive neural networks (Zhang et al., 2019) by combining
them with ProtoNet (Snell et al., 2017). VA-RNN+VA-CNN
(Zhang et al., 2019) uses 0.47M+24M parameters with
random rotation augmentations while JEANIE uses 0.25–
0.5M parameters. Their rotation+translation keys are not
proven to perform smooth optimal alignment as JEANIE.
In contrast, dJEANIE performs jointly a smooth viewpoint-
temporal alignment with smoothness by design. They also
use Euler angles which are a worse option (see Table 5
and 6) than the camera projection of JEANIE.We notice that
ProtoNet+VA backbones is 12% worse than our JEANIE.
Even if we split skeletons into blocks to let soft-DTW per-
form temporal alignment of prototypes & query, JEANIE
is still 4–6% better. Notice also that JEANIE with trans-
former is between 3% and 6% better than JEANIE with no
transformer, which validates the use of transformer on large
datasets.

‘
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Table 5 Results on NTU-60 (all use S2GC)

Viewpoint Align. 10 20 30 40 50
Simulation

Sup. Matching Nets (Vinyals et al., 2016) 46.1 48.6 53.3 56.2 58.8

Matching Nets (Vinyals et al., 2016) 2V 47.2 50.7 55.4 57.7 60.2

ProtoNet (Snell et al., 2017) 47.2 51.1 54.3 58.9 63.0

ProtoNet (Snell et al., 2017) 2V 49.8 53.1 56.7 60.9 64.3

TAP (Su & Wen, 2022) 54.2 57.3 61.7 64.7 68.3

Each frame to frontal view – – 52.9 53.3 54.6 54.2 58.3

Each block to frontal view – – 53.9 56.1 60.1 63.8 68.0

Traj. aligned (video-level) – – 36.1 40.3 44.5 48.0 50.2

Traj. aligned (block-level) – – 52.9 55.8 59.4 63.6 66.7

No soft-DTW (S2GC) – – 50.8 54.7 58.8 60.2 62.8

soft-DTW – T 53.7 56.2 60.0 63.9 67.8

JEANIE Euler T+V 54.0 56.0 60.2 63.8 67.8

JEANIE (simple concat.) Euler T+2V 54.3 56.2 60.4 64.0 68.1

JEANIE Euler T+2V 60.8 67.4 67.5 70.3 75.0

JEANIE CamVPC T+2V 59.7 68.7 68.4 70.4 73.2

JEANIE (+crossval.) CamVPC T+2V 63.4 72.4 73.5 73.2 78.1

JEANIE (+crossval. +Transf.) CamVPC T+2V 65.0 75.2 76.7 78.9 80.0

Unsup. +Transf. soft-DTW (HA) – T 16.3 23.7 28.3 31.8 33.1

soft-DTW (SC) – T 18.7 26.0 31.6 34.2 38.1

soft-DTW (SC+) – T 18.5 25.7 30.0 33.9 37.9

soft-DTW (LLC) – T 23.1 30.1 33.0 36.4 40.9

soft-DTW (SA) – T 25.4 31.7 34.6 38.0 41.7

soft-DTW (LcSA) – T 25.9 32.3 35.1 38.5 42.3

JEANIE (LLC)− �1 CamVPC T+2V 27.5 33.6 36.0 41.6 44.5

JEANIE (LLC)− �2 CamVPC T+2V 27.8 33.9 36.5 41.7 44.7

JEANIE (LLC)− HIK CamVPC T+2V 28.0 33.6 36.8 42.0 45.1

JEANIE (LLC)− CSK CamVPC T+2V 27.8 33.9 36.8 41.7 45.0

JEANIE (LcSA)− �1 CamVPC T+2V 29.0 35.6 39.5 44.8 47.5

JEANIE (LcSA)− �2 CamVPC T+2V 29.1 35.8 39.7 45.2 48.0

JEANIE (LcSA)− HIK CamVPC T+2V 28.8 35.8 39.7 45.0 47.7

JEANIE (LcSA)− CSK CamVPC T+2V 29.0 35.8 40.0 45.0 48.0

FVM (LcSA)− CSK CamVPC T+2V 27.0 33.4 36.5 42.0 45.1

Fusion +Transf. Weighted fusion CamVPC T+2V 66.5 76.9 79.0 81.2 81.5

Finetuning unsup. CamVPC T+2V 67.0 77.2 79.9 82.0 84.5

MAML-inspired fusion CamVPC T+2V 70.0 78.3 81.0 82.9 85.0

Adaptation-based CamVPC T+2V 69.8 78.2 80.7 82.3 84.8

All methods enjoy temporal alignment by soft-DTW or JEANIE (joint temporal and viewpoint alignment) except where indicated otherwise. We
use the �2 norm for comparing the codes in unsupervised setting with soft-DTW. For unsupervised JEANIE, the distance for comparing the codes
is indicated
The best result is in bold
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Table 6 Experimental results on NTU-120 (S2GC backbone)

viewpoint align. 20 40 60 80 100
simulation

Sup. APSR (Liu et al., 2019) 29.1 34.8 39.2 42.8 45.3

SL-DML (Memmesheimer et al., 2021) 36.7 42.4 49.0 46.4 50.9

Skeleton-DML (Memmesheimer et al., 2022) 28.6 37.5 48.6 48.0 54.2

ProtoNet+VA-RNN(aug.) Zhang et al. (2017) 25.3 28.6 32.5 35.2 38.0

ProtoNet+VA-CNN(aug.) Zhang et al. (2019) 29.7 33.0 39.3 41.5 42.8

ProtoNet+VA-fusion(aug.) Zhang et al. (2019) 29.8 33.2 39.5 41.7 43.0

ProtoNet+VA∗-fusion(aug.) Zhang et al. (2019) 33.3 38.7 45.2 46.3 49.8

TAP (Su & Wen, 2022) 31.2 37.7 40.9 44.5 47.3

ALCA-GCN (Zhu et al., 2023b) 38.7 46.6 51.0 53.7 57.6

No soft-DTW (S2GC) – – 30.0 35.9 39.2 43.6 46.4

soft-DTW – T 30.3 37.2 39.7 44.0 46.8

JEANIE Euler T+V 30.6 36.7 39.2 44.0 47.0

JEANIE (simple concat.) Euler T+2V 30.7 36.8 39.5 44.3 46.9

JEANIE Euler T+2V 32.9 39.2 43.5 48.4 50.2

JEANIE CamVPC T+2V 33.1 40.8 43.7 48.4 51.4

JEANIE (+crossval.) CamVPC T+2V 37.2 43.0 49.2 50.0 55.2

FVM (+crossval. +Transf.) CamVPC T+2V 34.5 41.9 44.2 48.7 52.0

JEANIE (+crossval. +Transf.) CamVPC T+2V 38.5 44.1 50.3 51.2 57.0

Unsup. +Transf. soft-DTW (LcSA)− �2 - T 15.7 21.4 25.2 32.0 40.2

JEANIE (LcSA)− CSK CamVPC T+2V 18.6 25.2 32.0 39.6 48.5

FVM (LcSA)− CSK CamVPC T+2V 17.5 22.4 30.7 36.1 44.5

Fusion +Transf. Weighted fusion CamVPC T+2V 44.4 48.6 50.8 52.0 58.3

Finetuning unsup. CamVPC T+2V 45.6 50.8 53.0 55.0 60.2

MAML-inspired fusion CamVPC T+2V 48.2 53.3 57.0 60.3 62.1

Adaptation-based CamVPC T+2V 47.9 53.0 56.5 60.0 61.9

All methods enjoy temporal alignment by soft-DTW or JEANIE (joint temporal and viewpoint alignment) except VA (Zhang et al., 2017, 2019)
and other cited works. For VA∗, we used soft-DTW on temporal blocks while VA generated temporal blocks. For unsupervised soft-DTW and
JEANIE, the best distance for comparing the codes is indicated. For brevity, we list unsupervised variants on LcSA but Table 11 in Appendix E
contains all variants
The best result is in bold

Kinetics-skeleton. We evaluate our proposed model on both
2D and 3D Kinetics-skeleton. We follow the training and
evaluation protocol in Appendix H. Table 7 shows that using
3D skeletons outperforms the use of 2D skeletons by 3− 4%.
The temporal alignment only (with soft-DTW) outperforms
baseline (without alignment) by ∼2% and 3% on 2D and 3D
skeletons respectively, and JEANIE outperforms the tem-
poral alignment only by around 5%. Our best variant with
JEANIE further boosts results by 2%. We notice that the
improvements for the use of camera viewpoint simulation
(CamVPC) compared to the use of Euler angles are limited,
around 0.3% and 0.6% for JEANIE and FVM respectively.
The main reason is that the Kinetics-skeleton is a large-scale

dataset collected fromYouTube videos, and the camera view-
point simulation becomes unreliable especially when videos
are captured by multiple different devices, e.g., camera and
mobile phone.

4.5 Discussion on Unsupervised Few-Shot Action
Recognition

Recall from Sect. 3.4 that JEANIE can help train unsu-
pervised FSAR by forming a dictionary that relies on
temporal-viewpoint alignment of JEANIE which factors out
nuisance temporal and pose variations in sequences.

However, the choice of feature coding and dictionary
learning method can affect the performance of unsuper-
vised learning. Thus, we investigate several variants from
Appendix C.
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Table 7 Experiments on 2D and
3D Kinetics-skeleton

viewpoint alignment 2D skel. 3D skel.
simulation

Sup. No soft-DTW(S2GC) – – 32.8 35.9

soft-DTW – T 34.7 39.6

FVM Euler T+2V – 44.1

JEANIE Euler T+2V – 50.3

JEANIE(+Transf.) Euler T+2V – 52.5

JEANIE(+Transf.) CamVPC T+2V – 52.8

Unsup. +Transf. soft-DTW(LcSA)− �2 – T 19.3 22.2

JEANIE (LcSA)− CSK CamVPC T+2V – 28.3

FVM (LcSA)− �2 CamVPC T+2V – 25.1

Fusion +Transf. Weighted fusion CamVPC T+2V – 53.3

Finetuning unsup. CamVPC T+2V – 54.2

MAML-inspired fusion CamVPC T+2V – 57.0

Adaptation-based CamVPC T+2V – 56.3

Note that we have no results on JEANIE or FVM for 2D coordinates as these require very different viewpoint
modeling than 3D coordinates. For brevity, we list unsupervised variants on LcSA but Table 12 in Appendix E
contains more variants
The best result is in bold

Table 5 (Unsup.) and Table 11 in Appendix E (extension
of Table 6 (Unsup.)) show on NTU-60 and NTU-120 that the
LcSA coder performs better than SA by ∼0.6% and 1.5%,
whereas SA outperforms LLC by ∼1.5% and 2%. As LcSA
and SA are based on the non-linear sigmoid-like reconstruc-
tion functions, we suspect they are more robust than linear
reconstruction function of LLC. Since the LcSA is the best
performer in our experiments followed by SA and LLC or
SC, we choose LcSA for further analysis.

Table 5 (Unsup.), and Tables 11 and 12 in Appendix E
(extensions of Tables 6 (Unsup.) and 7 (Unsup.)) also show
that the choose of different distance measures for compar-
ing the dictionary-coded vectors of sequences during the test
stage does not affect the performance by much. The kernel-
induced distances, e.g., HIK distance and CSK distance and
�2-norm outperform the �1 norm by ∼0.5% on average. We
choose the CSK distance for unsupervised JEANIE with
LcSA as the default distance for comparing dictionary-coded
vectors as it was marginally better performer in the majority
of experiments.

Tables 5 (Unsup.), 6 (Unsup.) and 7 (Unsup.) show
that unsupervised JEANIE (temporal-viewpoint alignment)
outperforms soft-DTW (temporal alignment only) by up
to 5%, 9% and 6% on NTU-60, NTU-120 and Kinetics-
skeleton, respectively. Table 8 (Unsup.) shows that the
biggest improvement is obtained when using unsupervised
JEANIE on UWA3D Multiview Activity II dataset, with
10% performance gain. This outlines the importance of
the joint temporal-viewpoint alignment under heavy camera
pose variations.

Interestingly, FVM in unsupervised learning performs
worse compared to our JEANIE, e.g., JEANIE suppresses
FVM by ∼3%, 4% and 3% respectively on NTU-60, NTU-
120 and Kinetics-skeleton in Tables 5 (Unsup.), 6 (Unsup.)
and 7 (Unsup.). On UWA3DMultiview Activity II in Table 8
(Unsup.), JEANIE outperforms FVM bymore than 5%. This
is because FVM always seeks the best local viewpoint align-
ment for every stepof soft-DTWwhich realizes a non-smooth
temporal-viewpoint path in contrast to JEANIE. Without the
guidance of label information, FVMfails to capture the corre-
sponding relationships between each temporal and viewpoint
alignment. Thus, FVM produces a worse dictionary than
JEANIE which validates the need for factoring out jointly
temporal and viewpoint nuisance variations from sequences.

Table 9 (Unsup.) shows that on our newly introduced
multi-view classification protocol onNTU-120, for the unsu-
pervised learning experiments, JEANIE outperforms the
baseline (temporal alignment only with soft-DTW) by 7%
and 8% on average on (100/same 100) and (100/novel 20)
respectively. Moreover, JEANIE outperforms the FVM by
around 4% and 3% on (100/same 100) and (100/novel 20)
respectively.

4.6 Discussion on JEANIE and FVM

For supervised learning, JEANIE outperforms FVM by 2–
4% on NTU-120, and outperforms FVM by around 6%
on Kinetics-skeleton. For unsupervised learning, JEANIE
improves the performance by around 3%on average onNTU-
60, NTU-120 and Kinetics-skeleton. On UWA3DMultiview

123



International Journal of Computer Vision

Table 8 Experiments on the UWA3D Multiview Activity II. All with S2GC layer unless specified

align. Train V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 Mean

Test V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

Sup. GCN – 36.4 26.2 20.6 30.2 33.7 22.4 43.1 26.6 16.9 12.8 26.3 36.5 27.6

SGC – 40.9 60.3 44.1 52.6 48.5 38.7 50.6 52.8 52.8 37.2 57.8 49.6 48.8

+soft-DTW T 43.9 60.8 48.1 54.6 52.6 45.7 54.0 58.2 56.7 40.2 60.2 51.1 52.2

+JEANIE T+2V 47.0 62.8 50.4 57.8 53.6 47.0 57.9 62.3 57.0 44.8 61.7 52.3 54.6

APPNP – 42.9 61.9 47.8 58.7 53.8 44.0 52.3 60.3 55.1 38.2 58.3 47.9 51.8

+soft-DTW T 44.3 63.2 50.7 62.3 53.9 45.0 56.9 62.8 56.4 39.3 60.1 51.9 53.9

+JEANIE T+2V 46.8 64.6 51.3 65.1 54.7 46.4 58.2 65.1 58.8 43.9 60.3 52.5 55.6

S2GC – 45.5 64.4 46.8 61.6 49.5 43.2 57.3 61.2 51.0 42.9 57.0 49.2 52.5

+soft-DTW T 48.2 67.2 51.2 67.0 53.2 46.8 62.4 66.2 57.8 45.0 62.2 53.0 56.7

+FVM T+2V 50.7 68.8 56.3 69.2 55.8 47.1 63.7 68.8 62.5 51.4 63.8 55.7 59.5

+JEANIE T+2V 55.3 70.2 61.4 72.5 60.9 50.8 66.4 73.9 68.8 57.2 66.7 60.2 63.7

Unsup. soft-DTW(LcSA)− �2 T 40.5 41.4 40.2 43.6 38.2 39.9 38.2 40.2 41.5 39.7 40.9 38.8 40.3

JEANIE(LcSA)− CSK T+2V 53.0 52.5 50.1 51.0 47.6 49.2 49.5 52.3 51.3 49.0 49.2 47.1 50.2

FVM(LcSA)− CSK T+2V 46.2 44.0 45.1 48.0 43.5 44.1 43.8 46.0 47.2 43.5 45.8 43.1 45.0

Fusion Weighted fusion T+2V 64.9 70.4 63.9 73.4 62.1 57.3 67.8 74.1 69.7 61.3 68.9 63.2 66.4

Finetuning unsup. T+2V 73.3 70.8 68.8 74.0 62.7 61.7 69.4 74.3 71.1 67.9 72.1 65.8 69.3

MAML-inspired fusion T+2V 78.7 73.9 72.7 75.9 65.8 70.9 74.3 76.2 77.9 77.3 80.2 73.0 74.7

Adaptation-based T+2V 76.3 71.5 72.0 75.0 65.8 69.2 72.8 75.5 75.9 76.5 78.3 71.7 73.4

Activity II, JEANIE suppresses FVM by 4% and 5% respec-
tively for supervised and unsupervised experiments. This
shows that seeking jointly the best temporal-viewpoint align-
ment is more valuable than considering viewpoint alignment
as a separate local alignment task (free range alignment per
each step of soft-DTW). By and large, FVM often performs
better than soft-DTW (temporal alignment only) by 3–5% on
average.

To explain what makes JEANIE perform well on the task
of comparing pairs of sequences, we perform some visual-
isations. To this end, we choose skeleton sequences from
UWA3D Multiview Activity II for experiments and visual-
izations of FVM and JEANIE. UWA3D Multiview Activity
II contains rich viewpoint configurations and so is perfect
for our investigations. We verify that our JEANIE is able to
find the better matching distances compared to FVM on two
following scenarios.
Matching similar actions. We choose a walking skele-
ton sequence (‘a12_s01_e01_v01’) as the query sample
with more viewing angles for the camera viewpoint sim-
ulation, and we select another walking skeleton sequence
of a different view (‘a12_s01_e01_v03’) and a running
skeleton sequence (‘a20_s01_e01_v02’) as support sam-
ples respectively.
Matching actions with similar motion trajectories. We
choose a two hand punching skeleton sequence
(‘a04_s01_e01_v01’) as the query sample with more

viewing angles for the camera viewpoint simulation, and we
select another two hand punching skeleton sequence of a
different view (‘a04_s05_e01_v02’) and a holding head
skeleton sequence (‘a10_s05_e01_v02’) as support sam-
ples respectively.

Figures 10 and 11 show the visualizations. Comparing
Fig. 10a, b of FVM, we notice that for skeleton sequences
from different action classes (walking vs. running), FVM
finds the path with a very small distance dFVM = 2.68. In
contrast, for sequences from the same action class (walk-
ing vs. walking), FVM gives dFVM = 4.60 which is higher
than in case of within-class sequences. This is an undesired
effect which may result in wrong comparison decision. In
contrast, in Fig. 10c, d, our JEANIE gives dJEANIE = 8.57
for sequences of the same action class and dJEANIE = 11.21
for sequences from different action classes, whichmeans that
thewithin-class distances are smaller than between-class dis-
tances. This is a very important property when comparing
pairs of sequences.

Figure 11 provides similar observations that JEANIE pro-
duces more reasonable matching distances than FVM.

4.7 Discussion onMulti-View Action Recognition

As mentioned in Sect. 4.5, JEANIE yields good results espe-
cially in unsupervised learning, with the performance gain
over 5% on UWA3DMultiview Activity II and 4% on NTU-
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Table 9 Results on NTU-120 (multi-view classification). We use S2GC

Eval. Protocol Train bott. bott. bott.& cent. left left left & cent.
Test cent. top top cent. right right

Sup. 100/same 100 soft-DTW 74.2 73.8 75.0 58.3 57.2 68.9

FVM 79.9 78.2 80.0 65.9 63.9 75.0

JEANIE 81.5 79.2 83.9 67.7 66.9 79.2

100/novel 20 soft-DTW 58.2 58.2 61.3 51.3 47.2 53.7

FVM 66.0 65.3 68.2 58.8 53.9 60.1

JEANIE 67.8 65.8 70.8 59.5 55.0 62.7

Unsup. 100/same 100 soft-DTW 55.6 53.9 56.1 40.9 39.7 47.3

FVM 57.8 58.0 59.7 47.9 43.1 48.8

JEANIE 60.3 61.7 63.2 51.7 46.9 52.5

100/novel 20 soft-DTW 40.2 39.7 40.8 33.7 32.9 45.5

FVM 46.2 44.5 47.0 38.1 34.0 47.1

JEANIE 48.8 47.2 50.0 41.0 39.7 51.8

Fusion 100/same 100 Weighted fusion 82.8 80.2 84.6 68.3 67.4 79.7

Finetuning unsup. 83.2 81.0 86.0 69.7 68.9 80.5

MAML-inspired fusion 85.3 83.2 87.1 72.2 71.7 82.3

Adaptation-based 85.0 82.4 86.8 71.3 69.8 81.0

100/novel 20 Weighted fusion 68.7 66.3 71.2 60.4 55.9 63.3

Finetuning unsup. 69.2 67.3 72.8 61.1 56.8 64.6

MAML-inspired fusion 72.3 69.0 74.9 63.0 58.7 67.1

Adaptation-based 71.9 68.1 73.3 62.7 56.9 66.0

The best result is in bold

Table 10 Evaluation of
different testing strategies, e.g.,
with supervised learning,
unsupervised learning and a
combination of both on
Kinetics-skeleton when the
model is trained with the fusion
of both supervised and
unsupervised FSAR

Train with fusion # ENs Different test cases
sup. only unsup. only sup.+unsup.

Weighted fusion 2 52.8 28.3 53.3

Finetuning unsup. 1 53.1 (↑0.6) 40.7 (↑12.4) 54.2 (↑0.9)
Adaptation-based 1 53.7 (↑1.2) 49.6 (↑21.3) 56.3 (↑3.0)
MAML-inspired fusion 1 54.0 (↑1.5) 50.3 (↑22.0) 57.0 (↑3.7)
The best result is in bold

120 multi-view classification protocols. Below we discuss
the multi-view supervised FSAR.

Table 8 (Sup.) shows that adding temporal alignment (with
soft-DTW) to SGC, APPNP and S2GC improves results on
UWA3DMultiviewActivity II, and the big performance gain
is obtained via further adding the viewpoint alignment by
JEANIE. Despite the dataset is challenging due to novel
viewpoints, JEANIE performs consistently well on all differ-
ent combinations of training/testing viewpoint settings. This
is expected as our method aligns both temporal and camera
viewpoint which allows a robust classification. JEANIE out-
performsFVMby4.2%and the baseline (temporal alignment
only with soft-DTW) by 7% on average.

Influence of camera views has been explored in Wang
(2017); Wang et al. (2020b) on UWA3D Multiview Activity
II, and they show that when the left view V2 and right view

V3 were used for training and front view V1 for testing, the
recognition accuracy is high since the viewing angle of the
front view V1 is between V2 and V3; when the left view V2
and top view V4 are used for training and right view V3 is
used for testing (or the front view V1 and right view V3 are
used for training and top view V4 is used for testing), the
recognition accuracies are slightly lower. However, as shown
in Table 8 (Sup.), our JEANIE is able to handle the influence
of viewpoints and performs almost equally well on all 12
different view combinationswhich highlights the importance
of jointly aligning both temporal and viewpoint modes of
sequences.

Table 9 (Sup.) shows the experimental results on the
NTU-120. We notice that adding more camera viewpoints
to the training process helps the multi-view classification,
e.g., using bottom and center views for training and top view
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Fig. 10 Visualization of FVM and JEANIE for walking vs. walking
(two different sequences) and walking vs. running. We notice that for
two different action sequences in (b), the greedy FVM finds the path
with a very small distance dFVM = 2.68 but for sequences of the same
action class, FVM gives dFVM = 4.60. This is clearly suboptimal as
the within-class distance is higher then the between-class distance (to
counteract this issue, we propose JEANIE). In contrast, our JEANIE
is able to produce a smaller distance for within-class sequences and a
larger distance for between-class sequences, which is a very important
property when comparing pairs of sequences

for testing, and using left and center views for training and the
right view for testing, and the performance gain is more than
4% on (100/same 100). Notice that even though we test on
20 novel classes (100/novel 20) which are never used in the
training set, we still achieve 62.7% and 70.8% formulti-view
classification in horizontal/vertical camera viewpoints.

4.8 Fusion of Supervised and Unsupervised FSAR

Recall that Sect. 3.5 defines two baseline and two advanced
fusion strategies for supervised and unsupervised learning
due to their complementary nature.

Tables 5 (Fusion), 6 (Fusion), 7 (Fusion), and 8 (Fusion)
show that fusion improves the performance. The MAML-
inspired fusion yields 5%, 5.1%, 4.2% and 9% improvements
compared to the supervised FSAR only on NTU-60, NTU-
120, Kinetics-skeleton and UWA3D Multiview Activity II,
respectively. This validates our assertion that JEANIE helps
design robust feature space for comparing sequences both in
supervised and unsupervised scenarios.

The adaptation-based fusion (Adaptation-based) performs
almost as well as the MAML-inspired fusion, within 1%

Fig. 11 Visualization of FVM and JEANIE for two hand punching
vs. two hand punching (two different sequences) and two hand punching
vs. holding head. We notice that for two different action sequences in
(b), the greedy FVM finds the path which results in dFVM = 1.63 for
sequences of different action classes, yet FVM gives dFVM = 1.95 for
two sequences of the same class. The within-class distance should be
smaller than the between-class distance but greedy approaches such
as FVM cannot handle this requirement well. JEANIE gives smaller
distancewhen comparingwithin-class sequences compared to between-
class sequences. This is very important for comparing sequences

difference across datasets. This is expected as MAML algo-
rithms are designed to learn across multiple tasks, i.e., in
our case the unsupervised reconstruction-driven loss and
the supervised loss interact together via gradient updates
in such a way that the unsupervised information (a form
of clustering) is transferred to guide the supervised loss.
The domain adaptation inspired feature alignment achieves
a similar effect but the transfer between unsupervised and
supervised losses occurs at the feature representation level
due to feature alignment.

Training one EN with the fusion of both supervised and
unsupervised FSAR outperforms a naive fusion of scores
(Weighted fusion) from two Encoding Networks trained sep-
arately. Finetuning an unsupervised model with supervised
loss (Finetuning unsup.) outperforms the weighted fusion.

Table 10 compares different testing strategies on fusion
models. The MAML-inspired fusion achieves the best
results, with 1.5%, 22.0% and 3.7% improvements when
tested on supervised learning, unsupervised learning and
a fusion of both. For both adaptation-based and MAML-
inspired fusions, testing on unsupervised FSARonly (nearest
neighbor on dictionary-encoded vectors) performs close to
the results obtained from supervised FSAR only (nearest
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neighbor on feature maps), i.e., within 5% difference. The
reduced performance gap between supervised and unsuper-
vised FSAR suggests that the feature space of EN is adapted
to both unsupervised and supervised FSAR.

5 Conclusions

We have proposed Joint tEmporal and cAmera viewpoiNt
alIgnmEnt (JEANIE) for sequence pairs and evaluated it on
3D skeleton sequences whose poses/camera views are easy
to manipulate in 3D. We have shown that the smooth prop-
erty of alignment jointly in temporal and viewpoint modes
is advantageous compared to the temporal alignment alone
(soft-DTW) or models that freely align viewpoint per each
temporal block without imposing the smoothness on varia-
tions of the matching path.

JEANIE can match correctly support and query sequence
pairs as it factors out nuisance variations, which is essential
under limited samples of novel classes. Especially, unsuper-
vised FSAR benefits in such a scenario, i.e., when nuisance
variations are factored out, sequences of the same class are
more likely to occupy similar/same set of atoms in the dictio-
nary. As supervised FSAR forms the feature space driven by
the similarity learning loss and the unsupervised FSAR by
the dictionary reconstruction-driven loss, fusing both learn-
ing strategies has helped achieve further gains.

Our experiments have shown that using the stereo camera
geometry is more efficient than simply generating multiple
views by Euler angles. Finally, we have contributed unsuper-
vised, supervised and fused FSAR approaches to the small
family of FSAR for articulated 3D body joints.

Appendices

A Euler Rotations and Simulated Camera
Views

Euler angles https://en.wikipedia.org/wiki/Euler_angles are
defined as successive planar rotation angles around x , y, and
z axes. For 3D coordinates, we have the following rotation
matrices Rx , Ry and Rz :

⎡

⎣
1 0 0
0 cosθx sinθx
0 −sinθx cosθx

⎤

⎦ ,

⎡

⎣
cosθy 0 −sinθy
0 1 0

sinθy 0 cosθy

⎤

⎦ ,

⎡

⎣
cosθz sinθz 0
−sinθz cosθz 0

0 0 1

⎤

⎦ (18)

As the resulting composite rotation matrix depends on the
order of rotation axes, i.e., RxRyRz �= RzRyRx , we also
investigate the algebra of stereo projection.
Stereoprojectionshttp://www.cse.psu.edu/~rtc12/CSE486/
lecture12.pdf. Suppose we have a rotation matrix R and a
translation vector t = [tx , ty, tz]T between left/right cam-
eras (imagine some non-existent stereo camera). LetMl and
Mr be the intrinsic matrices of the left/right cameras. Let pl
and pr be coordinates of the left/right camera. As the origin
of the right camera in the left camera coordinates is t, we
have: pr = R(pl − t) and (pl − t)T = (RTpr )T . The plane
(polar surface) formed by all points passing through t can be
expressed by (pl−t)T (pl×t)= 0. Then, pl×t=Spl where

S=
⎡

⎣
0 −tz ty
tz 0 −tx

−ty tx 0

⎤

⎦.

Based on the above equations, we obtain pr TRSpl = 0,
and note that RS=E is the Essential Matrix, and pTr Epl =0
describes the relationship for the same physical point under
the left and right camera coordinate system. As E contains
no internal information about the camera, and E is based
on the camera coordinates, we use a fundamental matrix F
that describes the relationship for the same physical point
under the camera pixel coordinate system. The relationship
between the pixel and camera coordinates is: p∗ =Mp′ and
p′
r
TEp′

l =0.
Suppose the pixel coordinates of p′

l and p′
r in the

pixel coordinate system are p∗
l and p∗

r , then we can write
p∗
r
T (M−1

r )TEM−1
l p∗

l = 0, where F = (M−1
r )TEM−1

l is the
fundamental matrix. Thus, the relationship for the same point
in the pixel coordinate system of the left/right camera is:

p∗
r
TFp∗

l =0. (19)

We treat 3D body joint coordinates as p∗
l . Given F, we obtain

their coordinates p∗
r in the new view.

B Graph Neural Network as a Block of
Encoding Network

GNN notations. Firstly, let G = (V,E) be a graph with
the vertex set V with nodes {v1, ..., vn}, and E are edges
of the graph. Let A and D be the adjacency and diagonal
degree matrix, respectively. Let Ã=A+I be the adjacency
matrix with self-loops (identity matrix) with the correspond-
ing diagonal degree matrix D̃ such that D̃ii =∑

j (A
i j+Ii j ).

Let S= D̃− 1
2 ÃD̃− 1

2 be the normalized adjacency matrix with
added self-loops. For the l-th layer, we use�(l) to denote the
learnt weight matrix, and � to denote the outputs from the
graph networks. Below, we list backbones used by us.
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GCN (Kipf ambWelling, 2017). GCNs learn the feature rep-
resentations for the features xi of each node over multiple
layers. For the l-th layer, we denote the input by H(l−1) and
the output byH(l). Let the input (initial) node representations
beH(0) =X. ByXwemean some node features for generality
of explanation. For our particular case, following the notation
in Eq. (2), we would be setting H(0) = X̂ for each temporal
block. For an L-layer GCN, the output representations are
given by:

�GCN=SH(L−1)�(L) where H(l)=ReLU(SH(l−1)�(l)).

(20)

APPNP (Klicpera et al., 2019). Personalized Propagation
of Neural Predictions (PPNP) and its fast approximation,
APPNP, are based on the personalized PageRank. LetH(0) =
f�(X) be the input to APPNP, where f�(·) can be an
MLP with parameters �. Let the output of the l-th layer
beH(l) =(1−α)SH(l−1)+αH(0), where α is the teleport (or
restart) probability in range (0, 1]. For an L-layer APPNP,
we have:

�APPNP=(1−α)SHL+αH(0). (21)

SGC (Wu et al., 2019) & S2GC (Zhu & Koniusz, 2021).
SGC captures the L-hops neighborhood in the graph by the
L-th power of the transition matrix used as a spectral filter.
For an L-layer SGC, we obtain:

�SGC=SLX�. (22)

Based on a modified Markov Diffusion Kernel, Simple
Spectral Graph Convolution (S2GC) is the summation over
l-hops, l=1, ..., L . The output of S2GC is:

�2
SGC= 1

L

L∑

l=1

((1−α)SlX+αX)�. (23)

In case of APPNP, SGC and S2GC, |FGNN |=0 because
we do not use their learnable parameters � (i.e., think �

is set as the identity matrix). The GNN outputs are further
passes into a Transformer and an FC layer, which returns
Ψ ∈ R

d ′×K×K ′×τ query feature maps and Ψ ′ ∈ R
d ′×τ ′

sup-
port feature maps.

C Feature Coding and Dictionary Learning

The core idea of feature coding is to reconstruct a fea-
ture vector with codewords by solving a least squares
based optimization problem with constraints imposed on the
codewords. The full codewords (a.k.a.elements or atoms)

compose a dictionary. Atoms in the dictionary are not
required to be orthogonal and the dictionary may be an
over-complete (the number of atoms is larger than their
dimension). For most feature coding algorithms, only a
subset of codewords are chosen by the solver to repre-
sent a feature vector, and thus the coding vector α may
be sparse, i.e., the responses are zeros on those code-
words which are not chosen. In what follows, we however
replace the Euclidean distance with the JEANIE mea-
sure.

The main difference among various feature coding meth-
ods lies in the constraint term. Alternatively, we obtain α

by defining some specific function α(Ψ i ; M) that implicitly
realizes the regularization term. The choice of�(αi , M,Ψ i )

realizes some desired constraints via regularization κ >

0, e.g., �(αi , M,Ψ i ) = ‖αi‖1 encourages sparsity of
α.

C.1 Feature Coding

Below we detail different feature coders we explore in our
work, i.e., Hard Assignment (HA) (Csurka et al., 2004),
Sparse Coding (SC) (Lee et al., 2006; Yang et al., 2009),
Non-negative Sparse Coding (SC+) (Hoyer, 2002), Locality-
constrained Linear Coding (LLC) (Wang et al., 2010), Soft
Assignment (SA) (Bilmes, 1998; Gemert et al., 2008), and
Locality-constrained Soft Assignment (LcSA) (Koniusz &
Mikolajczyk, 2011; Liu et al., 2011). LcSA is our default
feature coder due to its simplicity and strong performance.
Hard Assignment (HA). This encoder assigns each Ψ to its
nearest m by solving the following optimisation problem:

α(Ψ ) = argminα′∈{0,1}k d2JEANIE(Ψ , Mα′),
s.t. ‖α′‖1 = 1. (24)

Sparse Coding (SC) & Non-negative Sparse Coding
(SC+). SC encodes each Ψ as a sparse linear combination of
atoms M by optimising the following objective:

α(Ψ ) = argminα′ d2JEANIE(Ψ , Mα′) + κ‖α′‖1, (25)

whereas SC+ additionally imposes a constraint that α′ ≥ 0.
Both SC and SC+ encode eachΨ on a subspace of M of size
controlled by the sparsity term.
Locality-constrained Linear Coding (LLC). The LLC
encoder uses the following criteria for each Ψ :

α(Ψ ) = argminα′ d2JEANIE(Ψ , Mα′) + κ‖d � α‖22, (26)

s.t. 1Tα′ = 1,

where� denotes the element-wise multiplication and d∈R
k

is the non-locality penalty that penalises selection of dictio-

123



International Journal of Computer Vision

nary atoms that are far from Ψ . Specifically,

d =
[

exp
d2JEANIE(Ψ ,m1)

σ , ..., exp
d2JEANIE(Ψ ,mk )

σ

]T

, (27)

where σ ≥ 0 adjusts the weight decay speed for the non-
locality penalty. We further normalize d to be between 0
and 1. The constraint 1Tα′ = 1 follows the shift-invariant
requirements of the LLC encoder.
SoftAssignment (SA)&Locality-constrainedSoftAssign-
ment (LcSA). SA expresses each Ψ as the membership
probability ofΨ belonging to eachm in M, a concept known
from the MLE of Gaussian Mixture Models (GMM). SA is
derived under equal mixing probability and shared variance
σ of GMM components. SA is a closed-form term:

α′(Ψ ; M,σ )= 1

Z(Ψ ; M,σ )

[

e−
d2JEANIE(Ψ ,m1)

2σ2 , ...,

e−
d2JEANIE(Ψ ,mk‖)

2σ2

]

T,

where Z(Ψ ; M,σ )=
∑

k′=1,...,k

e− 1
2σ2

d2JEANIE(Ψ ,mk′ ).

(28)

The abovemodel usually yields largest values ofα′
i for anchor

mi in M that is a close JEANIE neighbor of Ψ . However,
even for mi that is far from Ψ , α′

i > 0. For this reason, SA
is only approximately locality-constrained.

LcSA admits the locality-constrained membership prob-
ability of the form:

α(Ψ ) = π(α′(Ψ ; MNN(Ψ ;k′))), (29)

where MNN(Ψ ;k′) returns k′ nearest neighbors of Ψ in M
based on the JEANIE measure, whereas π(·) projects back
coefficients of α′ into α at positions following original
indexes of nearest neighbors in dictionary M. Remaining
locations in α are zeroed. LcSA forms subspaces of size k′.

C.2 Dictionary Learning

For all the above listed feature coding methods, we employ a
simple dictionary learning objective which follows Eq. (16).
We assume some evaluated/fixed dictionary-coded vectors
as a coding matrix A ≡ [α1, ...,αN ′ ] (N ′ is the number of
samples per mini-batch), and we compute:

M = argminM ′
N ′
∑

i=1

d2JEANIE(Ψ i , M ′αi ). (30)

Algorithm 4 Fusion of Supervised and Unsupervised FSAR
by Feature Maps Alignment (one training iteration).
Input: Γ ≡ {X b}b∈IB ∪ {X ′

b,n,z}b∈IB
n∈IN
z∈IZ

: query/support blocks in batch;

F : EN parameters;M and A;alpha_iter and dic_iter: numbers
of iterations for updating A and M; ω,ωDL and ωEN: the learning rate
for A, M andF respectively; B: size of themini-batch;λ: regularization
parameter.

1: Υ ≡ {Ψ b}b∈IB ∪ {Ψ ′
b,n,z}b∈IB

n∈IN
z∈IZ

where

{
Ψ b = f ∗(X b;F)

Ψ ′
b,n,z = f ∗(X ′

b,n,z;F)

(obtain feature maps for global parameters F)
2: F̂ := F (copy parameters of EN)
3: (F̂, M) = Algorithm2(Υ , F̂, M, A, (unsupervised FSAR)

alpha_iter,dic_iter, ω, ωDL, ωEN)

4: Υ̂ ≡ {Ψ̂ b}b∈IB ∪ {Ψ̂ ′
b,n,z}b∈IB

n∈IN
z∈IZ

where

{
Ψ̂ b = f ∗(X b; F̂)

Ψ̂
′
b,n,z = f ∗(X ′

b,n,z; F̂)

(obtain feature maps for parameters F̂ from the unsupervised step)
5: Lalign = ∑N ′

i=1 d
2
JEANIE(Ψ i , Ψ̂ i ) (alignment of sup. & unsup. maps)

where N ′ =|Υ |, Ψ ∈Υ , Ψ̂ ∈ Υ̂

6: d+ =[dJEANIE(Ψ b,Ψ
′
b,1,z)]b∈IB

z∈IZ

(within-class distance)

7: d− =[dJEANIE(Ψ b,Ψ
′
b,n,z)]b∈IB

n∈IN\{1}
z∈IZ

(between-class distance)

8: F :=F−ωEN∇F
(
l(d+, d−) + λLalign

)

Output: F and M

Notice that for fixed A and fixed feature matrices Ψ , the
regularization term becomes a constant. For the dictionary
learning step, we detach Ψ and α, and run 10 iterations of
gradient descent per mini-batch w.r.t. M.

D Fusion by Alignment

Fusion by alignment of supervised and unsupervised fea-
ture maps. Inspired by domain adaptation, Algorithm 4
performs a fusion of supervised and unsupervised FSAR
by alignment of feature maps obtained with supervised and
unsupervised FSAR. Specifically, we start by generating rep-
resentations with several viewpoints. For each mini-batch of
size B we form a set with N ′ feature maps which are passed
to Algorithm 2. Subsequently, from EN parameters F we
obtain parameters F̂ that help accommodate unsupervised
reconstruction-driven learning. We compute “unsupervised”
feature maps for such parameters and encourage “super-
vised” feature maps to align with them based on the JEANIE
measure. Parameter λ ≥ 0 controls the strength of alignment.
For the supervised step, we use the supervised loss from Eq.
(14) and (15). Finally, we update EN parameters F .

E Additional Results on Unsupervised FSAR

Tables 11 and 12 below show additional results on the NTU-
120, the 2D and 3D Kinetics-skeleton datasets.
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Table 11 Experimental results
on NTU-120 (S2GC backbone)

viewpoint align. 20 40 60 80 100
simulation

Unsup. +Transf. soft-DTW (HA) – T 11.2 16.3 19.0 25.8 30.9

soft-DTW (SC) – T 12.1 17.4 21.4 27.0 32.7

soft-DTW (SC+) – T 11.8 17.0 21.2 26.5 32.2

soft-DTW (LLC) – T 14.0 18.7 23.1 29.3 34.1

soft-DTW (SA) – T 15.0 20.1 24.3 30.5 38.3

soft-DTW (LcSA) – T 15.7 21.4 25.2 32.0 40.2

JEANIE (LLC)− �1 CamVPC T+2V 18.0 23.8 30.5 36.3 43.0

JEANIE (LLC)− �2 CamVPC T+2V 18.3 24.2 30.8 36.0 43.3

JEANIE (LLC)− HIK CamVPC T+2V 18.3 24.0 31.0 36.3 43.0

JEANIE (LLC)− CSK CamVPC T+2V 17.8 24.0 30.8 36.3 43.0

JEANIE (LcSA)− �1 CamVPC T+2V 18.3 24.5 32.0 39.5 48.0

JEANIE (LcSA)− �2 CamVPC T+2V 18.6 25.0 32.2 40.0 48.5

JEANIE (LcSA)− HIK CamVPC T+2V 18.3 24.8 32.2 39.6 48.0

JEANIE (LcSA)− CSK CamVPC T+2V 18.6 25.2 32.0 39.6 48.5

FVM (LcSA)− CSK CamVPC T+2V 17.5 22.4 30.7 36.1 44.5

Allmethods enjoy temporal alignment by soft-DTWor JEANIE (joint temporal and viewpoint alignment).We
use the �2 norm for comparing the codes in unsupervised setting with soft-DTW. For unsupervised JEANIE,
the distance for comparing the codes is indicated
The best result is in bold

Table 12 Experiments on 2D
and 3D Kinetics-skeleton

viewpoint alignment 2D skel. 3D skel.
simulation

Unsup. +Transf. soft-DTW(LLC) – T 18.7 21.3

soft-DTW(SA) – T 18.7 21.8

soft-DTW(LcSA) – T 19.3 22.2

JEANIE (LcSA)− �1 CamVPC T+2V – 28.0

JEANIE (LcSA)− �2 CamVPC T+2V – 28.3

JEANIE (LcSA)− HIK CamVPC T+2V – 28.3

JEANIE (LcSA)− CSK CamVPC T+2V – 28.3

FVM (LcSA)− �2 CamVPC T+2V – 25.1

We use the �2 norm for comparing the codes in unsupervised setting with soft-DTW. For unsupervised
JEANIE, the distance for comparing the codes is indicated
The best result is in bold

Table 13 Time cost (seconds) per 10 episodes vs. performance (%)
on MSRAction3D. We set stride step S = 5 and M = 10. Dictionary
size k = 4096 unless indicated otherwise, and τ ∗ = 30. See the text

for remarks about a relatively larger number of epochs required for the
convergence of supervised FSAR compared to the unsupervised FSAR

Supervised Unsupervised MAML-inspired Fusion

alpha_iter: 100 50 30 10 10 10 10
dic_iter: 10 10 10 10 30 50 100

k=1024 2048 4096 8192

Time (s) 1.95 26.99 7.94 11.76 24.06 42.72 22.48 21.10 34.77 43.53 72.56 38.77

Accuracy (%) 64.6 62.6 58.8 62.3 62.6 59.2 59.5 58.5 58.8 61.3 61.9 72.0
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F Training Speeds

Table 13 investigates supervised, unsupervised and fusion
strategies in terms of speed. While supervised training
appears to be faster, it also takes more episodes to converge,
e.g., 400 vs.80.Worth noting is that the unsupervised strategy
is a non-optimized code whose dictionary learning and code
assignment can be parallelized to bring computations times
significantly down.

G Inference Time

Table 14 below compares training and inference times per
query on Titan RTX 2090. For soft-DTW, each query is
augmented by K × K ′ = 9 viewpoints. In the test time,
we average match distance over K ×K ′ = 9 viewpoints of
each test query (this is a popular standard test augmenta-
tion strategy) w.r.t. support samples. This strategy is denoted
as soft-DTWaug. We also apply the above strategy to TAP
(denoted as TAPaug). JEANIE also uses K ×K ′ = 9 view-
points per query. We exclude the time of applying viewpoint
generation as skeletons can be pre-processed at once (1.6h
with non-optimized CPU code) and stored for the future use.
Among methods which use multiple viewpoints, JEANIE
outperforms soft-DTWaug and TAPaug by 8.2% and 7.4%
respectively. JEANIE outperforms ordinary soft-DTW and
TAP by 11.3% and 10.8%. For soft-DTWaug and TAPaug,
their total training and testing were 5× and 9× slowed com-
pared to counterpart soft-DTW and TAP. This is expected
as they had to deal with K×K ′ =9 more samples. We tried
also parallel JEANIE. Training JEANIEpar with 4 Titan RTX
2090 took 44h, the total inference was 48s.

H Training and Evaluation Protocols for
Skeletal FSAR

As MSRAction3D, 3D Action Pairs, and UWA3D Activity
have not been used in FSAR, we created 10 training/testing
splits by choosing half of class concepts for training, and
half for testing per split per dataset. Training splits were fur-
ther subdivided for crossvalidation. Below, we explain the
selection process.
FSAR (MSRAction3D). As this dataset contains 20 action
classes, we randomly choose 10 action classes for training
and the remaining 10 for testing.We repeat this sampling pro-
cess 10 times to form in total 10 training/test splits. For each
split, we have 5-way and 10-way experimental settings. The
overall performance on this dataset is computed by averaging
the performance over 10 splits.

FSAR (3D Action Pairs). This dataset has in total 6 action
pairs (12 action classes), each pair of action has very similar
motion trajectories, e.g.,pick upabox andput downabox.We
randomly choose 3 action pairs to form a training set (6 action
classes) and the half action pairs for the test set, and in total
there are

(n
k

) = (6
3

)=20 different combinations of train/test
splits. As our training/test splits are based on action pairs,
we are able to test whether the algorithm is able to classify
unseen action pairs that share similar motion trajectories. We
use the 5-way protocol and average over all 20 splits.
FSAR (UWA3D Activity). This dataset has 30 action
classes. We randomly choose 15 action classes for training
and the rest action classes for testing. We form in total 10
train/test splits, and we use 5-way and 10-way protocols on
this dataset, averaged over all 10 splits.
Kinetics-skeleton. In our experiments, we follow the train-
ing and evaluation protocol from work (Ma et al., 2022; Liu
et al., 2023). We use the first 120 actions out of 400, with
100 samples per class. The numbers of training, validation
and test categories are 80, 20 and 20, respectively. Below is
the breakdown of 120 categories into training, validation and
test categories:

i. Train: [1,2,5,6,8,9,11,12,13,14,15,16,17,18,19,20,21,23,
24,25, 26,27,28,29,30,31,32,33,34,38,39,40,41,43,47,48,
49,50,51,52,58, 59,63,64,65,66,67,68,69,70,71,72,73,74,
75,76,77,78,79,82,83,84, 85,86,87,89,90,91,93,95,97,
102,105,109,110,111,113,117,118,119]

ii. Validation: [4, 7, 10, 36, 37, 42, 44, 45, 55, 56, 61, 88,
94, 98, 103,
104, 106,108,116,120]

iii. Test:[3,22,35,46,53,54,57,60,62,80,81,92,96,99,100,101,

107,112, 114,115]

I Visualisation Based on UMAP

We select the test set of MSRAction3D to showcase UMAP
visualizations (McInnes et al., 2018) of (i) temporal block
features and (ii) average-pooled features along the temporal
dimension for both JEANIE and soft-DTW. We use pre-
trained models with the test accuracies 80.28% and 77.51%
for JEANIE and soft-DTW, respectively. Figure12 illustrates
the comparisons. Each dot represents a temporal block fea-
ture, and each star denotes a video feature representation
(after average pooling along the temporal mode). The figure
shows that JEANIE appears to yield more compact and more
separated clusters in comparison to soft-DTW.
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Fig. 12 UMAP-based visualizations of (left) JEANIE and (right) soft-
DTW are generated using models trained on MSRAction3D. The test
set is used for the visualisations. We visualize temporal block rep-
resentations (Fig. 12a, b), and average-pooled over blocks (along the
temporal mode) feature representations (one per video) (Fig. 12c, d).
Figures12e, f overlay the figures above for better visualisation. Note

that each colored dot represents a temporal block feature representa-
tion, whereas each star represents a video feature representation after
average pooling over blocks. JEANIE achieves somewhat more com-
pact and better-separated class-wise clusters compared to soft-DTW
(Color figure online)
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Table 14 A comparison of
training/inference time (per
query) on NTU-60 (#training
classes = 10)

Training time (s) Inference time (s) Total inference Acc. (%)
time (s)

soft-DTWaug 0.098 0.019 178.5 56.8

TAPaug 0.124 0.024 225.5 57.6

JEANIE 0.099 0.020 187.0 65.0

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions

Code Availability Code is available: https://github.com/LeiWangR/
JEANIE.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Ahn, D., Kim, S., Hong, H., & Ko, B.C. (2023). Star-transformer:
A spatio-temporal cross attention transformer for human action
recognition. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV) (pp. 3330–3339).

Bart, E., & Ullman, S. (2005). Cross-generalization: Learning novel
classes from a single example by feature replacement. In Proceed-
ings of the IEEE/CVFConference on Computer Vision and Pattern
Recognition (CVPR) (pp. 672–679).

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., & Cox, D. D. (2015).
Hyperopt: a python library formodel selection and hyperparameter
optimization. CSD, 8(1), 014008.

Bilmes, J. (1998). A gentle tutorial of the EM algorithm and its appli-
cation to parameter estimation for Gaussian mixture and hidden
Markov models. International Computer Science Institute, 4, 126.

Cao, K., Ji, J., Cao, Z., Chang, C.Y., & Niebles, J.C. (2020). Few-shot
video classification via temporal alignment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Cao, Z., Simon, T., Wei, S.E., & Sheikh, Y. (2017). Realtime multi-
person 2d pose estimation using part affinity fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition?
a new model and the kinetics dataset. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., & Hu, W. (2021).
Channel-wise topology refinement graph convolution for skeleton-
based action recognition. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (pp. 13359–13368).

Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., & Lu, H. (2020).
Skeleton-based action recognition with shift graph convolutional
network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Cheng, K., Zhang, Y., Cao, C., Shi, L., Cheng, J., & Lu, H. (2020).
Decoupling gcn with dropgraph module for skeleton-based action
recognition. In A. Vedaldi, H. Bischof, T. Brox, & J. M. Frahm
(Eds.), Proceedings of the European Conference on Computer
Vision (ECCV) (pp. 536–553). Cham: Springer International Pub-
lishing.

Csurka, G., Dance, C.R., Fan, L., Willamowski, J., & Bray, C. (2004).
Visual categorization with bags of keypoints. In In Workshop on
Statistical Learning in Computer Vision, European Conference on
Computer Vision Workshops (ECCV Workshops).

Cuturi, M. (2011). Fast global alignment kernels. In Proceedings of the
International Conference on Machine Learning (ICML).

Cuturi, M., & Blondel, M. (2017). Soft-dtw: a differentiable loss
function for time-series. In Proceedings of the International Con-
ference on Machine Learning (ICML).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly,
S., et al. (2020). An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learn-
ing Representations (ICLR).

Dvornik, N., Schmid, C. & Mairal1, J. (2020). Selecting relevant
features from a multi-domain representation for few-shot classifi-
cation. In Proceedings of the European Conference on Computer
Vision (ECCV).

Dwivedi, S.K., Gupta, V., Mitra, R., Ahmed, S., Jain, A. (2019).
Protogan: Towards few shot learning for action recognition. In
Proceedings of the IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCV Workshops) (pp. 1308–1316). Los
Alamitos, CA, USA:IEEE Computer Society. https://doi.org/10.
1109/ICCVW.2019.00166.

Elsken, T., Staffler, B., Metzen, J.H. & Hutter, F. (2020). Meta-learning
of neural architectures for few-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Euler angles. Wikipedia, https://en.wikipedia.org/wiki/Euler_angles.
Accessed: 06-02-2024.

Fei, N., Guan, J., Lu, Z. & Gao, Y. (2020). Few-shot zero-shot learning:
Knowledge transfer with less supervision. In Proceedings of the
Asian Conference on Computer Vision (ACCV).

Feichtenhofer, C., Pinz, A. &Wildes, R.P. (2017). Spatiotemporal mul-
tiplier networks for video action recognition. InProceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Feichtenhofer, C., Pinz, A. &Zisserman, A. (2016). Convolutional two-
streamnetwork fusion for video action recognition. InProceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object
categories. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 28(4), 594–611.

Fink, M. (2005). Object classification from a single example utilizing
class relevance metrics. Neural Information Processing Systems
(NIPS) (pp. 449–456).

Finn, C., Abbeel, P. & Levine, S. (2017). Model-agnostic meta-learning
for fast adaptation of deep networks. In D. Precup, Y.W. Teh (eds.)
Proceedings of the 34th International Conference on Machine

123

https://github.com/LeiWangR/JEANIE
https://github.com/LeiWangR/JEANIE
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICCVW.2019.00166
https://doi.org/10.1109/ICCVW.2019.00166
https://en.wikipedia.org/wiki/Euler_angles


International Journal of Computer Vision

Learning, ICML2017 Sydney,NSW,Australia, 6-11August 2017.
Proceedings of Machine Learning Research, vol. 70 (pp. 1126–
1135). PMLR.

Gemert, J.C., Geusebroek, J.M., Veenman, C.J. & Smeulders, A.W.
(2008). Kernel codebooks for scene categorization. InProceedings
of the 10th European Conference on Computer Vision (ECCV):
Part III, Proceedings of the European Conference on Computer
Vision (ECCV) (p. 696-709). Berlin, Heidelberg: Springer-Verlag.
https://doi.org/10.1007/978-3-540-88690-7_52.

Girdhar, R., João Carreira, J., Doersch, C. & Zisserman, A. (2019).
Video action transformer network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 244–253).https://doi.org/10.1109/CVPR.2019.00033.

Guan, J., Zhang, M. & Lu, Z. (2020). Large-scale cross-domain few-
shot learning. InProceedings of theAsianConferenceonComputer
Vision (ACCV).

Guo, M., Chou, E., Huang, D.A., Song, S., Yeung, S. & Fei-Fei, L.
(2018). Neural graph matching networks for fewshot 3d action
recognition. In Proceedings of the European Conference on Com-
puter Vision (ECCV) (pp. 653–669).

Guo,Y., Codella, N.C., Karlinsky, L., Codella, J.V., Smith, J.R., Saenko,
K., Rosing, T. & Feris, R. (2020). A broader study of cross-domain
few-shot learning. In Proceedings of the European Conference on
Computer Vision (ECCV).

Guo, H., Wang, H. & Ji, Q. (2022). Uncertainty-guided probabilistic
transformer for complex action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (pp. 20052–20061).

Haasdonk, B., & Burkhardt, H. (2007). Invariant kernel functions for
pattern analysis and machine learning. Machine learning, 68(1),
35–61.

Haghighat, M., Moghadam, P., Mohamed, S. & Koniusz, P. (2024).
Pre-training with random orthogonal projection image modeling.
In International Conference on Learning Representations (ICLR).

Hao, X., Li, J., Guo, Y., Jiang, T., & Yu, M. (2021). Hypergraph neural
network for skeleton-based action recognition. IEEE Transactions
on ImageProcessing, 30, 2263–2275. https://doi.org/10.1109/TIP.
2021.3051495

Hoyer, P. (2002) Non-negative sparse coding. In Proceedings of the
12th IEEE Workshop on Neural Networks for Signal Processing
(pp. 557–565). https://doi.org/10.1109/NNSP.2002.1030067.

Huang, Y., Yang, L., & Sato, Y. (2022). Compound prototype match-
ing for few-shot action recognition. In Proceedings of the 10th
European Conference on Computer Vision (ECCV) (pp. 351–368).
Springer.

Huynh-The, T., Hua, C. H., & Kim, D. S. (2020). Encoding pose fea-
tures to images with data augmentation for 3-d action recognition.
IEEE Transactions on Industrial Informatics TII, 16(5), 3100–
3111. https://doi.org/10.1109/TII.2019.2910876

Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014).
Human3.6m: Large scale datasets and predictive methods for 3d
human sensing in natural environments. IEEE Transactions on
Pattern Analysis andMachine Intelligence (TPAMI), 36(7), 1325–
1339.

Kang, D., Koniusz, P., Cho, M., & Murray, N. (2023) Distilling self-
supervised vision transformers for weakly-supervised few-shot
classification & segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 19627–19638).

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijaya-
narasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman,
M., & Zisserman, A. (2017). The kinetics human action video
dataset.

Kim, J., Oh, S., & Hong, S. (2021). Transformers generalize deepsets
and can be extended to graphs & hypergraphs. In A. Beygelzimer,

Y. Dauphin, P. Liang, & J.W. Vaughan (eds.) Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS).

Kipf, T.N., & Welling, M. (2017). Semi-supervised classification with
graph convolutional networks. In International Conference on
Learning Representations (ICLR).

Klicpera, J., Bojchevski, A., & Gunnemann, S. (2019). Predict then
propagate: Graph neural networks meet personalized pagerank. In
International Conference on Learning Representations (ICLR).

Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural
networks for one-shot image recognition. InDeep Learning Work-
shop, Proceedings of the International Conference on Machine
Learning Workshops (ICML Workshops), 2.

Koniusz, P., &Mikolajczyk, K. (2011). Soft assignment of visual words
as linear coordinate coding and optimisation of its reconstruc-
tion error. In Proceedings of the IEEE International Conference
on Image Processing (ICIP) (pp. 2413–2416). https://doi.org/10.
1109/ICIP.2011.6116129.

Koniusz, P., Cherian, A., & Porikli, F. (2016). Tensor representations
via kernel linearization for action recognition from 3d skeletons.
In Proceedings of the European Conference on Computer Vision
(ECCV), 9908 (pp. 37–53).

Koniusz, P., Tas, Y., & Porikli, F. (2017). Domain adaptation bymixture
of alignments of second-or higher-order scatter tensors. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 7139–7148). IEEE Computer
Society. https://doi.org/10.1109/CVPR.2017.755.

Koniusz, P., Tas, Y., Zhang, H., Harandi, M., Porikli, F., & Zhang, R.
(2018).Museum exhibit identification challenge for the supervised
domain adaptation and beyond. Proceedings of the European Con-
ference on Computer Vision (ECCV) (pp. 788–804).

Koniusz, P., Wang, L., & Cherian, A. (2022). Tensor representations
for action recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence(TPAMI), 44(2), 648–665. https://doi.org/10.
1109/TPAMI.2021.3107160

Koniusz, P., Yan, F., Gosselin, P. H., &Mikolajczyk, K. (2013).Higher-
order occurrence pooling on mid-and low-level features: Visual
concept detection. Report: Tech.

Koniusz, P., & Zhang, H. (2022). Power normalizations in fine-grained
image, few-shot image and graph classification. IEEE Trans. Pat-
tern Anal. Mach. Intell., 44(2), 591–609.

Korban,M.,&Li,X. (2020).Ddgcn:Adynamic directed graph convolu-
tional network for action recognition. In A. Vedaldi, H. Bischof, T.
Brox, & J. M. Frahm (Eds.), Proceedings of the European Confer-
ence on Computer Vision (ECCV) (pp. 761–776). Cham: Springer
International Publishing.

Lake, B.M., Salakhutdinov, R., Gross, J., & Tenenbaum, J.B. (2011).
One shot learning of simple visual concepts. Cognitive Science
(CogSci).

Lecture 12: Camera projection. On-line, http://www.cse.psu.edu/
~rtc12/CSE486/lecture12.pdf. Accessed: 06-02-2024.

Lee, H., Battle, A., Raina, R., & Ng, A.Y. (2006). Efficient sparse cod-
ing algorithms.Neural Information Processing Systems (NIPS) (p.
801-808). Cambridge, MA, USA :MIT Press.

Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., & Tian, Q. (2019).
Actional-structural graph convolutional networks for skeleton-
based action recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR).

Li, M., Xu, X., Fan, H., Zhou, P., Liu, J., Liu, J.W., Li, J., Keppo, J.,
Shou,M.Z., &Yan, S. (2023). Stprivacy: Spatio-temporal privacy-
preserving action recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (pp. 5106–
5115).

Li, K., Zhang, Y., Li, K., & Fu, Y. (2020). Adversarial feature hal-
lucination networks for few-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

123

https://doi.org/10.1007/978-3-540-88690-7_52
https://doi.org/10.1109/CVPR.2019.00033
https://doi.org/10.1109/TIP.2021.3051495
https://doi.org/10.1109/TIP.2021.3051495
https://doi.org/10.1109/NNSP.2002.1030067
https://doi.org/10.1109/TII.2019.2910876
https://doi.org/10.1109/ICIP.2011.6116129
https://doi.org/10.1109/ICIP.2011.6116129
https://doi.org/10.1109/CVPR.2017.755
https://doi.org/10.1109/TPAMI.2021.3107160
https://doi.org/10.1109/TPAMI.2021.3107160
http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf
http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf


International Journal of Computer Vision

Lichtenstein, M., Sattigeri, P., Feris, R., Giryes, R., & Karlinsky, L.
(2020). Tafssl: Task-adaptive feature sub-space learning for few-
shot classification. In Proceedings of the European Conference on
Computer Vision (ECCV).

Li, Z., Koniusz, P., Zhang, L., Pagendam, D., & Moghadam, P. (2023).
Exploiting field dependencies for learning on categorical data.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 45(11), 13509–13522. https://doi.org/10.1109/TPAMI.
2023.3298028

Lin, T.Y., Maji, S., & Koniusz, P. (2018). Second-order democratic
aggregation. Proceedings of the European Conference on Com-
puter Vision (ECCV) (pp. 620–636).

Liu, S., Lv, P., Zhang, Y., Fu, J., Cheng, J., Li, W., Zhou, B., &
Xu, M. (2020). Semi-dynamic hypergraph neural network for
3d pose estimation. In C. Bessiere (ed.) Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intel-
ligence, IJCAI-20 (pp. 782–788). International Joint Conferences
on Artificial Intelligence Organization. https://doi.org/10.24963/
ijcai.2020/109. Main track.

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., & Kot, A.C.
(2019). Ntu rgb+d 120: A large-scale benchmark for 3d human
activity understanding. IEEETransactions onPatternAnalysis and
Machine Intelligence (TPAMI).

Liu, L., Wang, L., & Liu, X. (2011). In defense of soft-assignment cod-
ing. In 2011 International Conference on Computer Vision (ICCV)
(pp. 2486–2493). https://doi.org/10.1109/ICCV.2011.6126534.

Liu, J., Wang, G., Hu, P., Duan, L., & Kot, A.C. (2017). Global
context-aware attention lstm networks for 3d action recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 3671–3680).

Liu, Z., Zhang, H., Chen, Z.,Wang, Z., &Ouyang,W. (2020). Disentan-
gling and unifying graph convolutions for skeleton-based action
recognition. InProceedings of the IEEE/CVFConference on Com-
puter Vision and Pattern Recognition (CVPR).

Liu, X., Zhou, S., Wang, L., & Hua, G. (2023). Parallel attention
interaction network for few-shot skeleton-based action recog-
nition. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV) (pp. 1379–1388). Los Alami-
tos, CA, USA:IEEE Computer Society. https://doi.org/10.1109/
ICCV51070.2023.00133.

Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural
scene categorization in the near absence of attention. Proceedings
of the National Academy of Sciences of the United States of Amer-
ica (PNAS), 99(14), 9596–9601.

Lu, C., & Koniusz, P. (2022). Few-shot keypoint detection with uncer-
tainty learning for unseen species. InProceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Lu, C., & Koniusz, P. (2024). Detect any keypoints: An efficient light-
weight few-shot keypoint detector. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Luo, Q., Wang, L., Lv, J., Xiang, S., & Pan, C. (2021). Few-shot
learning via feature hallucination with variational inference. In:
Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV).

Ma, N., Zhang, H., Li, X., Zhou, S., Zhang, Z., Wen, J., Li, H., Gu, J.,
& Bu, J. (2022). Learning spatial-preserved skeleton representa-
tions for few-shot action recognition. In Proceedings of the 10th
European Conference on Computer Vision (ECCV) (pp. 174–191)
Springer.

Martinez, J., Hossain, R., Romero, J., & Little, J.J. (2017). A simple yet
effective baseline for 3d human pose estimation. In Proceedings
of the International Conference on Computer Vision (ICCV) (pp.
2659–2668).

McInnes, L., Healy, J., Saul, N., & Großberger, L. (2018). Umap: Uni-
form manifold approximation and projection. Journal of Open
Source Software, 3(29), 861. https://doi.org/10.21105/joss.00861

Memmesheimer, R., Häring, S., Theisen, N., & Paulus, D. (2022).
Skeleton-dml: Deep metric learning for skeleton-based one-shot
action recognition. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV).

Memmesheimer, R., Theisen, N., & Paulus, D. (2021). Sl-dml: Sig-
nal level deep metric learning for multimodal one-shot action
recognition. In Proceedings of the 25th International Conference
on Pattern Recognition (ICPR) (pp. 4573–4580). Los Alami-
tos, CA, USA:IEEE Computer Society. https://doi.org/10.1109/
ICPR48806.2021.9413336.

Miller, E. G., Matsakis, N. E., & Viola, P. A. (2000). Learning from one
example through shared densities on transforms. Proceedings of
the IEEE/CVFConference onComputer Vision andPatternRecog-
nition (CVPR), 1, 464–471.

Mishra, A., Verma, V.K., Reddy, M.S.K., Arulkumar, S., Rai, P., &
Mittal, A. (2018). A generative approach to zero-shot and few-
shot action recognition. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV) (pp. 372–
380).

Ni, Y., Koniusz, P., Hartley, R., & Nock, R. (2022). Manifold learning
benefits GANs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 11265–
11274).

Plizzari, C., Cannici, M., & Matteucci, M. (2020). Spatial temporal
transformer network for skeleton-based action recognition. CoRR
arXiv:2012.06399.

Plizzari,C.,Cannici,M.,&Matteucci,M. (2021). Skeleton-based action
recognition via spatial and temporal transformer networks. Com-
puter Vision and Image Understanding, 208–209, 103219. https://
doi.org/10.1016/j.cviu.2021.103219

Qin, Z., Ji, P., Kim, D., Liu, Y., Anwar, S., & Gedeon, T. (2022).
Strengthening skeletal action recognizers via leveraging temporal
patterns. InProceedings of the European Conference on Computer
Vision (ECCV) (pp. 577–593) Springer.

Qin, Z., Liu, Y., Ji, P., Kim, D., Wang, L., McKay, B., Anwar, S., &
Gedeon, T. (2022). Fusing higher-order features in graph neural
networks for skeleton-based action recognition. IEEE Transac-
tions on Neural Networks and Learning Systems (TNNLS).

Rahman, S., Koniusz, P., Wang, L., Zhou, L., Moghadam, P.,& Sun, C.
(2023). Learning partial correlation based deep visual represen-
tation for image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 6231–6240).

Rahmani, H., Mahmood, A., Huynh, D.Q., & Mian, A. (2016). His-
togram of Oriented Principal Components for Cross-View Action
Recognition. IEEE Transactions on Pattern Analysis andMachine
Intelligence (TPAMI) (pp. 2430–2443).

Shah, K., Shah, A., Lau, C.P., de Melo, C.M., & Chellappa, R. (2023).
Multi-view action recognition using contrastive learning. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) (pp. 3381–3391).

Shahroudy, A., Liu, J., Ng, T.T., &Wang, G. (2016). Ntu rgb+d: A large
scale dataset for 3d human activity analysis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Shi,W., Lu, C., Shao,M., Zhang, Y., Xia, S., &Koniusz, P. (2024). Few-
shot shape recognition by learning deep shape-aware features. In
Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV) (pp. 1848–1859).

Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2021). Adasgn: Adapting joint
number and model size for efficient skeleton-based action recog-
nition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (pp. 13413–13422).

Si, C., Chen, W., Wang, W., Wang, L., & Tan, T. (2019). An attention
enhanced graph convolutional lstm network for skeleton-based

123

https://doi.org/10.1109/TPAMI.2023.3298028
https://doi.org/10.1109/TPAMI.2023.3298028
https://doi.org/10.24963/ijcai.2020/109
https://doi.org/10.24963/ijcai.2020/109
https://doi.org/10.1109/ICCV.2011.6126534
https://doi.org/10.1109/ICCV51070.2023.00133
https://doi.org/10.1109/ICCV51070.2023.00133
https://doi.org/10.21105/joss.00861
https://doi.org/10.1109/ICPR48806.2021.9413336
https://doi.org/10.1109/ICPR48806.2021.9413336
http://arxiv.org/abs/2012.06399
https://doi.org/10.1016/j.cviu.2021.103219
https://doi.org/10.1016/j.cviu.2021.103219


International Journal of Computer Vision

action recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Smola, A.J. &Kondor, R. (2003). Kernels and regularization on graphs.
In Proceedings of the Annual Conference on Learning Theory
(COLT).

Snell, J., Swersky, K., & Zemel, R.S. (2017). Prototypical networks for
few-shot learning. In I. Guyon, U. von Luxburg, S. Bengio, H.M.
Wallach, R. Fergus, S.V.N. Vishwanathan, & R. Garnett (eds.)
Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS), (pp. 4077–4087).

Song, Y.F., Zhang, Z., Shan, C., & Wang, L. (2022). Constructing
stronger and faster baselines for skeleton-based action recognition.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI) (pp. 1–1). https://doi.org/10.1109/TPAMI.2022.
3157033.

Su, B., & Wen, J.R. (2022). Temporal alignment prediction for super-
vised representation learning and few-shot sequence classification.
In International Conference on Learning Representations (ICLR).

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., & Hospedales,
T.M. (2018). Learning to compare: Relation network for few-shot
learning. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (pp. 1199–1208).

Sun, K., Koniusz, P., &Wang, Z. (2019). Fisher-Bures adversary graph
convolutional networks. Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence (UAI), 115, 465–475.

Tang, L., Wertheimer, D., & Hariharan, B. (2020). Revisiting pose-
normalization for fine-grained few-shot recognition. In Proceed-
ings of the IEEE/CVFConference on Computer Vision and Pattern
Recognition (CVPR).

Tas, Y., &Koniusz, P. (2018). CNN-based action recognition and super-
vised domain adaptation on 3d body skeletons via kernel feature
maps. In Proceedings of the British Machine Vision Conference
(BMVC).

Thatipelli, A., Narayan, S., Khan, S., Anwer, R.M., Khan, F.S.,
& Ghanem, B. (2022). Spatio-temporal relation modeling for
few-shot action recognition. InProceedings of the IEEE/CVFCon-
ference on Computer Vision and Pattern Recognition (CVPR) (pp.
19958–19967).

Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2015).
Learning spatiotemporal features with 3d convolutional networks.
In Proceedings of the International Conference on Computer
Vision (ICCV).

Truong, T.D., Bui, Q.H., Duong, C.N., Seo, H.S., Phung, S.L., Li, X.,
& Luu, K. (2022). Direcformer: A directed attention in trans-
former approach to robust action recognition. InProceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (pp. 20030–20040).

Varol, G., Laptev, I., Schmid, C., & Zisserman, A. (2021). Synthetic
humans for action recognition from unseen viewpoints. Interna-
tional Journal of Computer Vision (IJCV), 129(7), 2264–2287.

Villani, C. (2009). Optimal Transport. Old and New: Springer.
Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., & Wierstra,

D. (2016). Matching networks for one shot learning. In D.D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, & R. Garnett (eds.)
Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS) (pp. 3630–3638).

Wang, L. (2017). Analysis and evaluation of Kinect-based action recog-
nition algorithms.Master’s thesis, School of the Computer Science
and Software Engineering, The University of Western Australia.

Wang, L. (2023). Robust human action modelling. Ph.D. thesis, The
Australian National University.

Wang, L., & Koniusz, P. (2021). Self-supervising action recognition by
statistical moment and subspace descriptors. In Proceedings of the
29th ACM International Conference on Multimedia (ACM MM)
(p. 4324–4333). Association for Computing Machinery. https://
doi.org/10.1145/3474085.3475572.

Wang, L., & Koniusz, P. (2022). Temporal-viewpoint transportation
plan for skeletal few-shot action recognition. In Proceedings of the
Asian Conference on Computer Vision (ACCV) (pp. 4176–4193).

Wang, L., & Koniusz, P. (2022). Uncertainty-DTW for time series and
sequences. In Proceedings of the European Conference on Com-
puter Vision (ECCV).

Wang, L., & Koniusz, P. (2023). 3Mformer: Multi-order multi-mode
transformer for skeletal action recognition. In IEEE/CVF Interna-
tional Conference on Computer Vision and Pattern Recognition.

Wang, L., & Koniusz, P. (2024). Flow dynamics correction for action
recognition. Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP).

Wang, L., Ding, Z., Tao, Z., Liu, Y., & Fu, Y. (2019). Generative multi-
viewhumanaction recognition. InProceedings of the International
Conference on Computer Vision (ICCV).

Wang, L.,Huynh,D.Q.,&Mansour,M.R. (2019). Loss switching fusion
with similarity search for video classification. In Proceedings of
the IEEE International Conference on Image Processing (ICIP).

Wang, L., Koniusz, P., & Huynh, D.Q. (2019). Hallucinating IDT
descriptors and I3D optical flow features for action recognition
with cnns. InProceedings of the InternationalConference onCom-
puter Vision (ICCV).

Wang, L., Koniusz, P., Gedeon, T., & Zheng, L. (2023). Adaptive multi-
head contrastive learning. arXiv preprint arXiv:2310.05615.

Wang, L., Liu, J., & Koniusz, P. (2021). 3D skeleton-based few-shot
action recognition with JEANIE is not so naïve. arXiv preprint
arXiv:2112.12668.

Wang, Y., Long, M., Wang, J., & Yu, P.S. (2017). Spatiotemporal pyra-
mid network for video action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Wang, L., Sun, K., & Koniusz, P. (2024). High-order tensor pooling
with attention for action recognition. In Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Processing
(ICASSP).

Wang, X., Xu, X., &Mu, Y. (2023). Neural koopman pooling: Control-
inspired temporal dynamics encoding for skeleton-based action
recognition. InProceedings of the IEEE/CVFConference on Com-
puter Vision and Pattern Recognition (CVPR) (pp. 10597–10607).

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong, Y. (2010).
Locality-constrained linear coding for image classification. In
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 3360–3367). https://doi.org/10.
1109/CVPR.2010.5540018.

Wang, L., Yuan, X., Gedeon, T., & Zheng, L. (2024). Taylor videos for
action recognition.

Wang, S., Yue, J., Liu, J., Tian, Q., & Wang, M. (2020). Large-scale
few-shot learning via multi-modal knowledge discovery. In Pro-
ceedings of theEuropeanConference onComputerVision (ECCV).

Wang, X., Zhang, S., Qing, Z., Gao, C., Zhang, Y., Zhao, D., & Sang, N.
(2023). Molo: Motion-augmented long-short contrastive learning
for few-shot action recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 18011–18021).

Wang, Z., Zheng, L., Li, Y., & Wang, S. (2019). Linkage based face
clustering via graph convolution network. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
(CVPR) (pp. 1117–1125).

Wang, L., Huynh, D. Q., & Koniusz, P. (2020). A comparative review
of recent kinect-based action recognition algorithms. IEEE Trans-
actions on Image Processing (TIP), 29, 15–28.

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., & Van
Gool,L. (2019).Temporal segment networks for action recognition
in videos. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 41(11), 2740–2755.

123

https://doi.org/10.1109/TPAMI.2022.3157033
https://doi.org/10.1109/TPAMI.2022.3157033
https://doi.org/10.1145/3474085.3475572
https://doi.org/10.1145/3474085.3475572
http://arxiv.org/abs/2310.05615
http://arxiv.org/abs/2112.12668
https://doi.org/10.1109/CVPR.2010.5540018
https://doi.org/10.1109/CVPR.2010.5540018


International Journal of Computer Vision

Wanyan, Y., Yang, X., Chen, C., & Xu, C. (2023). Active exploration
of multimodal complementarity for few-shot action recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 6492–6502).

Wu, F., Zhang, T., de Souza Jr., A.H., Fifty, C., Yu, T., & Weinberger,
K.Q. (2019). Simplifying graph convolutional networks. In Pro-
ceedings of the International Conference on Machine Learning
(ICML).

Xing, Z., Dai, Q., Hu, H., Chen, J., Wu, Z., & Jiang, Y.G. (2023).
Svformer: Semi-supervised video transformer for action recogni-
tion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 18816–18826).

Xu, B., Ye, H., Zheng, Y., Wang, H., Luwang, T., & Jiang, Y.G. (2018).
Dense dilated network for few shot action recognition. InProceed-
ings of theACMInternationalConference onMultimediaRetrieval
(ACM ICMR) (pp. 379–387).

Yan, S., Xiong, Y., & Lin, D. (2018). Spatial Temporal Graph Con-
volutional Networks for Skeleton-Based Action Recognition. In
Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI).

Yang, J., Dong, X., Liu, L., Zhang, C., Shen, J., & Yu, D. (2022).
Recurring the transformer for video action recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 14063–14073).

Yang, S., Liu, J., Lu, S., Hwa, E.M., & Kot, A.C. (2023). One-shot
action recognitionviamulti-scale spatial-temporal skeletonmatch-
ing. arXiv preprint arXiv:2307.07286.

Yang, S., Liu, J., Lu, S., Hwa, E.M., Hu, Y., & Kot, A.C. (2023). Self-
supervised 3d action representation learning with skeleton cloud
colorization. arXiv preprint arXiv:2304.08799.

Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid
matching using sparse coding for image classification. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 1794–1801). https://doi.org/10.1109/CVPR.2009.5206757.

Zhang, H., & Koniusz, P. (2019). Power normalizing second-order
similarity network for few-shot learning. In Proceedings of the
IEEE/CVFWinter Conference on Applications of Computer Vision
(WACV) (pp. 1185–1193).

Zhang, H., Koniusz, P., Jian, S., Li, H., & Torr, P.H.S. (2021). Rethink-
ing class relations: Absolute-relative supervised and unsupervised
few-shot learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 9432–
9441).

Zhang, P., Lan, C., Xing, J., Zeng,W.,Xue, J., &Zheng,N. (2017). View
adaptive recurrent neural networks for high performance human
action recognition from skeleton data. In Proceedings of the Inter-
national Conference on Computer Vision (ICCV).

Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., & Zheng, N. (2020).
Semantics-guided neural networks for efficient skeleton-based
human action recognition. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Zhang, H., Li, H., & Koniusz, P. (2022). Multi-level second-order few-
shot learning. IEEE Transactions on Multimedia (TMM).

Zhang, S., Luo, D., Wang, L., & Koniusz, P. (2020). Few-shot object
detection by second-order pooling. In Proceedings of the Asian
Conference on Computer Vision (ACCV), Lecture Notes in Com-
puter Science, 12625 (pp. 369–387). Springer.

Zhang, S., Murray, N., Wang, L., & Koniusz, P. (2022). Time-rEversed
diffusioN tEnsor Transformer: A new TENET of Few-Shot Object
Detection. In Proceedings of the European Conference on Com-
puter Vision (ECCV).

Zhang, S., Ni, Y., Du, J., Liu, Y., & Koniusz, P. (2024). Semantic trans-
fer from head to tail: Enlarging tail margin for long-tailed visual
recognition. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV) (pp. 1350–1360).

Zhang, S., Wang, L., Murray, N., & Koniusz, P. (2022). Kernelized
few-shot object detection with efficient integral aggregation. In
PProceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 19207–19216)

Zhang, Q., Wang, T., Zhang, M., Liu, K., Shi, P., & Snoussi, H. (2021).
Spatial-temporal transformer for skeleton-based action recogni-
tion. In China Automation Congress (CAC) (pp. 7029–7034).
https://doi.org/10.1109/CAC53003.2021.9728206.

Zhang, Y., Wu, B., Li, W., Duan, L., & Gan, C. (2021). Stst:
Spatial-temporal specialized transformer for skeleton-based action
recognition. In Proceedings of the 29th ACM International Con-
ference onMultimedia (ACMMM) (p. 3229-3237). NewYork, NY,
USA:Association for Computing Machinery.

Zhang, X., Xu, C., & Tao, D. (2020). Context aware graph convolution
for skeleton-based action recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P., & Koniusz, P. (2020)
Few-shot action recognition with permutation-invariant attention.
In Proceedings of the European Conference on Computer Vision
(ECCV).

Zhang, Y., Zhu, H., Song, Z., Koniusz, P., & King, I. (2023). Spectral
feature augmentation for graph contrastive learning and beyond.
In Proceedings of the AAAI Conference on Artificial Intelligence,
37, (pp. 11289–11297).

Zhang, Y., Zhu, H., yankai Chen, Song, Z., Koniusz, P., & King, I.
(2023). Mitigating the popularity bias of graph collaborative fil-
tering: A dimensional collapse perspective. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS).

Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., & Zheng, N. (2019).
View adaptive neural networks for high performance skeleton-
based human action recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 41(8), 1963–1978.

Zheng, S., Chen, S., & Jin, Q. (2022). Few-shot action recognition with
hierarchical matching and contrastive learning. In Proceedings of
the 10th European Conference on Computer Vision (ECCV) (pp.
297–313) Springer.

Zhou, H., Liu, Q., & Wang, Y. (2023). Learning discriminative repre-
sentations for skeleton based action recognition. In Proceedings of
the IEEE/CVFConference onComputer Vision andPatternRecog-
nition (CVPR) (pp. 10608–10617).

Zhu, H., & Koniusz, P. (2021). Simple spectral graph convolution. In
International Conference on Learning Representations (ICLR).

Zhu, H., & Koniusz, P. (2022). EASE: Unsupervised discriminant sub-
space learning for transductive few-shot learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Zhu, H., & Koniusz, P. (2023). Generalized laplacian eigenmaps. In
Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS).

Zhu, H., & Koniusz, P. (2023). Transductive few-shot learning with
prototype-based label propagation by iterative graph refinement.
In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Zhu, L., & Yang, Y. (2018). Compound memory networks for few-shot
video classification. In Proceedings of the European Conference
on Computer Vision (ECCV).

Zhu, X., Huang, P.Y., Liang, J., de Melo, C.M., & Hauptmann, A.G.
(2023). Stmt: A spatial-temporal mesh transformer for mocap-
based action recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (pp.
1526–1536).

Zhu, A., Ke, Q., Gong, M., & Bailey, J. (2023). Adaptive
local-component-aware graph convolutional network for one-
shot skeleton-based action recognition. In Proceedings of the
IEEE/CVFWinter Conference on Applications of Computer Vision
(WACV) (pp. 6038–6047).

123

http://arxiv.org/abs/2307.07286
http://arxiv.org/abs/2304.08799
https://doi.org/10.1109/CVPR.2009.5206757
https://doi.org/10.1109/CAC53003.2021.9728206


International Journal of Computer Vision

Zhu, H., Sun, K., & Koniusz, P. (2021). Contrastive laplacian eigen-
maps. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS) (pp. 5682–5695).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Meet JEANIE: A Similarity Measure for 3D Skeleton Sequences via Temporal-Viewpoint Alignment
	Abstract
	1 Introduction
	2 Related Works
	3 Approach
	3.1 Encoding Network (EN)
	3.2 JEANIE
	3.3 Loss Function for Supervised FSAR
	3.4 Feature Coding and Dictionary Learning for Unsupervised FSAR
	3.5 Fusion of Supervised and Unsupervised FSAR
	4 Experiments
	4.1 Datasets and Protocols
	4.2 Ablation Studies
	4.3 Implementation Details
	4.4 Discussion on Supervised Few-Shot Action Recognition
	4.5 Discussion on Unsupervised Few-Shot Action Recognition
	4.6 Discussion on JEANIE and FVM
	4.7 Discussion on Multi-View Action Recognition
	4.8 Fusion of Supervised and Unsupervised FSAR

	5 Conclusions

	Appendices
	A Euler Rotations and Simulated Camera Views
	B Graph Neural Network as a Block of Encoding Network
	C Feature Coding and Dictionary Learning
	C.1 Feature Coding
	C.2 Dictionary Learning
	D Fusion by Alignment
	E Additional Results on Unsupervised FSAR
	F Training Speeds
	G Inference Time
	H Training and Evaluation Protocols for Skeletal FSAR
	I Visualisation Based on UMAP
	References




