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Abstract
Producing spatial transformations that are diffeomorphic is a key goal in deformable image registration. As a diffeomorphic
transformation should have positive Jacobian determinant |J | everywhere, the number of pixels (2D) or voxels (3D) with
|J | < 0 has been used to test for diffeomorphism and also to measure the irregularity of the transformation. For digital
transformations, |J | is commonly approximated using a central difference, but this strategy can yield positive |J |’s for
transformations that are clearly not diffeomorphic—even at the pixel or voxel resolution level. To show this, we first investigate
the geometric meaning of different finite difference approximations of |J |. We show that to determine if a deformation is
diffeomorphic for digital images, the use of any individual finite difference approximation of |J | is insufficient. We further
demonstrate that for a 2D transformation, four unique finite difference approximations of |J |’s must be positive to ensure
that the entire domain is invertible and free of folding at the pixel level. For a 3D transformation, ten unique finite differences
approximations of |J |’s are required to be positive. Our proposed digital diffeomorphism criteria solves several errors inherent
in the central difference approximation of |J | and accurately detects non-diffeomorphic digital transformations. The source
code of this work is available at https://github.com/yihao6/digital_diffeomorphism.

Keywords Deformable registration · Non-rigid registration · Digital diffeomorphism · Finite difference · Interpolation ·
Jacobian determinants

1 Introduction

The goal of deformable image registration is to establish
a nonlinear spatial transformation that aligns two images.
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For many tasks, it is reasonable to assume that the anatomy
in the two images share the same topology. Therefore, for
deformable registration algorithms, the ability to produce a
topology preserving transformation is preferred. Following
the work of (Christensen, 1994), many registration algo-
rithms either penalize (Avants et al., 2008; Chen et al., 2017;
Mok & Chung, 2020) or constrain (Beg et al., 2005; Chen
et al., 2015; Dalca et al., 2018) their output transformations
to be diffeomorphic and preserve topology. In the continu-
ous domain, a diffeomorphic transformation is a smooth and
invertible mapping with a smooth inverse that is guaranteed
tomaintain the topologyof the anatomybeing transformed.A
diffeomorphic transformation should have positive Jacobian
determinant |J | everywhere,1 and testing if a transformation
is diffeomorphic involves local computation of |J |. When a
transformation is not diffeomorphic, it is common to use the
number of pixels (2D) or voxels (3D) with negative |J | (Bal-
akrishnan et al., 2019; Chen et al., 2022, 2021; Liu et al.,
2022) or the standard deviation of the logarithmic trans-

1 We do not consider the case of all negative |J |, which would produce
a reflection of the entire image.
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formed |J | (Hering et al., 2022; Kabus et al., 2009; Johnson
&Christensen, 2002) to measure the irregularity of the trans-
formation.

Given a digital transformation that is defined on a regular
grid, awidely accepted practice for computing the Jacobian is
to use finite difference approximations of spatial derivatives.
While certain parametric and B-spline based models offer
alternative methods for estimating the Jacobian (Narayanan
et al., 2005; Rohlfing et al., 2003) for their resultant deforma-
tion field, these techniques are tailored for specific models
and are not universally applicable. For the scope of our dis-
cussion and its relevance to a broader array of applications,
including traditional and deep learning based registration
algorithms, we focus on finite difference methods. There
are three standard methods for computing finite differences
along each axis. We denote the forward, backward, and cen-
tral differences that operate along the x axis (and similarly
for the y and z axes) as D+x , D−x , and D0x , respectively.
To approximate |J | in 2D or 3D transformations, either the
same or a different type of finite difference can be used for
different axes. We denote the central difference approxima-
tion of |J | in 2D and 3D as D0xD0y |J | and D0xD0yD0z |J |,
respectively.

Despite its current popularity, the central difference
approximation of the Jacobian does not always work as
expected in the evaluation of the diffeomorphism property of
spatial transformations. For example, Fig. 1a shows a trans-
formation around center point p that is not diffeomorphic
despite the fact thatD0xD0y |J | = 1. In fact, the transforma-
tion at p has no effect on the computation ofD0xD0y |J |( p),
even if p moves outside the field of view. We call this the
checkerboard problem because the central difference based
Jacobian computations on the transformations of the “black”

(a)

y

x

p

(b)

p

Fig. 1 Two transformations around the center point p are shown. The
displacements of pixels around p are visualized as dotted arrows point-
ing toward solid dots; the displacement at these pixels are used for
computing D0x D0y |J | for p. The displacement at p itself is high-
lighted in red. a highlights the checkerboard problem inherent to
D0x D0y |J |. Here, D0x D0y |J |( p) = 1 due to the translational move-
ment of the neighboring pixels. However, as the displacement of p is not
involved in computing D0x D0y |J |( p), it can take on any value. Con-
sequently, folding caused by the displacement at p remains undetected
by D0x D0y |J |( p). b demonstrates the inconsistency issue arising from
the application of a single finite difference approximation in Jacobian
determinant computation. Here, D−xD−y |J |( p) and D+xD+y |J |( p)
have opposite signs, resulting in conflicting interpretations

and “white” pixels (of a checkerboard) are independent of
each other.

A possible solution to this problem is to use D−xD−y |J |
or D+xD+y |J | instead. However, Fig. 1b shows an exam-
ple in which D−xD−y |J | and D+xD+y |J | have opposite
signs, leading to contradictory conclusions. These examples
illustrate the problem with naive application of finite differ-
ences in this application. We seek a better approach that still
involves finite differences, but avoids these types of contra-
dictory situations.

In this work, we first investigate the geometric mean-
ing of finite difference approximations of |J |. We show
that when using forward or backward differences, the sign
of |J |( p) determines if the underlying transformation T
is invertible and orientation-preserving in a triangle (2D)
or tetrahedron (3D) adjacent to p. Reversing the orienta-
tion indicates folding in space. We formally define digital
transformations that are globally invertible and free of fold-
ing as digital diffeomorphisms. In order to determine if a
transformation is a digital diffeomorphism, at each point it
is necessary to consider four finite difference approximated
|J |’s for 2D transformations and ten |J |’s for 3D transforma-
tions. We also demonstrate that because of the checkerboard
problem and other errors that are inherent in the central dif-
ference based |J |, the number of non-diffeomorphic voxels
it reports is always less than or equal to the actual number.
Finally, we propose to use non-diffeomorphic area (2D) and
volume (3D) as more meaningful measurements of irregu-
larity in computed transformations.

2 Methodology

2.1 Backward Difference Based Jacobian
Determinant in 2D

Consider the standard Euclidean space R
2 that follows the

right-hand rule. Let T be a digital transformation for R2

that is defined for every grid point p. When using backward
differences on both x and y axes for approximating |J | at
point p, we have the formulation

D−xD−y |J |( p) =
∣
∣
∣
∣

D−xTx ( p) D−yTx ( p)
D−xTy( p) D−yTy( p)

∣
∣
∣
∣
, (1)

where Tx ( p) and Ty( p) are the x and y components of T ( p).
We denote the 4-connected neighbors of p as p−x , p+x ,

p−y , and p+y , as shown in Fig. 2a. Their transformed loca-
tions are denoted with subscripts t , as shown in Fig. 2b. For
example, p+x

t := T ( p+x ). We denote the triangular region
defined by the vectors p p−x and p p−y as � p p−x p−y , and
we assume that the 2D transformation T is linearly interpo-
lated on � p p−x p−y .
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Fig. 2 a shows the notations for p and its 4-connected neighbors. b shows pt , the transformed version of p as well as the transformed position of
the 4-connected neighbors. c shows the triangular regions and their corresponding forward and backward difference based |J |’s

Proposition 1 A 2D transformation T is invertible for
� p p−x p−y if and only ifD−xD−y |J | ( p) for T is nonzero.

Proof Since T is linearly interpolated on � p p−x p−y , T is
linear for � p p−x p−y and can be written as a 2 × 2 matrix
with pt p

−x
t and pt p

−y
t as its columns. Thus, T is invertible

if and only if pt p
−x
t and pt p

−y
t are linearly independent (not

colinear).D−xD−y |J |( p) can be written as a triple product:

D−xD−y |J |( p) = ( pt p
−x
t × pt p

−y
t ) · n, (2)

where n is the unit vector perpendicular to vectors pt p
−x
t and

pt p
−y
t and is positively oriented following the right-hand

rule. Therefore, T is invertible if and only ifD−xD−y |J |( p)
�= 0. ��
Definition 1 A 2D transformation T is said to cause folding
of � p p−x p−y if the orientation of � p p−x p−y is reversed
by T .

Proposition 2 A 2D transformation T is free of folding for
� p p−x p−y if and only ifD−xD−y |J | ( p) for T is positive.

Proof By the right-hand rule, � p p−x p−y is positively ori-
ented.
(⇒)WhenT is free of folding, the orientationof� p p−x p−y

is preservedbyT . Becauseof linear interpolation,� p p−xp−y

is transformed to � pt p
−x
t p−y

t , which is also positively ori-
ented. Equation2 shows that D−xD−y |J |( p) equals twice
the signed area of � pt p

−x
t p−y

t . Therefore, D−xD−y |J |( p)
> 0.
(⇐) WhenD−xD−y |J |( p) > 0, from Eq. 2 � pt p

−x
t p−y

t is
positively oriented.Becauseof linear interpolation,� p p−xp−y

is transformed to � pt p
−x
t p−y

t and both of them are
positively oriented. Therefore, T is free of folding for
� p p−x p−y . ��
Definition 2 A 2D transformation T is digitally diffeomor-
phic for the region � p p−x p−y if T is invertible and free of
folding for � p p−x p−y .

Proposition 3 A 2D transformation T is digitally diffeomor-
phic for the region� p p−x p−y if andonly ifD−xD−y |J | ( p)
> 0.

Proof Proposition 3 is a direct consequence of Propositions 1
and 2. ��
In conclusion,D−xD−y |J | for the point p informs us about
the digitally diffeomorphic property of a triangle adjacent to
p, under the assumption that the transformation is linearly
interpolated.

2.2 Digital Diffeomorphism in 2D

Similar to D−xD−y |J |( p), we can replicate Proposition 3
to establish that any |J |( p) approximated using any com-
bination of forward and backward differences is testing if
the transformation is digitally diffeomorphic for a triangu-
lar region around p (see Fig. 2c), assuming that the region
is linearly interpolated. Since these |J |( p)’s cover differ-
ent regions, their signs are independent of each other. For
example, T can have a positive D−xD−y |J |( p) and a neg-
ative D+xD+y |J |( p) at the same time (see Fig. 1b). For
each of these approximations, the implied triangular regions
for all p’s taken together cover only half of the space (e.g.,
D−xD−y |J | only considers the red tiles in Fig. 3a). Conse-
quently, even if a transformation T hasD−xD−y |J |( p) > 0
for all p’s, half the space is not considered and can potentially
exhibit folding or be non-invertible. This is also the case for
any other forward and backward difference computations of
|J |.

Although combining the triangular regions ofD−xD−y |J |
and D+xD+y |J | can cover the entire space, positive
D−xD−y |J | and D+xD+y |J | only guarantee that the trans-
formation is digitally diffeomorphicwhen the transformation
is piecewise linearly interpolated as shown in Fig. 3a. A
different choice, for example that shown in Fig. 3b, which
corresponds to D−xD+y |J | and D+xD−y |J | can give con-
tradictory conclusions. Since there are two ways of dividing
the square-size area between grid points, there aremanymore
piecewise linear transformations that correspond to the same
digital transformation, e.g., Fig. 3c. To anticipate all possi-
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Fig. 3 Illustration of the
combinations of Jacobian
determinants and their
corresponding triangular
regions. (a) D−xD−y |J |( p) and
D+xD+y |J |( p).
(b) D−xD+y |J |( p) and
D+xD−y |J |( p). (c) Each pixel
uses a different combination of
Jacobian determinants

ble choices of triangulation—each of which leads to its own
invertible transformation on the plane—we should therefore
consider all finite difference approximations in determin-
ing whether a transformation is digitally diffeomorphic. This
leads naturally to the following definition:

Definition 3 A2Ddigital transformationT is adigital diffeo-
morphism if for every grid point p it satisfiesD−xD−y |J |( p)
> 0, D−xD+y |J |( p) > 0, D+xD−y |J |( p) > 0, and
D+xD+y |J |( p) > 0.

The proposed digital diffeomorphism definition guarantees
the transformation to be free of folding and invertible regard-
less of the piecewise linear transformation (on triangles that
divide the squares between pixel centers) that is used.

2.3 Central Difference Based Jacobian Determinant

In this section, we analyze the central difference approxima-
tion of |J | given the previous analysis. We first ask where
p can be positioned to yield a digital diffeomorphism when
its neighbors have fixed transformations. We start with the
following definitions:

Definition 4 For grid point p with fixed p−x
t , p−y

t , p+x
t ,

and p+y
t , R( p) is defined to be the region in R

2 such that
D−xD−y |J |( p) > 0, D−xD+y |J |( p) > 0, D+xD−y |J |( p)
> 0, and D+xD+y |J |( p) > 0.

Definition 5 Let a and b be points in R
2. The half-plane

H(a, b) is defined as p ∈ R
2 such that �abp is positively

oriented.

Proposition 4 R( p) is the intersection of the four half-planes
H( p−x

t , p−y
t ), H( p−y

t , p+x
t ), H( p+x

t p+y
t ), and H( p+y

t ,

p−x
t ).

Proof Eq.1 can be written as:

D−xD−y |J |( p) = ( p−x
t p−y

t × p−x
t pt ) · n.

Therefore, when D−xD−y |J |( p) > 0, � p−x
t p−y

t pt is pos-
itively oriented. Thus pt is in the half-plane H( p−x

t , p−y
t ).

Analogous statements can be made for the other forward

and backward difference based |J |’s. When all the four
|J |’s are positive, pt must be inside the four half-planes
H( p−x

t , p−y
t ),H( p−y

t , p+x
t ),H( p+x

t p+y
t ), andH( p+y

t , p−x
t ).

Therefore,R( p) is the intersection of these four half-planes.
��

Figure 4 shows examples of R( p). In Figs. 4c and d, no
matter where pt is located, at least one forward or backward
difference based |J |( p) is guaranteed to be negative and,
thus,R( p) is empty. This makes sense since the transforma-
tions in Fig. 4c and d cause folds in space.

Proposition 5 Assume p−x
t , p−y

t , p+x
t , and p+x

t forms a
simple polygon (without self-intersection). Then R( p) is
non-empty if and only if D0xD0y |J | ( p) > 0.

Proof D0xD0y |J |( p) can be written as:

D0xD0y |J | = 1

2

(

D−xD−y |J | + D+xD−y |J |
+D−xD+y |J | + D+xD+y |J |) . (3)

(⇒) If R( p) is non-empty, for every pt ∈ R( p) all its for-
ward and backward difference based |J |( p)’s are positive by
Definition 4, and therefore from Eq. 3, D0xD0y |J |( p) > 0.
(⇐) On the other hand, if D0xD0y |J | > 0, the polygon
p−x
t p−y

t p+x
t p+y

t is positively oriented (Braden, 1986) (i.e.
interior to the left). Thus, if there exists a pt that is visible to
all vertices of the polygon, then pt ∈ R( p) by Proposition 4.
Following (Chvátal, 1975), such pt always exists for simple
polygons with five or fewer vertices. Therefore,R( p) is non-
empty. ��

Although a positive D0xD0y |J |( p) ensures that R( p) is
non-empty, p can still be digitally non-diffeomorphic when
pt /∈ R( p), which we see in the checkerboard problem.
In addition to the checkerboard problem, D0xD0y |J | also
fails to provide a meaningful interpretation when the poly-
gon p−x

t p−y
t p+x

t p+y
t exhibits self-intersection (see Fig. 4d).

In conclusion, D0xD0y |J |( p) ≤ 0 always indicates that T
is digitally non-diffeomorphic but D0xD0y |J |( p) > 0 does
not mean it is digitally diffeomorphic because of the checker-
board or self-intersection problems. Therefore, use of central
differences alone to estimate |J | is an inadequate character-
ization of digital diffeomorphism.
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Fig. 4 Examples of R( p) (blue
shaded region) for pt such that
T is digitally diffeomorphic.
c and d show examples of T ’s
that are causing folds in space
and thus R( p) is an empty set

Fig. 5 a shows the notations for p and its 6-connected neighbors in 3D and the tetrahedron considered byD−xD+yD−z |J |. b and c are illustrations
of the two schemes to divide the cube volume in-between grid points in 3D

2.4 Digital Diffeomorphism in 3D

Consider the standard Euclidean space R
3 that follows the

right-hand rule. Let T be a digital transformation of R3 that
is defined for every grid point p. We denote the 6-connected
neighbors of p as p±x , p±y, p±z (seeFig. 5a) and their trans-
formed locations are denoted with the subscript t . We denote
the tetrahedron defined by the vectors p p−x , p p−y , and
p p−z as p p−x p−y p−z , and we assume that the 3D trans-
formation T is linearly interpolated on p p−x p−y p−z .

Proposition 6 A 3D transformation T is invertible for
p p−x p−y p−z if and only if D−xD−yD−z |J | for p is

nonzero.

Proof Since T is linearly interpolated on p p−x p−y p−z ,
T is linear for p p−x p−y p−z and can be written as a 3×3
matrix with pt p

−x
t , pt p

−y
t , and pt p

−z
t as its columns. Thus,

T is invertible if and only if pt p
−x
t , pt p

−y
t , and pt p

−z
t are

linearly independent (not colinear).D−xD−yD−z |J |( p) can
be written as a triple product:

D−xD−yD−z |J |( p) = −( pt p
−x
t × pt p

−y
t ) · pt p−z

t . (4)

Therefore, T is invertible if and only if D−xD−yD−z |J |( p)
�= 0. ��

Definition 6 A 3D transformation T is said to cause folding
for p p−x p−y p−z if the orientation of p p−x p−y p−z

is reversed by T .

Proposition 7 A 3D transformation T is free of folding for
p p−x p−y p−z if and only if T hasD−xD−yD−z |J |( p) >

0.

Proof (⇒) When T is free of folding, the orientation of
p p−x p−y p−z (negatively oriented by the right-hand

rule) is preserved by T . Because of linear interpola-
tion, p p−x p−y p−z is transformed to pt p

−x
t p−y

t p−z
t ,

which is also negatively oriented. Equation4 shows that
D−xD−yD−z |J |( p) equals to six times the negative signed
volumeof pt p

−x
t p−y

t p−z
t . Therefore,D−xD−yD−z |J |( p)

> 0.

(⇐)D−xD−yD−z |J |( p)>0 indicates that pt p
−x
t p−y

t p−z
t

is negatively oriented by Eq. 4. Because of linear interpola-
tion p p−x p−y p−z is mapped to pt p

−x
t p−y

t p−z
t and

both of them are negatively oriented. Therefore, T is free of
folding for p p−x p−y p−z . ��
Definition 7 A 3D transformation T is digitally diffeomor-
phic for the region p p−x p−y p−z if T is invertible and
free of folding for p p−x p−y p−z .
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Proposition 8 A 3D transformation T is digitally diffeo-
morphic for the region p p−x p−y p−z if and only if
D−xD−yD−z |J |( p) > 0.

Proof Proposition 8 is a direct consequence of Propositions 6
and 7. ��

Similarly, we can prove that a |J |( p) approximated using
any combination of forward and backward differences is
testing if the transformation is digitally diffeomorphic in
a tetrahedron adjacent to p. One of these tetrahedra (for
D−xD+yD−z |J |) is visualized in Fig. 5a. However, unlike
the 2D case where all the triangular regions completely cover
the entire 2D space, the union of all these adjacent tetrahedra
does not fill the entire 3D space. Therefore, even if all forward
and backward difference approximations of |J | are positive,
the transformation can still cause folding in the spaces not
covered by these adjacent tetrahedra.

To solve this issue, we introduce another tetrahedron
p p−x−y p−x−z p−y−z , as shown in Fig. 5b. When com-

bined with four existing tetrahedra from finite difference
based |J |’s, they completely cover the entire volume. We
define |J �

1 |( p) as

|J �
1 |( p) = ( pt p

−x−y
t × pt p

−x−z
t ) · pt p−y−z

t , (5)

where p−x−y
t , p−x−z

t , and p−y−z
t are the transformed loca-

tions of p−x−y , p−x−z , p−y−z . The signed volume of the
extra tetrahedron after applying T equals 1

6 |J �
1 |( p). Similar

to 2D, there are twoways of dividing the cube-size volume in-
between grid points into five tetrahedra, as shown in Figs. 5b,
c. The signed volume of the extra tetrahedron in Fig. 5(c) can
be computed as 1

6 |J �
2 |( p), where

|J �
2 |( p) = ( pt p

+x+y
t × pt p

+y+z
t ) · pt p+x+z

t . (6)

There are other ways to divide a cube into tetrahedra (Carr
et al., 2006). These other schemes are not considered
here because 1) their computation involve finite difference
approximations at different points than those we consider, or
2) their computation requires interpolating the transforma-
tion at non-grid point.

Definition 8 A3Ddigital transformationT is a digital diffeo-
morphism if for every grid point p its forward and backward
difference based |J |’s of p are all positive and both |J �

1 |( p)
and |J �

2 |( p) are positive.
For similar reason as in 2D, our definition of digital dif-
feomorphism involves both schemes shown in Fig. 5b, c.
Specifically, each of the two schemes corresponds to a par-
ticular piecewise linear transformation.But for a given digital
transformation there are many plausible piecewise linear
transformations (see Fig. 3c). By considering both schemes,

we avoid the ambiguity of choosing different schemes for
every cube-sized volume.

The central difference approximation of |J | in 3D cal-
culates the signed volume of an octahedron with vertices
p−x
t , p+x

t , p−y
t , p+y

t , p−z
t , and p+z

t , when the octahe-
dron is simple. The proof is a straightforward extension
of Eq. 3. It is easy to show that D0xD0yD0z |J | can also
have the checkerboard problem or the self-intersection prob-
lem as in the 2D case. Note that Proposition 5 cannot be
generalized to 3D because p−x

t p+x
t p−y

t p+y
t p−z

t p+z
t may

not be tetrahedralizable (O’Rourke et al., 1987) and thus,
D0xD0yD0z |J |( p) > 0 cannot guaranteeR( p) in 3D is non-
empty.

2.5 Non-diffeomorphic SpaceMeasurement

For non-diffeomorphic transformations in 3D, the number
and percentage of non-diffeomorphic voxels is often used
to measure its irregularity. Specifically, a voxel is considered
non-diffeomorphic if its center location p has a central differ-
ence based Jacobian determinant that is not positive (i.e. in
3D: D0xD0yD0z|J |( p) ≤ 0). However, as we have demon-
strated in Sects. 1 and 2, the central difference based Jacobian
determinant underestimates the non-diffeomorphic space, in
general. Given the limitations of the central difference-based
Jacobian determinant, we seek an alternative way of evaluat-
ing the diffeomorphic property of digital transformations.We
aim to find a quantitative measure that involves the compu-
tation of finite difference-based Jacobians and is consistent
with our definition of digital diffeomorphism. As a result,
we propose non-diffeomorphic volume (NDV) to quantify
the size of the non-diffeomorphic space in 3D caused by a
digital transformation.

Given a grid point p, we denote its eight forward and
backward difference based Jacobian determinants as |Ji |, i ∈
[1, . . . , 8]. As shown in Sect. 2.4, each of these determinants
is equal to six times the signed volume of a tetrahedron adja-
cent to p. Thus, the non-diffeomorphic volume caused by
a given transformation within any tetrahedron is given by
−min(|Ji |, 0)/6, which is positive only if the tetrahedron is
folded.

Following Def. 8, we use the total volume of all folded
tetrahedrons from 1) |Ji |, i ∈ [1, . . . , 8], 2) |J �

1 |( p) given
in Eq. 5, and 3) |J �

2 |( p) given in Eq. 6 to compute NDV
exhibited in the entire domain as:

NDV = −1

2

∑

p

[
8

∑

i=1

min(|Ji |( p), 0)
6

+

min(|J �
1 |( p), 0)
6

+min(|J �
2 |( p), 0)
6

]

. (7)
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This computation is the average of the two tetrahedralization
schemes shown in Figs. 5b, c.While it is possible to report the
minimum or maximum achievable non-diffeomorphic vol-
ume by tetrahedralizing each cube between voxels based
on the specific transformation, doing so would inevitably
associate the given digital transformation with one partic-
ular piecewise linear transformation. Therefore, averaging
the two tetrahedralization schemes provides a more compre-
hensive and unbiased measure for a digital transformation.
Further discussion on the impact of spatially varying tetra-
hedralization schemes can be found in Sect. 4.

The proposed NDV is connected to the ideas of simplex
counting (SC) (Yushkevich et al., 2010) and surface propa-
gation (SP) (Pai et al., 2016), which are used to assess the
degree of volume change on a per-voxel basis. However,
those methods typically use only one scheme to discretize
the space. In contrast, NDV considers the two tetrahedraliza-
tion schemes shown in Fig. 5b, c. This choice is motivated
by the definition of digital diffeomorphism but it also offers
a rotation-invariant property. Specifically, rotating the trans-
formation by any multiple of 90 degrees does not affect its
result. This cannot be achieved using only one scheme. Fur-
ther discussion on the relationship and distinction between
SC, SP, and the proposed NDV can be found in Sect. 4.

For completeness we note the 2D version of non-
diffeomorphic space, which we term non-diffeomorphic
area (NDA), follows from Def. 3,

NDA = −1

2

∑

p

4
∑

i=1

min(|Ji |( p), 0)
2

, (8)

where |Ji |, i ∈ [1, . . . , 4], are the Jacobian determinants
approximated using the four possible combinations of for-
ward and backward differences.

A demonstration of NDA is provided in Fig. 6. When
using the central difference based |J |, all three cases in Fig. 6
would be considered diffeomorphic (D0xD0yD0z |J |( p) >

0) because of the checkerboard problem. The forward dif-
ference based |J | is able to identify that Fig. 6b, c exhibit

Fig. 6 A demonstration of measuring non-diffeomorphic space in 2D.
The transformations are visualized as displacement fields. In each of
the three subfigures, only the center points are transformed to their
corresponding pt ’s and the other grid points remainfixed. The triangular
region corresponds to the forward difference based |J | is shown in green
if |J | > 0, otherwise it is shown in red

folding, but only NDA can provide the observation that
the non-diffeomorphic space caused by the transformation
shown in Fig. 6c is larger than the non-diffeomorphic space
in Fig. 6b.

3 Experiments

We compared the commonly used central difference based
Jacobian determinant (D0xD0yD0z |J |) and our proposed
non-diffeomorphic volume (NDV) using several deformable
registration algorithms on two publicly available datasets:

IXI: A total of 576 T1-weighted brain magnetic reso-
nance (MR) images from the publicly available IXI
dataset were used. 403 scans were used in training for the
task of atlas-to-subject registration (Kim et al., 2021) and
58 scans were used for validation. The transformations
generated from registering an atlas brain MR images to
115 test scans were evaluated.

Learn2Reg OASIS: We also used the brain T1-weighted
MR images from the 2021
Learn2Reg challenge (Hering et al., 2022; LaMon-
tagne et al., 2019). Scans were preprocessed using
FreeSurfer (Fischl, 2012; Hoopes et al., 2021). All algo-
rithms were trained using the training set of 414 scans
and the transformations for the 19 validation pairs were
evaluated.

The central difference Jacobian determinant approxima-
tion was implemented directly from the 2021 Learn2Reg
challenge evaluation script. The implementation details and
hyper-parameters for each of the algorithms were adopted
from Chen et al. (2022) and Liu et al. (2022). Since, finite
differences can be efficiently computed using linear filters
with fixed, separable kernels, we implemented the proposed
non-diffeomorphic spacemeasurements using the correlation
operator. It is worth noting that when a GPU is available, this
implementation can be further accelerated by incorporating
the convolutional layers in modern deep learning libraries.

A visualization of a result from the IXI dataset is shown
in Fig. 7. Since it is difficult to visualize displacements
across slices (anterior-to posterior direction in this case),
only the displacements within the coronal plane were consid-
ered. Thus, we computed the non-diffeomorphic area instead
of non-diffeomorphic volume. For each pixel in Fig. 7d, a
higher red intensity indicates larger non-diffeomorphic area
around that pixel. The non-diffeomorphic pixels computed
from D0xD0y |J | are highlighted in Fig. 7c for comparison.

The results on the IXI dataset are summarized in Table 1
and for the Learn2Reg OASIS in Table 2. Only the voxels
within the brain were considered and the percentages were
calculated relative to the brain volume of the fixed image.
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Fig. 7 A visualization of the proposed non-diffeomorphic area. Due
to the difficulty in visualizing the deformation across slices (anterior-
to posterior direction), only the displacement inside the coronal plane
was considered in this example. a The warped image. b The grid line
representation of the transformation (generated usingVoxelmorph (Bal-
akrishnan et al., 2019)). c The warped image with non-diffeomorphic
pixels (marked in red) as measured by the central difference Jaco-

bian determinant (D0xD0y |J |) highlighted in red. d The warped image
with a map overlay indicating the non-diffeomorphic area with brighter
shades of red indicating larger non-diffeomorphic area. We also pro-
vide a video demonstrating the NDV in 3D, that we make available
at https://github.com/yihao6/digital_diffeomorphism/blob/main/docs/
_static/imgs/ndv_demonstration.gif

Table 1 Our proposed non-diffeomorphic volume and several other measures on the IXI dataset and the seven comparison algorithms.

D0xD0yD0z |J | ≤ 0 Any |Ji | ≤ 0 Proposed
# of voxels # of voxels NDV
(%) (%) (%)

NiftyReg Modat et al. (2010)
‘ 222.2 ± 776.1

(0.01%)

288.9 ± 945.7
(0.02%)

10.9 ± 45.4
(< 0.00%)

deedsBCV Heinrich et al. (2015)
5704.7 ± 1939.6
(0.37%)

12212.9 ± 3118.1
(0.79%)

1597.4 ± 661.5
(0.10%)

Voxelmorph Balakrishnan et al. (2019)
41233.1 ± 8091.3
(2.64%)

98241.0 ± 17061.1
(6.26%)

16261.5 ± 2709.3
(1.04%)

Cyclemorph Kim et al. (2021)
44126.5 ± 8526.4
(2.83%)

99560.0 ± 16833.8
(6.38%)

17923.6 ± 3083.3
(1.15%)

MIDIR Qiu et al. (2021)
0.0 ± 0.0
(< 0.00%)

0.1 ± 0.7
(< 0.00%)

0.0 ± 0.0
(< 0.00%)

Transmorph Chen et al. (2022)
35324.1 ± 7887.7
(2.26%)

88263.1 ± 17261.7
(5.65%)

14034.7 ± 2902.5
(0.90%)

im2grid Liu et al. (2022)
8291.4 ± 5928.4
(0.53%)

20282.7 ± 7853.8
(1.3%)

822.6± 248.5
(0.05%)

For ‘D0xD0yD0z |J | ≤ 0’ and ‘Any |Ji | ≤ 0’ we report the mean number of voxels (voxel #) over the 115 test subjects and the corresponding
standard deviation (±), as well as the percentage (%) with respect to the brain mask. We also report our proposed measure of non-diffeomorphic
space—i.e. non-diffeomorphic volume (NDV) in 3D—and the corresponding standard deviations and percentages. Methods are listed in the order
in which they were published

In both tables, we report the number of non-diffeomorphic
voxels (# of voxel) and its percentage (%) based on the
D0xD0yD0z|J |. We also report the number (and percent-
age) of voxels that have at least one |Ji | ≤ 0, denoted as
‘Any |Ji | ≤ 0’ in the tables. We observe that in most of the
cases, there are actually more than twice the number of vox-
els having |Ji | ≤ 0 for some finite difference than found
using only the central difference. The differences between
‘D0xD0yD0z|J | ≤ 0’ and ‘Any |Ji | ≤ 0’ highlight that
errors in using the central difference approximation are very
common in practice.

The proposed average non-diffeomorphic volume and its
percentage are shown in the last three columns of Tables 1
and 2. While the non-diffeomorphic voxel count and NDV
in Tables 1 and 2 show a similar ranking order, we also
observe different behaviors. For example, in Table 1, deeds-
BCV reports fewer non-diffeomorphic voxels than im2grid,
but has a higher NDV. This might be linked to the unique
algorithm and regularization techniques that each method
employs. As a result, even though im2grid presents a higher
number of voxels with folding or non-invertible (higher
‘Any |Ji | ≤ 0’), these folded regions result in a smaller
non-diffeomorphic volume. This example highlights the
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Table 2 Results for the Learn2Reg OASIS dataset.

D0xD0yD0z |J | ≤ 0 Any |Ji | ≤ 0 Proposed
voxels # of voxels NDV
(%) (%) (%)

SyN Avants et al. (2008) (0.01%)
205.5 ± 331.1
(0.02%)

278.2 ± 415.3
(0.01%)

85.0 ± 204.1

Voxelmorph Balakrishnan et al. (2019)
40418.4 ± 8991.3
(2.84%)

94343.8 ± 18452.7
(6.64%)

18448.2 ± 4319.0
(1.30%)

Transmorph Chen et al. (2022) (2.22%)
31646.6 ± 7609
(5.52%)

78533.7 ± 16113.0
(0.95%)

13502.7 ± 3779.9

im2grid Liu et al. (2022)
22905.6 ± 4142.3
(1.61%)

161071.8 ± 18271.5
(11.36%)

8774.7 ± 975.6
(0.62%)

For ‘D0xD0yD0z |J | ≤ 0’ and ‘Any |Ji | ≤ 0’we report themean number of voxels (voxel #) over the 19 validation subject pairs and the corresponding
standard deviation (±), as well as the percentage (%) with respect to the brain mask. We also report our proposed measure of non-diffeomorphic
space—i.e. non-diffeomorphic volume (NDV) in 3D—and the corresponding standard deviations and percentages. Methods are listed in the order
in which they were published

capability of NDV to provide more insights into the sever-
ity of folding, which is not captured by the existing use of
counting the non-diffeomorphic voxels. For algorithms that
impose strong regularization on the transformations (e.g.,
MIDIR (Qiu et al., 2021), deedsBCV (Heinrich et al., 2015),
NiftyReg (Modat et al., 2010), and SyN (Avants et al.,
2008)), a small—even zero—NDV is observed. However, for
the deep learning methods that directly output deformation
fields (Kim et al., 2021; Balakrishnan et al., 2019; Chen et al.,
2022; Liu et al., 2022), we usually have higher NDVs. It is
important to note that the results shown in Tables 1 and 2 do
not reflect the accuracy of the algorithms, just the proportion
of their deformation that is non-diffeomorphic.

4 Discussion

The Jacobian determinant of a transformation is a widely
used measure in deformable image registration, but the
details of its computation are often overlooked. In this paper,
we focused on the finite difference based approximation of
|J |. Contrary to what one might expect, the commonly used
central difference based |J | does not reflect if the transfor-
mation is diffeomorphic or not. Our investigation shows that
each of the finite difference approximated |J | corresponds
to the signed area of a triangle in 2D or the signed vol-
ume of a tetrahedron in 3D when the digital transformations
are assumed to be piecewise linear. Following this, we pro-
pose the definition of a digital diffeomorphism that allows
diffeomorphisms—a concept in continuous domain—to be
applied to digital transformations. It solves several problems
that are inherent in the central difference based |J |. We fur-
ther propose to use non-diffeomorphic volume to measure
the irregularity of 3D transformations and non-diffeomorphic
area for 2D transformations. As demonstrated in Figs. 6 and

7, our proposed approach measures the severity of the irreg-
ularity whereas the commonly used central difference based
|J | is only a binary indicator of folding (alsowith errors). The
transformation shown in Fig. 6(b) is obviously more favor-
able than the one shown in Fig. 6(c) in terms of regularity.
As such, it is important for us to be able to draw distinctions
between these two scenarios.

Thenon-diffeomorphicmeasures presented inEqs. 7 and8
are averages of two choices of tetrahedralization of the vol-
ume. It is possible, however, to tetrahedralize each cube
between voxels based on the specific registration outcome,
for example, to yield the minimum or maximum achievable
non-diffeomorphic volume. These measures must be com-
puted for the entire image domain since the brain mask is
defined at voxel level. For the IXI dataset, the average non-
diffeomorphic volume for the best case is 33227 voxel3 for
Voxelmorph and 31488 voxel3 for Transmorph while the
average non-diffeomorphic Volume for the worse case is
41903 voxel3 for Voxelmorph and 40964 voxel3 for Trans-
morph. In comparison, our proposed NDV is 37565 voxel3

for Voxelmorph and 36226 voxel3 for Transmorph for the
entire image domain. This result shows that, at least for
these two algorithms, the non-diffeomorphic volume can-
not be made substantially different from the average value
that we specified in Eq. 7 by alternative selection of tetrahe-
dralization.

The idea of discretizing the space using triangles or
tetrahedrons has been presented before for regularizing
deformable transformations and deformation-based volume
change estimation (Pai et al., 2016; Holland et al., 2011;
Yushkevich et al., 2010). It was previously believed that
computing the volume change in discretized space using
tetrahedrons is more accurate than using Jacobian determi-
nants because the latter involves finite difference approxi-
mation (Yushkevich et al., 2010). Our analysis shows that
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discretizing the space using triangles or tetrahedrons is in
fact the consequence of finite difference approximation of
Jacobian determinants. Therefore, the two approaches are
equivalent when the corresponding finite differences are cho-
sen for a given partition of space. (Haber & Modersitzki,
2004, 2007) and Burger et al. (2013) used the volume of tri-
angles in 2Dor tetrahedrons in 3D as a regularization term for
their registration algorithm. Initially, Haber et al. proposed
a hard equality constraint (Haber & Modersitzki, 2004) that
enforces the preservation of the discretized volume (or area in
2D) of every deformed box. Recognizing that this approach
could not detect “twists" (i.e., folding), they later proposed
an inequality constraint (Haber & Modersitzki, 2007) that
calculates the volumes of the tetrahedrons to prevent such
twists by imposing positive volumes of the tetrahedrons.
However, their methods only account for a single combina-
tion of Jacobian determinants (as shown in Fig. 3(a)), which
is insufficient to guarantee a digital diffeomorphism. More-
over, these previous works were motivated by the fact that
calculating the volume of a “twisted” polygon or octahedron
is difficult. Our analysis on the central difference approxi-
mated |J | explains why using a polygon or octahedron is
inaccurate.

Throughout the manuscript, linear interpolation is
assumed for the transformations at non-grid points (e.g.,
the transformation is assumed to be piecewise linear). This
assumption is intrinsically linked to the computation of finite
differences. To clarify, Eq. 2 is derived from the triple prod-
uct definition and is independent of the interpolation method
used. As such, regardless of the chosen interpolation for
transformations at non-grid points, D−xD−y |J |( p) always
equals twice the signed area of� pt p

−x
t p−y

t . Under the linear
interpolation assumption, � pt p

−x
t p−y

t represents the trans-
formed version of � p p−x p−y . The sign of D−xD−y |J |( p)
provides insight into the orientation of � pt p

−x
t p−y

t , which,
when differing from the orientation of � p p−x p−y , indi-
cates folding. An alternative interpolation method would
permit � p p−x p−y to transform into unpredictable shapes,
rendering the orientation information of � pt p

−x
t p−y

t unre-
liable for determining diffeomorphic properties. As such,
the assumption of linear interpolation becomes crucial to
precisely decipher diffeomorphic characteristics through the
finite difference approximated Jacobian. In the context of
deep learning based registration methods, the scaling-and-
squaring approach has become increasingly popular with
numerous works ensuring the diffeomorphic nature of their
network outputs by incorporating this method in their out-
put layer (Dalca et al., 2019; Chen et al., 2022; Hoopes et
al., 2021). However, several works have reported that the
scaling-and-squaring approach produces voxels with nega-
tive central difference based Jacobian determinant. The issue
of interpolation, as we discussed earlier, is the reason why
the scaling-and-squaring approach cannot consistently guar-

antee a positive Jacobian determinant. Specifically, when
composing two digital transformations, one of the transfor-
mations needs to be interpolated at non-grid locations. The
current methods usually adopt bilinear or trilinear interpola-
tion for this process. These interpolation methods, however,
are inconsistent with the piecewise linear transformation that
is implicitly assumed by the finite difference based Jacobian
determinant computation. Even if the original transformation
is digitally diffeomorphic, the interpolated transformation
may have negative Jacobian determinant when considered
by the finite difference approximation.

For recent deep learning-based registration algorithms, the
Jacobian determinant is frequently integrated into the loss
function during network training. Many algorithms utilize
the Jacobian determinant to either penalize negative Jacobian
determinant (Mok & Chung, 2020) values—thereby encour-
aging diffeomorphism—or to penalize deviations from a
determinant value of one, thereby encouraging volume
preservation or incompressibility (Bian et al., 2023). The
space discretization andvolumeestimation schemepresented
in this work can refine these loss functions and better instill
the desired properties within the trained networks.
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