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Abstract
Deep representation learning is a ubiquitous part of modern computer vision. While Euclidean space has been the de facto
standard manifold for learning visual representations, hyperbolic space has recently gained rapid traction for learning in
computer vision. Specifically, hyperbolic learning has shown a strong potential to embed hierarchical structures, learn from
limited samples, quantify uncertainty, add robustness, limit error severity, and more. In this paper, we provide a categorization
and in-depth overview of current literature on hyperbolic learning for computer vision. We research both supervised and
unsupervised literature and identify three main research themes in each direction. We outline how hyperbolic learning is
performed in all themes and discuss the main research problems that benefit from current advances in hyperbolic learning for
computer vision. Moreover, we provide a high-level intuition behind hyperbolic geometry and outline open research questions
to further advance research in this direction.

Keywords Hyperbolic deep learning · Computer vision · Representation learning

1 Introduction

From image segmentation to future frame prediction and
from video grounding to generating images, deep represen-
tation learning is the central component that drives modern
computer vision problems (LeCun et al., 2015). In short suc-
cession,many differentiable layers and network architectures
have been proposed to tackle visual research problems (Gu
et al., 2018; Bommasani et al., 2021; Khan et al., 2022).
While different in structure, scope, and inductive biases, all
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are based on Euclidean operators and therefore - implicitly
or explicitly - assume that data is best represented on regular
grids.

Euclidean space forms an intuitive and grounded underly-
ing manifold, but its inherent properties are not a best match
for all types of data. Consider for example hierarchical struc-
tures such as trees, ontologies, and taxonomies. Hierarchies
are foundational building blocks across all scientific disci-
plines to formalize our knowledge (Noy & Hafner, 1997). In
hierarchies, the number of nodes grows exponentially with
depth, from few coarse-grained to many fine-grained nodes.
The volume of a ball in Euclidean space however, grows only
polynomially with its diameter. An alternative geometry is
needed to match the nature of hierarchies.

In the quest for a more appropriate geometry of hierar-
chies, hyperbolic geometry provides a direct fit (Bridson
& Haefliger, 2013). In essence, hyperbolic and Euclidean
geometry are different in only one aspect: the parallel pos-
tulate. In Euclidean space, there is exactly one parallel line
that goes through a point not on the other line. In hyperbolic
space, there are at least two such parallel lines. This change
comes with many consequences and as a result, hyperbolic
geometry can be seen as a geometry of constant negative
curvature. In the context of deep learning this geometry has
many attractive properties, such as its hierarchical structure
and exponential expansion.
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Empowered by these geometric properties, hierarchical
embeddings have in recent years been performed in hyper-
bolic space with great success (Nickel & Kiela, 2017),
leading to unparalleled abilities to embed deep and complex
trees with minimal distortion (Ganea et al., 2018a; Sala et
al., 2018; Sonthalia & Gilbert, 2020; Verbeek & Suri, 2014;
Chami et al., 2020a). This has led to rapid advances in hyper-
bolic deep learning across many disciplines and research
areas, including but not limited to graph networks (Chami
et al., 2019; Liu et al., 2019; Dai et al., 2021; Sarkar, 2011;
Sun et al., 2021a; Yang et al., 2022a;Wang et al., 2023b), text
embeddings (Tifrea et al., 2019; Zhu et al., 2020; Dhingra et
al., 2018; Dai et al., 2020), molecular representation learning
(Klimovskaia et al., 2020; Yu et al., 2020;Wu et al., 2021; Qu
& Zou, 2022b), and recommender systems (Mirvakhabova
et al., 2020; Wang et al., 2021; Yang et al., 2022b; Li et al.,
2022; Vinh Tran et al., 2020; Chamberlain et al., 2019; Vinh
et al., 2018).

In the wake of other disciplines, computer vision has in
recent years also benefited from research into deep learning in
hyperbolic space. A quickly growing body of literature has
shown that hyperbolic embeddings benefit few-shot learn-
ing (Fang et al., 2021; Khrulkov et al., 2020; Gao et al.,
2021; Guo et al., 2022), zero-shot recognition (Long et al.,
2020; Liu et al., 2020; Ghadimi Atigh et al., 2021; Hong
et al., 2023b), out-of-distribution generalization (Khrulkov
et al., 2020; Hong et al., 2023a; Guo et al., 2022), uncer-
tainty quantification (Khrulkov et al., 2020; Ghadimi Atigh
et al., 2022; Chen et al., 2022), generative learning (Kingma
&Welling, 2013; Rezende et al., 2014; Lazcano et al., 2021;
Heusel et al., 2017), and hierarchical representation learn-
ing (Dhall et al., 2020; Long et al., 2020; Gulshad et al.,
2023; Liu et al., 2020; Ghadimi Atigh et al., 2022) amongst
others. These works show evidence that hyperbolic geometry
has a lot of potential for learning in computer vision.

This survey provides an in-depth overview and catego-
rization of the recent boom in hyperbolic computer vision
literature. These works have investigated hyperbolic learn-
ing across many visual research problems with different
solutions. As a result, it is unclear how current literature
is connected, what is common and new in each work, and
in which direction the field is heading. This survey seeks
to fill this void. We investigate both supervised and unsu-
pervised papers. For supervised learning, we identify three
shared themes amongst current papers, where samples are
matched to either gyroplanes, prototypes, or other samples
in hyperbolic space. For unsupervised papers, we dive into
the threemain axes explored in current papers, namely gener-
ative learning, clustering, and self-supervised learning. This
survey fills this void. Peng et al. (2021) have recently writ-
ten a general survey on hyperbolic neural networks but their
main focus is not on advances in computer vision. This
survey fills this void. Fang et al. (2023b) have made a con-

current overview of hyperbolic learning in the context of
computer vision. Our survey extends the survey of Fang
et al. (2023b) by providing a grouping of the advances in
supervised and unsupervised hyperbolic learning, delivering
an in-depth overview of hyperbolic geometry with its most
important functionalities for deep learning, and discussing
emerging advances such as fully hyperbolic learning.

The rest of the paper is organised as follows. In Sect. 2
we provide the background on hyperbolic geometry and
foundational papers on hyperbolic embeddings and hyper-
bolic neural networks. Sections3 and 4 provide an overview
of supervised and unsupervised hyperbolic visual learn-
ing literature. Lastly in Sect. 5 we outline advantages and
improvements reported in current papers, as well as open
challenges for the field.

2 Background on Hyperbolic Geometry

2.1 What is Hyperbolic Geometry?

Hyperbolic geometry was initially developed in the 19th cen-
tury by Gauss, Lobachevsky, Bolyai and others as a concrete
example of a non-Euclidean geometry (Cannon et al., 1997).
Soon after it found important applications in physics, as
the mathematical basis of Einstein’s special theory of rel-
ativity. It can be characterized as the geometry of constant
negative curvature, differentiating it from the flat geometry
of Euclidean space and the positively curved geometry of
spheres and hyperspheres. From the point of view of repre-
sentation learning, its attractive properties are its exponential
expansion and its hierarchical, tree-like structure. Exponen-
tial expansion means that the volume of a ball in hyperbolic
space growths exponentially with its diameter, in contrast
to Euclidean space, where the rate of growth is polynomial.
The ‘tree-likeness’ of a metric space can be quantified by
Gromov’s hyperbolicity (Bridson & Haefliger, 2013), which
is zero for tree graphs, finite (but non-zero) for hyperbolic
space, and infinite for Euclidean space.

2.2 Models of Hyperbolic Geometry

Several different, but isometric,models of hyperbolic geome-
try exist (Cannon et al., 1997). They differ in their coordinate
representations of points and in their expressions for dis-
tances, geodesics, and other quantities. Although they can
be isometrically mapped to each other, certain models may
be preferred for a given task, for reasons of numerical effi-
ciency, ease of visualization, or simplified calculations. The
most commonly used models are the Poincaré model, the
hyperboloid (or ‘Lorentz’) model, the Klein model, and the
upper half-space model.

123



International Journal of Computer Vision

Fig. 1 Circle Limit I (1958). This artwork by M. C. Escher is based on
the Poincaré disc model of hyperbolic geometry

• The Poincaré model represents d-dimensional hyper-
bolic space by the unit ball

Dd = {p ∈ R
d : p21 + · · · + p2d < 1}

which, in the frequently considered case d = 2 becomes
the unit disc. Geodesics (‘shortest paths’) are arcs of
Euclidean circles (or lines), meeting the boundary of Dd

at a right angle.While distances, area and volume are dis-
torted in comparison to their Euclidean counterparts, the
model is conformal, i.e., hyperbolic angles are measured
as in Euclidean geometry. In its two-dimensional form as
Poincaré disc, the model is popular for visualizations; it
is also the geometric basis of the art works Circle Limits
I-IV of M. C. Escher; see Fig. 1.

• The hyperboloid model uses the single-sheet hyper-
boloid

Hd = {p ∈ R
d+1 : p20 −

(
p21 + · · · + p2d

)
= 1, p0 > 0}

as a model of d-dimensional hyperbolic geometry. Con-
trary to the other models, its ambient space R

d+1 adds
one dimension to the modeled space. Many formulas
involving the hyperboloid model can be written in con-
cise form by introducing the Lorentz product p ◦ q =
p0q0 − (p1q1 +· · ·+ pdqd). An advantage of the hyper-
boloid model is that it retains some linear structure;
translations and other isometries, for example, can be

Fig. 2 Hyperboloid and Poincaré disc model. This figure shows the
relationship between the hyperboloid model and the Poincaré model of
hyperbolic geometry. In eachmodel, two points (red) and their connect-
ing geodesic arc (blue) are shown, as well as the tangent plane (light
blue) at one of the points in the hyperboloid model

represented by linear maps. Expressions for distances
and geodesics are simpler compared to other models.
Notably, the Poincaré model can be derived as a pro-
jection (‘stereographic projection’) of the hyperboloid
model to the unit ball (Cannon et al., 1997; Ratcliffe,
1994). Fig. 2 shows how the hyperboloid model and the
Poincaré ball model are related.

• The Klein model Kd also uses the unit ball to represent
hyperbolic space. In contrast to the Poincaré model, it
is not conformal; its geodesics, however, are Euclidean
(‘straight’) lines, which can be beneficial from a compu-
tational point of view, e.g., when computing barycenters.

• Lastly, the upper half space model represents d-
dimensional hyperbolic space by the set Ud = {p ∈
R
d : pd > 0}. It is a conformal model and shares many

properties with the Poincaré model; geodesics, for exam-
ple, are also arcs of Euclidean circles (or lines), meeting
the boundary of Ud at a right angle.

2.3 Five core Hyperbolic Operations

Within the context of deep learning and computer vision, we
find that five core operations form the basic building blocks of
the vast majority of algorithms that use hyperbolic geometry
for learning. The ability to work with these five operations
will cover most of the existing literature:

1. Measuring the distance of two points p and q;
2. Finding the geodesic arc (the distance-minimizing curve)

from p to q;
3. Forming a geodesic, by extending a geodesic arc as far as

possible;
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4. Using the exponential map, to determine the result of
following a geodesic in direction u, at speed r , starting at
a point p;

5. Moving a cloud of points, while preserving all their
pairwise hyperbolic distances, by applying a hyperbolic
translation.

The distance of two points is given, in the Poincaré and the
hyperboloid model respectively, by

dD(p, q) = 1√
κ
arcosh

(
1 + 2|p − q|2

(1 − |p|2)(1 − |q|2)
)

, (1)

dH(p, q) = 1√
κ
arcosh (p ◦ q) . (2)

In the less frequently used Klein and the upper half space
model, distances are given by

dK(p, q) = 1√
κ
arcosh

(
1 − p�q√

1 − |p|2√1 − |q|2
)

, (3)

dU(p, q) = 1√
κ
arcosh

(
1 + |p − q|2

2pdqd

)
, (4)

see Ratcliffe (1994, §6.1). The scaling factor of distances is
controlled by the curvature parameter κ ∈ (0,∞), which
is often standardized to κ = 1. The sectional curvature (in
the sense of differential geometry) of hyperbolic space is
constant, negative and equal to −κ . Given the distance func-
tion, it makes sense to speak of geodesics and geodesic arcs,
that is (locally) distance-minimizing curves, either extend-
ing infinitely or connecting two points. In the hyperboloid
model for example, each geodesic is the intersection of Hd

with a Euclidean hyperplane in the ambient spaceRd+1. The
geodesic at a point p ∈ Hd in direction u can be written as

λH(t) = cosh(t
√

κ)p + sinh(t
√

κ)u, t ∈ R. (5)

where u is an element of the tangent space Tp = {u ∈ R
d+1 :

p◦u = 0}, normalized to u◦u = −1. In the Poincaré model,
the geodesics are precisely the segments of Euclidean circles
and lines that meet the boundary of Dd at a right angle. A
convenient formula for the geodesic arc between two points
p, q ∈ Dd can be given in terms of gyrovectorspace calculus,
see (8).

The value of the exponential map expp(tu) is the result of
following a geodesic in a normalized direction u at a speed
t > 0, after starting at a given point p in hyperbolic space.
Identifying Rd with the tangent space Tp at p, the exponen-
tial mapping provides a convenient way to embed R

d into
hyperbolic space with origin at p. The exponential map is the
most often used function in hyperbolic learning for computer
vision, as it allows us to map visual representations from

Euclidean to hyperbolic space. In the hyperboloid model,
the exponential mapping coincides with the expression of the
geodesic given in (5). In the Poincaré model the exponential
map can be conveniently written in terms of gyrovectorspace
addition and is given in (9). In practice, the exponential and
logarithmic mapping functions are tools in vision for map-
ping representations from Euclidean to hyperbolic space or
vice versa. This is common for example when using hyper-
bolic embeddings on top of standard encoders or when using
pre-trained networks.

Finally, the hyperbolic translation τp, also called Lorentz
boost, Möbius transformation, or gyrovectorspace addi-
tion, is the unique distance-preserving transformation of
hyperbolic space, whichmoves 0 to a given point p. Concate-
nations of logarithmic maps, parallel transport in the tangent
space and exponential maps, as used for example in Ganea et
al. (2018a) can be expressed in terms of hyperbolic transla-
tions, or equivalently in terms of gyrovectorspace addition;
seeEq. (26) inGanea et al. (2018a). In the hyperboloidmodel,
the hyperbolic translation can be represented by the linear
map

τp(q) = L p · q, where (6)

L p =
(
p0 p̄�
p̄

√
Id + p̄ p̄�

)
with p̄ = (p0, . . . , pd). (7)

In the Poincaré model hyperbolic translations are also known
as gyrovectorspace addition and form the basic opera-
tion of gyrovectorspace calculus. For the equivalence of
gyrovectorspace addition and hyperbolic translations, one
can compare Eq.(4) in Ganea et al. (2018a) and Eq. (4.5.5)
in Ratcliffe (1994). For the equivalence of hyperbolic trans-
lations and Lorenz boosts see e.g., Sec. 2.2. in Chen et al.
(2021).

2.4 Gyrovectorspace Calculus

Gyrovectorspace calculus, as introduced by Ungar (2005,
2012), provides a convenient and rapidly adopted framework
for calculations in the Poincaré ball model. Its first basic
operation is the (non-commutative) gyrovectorspace addition

p ⊕ q = (1 − |p|2)q + (1 + 2p�q + |q|2)p
1 + 2p�q + |p|2|q|2 .

As a secondary operation, the (commutative) gyrovec-
torspace scalar product

t ⊗ p = p ⊗ t = tanh
(
t artanh(|p|)) p

|p|
with a scalar t ∈ R is introduced. Hyperbolic translations
are directly given by τp(q) = p ⊕ q and the geodesic arc
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connecting p and q is

λD(t) = p ⊕
((

(−p) ⊕ q
) ⊗ t

)
, t ∈ [0, 1]. (8)

Letting t range through all of R a full geodesic line is
obtained.

In the context of gyrovector space calculus, the Poincaré
ball is often rescaledwith the square root of curvature, setting

D
d
κ = {p ∈ R

d : p21 + · · · + p2d < 1/κ}.

The advantage of this rescaling is that Euclidean space is
obtained as a continuous limit as κ → 0. In the rescaled
model, gyrovectorspace addition and scalar product become

p ⊕κ q = 1√
κ

(
(
√

κ p) ⊕ (
√

κq)
)

and

t ⊗κ p = 1√
κ
(t ⊗ (

√
κ p))

for p, q ∈ D
d
κ . The exponential map in the direction of a

tangent vector v ∈ Tp can then be written as

expκ
p(v) = x ⊕κ

(
tanh

( √
κ|v|

1 − κ|p|2
)

v√
κ|v|

)
(9)

for p ∈ D
d
κ , see Ganea et al. (2018b).

2.5 Non-visual Hyperbolic Learning

The traction of hyperbolic learning in computer vision is
built upon advances in embedding hierarchical structures,
designinghyperbolic network layers, andhyperbolic learning
on other data types such as graphs, text, and more. Below, we
discuss these works and their relevance for hyperbolic visual
learning literature.
Hyperbolic embedding of hierarchies. Embedding hierarchi-
cal structures like trees and taxonomies in Euclidean space
suffers from large distortion (Bachmann et al., 2020), and
polynomial volume expansion, limiting its capacity to cap-
ture the exponential complexity of hierarchies. However,
hyperbolic space can be thought of as a continuous version
of trees (Nickel & Kiela, 2017) and has tree-like prop-
erties (Hamann, 2018; Ungar, 2008), like the exponential
growth of distances when moving from the origin towards
the boundary. Encouraged by this, Nickel & Kiela (2017)
propose to embed hierarchical structures on the Poincaré
model. The goal is to learn hyperbolic representations for
the nodes of a hierarchy, such that the distance in the embed-
ding space has an inverse relation with semantic similarity.
Let D = {(u, v)} denote the set of the nodes connected in a

given hierarchy. To embed the nodes in the Poincaré model,
Nickel & Kiela (2017) minimize the following loss function:

L(�) =
∑

(u,v)∈D
log

e−d(u,v)

∑
v

′ ∈N (u)
e−d(u,v

′
)
, (10)

where N (u) = {v′ |(u, v
′
) /∈ D} ∪ {v} denotes the set of the

nodes not related to u, including v, as negative examples.
The loss function pushes unrelated nodes farther apart than
the related ones. To evaluate the embedded hierarchy, the
distances between pairs of connected nodes (u, v) are cal-
culated and ranked among the negative pairs of nodes (i.e.,
the nodes not in D), and the mean average precision (MAP)
is calculated based on the ranking. Later, Sala et al. (2018)
propose a combinatorial construction to embed the trees in
hyperbolic space without optimization and with low distor-
tion, relieving the optimization problems in existing works.
Ganea et al. (2018a) address drawbacks of Nickel & Kiela
(2017) including the collapse of the points on the boundary
of the space as a result of the loss function and incapability
of encoding asymmetric relations. They introduce entailment
cones to embed hierarchies, using a max-margin loss func-
tion:

L =
∑

(u,v)∈P
E(u, v) +

∑

(u′
,v

′
)∈N

max(0, γ − E(u
′
, v

′
)),(11)

where γ , P , and N indicate margin, the positive and nega-
tive edges, respectively. E(u, v) is a penalty term that forces
child nodes to fall under the cone of the parent node.Amongst
others, hyperbolic embeddings have been proposed formulti-
relational graphs (Balazevic et al., 2019), low-dimensional
knowledge graphs (Chami et al., 2020b), and learning contin-
uous hierarchies in Lorentz model given pairwise similarity
measurements (Nickel & Kiela, 2018). Nickel & Kiela
(2018) proposes to learn embeddings � = {u}mi=1 in the
Lorentz model by optimizing

max
�

∑
i, j

log Pr(φ(i, j) = j |�) (12)

where given N (i, j) as the set concepts to embed,

φ(i, j) = argmin
z∈N (i, j)

d(ui , uz)

Pr(φ(i, j) = j |�) = e−d(ui ,u j )

�z∈N (i, j)e−d(ui ,uz)
.

Hyperbolic neural networks. Foundational in the transition
of deep learning towards hyperbolic space is the develop-
ment of hyperbolic network layers and their optimization.
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We consider two pivotal papers here that provide a such the-
oretical foundation, namely Hyperbolic Neural Networks by
Ganea et al. (2018b) and Hyperbolic Neural Networks++ by
Shimizu et al. (2021). Ganea et al. (2018b) propose multino-
mial logistic regression in the Poincaré ball.

Given k ∈ {1, ..., K } classes, pk ∈ D
n
c , ∀q ∈ D

n
c , and

ak ∈ D
n
c\{0}, hyperbolic logistic regression is performed

using

p(y = k|q) ∝ exp

(
λcpk‖ak‖√

c

sinh−1
(

2
√
c〈−pk ⊕c q, ak〉

(1 − c‖−pk ⊕c q‖2)‖ak‖
))

.

(13)

Intuitively, the above equation describes the distance to the
margin hyperplane in hyperbolic space. As an extension, a
hyperbolic version of linear layer f is given as f : Rn →
R
m , a Möbius version of f where the map from D

n → D
m

is defined as:

f ⊗c := expc0( f (log
c
0(q))), (14)

with expc0 : T0mDm
c → D

m
c and logc0 : Dn

c → T0nD
n
c . They

furthermore outline how to create recurrent network layers.
Bdeir et al. (2023) also provide the Lorentzian formulation
of 2D convolutional layer, batch normalization, and multino-
mial logistic regression. As (Bdeir et al., 2023) show, given
parameters ac ∈ R and zc ∈ R

n , the logit for class c and
input x ∈ L

n
K is given as:

vzc,ac (x) = 1√−K
sign(α)β| sinh−1 (

√−K
α

β
)|

α = cosh(
√−Ka)〈z, xs〉 − sinh (

√−Ka)

β =
√

‖ cosh (
√−Ka)z‖2 − (sinh (

√−Ka)‖z‖)2.

(15)

Shimizu et al. (2021) reformulate the hyperbolic logistic
regression of Ganea et al. (2018b) to reduce the number of
parameters to the same level as the Euclidean logistic regres-
sion. Their linear layer is given as:

y = Fc(p; Z , r) := w(1 +
√
1 + c‖w‖2)−1 (16)

where Z = {zk ∈ T0Bn
c = R

n}mk=1, r = {rk ∈ R}mk=1, and

w := (c− 1
2 sinh(

√
cvk(p)))mk=1. More importantly for com-

puter vision, they showhow to formulate convolutional layers
using Poincaré fully connected layer and β-concatenation.
To do so, they show how to generalize the hyperbolic linear
layer to imagepatches throughβ-splits, andβ-concatenation,
leading in principle to arbitrary-dimensional convolutional
layers. Moreover, Poincaré multi-head attention is possible
through the same operators.

Following Ganea et al. (2018b) and Shimizu et al. (2021),
Yang et al. (2023) investigate the hierarchical representa-
tion ability of the existing HNNs and HGNNs, improving
the hierarchical ability through hyperbolic informed embed-
ding (HIE) via incorporating hierarchical distance of the node
to origin. HIE is task- and model-agnostic and can be used
to improve the hierarchical embedding ability of different
hyperbolic models (i.e., Poincaré model and Lorentz model).
Park et al. (2023) use hyperbolic neural networks and propose
a Hyperbolic Affinity Learning method for spatial propa-
gation and learning the hierarchical relationship among the
pixels.
Hyperbolic learning of graphs, text, and more. The advances
in hyperbolic embeddings of hierarchies and the introduc-
tion of hyperbolic network layers have spurred research in
several other research directions as well. As a logical exten-
sion of hierarchical embeddings, graph networks have been
extended to hyperbolic space. Liu et al. (2019) and Chami
et al. (2019) propose a tangent-based view to hyperbolic
graph networks. Both approachesmodel a graph layer by first
mapping node embeddings to the tangent space, then per-
forming the transformation and aggregation in the tangent
space, after which the updated node embeddings are pro-
jected back to the hyperbolic manifold at hand. Since tangent
operations only provide an approximation of the graph oper-
ations on the manifold, several works have proposed graph
networks that better abide the underlying hyperbolic geome-
try, such as constant curvature κ-GCNs (Bachmann et al.,
2020), hyperbolic-to-hyperbolic GCNs (Dai et al., 2021),
Lorentzian GCNs (Zhang et al., 2021c), Lorentzian nested
hyperbolic GCNs (Fan et al. 2022), attention-based hyper-
bolic graph networks (Gulcehre et al., 2019; Zhang et al.,
2021b), dynamic hyperbolic graph attention network (Li et
al., 2023a), and embedding graphs by combining hyperbolic
and diffusion geometry (Lin et al., 2023c). Hyperbolic graph
networks have shown to improve node, link, and graph clas-
sification compared to Euclidean variants, especially when
graphs have latent hierarchical structures.

Hyperbolic embeddings have also been investigated for
text. Tifrea et al. (2019), Dhingra et al. (2018), and Leimeis-
ter&Wilson (2018) propose hyperbolic alternatives for word
embeddings. Zhu et al. (2020) introduce HyperText to endow
FastTextwith hyperbolic geometry. Embedding text in hyper-
bolic space has the potential to improve similarity, analogy,
and hypernymy detection, most notably with few embedding
dimensions.

Beyond text and graphs, hyperbolic learning has shown
to be beneficial for several other research directions, includ-
ing but not limited to learning representations for molec-
ular/cellular structures (Klimovskaia et al., 2020; Yu et
al., 2020; Wu et al., 2021), recommender systems (Mir-
vakhabova et al., 2020;Wang et al., 2021;Yang et al., 2022b),
reinforcement learning (Cetin et al., 2022), music genera-
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Fig. 3 The three core strategies for supervised hyperbolic learning
in computer vision. Current literature performs hyperbolic learning
of visual embeddings by learning to match training samples (i) to

hyperbolic class hyperplanes, i.e., gyroplanes, (ii) to hyperbolic class
prototypes, or (iii) by contrasting to other samples

tion (Huang et al., 2023), skeletal data (Franco et al., 2023;
Chen et al., 2023), LiDAR data (Tong et al., 2022; Wang et
al., 2023a), point clouds (Montanaro et al., 2022; Anvekar &
Bazazian, 2023; Lin et al., 2023b; Onghena et al., 2023), 3D
shapes (Chen et al., 2020b; Onghena et al., 2023; Leng et al.,
2023), and remote sensing data (Hamzaoui et al., 2023). In
summary, hyperbolic geometry has impacted a wide range of
research fields. This survey focuses specifically on the impact
and potential in the visual domain.

3 Supervised Hyperbolic Visual Learning

In Fig. 3, we provide an overview of literature on supervised
learningwith hyperbolic geometry in computer vision. In cur-
rent vision works, hyperbolic learning is mostly performed
at the embedding- or classifier-level. In other words, current
works rely on standard networks for feature learning and
transform the output embeddings to hyperbolic space for the
final learning stage. For supervised learning in hyperbolic
space, we have identified three main optimization strategies:

1. Sample-to-gyroplane learning denotes the setting where
classes are represented by hyperbolic hyperplanes, i.e.,
gyroplanes, with networks optimized based on confidence
logit scores between samples and gyroplanes.

2. Sample-to-prototype learning denotes the setting where
class semantics are represented as points in hyperbolic

space, and networks are optimized tominimize hyperbolic
distances between samples and prototypes.

3. Sample-to-sample learning denotes the setting where net-
works are optimized by learning metrics or contrastive
objectives between samples in a batch.

For all strategies, let (x, y) denote the visual input x , which
can be an image or a video, and the corresponding label
y ∈ Y . Let fθ (x) ∈ R

D denote its Euclidean embedding
after going through a network. This representation is mapped
to hyperbolic space using the exponential map, denoted as
g(x) = exp0( fθ (x)). In many hyperbolic works, additional
information about hierarchical relations between classes is
assumed. LetH = (Y,P,R), with Y the class labels denot-
ing the leaf nodes of the hierarchy, P the internal nodes, and
R the set of hypernym-hyponym relations of the hierarchy.
Below, we discuss how current literature tackles each strat-
egy in detail sequentially.

3.1 Sample-to-Gyroplane Learning

The most direct way to induce hyperbolic geometry in the
classification space is by replacing the classification layer by
a hyperbolic alternative. This can be done either by means of
a hyperbolic logistic regression or through hyperbolic kernel
machines.
Hyperbolic logistic regression. Khrulkov et al. (2020) incor-
porate a hyperbolic classifier by taking a standard convolu-
tional network and mapping the outputs of the last hidden
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layer to hyperbolic space using an exponential map. After-
wards, the hyperbolic multinomial logistic regression as
described by Ganea et al. (2018b) is used to obtain class
logits which can be optimized with cross-entropy. They find
that training a hyperbolic classifier on top of a convolutional
network allows us to obtain uncertainty information based
on the distance to the origin of the hyperbolic embeddings
of images. Out-of-distribution samples on average have a
smaller norm, making it possible by differentiating in- to
out-of-distribution samples by sorting them by the distance
to the origin. Hong et al. (2023a) show that hyperbolic clas-
sification is beneficial for visual anomaly recognition tasks,
such as out-of-distribution detection in image classification
and segmentation tasks. Araño et al. (2021) use hyperbolic
layers to perform multi-modal sentiment analysis based on
the audio, video, and text modalities. Ahmad&Lecue (2022)
also show the effect of hyperbolic space to perform object
recognition with ultra-wide field-of-view lenses. Han et al.
(2023) show that hyperbolic embeddingswith logistic regres-
sion and an extra contrastive loss benefits anti-face spoofing.

Guo et al. (2022) address a limitation when training clas-
sifiers in hyperbolic space, namely a vanishing gradient
problem due to the hybrid architecture of current hyperbolic
approaches in computer vision, where Euclidean features are
connected to a hyperbolic classifier. Equation13 highlights
that to maximize the likelihood of correct predictions, the
distance to hyperbolic gyroplanes needs to be maximized. In
practice, embeddings of samples are pushed to the boundary
of thePoincaré ball.As a result, the inverse of theRiemannian
tensor metric approaches zero, resulting in small gradients.
This finding is in line with several other works on vanishing
gradients in hyperbolic representation learning in Poincaré
and Lorentz models (Nickel & Kiela, 2018; Liu et al., 2019).

To combat the vanishing gradient problem, Guo et al.
(2022) propose to clip the Euclidean embeddings of sam-
ples before the exponential mapping, i.e.:

f clippedθ (x) = min

{
1,

r

|| fθ (x)||
}

· fθ (x), (17)

with r as a hyperparameter. This trick improves learningwith
hyperbolic multinomial logistic regression, especially when
dealing with many classes such as on ImageNet. Further-
more, training with clipped hyperbolic classifiers improves
out-of-distribution detection over training with Euclidean
classifiers, while also being more robust to adversarial
attacks. However, Moreira et al. (2023) dive into the hyper-
bolic prototypical networks with high-dimensional output
space while performing a few-shot learning task, show-
ing that the hyperbolic representations concentrate close to
the surface, resulting in a boundary saturation. Mishne et
al. (2023) analyze the limitations and differences between
Poincaré and Lorentz models, along with a Euclidean

parametrization to hyperbolic space. These works indicate
the need for more robust representation and optimization
when working in hyperbolic space.

Next to global classification, a few recent works have
investigated hyperbolic logistic regression for structured
prediction tasks such as object detection and image segmen-
tation. Valada (2022) extend object detectionwith hyperbolic
geometry, amongst others by replacing the classifier head
of a two-stage detection like Sparse R-CNN (Sun et al.,
2021b) with a hyperbolic logistic regression, improving
object detection performance in standard and zero-shot set-
tings. Ghadimi Atigh et al. (2022) introduce Hyperbolic
Image Segmentation, where the final per-pixel classification
was performed in hyperbolic space. Starting from the geo-
metric interpretation of hyperbolic gyroplanes of Ganea et
al. (2018b), they find that simultaneously computing class
logits over all pixels of all images in a batch, as is customary
in Euclidean networks, is not directly applicable in hyper-
bolic space. This is because the explicit computation of the
Möbius addition requires evaluating a tensor inRW×H×|Y |×d

for an images of size (W×H)with d embedding dimensions.
Instead, they rewrite the Möbius addition as:

f1 ⊕c f2 = α f1 + β f2,

α = 1 + 2c〈 f1, f2〉 + c|| f2||2
1 + 2c〈 f1, f2〉 + c2|| f1||2|| f2||2 ,

β = 1 + c|| f1||2
1 + 2c〈 f1, f2〉 + c2|| f1||2|| f2||2 .

(18)

This rewrite reduces the addition to adding two tensors
in R

W×H×|Y |, allowing for per-pixel evaluation on image
batches. For training,GhadimiAtigh et al. (2022) incorporate
hierarchical information by replacing the one-hot softmax
with a hierarchical softmax:

p(ŷ = y|g(x)i j ) =
∏
h∈Hy

exp(ξh(g(x)i j ))∑
s∈Sh exp(ξs(g(x)i j ))

, (19)

with Hy = {y} ∩ Ay the set containing y and its ancestors
and Sh the set of siblings of class h. Performing per-pixel
classificationwith hyperbolic hierarchical logistic regression
opens up multiple new doors for image segmentation. First,
the notion of uncertainty as given by the hyperbolic norm of
output embeddings generalizes naturally to the pixel level.
As shown in Fig. 4, the norm of pixel embeddings correlates
with semantic ambiguity; the closer the pixel is to a semantic
boundary the lower the pixel norm. Chen et al. (2022) have
already used this insight to improve image segmentation.
They outline a hyperbolic uncertainty loss, where the cross-
entropy loss of a pixel is weighted as follows for pixelxi j :
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Fig. 4 Hyperbolic image segmentation naturally provides us per-pixel
uncertainty information. Pixels with low hyperbolic norm constitute
pixels with high uncertainty and are strongly correlated with close-
ness to semantic boundaries. Figure reproduced with permission of
Ghadimi Atigh et al. (2022)

uw(xi j ) = 1 + 1

log

(
t + dh(g(x)i j ,0)

dh(g(s),0)

) , (20)

with s the most confident pixel and t a hyperparameter
set to 1.02 in order to have a wide weight variation while
avoiding division by zero. Adding this weight to the cross-
entropy pixel loss consistently improves segmentation results
for well-known segmentation networks. Other benefits of
hyperbolic image segmentation include better zero-label gen-
eralization and higher effectiveness with few embedding
dimensions compared to Euclidean pixel embeddings.
Hyperbolic kernel machines.Next to logistic regression, Cho
et al. (2019) provide a general formulation for kernel meth-
ods in hyperbolic space with large-margin classifiers. Fang
et al. (2021, 2023a) introduce positive definite kernel func-
tions in hyperbolic space and show its potential for computer
vision. Specifically, they propose hyperbolic instantiations
of tangent kernels, radial basis function kernels, (general-
ized) Laplace kernels, and binomial kernels. The kernels can
be plugged on top of convolutional networks and trained
with cross-entropy to benefit from both the representation
learning of the convolutional layers and the hyperbolic
kernel dynamics in the classifier. Deep learning with hyper-
bolic kernel methods improves few-shot learning, person
re-identification, andknowledgedistillation.Zero-shot learn-
ing is even enabled through kernel distances between visual
embeddings and semantic class representations.

3.2 Sample-to-Prototype Learning

The most popular strategy in hyperbolic learning is to repre-
sent classes as prototypes, i.e., as points in hyperbolic space.
In this research direction, there are two solutions: embedding

classes based on their sample mean, in the spirit of Prototyp-
ical Networks (ProtoNet) (Snell et al., 2017), or embeddings
classes based on a given hierarchy over all classes.

Hyperbolic ProtoNet In Prototypical Networks (Snell et al.,
2017), the prototype of a class k is determined as the mean
vector of the samples belonging to that class:

PR(k) = 1

|Sk |
∑
ys∈Sk

fθ (xs), (21)

with Sk the set of samples belonging to class k. Inference
can in turn be performed by assigning the label of the nearest
prototype for a test sample. Khrulkov et al. (2020) gener-
alize this formulation to Hyperbolic Prototypical Networks.
Since computing averages in the Poincaré ballmodel requires
expensive Fréchet mean calculations, they perform averag-
ing using the Einstein midpoint, given in Klein coordinates
as:

PK(k) =
|Sk |∑
i=1

γi gK(xi )/
|Sk |∑
i=1

γi , (22)

with γi the Lorentz factors:

γi = 1√
1 − c||g(xi )||2

. (23)

Since Khrulkov et al. (2020) operate in the Poincaré
ball model, this averaging operation requires transforming
embeddings to and from the Klein model:

gK(xi ) = 2gD(xi )

1 + c||gD(xi )||2 ,

gD(xi ) = gK(xi )

1 + √
1 − c||gK(xi )||2

,

(24)

with gD(xi ) and gK(xi ) the embeddings of input xi in respec-
tively the Poincaré ball model and the Klein model. Akin
to its Euclidean counterpart, Hyperbolic ProtoNet is used
to address few-shot learning, where the sample mean pro-
totype serves as the class representation. Khrulkov et al.
(2020) show that performing prototypical few-shot learning
in hyperbolic space is competitive to Euclidean prototypi-
cal learning, even resulting in better accuracy scores when
relying on a 4-layer ConvNet as the backbone.

As a follow-up work, Gao et al. (2021) show that different
tasks and even individual classes in few-shot learning favor
different curvatures. Theypropose to generate a per-class cur-
vature based on the second-order statistics of its in-class and
out-of-class sample representations. Using the second-order
statistics, a multi-layer perceptron with sigmoid activation is
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learned to fix the range of the curvature to [0, 1]. Given class-
specific curvatures, prototypes are obtained by constructing
an intra-class distance matrix on top of which an MLP is
trained. The MLP serves as weights for each in-class sam-
ple. The procedure is repeated for the closest samples in the
out-of-class set, after which the per-class prototype is given
as the weighted hyperbolic average over the in-class and
closest out-of-class samples. The curvature generation and
weighted hyperbolic averaging improve few-shot learning in
both inductive and transductive settings.

The hyperbolic clipping of Guo et al. (2022) is also effec-
tive for few-shot learning, consistently outperforming the
standard ProtoNet and Hyperbolic ProtoNet on the CUB
Birds and miniImageNet few-shot benchmarks. A few other
works have extended Hyperbolic ProtoNet for few-shot
learning with set- and grouplet-based learning and will be
discussed in the sample-to-sample learning section.

Recently, Gao et al. (2022) investigate feature augmenta-
tion in hyperbolic space to solve the overfitting problemwhen
dealing with limited data. On top, they introduce a scheme
to estimate the feature distribution using neural-ODE. These
elements are then plugged into few-shot approaches such
as the hyperbolic prototypical networks of Khrulkov et
al. (2020), improving performance. Choudhary & Reddy
(2022) improve hyperbolic few-shot learning by reformu-
lating hyperbolic neural networks through Taylor series
expansions of hyperbolic trigonometric functions and show
that it improves the scalability and compatibility, and outper-
forms Hyperbolic ProtoNet.
Hierarchical embedding of prototypes. Where Hyperbolic
ProtoNets are effective in few-shot settings, a number of
works have also investigated prototype-based solutions for
the general classification. As starting point, theseworks com-
monly assume that the classes in a dataset are organized in a
hierarchy, see Fig. 5. Long et al. (2020) embed action class
hierarchyH in hyperbolic space using hyperbolic entailment
cones (Ganea et al., 2018a),with an additional loss to increase
the angular separation between leaf nodes to avoid inter-
label confusion amongst class labels Y . With LH (H) as the
hyperbolic embedding loss for hierarchyH, let P denote the
leave nodes of the hierarchy. Then the separation-based loss
is given over the leaf nodes as:

LS(P) = 1T(P̂ P̂T − I )1, (25)

with P̂ the 
2-normalized representations of the leaf nodes.
By combining the hierarchical and separation based losses,
the hierarchy is embedded to balance both hierarchical
constraints and discriminative abilities. The embedding is
learned a priori, after which video embeddings are projected
to the same hyperbolic space and optimized to their correct
class embedding. This approach improves action recogni-
tion, zero-shot action classification, and hierarchical action

Fig. 5 Hierarchical knowledge amongst classes provides a structure for
hyperbolic embeddings in computer vision approaches, where classes
are represented as points or prototypes in hyperbolic space according
to their hypernym-hyponym relations. For example, Long et al. (2020)
exploit hierarchical relations from different actions for action hierar-
chies (right). Figure reproduced with permission of Long et al. (2020)

search. In a similar spirit, Dhall et al. (2020) show that using
hyperbolic entailment cones for image classification is empir-
ically better than using Euclidean entailment cones. Rather
than separating hierarchical and visual embedding learning,
Yu et al. (2022b) propose to simultaneously learn hierarchi-
cal and visual representations for skin lesion recognition in
images. Image embeddings are optimized towards their cor-
rect class prototype, while the classes are optimized to abide
by their hyperbolic entailment cones with an extra distortion
loss to obtain better hierarchical embeddings. Gulshad et al.
(2023) propose Hierarchical Prototype Explainer, a reason-
ing model in hyperbolic space to provide explainability in
video action recognition. Their approach learns hierarchical
prototypes at different levels of granularity e.g., parent and
grandparent levels, to explain the recognized action in the
video. By learning the hierarchical prototypes, they can pro-
vide explanations on different levels of granularity, including
interpretation of the prediction of a specific class label and
providing information on the spatiotemporal parts that con-
tribute to the final prediction. Li et al. (2023c) investigate
the semantic space of action recognition datasets and bridge
the gap between different labeling systems. To achieve a uni-
fied action learning, actions are connected into a hierarchy
using VerbNet (Schuler, 2005) and embedded as prototypes
in hyperbolic space.

Hierarchical prototype embeddings have also been suc-
cessfully employed in the zero-shot domain. Liu et al. (2020)
show how to perform zero-shot learning with hyperbolic
embeddings. Classes are embedded by taking theirWordNet-
based Poincaré Embeddings (Nickel&Kiela, 2017) and text-
based Poincaré GloVe embeddings (Tifrea et al., 2019). Both
are concatenated to obtain class prototypes. By optimizing
seen training images to their prototypes, it becomes possible

123



International Journal of Computer Vision

to generalize to unseen classes during testing through a near-
est neighbor search in the concatenated hyperbolic space. Xu
et al. (2022) also perform hyperbolic zero-shot learning by
training hyperbolic graph layers (Chami et al., 2019) on top
of hyperbolic word embeddings. Dengxiong &Kong (2023)
show the potential of hyperbolic space in generalized open set
recognition, which classifies unknown samples based on side
information. A side information (taxonomy) learning frame-
work is introduced to embed the information in hyperbolic
space with low distortion and identify the unknown samples.
Moreover, an ancestor search algorithm is outlined to find the
most similar ancestor in the taxonomy of the known classes.

For standard classification, Ghadimi Atigh et al. (2021)
show how to integrate uniformity amongst prototypes in
hyperbolic space by embedding classes withmaximum sepa-
ration on the boundary of the Poincaré ball given byMettes et
al. (2019); Kasarla et al. (2022). With prototypes now at the
boundary of the ball, standard distance functions no longer
apply since they are at the infinite distance to any point within
the ball. To that end, they propose to use the Busemann dis-
tance, which is given for hyperbolic image embedding g(x)
and prototype p as:

bp(g(x)) = log

( ||p − g(x)||2
1 − ||g(x)||2

)
. (26)

By fixing prototypes with maximum separation a priori and
minimizing this distance functionwith an extra regularization
towards the origin, it becomes possible to perform hyperbolic
prototypical learning with prototypes at the ideal boundary.
Ghadimi Atigh et al. (2021) show that such an approach
has direct links with conventional logistic regression in the
binary case, highlighting its inherent properties. Moreover,
maximally separated prototypes can also be replaced by pro-
totypes from word embeddings or hierarchical knowledge,
depending on the available knowledge and task at hand. In
addition to standard classification, hierarchical hyperbolic
embeddings have demonstrated effectiveness in continual
learning (Gao et al., 2023). To learn the new data, Gao
et al. (2023) propose a dynamically expanding geometry
through a mixed-curvature space, enabling learning of com-
plex hierarchies in a data stream. To prevent forgetting,
angle-regularization and neighbor-robustness losses are used
to preserve the geometry of the old data.

Few-shot learning has also been investigated with hierar-
chical knowledge. Zhang et al. (2022) perform such few-shot
learning by first training a network on a joint classification
and hierarchical consistency objective. The classification is
given as a softmax over the class probabilities, as well as
the softmax over the superclasses. In the few-shot inference
stage, class prototypes are obtained through hyperbolic graph
propagation to deal with the limited sample setting, improv-
ing few-shot learning as a result.

3.3 Sample-to-Sample Learning

Lastly, a number of recent works have investigated hyper-
bolic learning by contrasting between samples.

Hyperbolic Metric Learning Ermolov et al. (2022) inves-
tigate the potential of hyperbolic embedding for metric
learning. In metric learning, the de facto solution is to match
representations of sample pairs based on embeddings given
by a pre-trained encoder. Rather than relying on Euclidean
distances and contrastive learning for optimization, they
propose a hyperbolic pairwise cross-entropy loss. Given a
dataset with |Y| classes, each batch samples two samples
from each category, i.e., K = 2 · |Y|. Then the loss function
for a positive pair with the same class label is given as:


i j = − log
exp(−D(g(xi ), g(x j ))/τ)∑K
k=1 exp(−D(g(xi ), g(xk))/τ)

, (27)

where D(·, ·) can be either a hyperbolic or a cosine dis-
tance and τ denotes a temperature hyperparameter. This
loss is computed over all positive pairs (i, j) and ( j, i) in
a batch. Using supervised (Dosovitskiy et al., 2021) and
self-supervised (Caron et al., 2021) vision transformers as
encoders, hyperbolic metric learning consistently outper-
forms Euclidean alternatives and sets state-of-the-art on
fine-grained datasets.

Hyperbolic metric learning has shown to be effective
to overcome overfitting and catastrophic forgetting in few-
shot class-incremental learning tasks, explored by Cui et al.
(2022). This is done by adding ametric learning loss as a part
of the distillation in continual learning. They also propose a
hyperbolic version of Reciprocal Point Learning (Chen et al.,
2020a) to provide extra-class space for known categories in
the few-shot learning stage. Yan et al. (2023) also explore
hyperbolic metric learning, incorporating noise-insensitive
and adaptive hierarchical similarity to handle noisy labels
andmulti-level relations. Kim et al. (2022) add a hierarchical
regularization term on top of the metric learning approaches,
with the goal of learning hierarchical ancestors in hyperbolic
space without any annotation. Hyperbolic metric learning
is furthermore effective in semantic hashing (Amin et al.,
2022), face recognition via large-margin nearest-neighbor
learning (Trpin & Boshkoska, 2022), and multi-modal align-
ment given videos and knowledge graph (Guo et al., 2021).

Following the progress of large language models and the
success of vision-language models (e.g., CLIP (Radford et
al., 2021)) in multimodal representation learning, Desai et
al. (2023) propose a hyperbolic image-text representation in
Lorentzmodel. Theproposedmethodfirst processes the input
image and text using two separate encoders. Then, the gen-
erated embedding is projected into the hyperbolic space, and
training is performed using a contrastive and entailment loss.
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The paper shows that the proposed approach outperforms
the Euclidean CLIP as it is capable of capturing hierarchi-
cal multimodal relations in hyperbolic space. Hong et al.
(2023b) also explore multimodal data to perform zero-shot
learning with audio-visual data with a curvature-aware geo-
metric solution. To align the features extracted from the audio
and video modalities, Hong et al. (2023b) propose Hyper-
align, a hyperbolic alignment loss in a fixed curvature setup,
followed by Hyper-single, a module to enable learnable cur-
vature, and Hyper-multiple, to calculate the alignment loss
within different curvatures.
Hyperbolic set-based learning. Where sample-to-prototype
and sample-to-sample approaches compare samples to indi-
vidual elements, some works have shown that set-based and
group-based distances aremore effective and robust.Ma et al.
(2022) introduce an adaptive sample-to-set distance function
in the context of few-shot learning. Rather than aggregating
support samples to a single prototype, an adaptive sample-
to-set approach is proposed to increase the robustness to the
outliers. The sample-to-set function is a weighted average
of the distance from the query to all support samples, where
the distance is calculated with a small network over the fea-
ture maps of the query and support samples. This approach

benefits few-shot learning, especially when dealing with out-
liers.

In the context of metric learning, Zhang et al. (2021a)
argue that sample-to-sample learning is computationally
expensive, while sample-to-prototype learning is less accu-
rate. They propose a hybrid strategy based on grouplets.
Each grouplet is a random subset of samples and the
set of grouplets is matched with prototypes through a
differentiable optimal transport. Akin to Ermolov et al.
(2022), they show that using hyperbolic embedding spaces
improved metric learning on fine-grained datasets. More-
over, they provide empirical evidence that othermetric-based
losses benefit from hyperbolic embeddings, highlighting
the general utility of hyperbolic space for metric learn-
ing.

4 Unsupervised Hyperbolic Visual Learning

Hyperbolic learning has been actively researched in the
unsupervised domain of computer vision. We identify three
dominant research directions inwhich hyperbolic deep learn-
ing has found success: generative learning, clustering, and
self-supervised learning. Below, each is discussed separately.

Fig. 6 The three major methods for unsupervised hyperbolic learning in computer vision. Current literature performs unsupervised learning in
hyperbolic space using (i) generative models, (ii) clustering, (iii) self-supervised learning
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4.1 Generative Approaches

4.1.1 Hyperbolic VAEs

Variational autoencoders (VAEs) (Kingma &Welling, 2013;
Rezende et al., 2014) with hyperbolic latent space have
been used to learn representations of images. Nagano et
al. (2019) propose the hyperbolic wrapped normal distri-
bution in Lorentz model and derive algorithms for both
reparametrizable sampling and computing the probability
density function. They then derive a hyperbolic β-VAE (Hig-
gins et al., 2017) using the wrapped normal function as the
prior and posterior, replacing the usual (Euclidean) Gaussian
distribution. The wrapped normal distribution in a manifold
M is the pushforward measure under the exponential map
expM. Thus, a sample z can be obtained as (Mathieu et al.,
2019):

z = expMμ
(
G(μ)−1/2v

)
, v ∼ N (·|0, �) (28)

where expMμ is the exponential map of M at μ and G is
the matrix representation of the metric ofM, and v is a ran-
dom sample from Euclidean normal distribution with mean 0
and variance �. To accommodate the geometry of the latent
space, exponential and logarithmic maps were added at the
end of the VAE encoder and before the start of the VAE
decoder, respectively. In order to train their hyperbolic VAE
with the typical evidence lower bound, Nagano et al. (2019)
compute the density of the wrapped normal distribution
using the change-of-variables formula. Since their sampling
algorithm required the exponential and parallel transport
maps, Nagano et al. (2019) compute the log-determinants
and inverses of these maps in order to apply the change-of-
variables formula. Nagano et al. (2019) then use their VAE
to learn representations of MNIST and Atari 2600 Breakout
screens. On MNIST, Hyperbolic representations outperform
Euclidean representations at low latent dimensions but were
overtaken starting at dimension 10.

Mathieu et al. (2019) extend the work of Nagano et al.
(2019) by introducing the Riemannian normal distribution
and deriving reparametrizable sampling schemes for both
the Riemannian normal and wrapped normal using hyper-
bolic polar coordinates. The Riemannian normal views the
Euclidean normal distribution as the distribution minimiz-
ing the entropy for a given mean and standard deviation and
defines a new normal distribution on hyperbolic space with
this property:

N R
M(z|μ, σ 2) = 1

Z R
exp

(
−dM(μ, z)2

2σ 2

)
(29)

Fig. 7 The standard hyperbolic wrapped normal (top) and rotated
hyperbolic wrapped normal (bottom). In (a), the principal axes of
the normal distribution are illustrated. In (b), the principal axes of the
transported normal distribution are visualized. The density of the two
distributions are visualized in (c). Image courtesy of Cho et al. (2022)

where Z R is a normalizing constant, μ and σ 2 are the mean
and variance. Mathieu et al. (2019) additionally introduce
the use of a gyroplane layer as the first layer of the decoder,
followingGanea et al. (2018b).Noting that a Euclidean affine
transform can be written as

fa,p(z) = sign(〈a, z − p〉)||a||dE (z, Ha,p)

where Ha,p = {z ∈ R
n|〈a, z − p〉 = 0} is the decision

hyperplane, they replace each piece of the formula with its
hyperbolic counterpart to obtain

f ca,p(z) = sign(〈a, logcp(z)〉p)||a||pdcp(z, Hc
a,p) (30)

where all Hc
a,p = {z ∈ H|〈a, logcp(z)〉 = 0}. The closed-

form formula for the distance term in the Poincaré ball is

dcp(z, H
c
a,p) = 1√

c
sinh−1

(
2
√
c|〈−p ⊕c z, a〉|

(1 − c|| − p ⊕c z||2)||a||
)

(31)

Mathieu et al. (2019) also use their hyperbolic VAE to
learn representations of MNIST and find that using both the
Riemannian normal and the gyroplane layer improve test log-
likelihoods, especially at low latent dimensions.

Cho et al. (2022) extend the previous two works by
proposing a new version of the hyperbolic wrapped nor-
mal distribution (HWN) in Lorentz model. Their primary
observation is that for the wrapped normal distribution, the
principal axes of the distributions are not aligned with the
local standard axes, see Fig. 7. They propose a new sam-
pling process that fixes the alignment of the principal axes,
resulting in a new distribution which they call the rotated
hyperbolic wrapped normal (RoWN). Given a mean μ in
the Lorentz model of hyperbolic geometry and a diagonal
covariance matrix �, samples from the RoWN distribution
are sampled as follows:
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1. Find the rotation matrix R that rotates the x-axis x =
([±1, . . . , 0]) to y = μ1:. We can compute R as

R = I + (yTx − xTy) + (yTx − xTy)2

1 + 〈x, y〉 (32)

2. Rotate � by R: �̂ = R�RT

3. Now sample as in the usual hyperbolic wrapped normal:
sample v ∼ N (0, �̂) and then map it to hyperbolic space
as follows: expμ(PT0→μ([0, v]))

Cho et al. (2022) find that RoWN outperforms HWN in a
variety of settings, such as the Atari 2600 Breakout image
generation experiment first examined inNagano et al. (2019).

4.1.2 Hyperbolic GANs

Using the intuition that images are organized hierarchically,
several works have proposed hyperbolic generative adver-
sarial networks (GANs). Lazcano et al. (2021) propose a
hyperbolicGANwhich replaces someof theEuclidean layers
in both the generator and discriminator with hyperbolic lay-
ers (Ganea et al., 2018a) with learnable curvature. Lazcano et
al. (2021) propose hyperbolic variants of the original GAN
(Goodfellow et al., 2020), the Wasserstein GAN WGAN-
GP (Gulrajani et al., 2017) and conditional GAN CGAN
(Mirza & Osindero, 2014). The paper finds that their best
configurations of Euclidean and hyperbolic layers generally
improved the Inception Score (Salimans et al., 2016) and
Frechet Inception Distance (Heusel et al., 2017) on MNIST
image generation, with the best improvements in the GAN
architecture. The best learned curvatures are close to zero.
Unlike other hyperbolic generative models (VAEs and nor-
malizing flows), good results are observed at large latent
dimensions.

Qu & Zou (2022a) propose HAEGAN, a hyperbolic
autoencoder and GAN framework in the Lorentz model L
(also known as the hyperboloid model), of hyperbolic geom-
etry. The GAN is based on the structure of WGAN-GP
(Arjovsky et al., 2017; Gulrajani et al., 2017). The structure
of HAEGAN consists of an encoder, which takes in real data
and generates real representations, and a generator, which
takes in noise and generates fake representations. A critic is
trained to distinguish between the two representations, and a
decoder takes the fake representations and produces the final
generated object. Qu & Zou (2022a) generalize WGAN-GP
to hyperbolic space using three operations: the first is the
hyperbolic linear layer is HLinearn,m : L

n
K → L

m
K of

Chen et al. (2021), the second the hyperbolic centroid dis-
tance layer HCDistn,m(x) : Ln

K → R
m of Liu et al. (2019),

Fig. 8 Hierarchical attribute editing in hyperbolic space is possible due
to hyperbolic space’s ability to encode semantic hierarchical structure
within image data. Changing the high-level, category-relevant details
(closest to the origin) changes the category, while changing low-level
(farthest from the origin), category-irrelevant attributes varies images
within categories. Image courtesy of Li et al. (2023b)

and the third a a new Lorentz concatenation layer:

HCat
(
{xi }Ni=1

)
=

⎡
⎣

√√√√ N∑
i=1

x2it + (N − 1)/K , x�
1s , . . . , x

�
1s

⎤
⎦

�

(33)

Compared to previous work (Shimizu et al., 2021), the HCat
layer has the advantage of always having bounded gradients
(Shimizu et al., 2021). Compared to Lazcano et al. (2021),
HAEGAN shows improved results on MNIST image gener-
ation.

Li et al. (2023b) propose a hyperbolic method for few-
shot image generation. Themain idea is that hyperbolic space
encodes a semantic hierarchy, where the root of the hierar-
chy (i.e., at the center of hyperbolic space) is a category, e.g.,
dog. At lower levels, we have more fine-grained separations,
such as subcategories, e.g., Shih-Tzu and Ridgeback dogs.
Finally, at the lowest level, there are category-irrelevant fea-
tures, e.g., the hair color or pose of the dog (see Fig. 8). This
method builds on the Euclidean pSp method (Richardson et
al., 2021) for image-to-image translation. The pSp method
uses a feature pyramid to extract feature maps and uses a set
of projection heads on these feature maps to produce each of
the style vectors required by StyleGAN (Karras et al., 2019,
2020), which is commonly denoted the W+-space. Image-
to-image translation can then be done by editing or replacing
style vectors. Li et al. (2023b) generalize to hyperbolic space
by mapping the output of a frozen, pre-trained pSp encoder
to hyperbolic space and then back to the W+-space of style
vectors, and then feeding the style vectors into a frozen, pre-
trained StyleGAN. Projection to hyperbolic space is done
using the Mobius layer f ⊗c of Ganea et al. (2018b), with the
full projection layer having the form

zDi = f ⊗c(expc0(MLPE (wi ))) (34)
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with mapping back to the W+-space achieved by a loga-
rithmic map plus an MLP. Li et al. (2023b) supervise the
hyperbolic latent space with a hyperbolic classification loss
based on the multinomial logistic regression formulation of
Ganea et al. (2018b). After calculating the probabilities, the
loss function is just negative log-likelihood as

Lhyper = − 1

N

N∑
i=1

log(pn) (35)

The full loss function is the pSp loss function plus this term,
excluding a specific facial reconstruction loss used by the
pSp method, since Li et al. (2023b) do not focus on face
generation. Li et al. (2023b) perform image generation as
follows: given an image xi , the image is embedded in hyper-
bolic space with representation gD(xi ) and is rescaled to the
desired radius (i.e., fine-grained-ness) r . A random vector is
then sampled from the seen categories and a point is taken
on the geodesic between the two points. Li et al. (2023b) find
that theirmethod is competitivewith state-of-the-artmethods
and show promise for image-to-image transfer.

4.1.3 Hyperbolic Normalizing Flows

Bose et al. (2020) propose a hyperbolic normalizing flow in
Lorentz model that generalizes the Euclidean normalizing
flow RealNVP (Dinh et al., 2016) to hyperbolic space. They
propose two types of hyperbolic normalizing flows: the first,
which they call tangent coupling, which carries out the cou-
pling layer of RealNVP in the tangent space at the hyperbolic
origin o:

f̃ T C (x̃) =
{
z̃1 = x̃1
z̃2 = x̃2 � σ(s(x̃1)) + t(x̃1)

(36)

f T C (x) = expKo ( f̃ T C (logKo (x))) (37)

where s, t are neural networks and σ is a pointwise non-
linearity.

The wrapped hyperboloid extends tangent coupling by
using parallel transport to map intermediate vectors from the
tangent space of the origin to the tangent space of another
point in hyperbolic space:

f̃WHC (x̃) =
{
z̃1 = x̃1

z̃2 = logKo
(
expKt(x̃1)

(
PTo→t(x̃1)(v)

))

(38)

v = x̃2 � σ(s(x̃1)) (39)

fWHC (x) = expKo ( f̃WHC (logKo (x))) (40)

Compared to tangent coupling, wrapped hyperbolic coupling
allows the flow to leverage different parts of the manifold

instead of just the origin. The paper also derives the inverse
and Jacobian determinants of the two flows. As is the case
for hyperbolic VAEs, Bose et al. (2020) also benchmark on
MNIST, and find a similar trend as Nagano et al. (2019): the
performance of hyperbolic models exceed that of the equiva-
lent Euclidean model at low dimension, but as early as latent
dimension6Euclideanmodels overtake hyperbolicmodels in
performance. Bose et al. (2020) find that hyperbolic normal-
izing flows outperform hyperbolic VAEs at these low latent
dimensions.

4.2 Clustering

Due to the close relationship between hyperbolic space,
hierarchies, and trees, several works have explored hierarchi-
cal clustering using hyperbolic space. Monath et al. (2019)
propose to perform hierarchical clustering using hyperbolic
representations. Given a dataset D = {xi }Ni=1, Monath et
al. (2019) require a hyperbolic representation at the edge
of the Poincaré disk D

d for each data point xi ∈ D, which
becomes the leaves of the hierarchical clustering. Themethod
of Monath et al. (2019) creates a hierarchical clustering by
optimizing the hyperbolic representations for a fixed num-
ber of internal nodes. Parent–children dissimilarity between
a child representation zc and a parent representation z p is
measured by

dcp(zc, z p) = dD(zc, z p)(1 + max{||z p||D − ||zc||D, 0})
(41)

which encourages children to have larger norms than their
parents. A discrete tree can then be extracted as follows:

Parent(zc) = argmin||z p ||<||zc|| dcp(zc, z p) (42)

The internal node observations are supervised by two losses:
first, a hierarchical clustering loss based on Dasgupta’s cost
(Dasgupta, 2016) and a continuous extension due to Wang
& Wang (2018) that reformulates the loss in terms of lowest
common ancestors (LCAs), and second, a parent–child mar-
gin objective that encourages parent nodes to have smaller
norm than their children.

Suppose D has pairwise similarities {wi j }i, j∈[N ]. A hier-
archical clustering ofD is a rooted tree T such that each leaf
is a data point. For leaves i, j ∈ T , denote their LCA by
i ∨ j , the subtree rooted at i ∨ j by T [i ∨ j], and the leaves of
T [i ∨ j] by leaves(T [i ∨ j]). Finally, let relation {i, j |k}
holds if i ∨ j is a descendant of i ∨ j ∨ k. Then Dasgupta’s
cost can be formulated as

CDasgupta(T ;w) =
∑
i j

wi j |leaves(T [i ∨ j])| (43)
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Wang & Wang (2018) show that

CDasgupta(T ;w) =
∑
i jk

[wi j + wik + w jk − wi jk(T ;w)]

+ 2
∑
i j

wi j

(44)

where

wi jk(T ;w) = wi j1[{i, j |k}] + wik1[{i, k| j}]
+ w jk1[{ j, k|i}] (45)

The margin parent–child dissimilarity is given as

dcp(zc, z p; γ ) = dD(zc, z p)(1 + max{||z p||D
− ||zc||D + γ, 0}) (46)

and the total margin objective is

Lcp =
∑
zc

dcp(zc,Parent(zc); γ ) (47)

The embedding is alternately optimized between the cluster-
ing objective and the parent–child objective. Optimization of
the hyperbolic parameters is done via the method of Nickel
& Kiela (2017). Using this method, Monath et al. (2019) are
able to embed ImageNet using representations taken from
the last layer of a pre-trained Inception neural network.

Similar to Monath et al. (2019), Chami et al. (2020a)
base their method on Dasgupta’s cost (Eq.43) and Wang
andWang’s (Eq.44) reformulation in terms of LCAs. Chami
et al. (2020a) define the LCA of two points in hyperbolic
space to be the point on the geodesic connecting the two
points that are closest to the hyperbolic origin, and provide
a formula to calculate this point in the Poincaré disk D. This
formula allows Eq.44 to be directly optimized by replacing
thewi jk(T ;w) termswith its continuous counterpart. A hier-
archical clustering tree can then be produced by iteratively
merging the most similar pairs, where similarity is measured
by their hyperbolic LCA distance from the origin. Unlike the
method of Monath et al. (2019), Chami et al. (2020a) do not
require hyperbolic embeddings to be available, and optimize
the hyperbolic embeddings of the whole tree, not just the
leaves.

Recently, Long & van Noord (2023) propose a scalable
Hyperbolic Hierarchical Clustering (sHHC) enabling learn-
ing of a continuous hierarchy which is also scalable to large
datasets. They use clustering to extract hierarchical pseudo-
labels from sound and vision and perform a downstream
cross-modal self-supervised task, achieving competitive per-
formance. They augment the hyperbolic clustering of Chami
et al. (2020a) by pre-clustering of the data point features into

evenly-sized clusters is performed using the Sinkhorn fixed-
point iteration method of Asano et al. (2019). Hyperbolic
clustering is then performed using the method of Chami et
al. (2020a). Finally, the clustering is self-supervised using
the method of Long et al. (2020).

Lin et al. (2023a) propose a neural-network based frame-
work for the hierarchical clustering of multi-view data.
The framework consists of two steps: first, improving
representation quality via reconstruction loss, contrastive
learning between different views, and a weighted triplet
loss between positive examples and mined hard negative
examples, and second, applying the hyperbolic hierarchical
clustering framework of Chami et al. (2020a).

The contrastive loss in Lin et al. (2023a) is the usual con-
trastive loss (see following section) where positive examples
are views from the same object and negative examples are
views from different objects. The weighted triplet loss is

Lm = 1

N

N∑
i=1

wm(ai , pi )[m + ||ai − pi ||22 − ||ai − ni ||22]+
(48)

where ai refer to the anchor points, pi are the positive
examples, and ni are the negative examples. Positive and
negatives examples are mined based on the method of Iscen
et al. (2017), which measures the similarity of a pair of
points based on estimating the data manifold using k-nearest
neighbors graphs. Lin et al. (2023b) apply their method to
perform multi-view clustering for a variety of multi-view
image datasets.

4.3 Self-Supervised Learning

In Sect. 4.3.1, we describe methods for hyperbolic self-
supervision that are primarily based on triplet losses, and
in Sect. 4.3.2 we discuss methods for hyperbolic self-
supervision which are primarily based on contrastive losses.

4.3.1 Hyperbolic Self-Supervision

Based on the idea that biomedical images are inherently
hierarchical, Hsu et al. (2021) propose to learn patch-level
representations of 3D biomedical images using a 3D hyper-
bolic VAE and to perform 3D unsupervised segmentation by
clustering the representations. Hsu et al. (2021) extend the
hyperbolic VAE architecture of Mathieu et al. (2019) using a
3D convolutional encoder and decoder as well as gyroplane
convolutional layer that generalizes the Euclidean convolu-
tion with the gyroplane layer of Ganea et al. (2018b) (See
Eqs. 30 and 31). In order to learn good representations, the
paper proposes to use a hierarchical self-supervised loss that
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captures the implicit hierarchical structure of 3D biomedical
images.

To capture the hierarchical structure of 3D biomedical
images, Hsu et al. (2021) propose that given a parent patch
μp, to sample a child patch μc which is a subpatch of the
parent patch, and a negative patch μn that does not overlap
with the parent patch. Then the hierarchical self-supervised
loss is defined as a margin triplet loss as follows:

Lhierarchical = max(0, dD(μp, μc) − dD(μp, μn) + γ ) (49)

This encourages the representations of subpatches to be chil-
dren or descendants of the representation of the main patch,
and faraway patches (which likely contain different struc-
tures) to be on other branches of the learned hierarchical
representation.

To perform unsupervised segmentation, the learned latent
representations are extracted and clustered using a hyperbolic
k-means algorithm, where the traditional Euclidean mean is
replaced with the Frechet mean. For a manifoldMwith met-
ric dM, the Frechet mean of a set of points {zi }ki=1, zi ∈ M
is defined as the point μ that minimizes the squared distance
to all points zi :

μFr = argminμ∈M
1

k

k∑
i=1

dM(zi , μ)2 (50)

and is one way to generalize the concept of a mean to man-
ifolds. Unfortunately, the Frechet mean on the Poincaré ball
does not admit a closed-form solution, so Hsu et al. (2021)
compute the Frechetmeanwith the iterative algorithm of Lou
et al. (2020). The paper finds that this strategy is effective for
the unsupervised segmentation of both synthetic biological
data and 3D brain tumor MRI scans (Menze et al., 2014;
Bakas et al., 2017, 2018).

Weng et al. (2021) propose to leverage the hierarchical
structure of objects within images to perform weakly-
supervised long-tail instance segmentation. To capture this
hierarchical structure, Weng et al. (2021) learn hyperbolic
representations which are supervised with several hyperbolic
self-supervised losses. Instance segmentation is done in three
stages: first, mask proposals are generated using a pre-trained
mask proposal network. Mask proposals consists of bound-
ing boxes {Bi }ki=1 and masks {Mi }ki=1. Define x fulli to be

the original image cropped to bounding box Bi , x
bg
i to be

the cropped image with the object masked out using mask
1−Mi , and x

fg
i to be the same cropped image with the back-

ground masked out using maskMi . We will refer to these as
the full object image, object background, and object, respec-
tively.

Second, hyperbolic representations of zbgi = g(xbgi ), and

zfgi = g(x fgi ) are learnedbyapre-trained feature extractor and

supervised by a combination of three self-supervised losses.
The representations are fixed to have latent dimension 2. The
first self-supervised loss encourages the representation of the
object to be similar to that of the full object image and farther
away from the representation of the object background:

Lmask =
k∑

i=1

max(0, γ − d(zfulli , zfg) + d(zfulli , zbgi )) (51)

The second loss is a triplet loss that requires the sampling of
positive and negative examples.

Lobject =
k∑

i=1

max(0, γ − d(zfgi , ẑfg) + d(zfgi , zfgi )) (52)

where ẑfg and zfgi are the features of the positive and neg-
ative samples.

The third loss is similar to the hierarchical triplet loss of
Hsu et al. (2021) described above, except with the origin
taking the place of negative samples:

Lhierarchical =
k∑

i=1

max(0, γ − d(zchildi , o) − d(zfgi , o)) (53)

where o represents the origin of the Poincaré ball, and zchildi
is the feature of the child mask of proposal i .

Finally, the representations are clustered using hyperbolic
k-means clustering. Unlike (Hsu et al., 2021), to compute
the mean they map the representations from the Poincaré
disk to the hyperboloid modelL and compute the (weighted)
hyperboloid midpoint proposed by Law et al. (2019):

μ = √
β

∑k
i=1 νi xi∣∣∣|| ∑k
i=1 νi xi ||L

∣∣∣
(54)

where β is −1/curvature.
Compared to the Frechet mean, this mean has the advan-

tage of having a closed-form formula, making it more
computationally efficient. Weng et al. (2021) find that their
method improves other partially-supervised methods on the
LVIS long-tail segmentation dataset (Gupta et al., 2019).

4.3.2 Hyperbolic Contrastive Learning

Hyperbolic contrastive learning methods have also been
proposed. Surís et al. (2021) propose to learn hyperbolic
representations for video action prediction because of their
ability to combine representing hierarchy and giving a mea-
sure of uncertainty (see Fig. 9). Surís et al. (2021) learn an
action hierarchy where more abstract actions are near the
origin of the Poincaré disk and more fine-grained actions are
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Fig. 9 Surís et al. (2021) model uncertainty with hyperbolic repre-
sentations. If the model is uncertain, it can predict an abstraction of all
possible actions (red square), and if it is certain it can predict a more
specific action (blue square). The pink circle shows how computing
the mean of two representations (pink squares) increases the general-
ity. Figure reproduced with permission of Surís et al. (2021)

near the edge. If the preceding video frames are ambiguous,
this hierarchical representation allows the ability to predict
a more general parent category of action (e.g., greeting)
instead of having to predict more fine-grained child cate-
gories of action (e.g., handshake or high-five). The parent
of two actions is computed as the hyperbolic mean of their
hyperbolic representations,whichSurís et al. (2021) compute
as the midpoint of the geodesic connecting the two represen-
tations. Surís et al. (2021) propose a two-stage framework
for video action prediction which consists first of contrastive
pre-training hyperbolic representations, then freezing the
representations and training a linear classifier for action pre-
diction.

Self-supervised pre-training proceeds as follows: let xt be
a frame of the video, and a representation zt = f (xt ) is
produced by an encoder f . The pretext task is to predict the
representation zt+δ of a clip δ frames into the future. The
model produces an estimate ẑt+δ = φ(ct , δ), where ct =
g(z1, . . . , zt ) is an encoding of all past video frames. All
function f , g, φ are parameterized by a neural network. The
training is supervised by a contrastive loss:

L = −
∑
i

[
log

exp(−d2
D
(ẑi , zi ))∑

j exp(−d2
D
(ẑi , z j ))

]
(55)

which encourages the positive pairs ẑi , zi to have similar
representations while pushing ẑi from the representations of
all negative examples z j . One key feature of this loss is that
under the presence of uncertainty, say when actions a, b are
probable, L is minimized by predicting the midpoint on the
geodesic connecting a, b, which is equivalent to moving one
level up the hierarchy to the parent of a, b.

Ge et al. (2023) propose to improve contrastive learning
by incorporating the hierarchical structure of images with a
scene-object hierarchy (see Fig. 10). Ge et al. (2023) use a

Fig. 10 The learned hierarchy of Ge et al. (2023) has objects near the
origin of the Poincaré disk and scenes near the edge of hyperbolic space.
Image courtesy of Ge et al. (2023)

hyperbolic version of theMoCo architecture He et al. (2020),
which the authors callHCL.Ge et al. (2023) extend theMoCo
architectures in several ways: first, unlike previous works for
visual contrastive learning, HCL requires that object regions
be extracted from the input image. Secondly, a hyperbolic
backbone along with a corresponding momentum encoder
is added to MoCo’s Euclidean backbone and its momentum
encoder. The Euclidean backbone and momentum encoder
are trained the same way as in He et al. (2020), but the
inputs are not images but the extracted object regions. The
hyperbolic branch takes as input a scene region u and an
object region v that is a subregion of the scene u, and neg-
ative objects Nu = {n1, . . . , nk} that are not subregions of
the scene u. Let the representations of u, v, n j be zu, zv, z j ,
respectively. The hyperbolic branch is then trained with a
contrastive loss with hyperbolic distance as the similarity
measure:

Lhyp = − log
exp

(
− dD(zu ,zv)

τ

)

exp
(
− dD(zu ,zv)

τ

)
+ ∑

j exp
(
− dD(zu ,z j )

τ

)

(56)

where τ is a temperature parameter. This loss encour-
ages representations to form a scene-object hierarchy where
scenes have the highest norm (i.e., are at the edge of the
Poincaré ballD) and objects have the smallest norm (i.e., are
at the center ofD). The paper finds that their method achieves
small gains over the original MoCo and MoCo augmented
with bounding box information. They also examine the repre-
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sentations of out-of-context objects using their method, and
find that they generally have higher distance to the scene
images.

Yue et al. (2023) propose a different method for hyper-
bolic contrastive learning that is based on SimCLR (Chen et
al., 2020c). Like Ge et al. (2023), Yue et al. (2023) replace
the dot-product similarity of the contrastive loss with the
hyperbolic distance:

Lself
hyp = −

∑
i∈I

log
exp(−dD(zi , z j(i))/τ )∑
a∈A(i) exp(−dD(zi , za)/τ)

(57)

but unlike Ge et al. (2023), they only have a hyperbolic
branch and do not retain a Euclidean branch. Yue et al. (2023)
also propose to extend the supervised contrastive learning
method SupCon (Khosla et al., 2020) in the same way. Yue
et al. (2023) also propose to train an adversarially robust con-
trastive learner that extends the Robust Contrastive Learning
(RoCL) (Kim et al., 2020) method to hyperbolic space by
replacing the Euclidean contrastive losses in RoCL’s adver-
sarial training loss with their hyperbolic contrastive loss:

Lself
hyp(x̃, {x̃+, x̃adv, {x̃−}}) + λLself

hyp(x̃
adv, x̃+, {x̃−}) (58)

where x̃ is a given image, x̃+ is a positive example, x̃− is a
negative example, and x̃adv is an adversarial example that is
within δ of x̃ . As in Ge et al. (2023), Yan et al. (2021) find
that hyperbolic contrastive learning generally achieves small
gains over its Euclidean counterparts.

Doan et al. (2023) tackles the Open World Object Detec-
tion (OWOD) task, by leveraging the object unknownness
level with respect to the context. To this end, Doan et al.
(2023) propose Hyp-OW consisting of three main parts:
Hyperbolic contrastive learning, to learn a hierarchical class
representation, Super class regularizer, to push semanti-
cally similar classes close, and Adaptive relabeling, to detect
unknown objects using hyperbolic distance based relabeling.
The hyperbolic contrastive loss is the usual contrastive loss
with temperature (e.g., Eq. 57) performed on hyperbolic fea-
tures, which are extracted from a Euclidean feature extractor
and embedded into hyperbolic space using the exponential
map. Positive and negative examples are drawn from both
the batch B as well as a buffer M. In super class regular-
ization, a category p consisting of classes Sp = c1, . . . , cn
is embedded as the hyperbolic average (using the hyper-
bolic average of Khrulkov et al. (2020)) of the hyperbolic
embeddings of its constitutent classes. Category embeddings
are then supervised by the same contrastive loss at the cat-
egory level. Finally, in adaptive relabeling, the maximum
distance δB from each matched (that is, has a groundtruth
label, denoted zm) to every class centroid zc (where the class

centroid is computed by the hyperbolic average above):

δB = max
m∈B,c∈K

dD(zm, zc) (59)

Unlabelled examples zu are then labelled if they satisfy the
condition

min
c∈K

dD(zu, zc) ≤ δB (60)

which essentially says that if an unlabelled example is “as
certain” as some labelled example, it should be labelled.

Durrant & Leontidis (2023) also propose a hyperbolic
self-supervised approach, using Ideal prototypes to extend
masked Siamese networks Assran et al. (2022) to hyperbolic
space. To do this, the dot product similarity used by Assran
et al. (2022) is replaced with distance on the Poincaré ball.
Similarities with prototypes are replaced with the Busemann
function on the Poincaré ball. Finally, a hyperbolic projec-
tion head is used in place of an Euclidean projection head,
using the hyperbolic linear layers of Shimizu et al. (2021).

Doan et al. (2023) tackles the Open World Object Detec-
tion (OWOD) task, by leveraging the object unknownness
level with respect to the context. To this end, they pro-
pose Hyp-OW consisting of three main parts: Hyperbolic
contrastive learning, to learn a hierarchical class represen-
tation, Super class regularizer, to push semantically similar
classes close, and Adaptive relabeling, to detect unknown
objects using hyperbolic distance based relabeling. Durrant
&Leontidis (2023) also propose a hyperbolic self-supervised
approach, where ideal prototypes are used to extend masked
siamese networks Assran et al. (2022) to hyperbolic space.

5 Conclusions and Future Outlook

This survey provides an overview of the current state of
affairs in hyperbolic deep learning for computer vision.
Based on the organization of supervised and unsupervised
literature, we conclude the survey by discussing which types
of problems currently benefit most from hyperbolic learning
and discussing open problems for future research.

5.1 When is Hyperbolic LearningMost Effective?

From current works, we identify four main axes of improve-
ment that have come with the recent shift towards learning
in hyperbolic space for computer vision:

• Hierarchical learning.The inherent links between hierar-
chical data and hyperbolic embeddings are well known.
It is therefore not all too surprising to see that a wide
range of works have used hyperbolic learning to improve
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hierarchical objectives in computer vision. The ability to
incorporate hierarchical knowledge, for example through
hyperbolic embeddings or hierarchical hyperbolic logis-
tic regression, has been utilized for several problems.
Hierarchical learning in hyperbolic space can among oth-
ers reduce error severity, resulting in smaller mistakes
andmore consistent retrieval, see e.g., Long et al. (2020),
Dhall et al. (2020) and Yu et al. (2022b). This is a key
property for example in medical domains, where large
mistakes need to be avoided at all costs.
Hierarchical learning has also shown to have applications
in zero-shot learning. By embedding class hierarchies in
hyperbolic space and mapping examples of seen classes
to their corresponding embedding, it becomes possi-
ble to generalize to examples of unseen classes (Liu et
al., 2020). In general, hierarchical information between
classes helps to structure the semantics of the task at hand,
and embedding such knowledge in hyperbolic space is
preferred over Euclidean space.

• Few-sample learning. Few-shot learning is popular in
hyperbolic deep learning for computer vision. Many
works have shown that consistent improvements can be
made by performing this task with hyperbolic embed-
dings and prototypes, both with [e.g., (Zhang et al.,
2022)] and without [e.g., (Khrulkov et al., 2020)] hier-
archical knowledge. In few-shot learning, samples are
scarce when it comes to generalization, and working in
hyperbolic space consistently improves accuracy. These
results indicate that hyperbolic space can generalize from
fewer examples, with potential in domains where exam-
ples are scarce. This is already visible in the unsupervised
domain, where generative learning is better in hyperbolic
space when working with constrained data sources.

• Robust learning. Across several axes, hyperbolic learn-
ing has shown to bemore robust. For example, hyperbolic
embeddings improve out-of-distribution detection, pro-
vide a natural way to quantify uncertainty about samples
[see e.g., (GhadimiAtigh et al., 2022)], pinpoint unsuper-
vised out-of-context samples [see e.g., (Ge et al., 2023)],
and can improve robustness to adversarial attacks [see
e.g., (Guo et al., 2022)]. Robustness and uncertainty are
key challenges in deep learning in general, hyperbolic
deep learning can provide a natural solution to robustify
networks.

• Low-dimensional learning. For a lot of applications, net-
works, and embedding spaces need to be constrained, for
example when learning on embedded devices or when
visualizing data. In the unsupervised domain, hyperbolic
learning consistently improves over Euclidean learning
when working with smaller embedding spaces [see e.g.,
(Nagano et al., 2019)]. Similarly, the embedding space
in supervised problems can be substantially reduced
while maintaining downstream performance in hyper-

bolic space [see e.g., (Ghadimi Atigh et al., 2021)]. As
such, hyperbolic learning has the potential to enable
learning in compressed and embedded domains.

5.2 Open Research Questions

Hyperbolic learning has made an impact on computer vision
with many promising avenues ahead. The field is however
still in the early stages with many challenges and opportuni-
ties ahead. Three directions stand out:

• Fully hyperbolic learning Hyperbolic learning papers in
computer vision commonly share one perspective: hyper-
bolic learning should bedone in the embedding space. For
the most part, the representation learning of earlier layers
is done in Euclidean space, resulting in hybrid networks.
Works from neuroscience indicate that for the earlier lay-
ers in neural networks, hyperbolic space can also play a
prominent role (Chossat, 2020). Recently, Zhang et al.
(2023) have shown that spatial relations in the hippocam-
pus are more hyperbolic than Euclidean.
Learningdeepnetworks fully in hyperbolic space requires
rethinking all layers, from convolutions to self-attention
and normalization. At the time of writing the survey,
two works have made steps in this direction. Bdeir et
al. (2023) introduce a hyperbolic convolutional network
in the Lorentz model of hyperbolic space. They outline
how to perform convolutions, batch normalization, and
residual connections. Simultaneously, van Spengler et al.
(2023a) introduce Poincaré ResNet, with convolutions,
residuals, batch normalization, and better network ini-
tialization in the Poincaré ball model. The works provide
a foundation towards fully hyperbolic learning, but many
open questions remain. Which model is most suitable for
fully hyperbolic learning? Or do different layers work
best in different models? And how can fully hyperbolic
learning scale to ImageNet and beyond? Should each
stage of the network have the same curvature? And how
effective can hyperbolic networks become across all pos-
sible tasks compared to Euclidean networks? A lot more
research is needed to answer these questions.

• Computational challenges Performing gradient-based
learning in hyperbolic space changes how networks are
optimized and howparameters behave.Compared to their
Euclidean counterpart however, hyperbolic networks and
embeddings can be numerically more unstable, with
issues at the boundary of the ball (Moreira et al. 2023),
vanishing gradients, and more. Moreover, hyperbolic
operations can be more involved and computationally
heavy depending on the used model, leading to less
efficient networks. Such computational challenges are
relevant for all domains of hyperbolic learning and a
broader topic that is receiving attention.
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• Open source community Modern deep learning libraries
are centered around Euclidean geometry. Any new
researcher in hyperbolic learning, therefore, does not
have the opportunity to quickly implement networks and
layers to get an intuition into its workings. Moreover, any
new advances have to be either implemented from scratch
or imported from code repositories of other papers. What
is missing is an open-source community and a shared
repository that houses advances in hyperbolic learning for
computer vision. Such a community and code base is vital
to get further traction and attract a wide audience, includ-
ing practitioners. Whether it be part of existing libraries
or as a separate library, continued development of open-
source hyperbolic learning code is key for the future of
the field. In recent years, several libraries have initiated
learning and optimizing in hyperbolic space, including
geoopt (Kochurov et al., 2020), geomstats (Miolane et al.,
2020), manifolds.jl (Axen et al., 2021), and HypLL (van
Spengler et al., 2023b). These libraries will form a great
basis towards the development of hyperbolic learning.

• Large and multimodal learning In computer vision, and
Artificial Intelligence in general, there is a strong trend
towards learning at large scale and learning with multiple
modalities, e.g., image-text or video-audio models. It is
therefore a natural desire for the field to arrive at hyper-
bolic foundation models. While early work has shown
that large-scale and/or multimodal learning is viable with
hyperbolic embeddings (Desai et al., 2023), hyperbolic
foundation models form a longer-term commitment as
they require solutions to all open problems mentioned
above, from stable, fully hyperbolic learning to contin-
ued open source development.

• Multiple hyperbolic models Unique to hyperbolic geom-
etry is the existence of multiple models to perform
numerical operations. Multiple papers have shown that
different operations are preferred in different models.
For example, for computing the mean of a distribution,
the Klein model (Dai et al., 2021) is preferred over the
Poincaré ball model as this avoids having to compute
the expensive Fréchet mean (van Spengler et al., 2023a;
Khrulkov et al., 2020). For representation layers,multiple
papers advocate for the Lorentz model over the Poincaré
ball model as it is faster and more robust (Chen et al.,
2021; Dai et al., 2021). Recently Mishne et al. (2023)
have also investigated the limitations of the Poincaré ball
model and the Lorentz model. As shown in Mishne et
al. (2023)), while the Poincaré ball model has a larger
capacity to accurately represent points, theLorentzmodel
is stronger in optimization and training perspectives. It
remains an open question which model is most suitable
overall and whether one model suits all or we should
employ different hyperbolic models for different opera-
tions.
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