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Abstract
Detecting out-of-distribution (OOD) data is a task that is receiving an increasing amount of research attention in the domain
of deep learning for computer vision. However, the performance of detection methods is generally evaluated on the task in
isolation, rather than also considering potential downstream tasks in tandem. In this work, we examine selective classification
in the presence of OOD data (SCOD). That is to say, the motivation for detecting OOD samples is to reject them so their
impact on the quality of predictions is reduced. We show under this task specification, that existing post-hoc methods perform
quite differently compared to when evaluated only on OOD detection. This is because it is no longer an issue to conflate
in-distribution (ID) data with OOD data if the ID data is going to be misclassified. However, the conflation within ID data
of correct and incorrect predictions becomes undesirable. We also propose a novel method for SCOD, Softmax Information
RetainingCombination (SIRC), that augments a softmax-based confidence scorewith a secondary class-agnostic feature-based
score. Thus, the ability to identify OOD samples is improved without sacrificing separation between correct and incorrect ID
predictions. Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show
that SIRC is able to consistently match or outperform the baseline for SCOD, whilst existing OOD detection methods fail
to do so. Interestingly, we find that the secondary scores investigated for SIRC do not consistently improve performance on
all tested OOD datasets. To address this issue, we further extend SIRC to incorporate multiple secondary scores (SIRC+).
This further improves SCOD performance, both generally, and in terms of consistency over diverse distribution shifts. Code
is available at https://github.com/Guoxoug/SIRC.
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1 Introduction

Out-of-distribution (OOD) detection (Yang et al., 2021), i.e.
identifying input data samples that do not belong to the distri-
bution that a model was trained on, is a task that is receiving
an increasing amount of attention in the domain of deep learn-
ing (Liang et al., 2018; Liu et al., 2020b; Du et al., 2022;
Hendrycks & Gimpel, 2017; Hendrycks & Dietterich, 2019;
Fort et al., 2021; Hsu et al., 2020; Techapanurak et al., 2020;
Sun et al., 2021; Sun et al., 2022; Wang et al., 2022; Huang
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& Li, 2021; Lee et al., 2018; Pearce et al., 2021; Yang et al.,
2021; Zhang et al., 2021; Nalisnick et al., 2019). The task is
often motivated by safety-critical applications of deep learn-
ing, such as healthcare and autonomous driving. For these
scenarios, there may be a large cost associated with send-
ing a prediction on OOD data downstream. For example,
it could be potentially dangerous for a self-driving car to
unknowingly classify a grizzly bear as one of the classes in
its training set.1

However, in spite of a plethora of existing research, there
is generally a lack of focus with regards to the specific moti-
vation behind OOD detection in the literature, other than it
is often performed as part of the pipeline of another primary
task, e.g. image classification. As such OOD detection tends
to be evaluated in isolation, formulated as binary classifica-
tion between in-distribution (ID) and OODdata.

1 In this work OOD data is defined as being disjoint from the label
space of the training distribution (Yang et al., 2021).
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In this work, we consider the question why exactly do we
want to do OOD detection during deployment?We focus on
the problem setting where the primary objective is classifi-
cation, and we are motivated to detect and then reject OOD
data, as predictions on those samples will incur a cost. That is
to say, the task is selective classification (El-Yaniv&Wiener,
2010;Geifman&El-Yaniv, 2017)whereOODdata is present
within the input samples. Kim et al. (2021) term this problem
setting unknown detection. However, we prefer to use Selec-
tive Classification in the presence of Out-of-Distribution data
(SCOD) as we would like to emphasise the downstream clas-
sification task as the primary objective and will refer to the
task as such in the remainder of this paper.

The key difference between this problem setting and OOD
detection is that both OOD data and incorrect predictions on
ID data will incur a cost (Kim et al., 2021). It does not matter
if we reject an ID sample if it would be incorrectly classified
anyway. As such we can view the task as separating correctly
predicted ID samples (ID✓) from misclassified ID samples
(ID✗) and OOD samples. This reveals a potential blind spot
in designing approaches solely for OOD detection, as the
cost of ID misclassifications is ignored if the aim is only to
separate OOD|ID.
The key contributions of this work are:

1. Building on initial results reported by Kim et al. (2021)
that show poor SCOD performance for existing meth-
ods designed for OOD detection, we show novel insight
into the behaviour of different post-hoc (after-training)
detection methods for the task of SCOD. Improved OOD
detection often comes directly at the expense of SCOD
performance, through the conflation of ID✗ and ID✓.
Moreover, the relative SCOD performance of different
methods varies with the proportion of OOD data found
in the test distribution, the relative cost of accepting ID✗

vs OOD, as well as the distribution from which the OOD
data samples are drawn.

2. We propose a novel method, targeting SCOD, Soft-
max Information Retaining Combination (SIRC). Our
approach aims to improve the OOD|ID✓ separation of
softmax-based confidence scores, by combining them
with a secondary, class-agnostic confidence score, whilst
retaining their ability to identify ID✗. It consistently
outperforms or matches the baseline maximum softmax
probability (MSP) approach over a wide variety of OOD
datasets and convolutional neural network (CNN) archi-
tectures. On the other hand, existing OOD detection
methods fail to achieve this.

3. We find that the secondary scores investigated for SIRC
perform inconsistently over different OODdatasets. That
is to say, a given secondary score may improve SCOD
for some OOD datasets, but won’t help on other datasets.
Also, different scores appear to be better suited to detect-

ing different distribution shifts. Thus, we extend SIRC to
incorporate a combination of multiple secondary scores
(SIRC+). This results in generally even better SCOD per-
formance, as well as more consistent performance gains
over a wider range of OOD data.

A preliminary version of this work has been published in
ACCV 2022 (Xia & Bouganis, 2022a), which covers points
{1, 2}. In this work, we extend the aforementioned prelimi-
nary version through:

• more detailed discussion of {1, 2},
• the inclusion of an additional secondary confidence
score—KNN (Sun et al., 2022),

• evaluation on an additional OOD dataset–SpaceNet
(Etten et al., 2018),

• the novel developments described in 3 (SIRC+).

2 Preliminaries

Neural Network Classifier For a K -class classification prob-
lem we learn the parameters θ of a discriminative model
P(y | x; θ) over labels y ∈ Y = {ωk}Kk=1 given inputs x ∈
X = R

D , using finite training dataset Dtr = {y(n), x(n)}Nn=1
sampled independently from true joint data distribution
ptr(y, x). This is done in order to make predictions ŷ given
new inputs x∗ ∼ ptr(x) with unknown labels,

ŷ = f (x∗) = argmax
ω

P(ω | x∗; θ) , (1)

where f refers to the classifier function. In our case, the
parameters θ belong to a deep neural network with categor-
ical softmax output π ∈ [0, 1]K ,

P(ωi | x; θ) = πi (x; θ) = exp vi (x)
∑K

k=1 exp vk(x)
, (2)

where the logits v = Wz + b (∈ R
K ) are the output of

the final fully-connected layer with weights W ∈ R
K×L ,

bias b ∈ R
K , and final hidden layer features z ∈ R

L as
inputs. Typically θ are learnt byminimising the cross entropy
loss, such that the model approximates the true conditional
distribution Ptr(y | x),

LCE(θ) = − 1

N

N∑

n=1

K∑

k=1

δ(y(n), ωk) log P(ωk | x(n); θ)

≈ −Eptr(x)

[
K∑

k=1

Ptr(ωk | x) log P(ωk | x; θ)

]

= Eptr(x) [KL [Ptr(ωk | x) || P(ωk | x; θ)]] + A,

(3)
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where δ(·, ·) is the Kronecker delta, A is a constant with
respect to θ and KL[·‖·] is the Kullback–Leibler divergence.
Selective Classification A selective classifier (El-Yaniv &
Wiener, 2010) can be formulated as a pair of functions, the
aforementioned classifier f (x) [in our case given by Eq. (1)]
that produces a prediction ŷ, and a binary rejection function

g(x; t) =
{
0 (reject prediction), if S(x) < t

1 (accept prediction), if S(x) ≥ t ,
(4)

where t is an operating threshold and S is a scoring function
which is typically a measure of predictive confidence (or
−S measures uncertainty). Intuitively, a selective classifier
chooses to reject if it is uncertain about a prediction.

2.1 Problem Setting Selective Classification with
OOD Data (SCOD)

We consider a scenario where, during deployment, classifier
inputs x∗ may be drawn from either the training distribution
ptr(x) (ID) or another distribution pOOD(x) (OOD). That is
to say,

x∗ ∼ pmix(x)

pmix(x) = α ptr(x) + (1 − α)pOOD(x) , (5)

where α ∈ [0, 1] reflects the proportion of ID to OOD
data found in the wild. Here “Out-of-Distribution” inputs are
defined as those drawn from a distribution with label space
that does not intersect with the training label space Y (Yang
et al., 2021). For example, an image of a car is considered
OOD for a CNN classifier trained to discriminate between
different types of pets. We use this definition as it means that
OOD samples are fundamentally incompatible with the pri-
mary classifier, and any classification predictions made on
them will be automatically invalid. Note that in our case we
assume no knowledge of pOOD before deployment.

We now define the predictive loss on an accepted sample
as

Lpred( f (x)) =

⎧
⎪⎨

⎪⎩

0, if f (x) = y, (y, x) ∼ ptr
β, if f (x) �= y, (y, x) ∼ ptr
1 − β, if x ∼ pOOD

(6)

for classifier f (x) [Eq. (1)], where β ∈ [0, 1]. We define
the selective risk as in (Geifman & El-Yaniv, 2017),

R( f , g; t) = Epmix(x)[g(x; t)Lpred( f (x))]
Epmix(x)[g(x; t)] , (7)

which can be intuitively understood as the average loss of
only the accepted samples, when using rejection function

Fig. 1 Illustrative sketch showing how SCOD differs to OOD detec-
tion. Densities of OOD samples, misclassifications (ID✗) and correct
predictions (ID✓) are shown with respect to confidence score S. For
OOD detection the aim is to separate OOD|ID✗ID✓, whilst for SCOD
the data is grouped as OODID✗|ID✓

g(x; t) [Eq. (4)]. We are only concerned with the relative
cost of ID✗ and OOD samples, so we use a single parameter
β.

The objective is to find a classifier and rejection function
( f , g) that minimise R( f , g; t) for some given setting of t .
We focus on comparing post-hoc (after-training) methods in
this work, where g (or equivalently S) is varied with f fixed.
This removes confounding factors that may arise from the
interactions of different training-based and post-hoc meth-
ods, as they can often be freely combined. In practice, both
α and β will depend on the deployment scenario. However,
whilst β can be set freely by the practitioner depending on
their own evaluation of costs,α is outside of the practitioner’s
control and their knowledge of it is likely to be very limited.

It is worth contrasting the SCOD problem setting with
OOD detection. SCOD aims to separate OOD, ID✗ |ID✓,
whilst for OOD detection the data is grouped as OOD|ID✗,
ID✓ (see Fig. 1). The key difference is in the categorisation
of ID✗.
SCOD and Types of UncertaintyWe note that previous work
(Kendall &Gal, 2017;Malinin &Gales, 2018;Malinin et al.,
2020; Mukhoti et al., 2021; Pearce et al., 2021) refer to dif-
ferent types of predictive uncertainty, namely aleatoric and
epistemic. The former arises from uncertainty inherent in the
data (i.e. the true conditional distribution Ptr(y | x)) and as
such is irreducible, whilst the latter can be reduced by having
the model learn from additional data. Typically, it is argued
that it is useful to distinguish these types of uncertainty at pre-
diction time. Epistemic uncertainty estimates should indicate
distributional shift away from the training distribution, i.e.
whether a test input x∗ is OOD. On the other hand, aleatoric
uncertainty estimates should reflect the level of class ambi-
guity of an ID input. An interesting result within our problem
setting is that the conflation of these different types of uncer-
tainties may not be an issue, as there is no need to separate
ID✗ from OOD, as both should be rejected.
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Fig. 2 Illustrations of how a detection method can improve over a
baseline. Top: for OOD detection we can either have OOD further away
from ID✓ or ID✗ closer to ID✓. Bottom: for SCODwe want both OOD
and ID✗ to be further away from ID✓. Thus, we can see how improving
OOD detection may in fact be at odds with SCOD

3 Existing OODDetectors Applied to SCOD

As the explicit objective of OOD detection is different to
SCOD, it is of interest to understand how existing detection
methods behave for SCOD. Previous work (Kim et al., 2021)
has empirically shown that some existing OOD detection
approaches don’t perform very well, and in this section we
shed additional light as to why this is the case.
Improving Performance: OOD Detection vs SCOD In order
to build an intuition, we can consider, qualitatively, how
detection methods can improve performance over a baseline,
with respect to the distributions of OOD and ID✗ relative to
ID✓. This is illustrated in Fig. 2.

• For OOD detection the objective is to better separate the
distributions of ID and OOD data. Thus, we can either
find a confidence score S that, compared to the baseline,
has OOD distributed further away from ID✓, and/or has
ID✗ distributed closer to ID✓.

• For improving SCOD, we want both OOD and ID✗ to be
distributed further away from ID✓ than the baseline.

Thus there is a conflict between the two tasks. For the distri-
bution of ID✗, the desired behaviour of confidence score S
will be different.
Existing Approaches Sacrifice SCOD by Conflating ID✗ and
ID✓

Considering post-hoc methods, the generally accepted
baseline approach for both selective classification and OOD
detection is the Maximum Softmax Probability (MSP)
(Hendrycks & Gimpel, 2017; Geifman & El-Yaniv, 2017)

confidence score. Improvements in OOD detection are often
achieved by moving away from the softmax π in order to
better capture the differences between ID and OOD data.
Confidence scores such asEnergy (Liu et al., 2020b) andMax
Logit (Hendrycks et al., 2022) consider the logits v directly,
whereas the Mahalanobis detector (Lee et al., 2018) and
DDU (Mukhoti et al., 2021) build generative models using
Gaussians over the features z. ViM (Wang et al., 2022) and
Gradnorm (Huang et al., 2021) incorporate class-agnostic,
feature-based information into their scores.

Recall that typically a neural network classifier learns a
model P(y | x; θ) to approximate the true conditional dis-
tribution Ptr(y | x) of the training data [Eqs. (2) and (3),
Sect. 2]. As such, scores S extracted from the softmax out-
puts π should best reflect how likely a classifier prediction
on ID data is going to be correct or not (and this is indeed the
case in our experiments in Sect. 5). As the above (post-hoc)
OOD detection approaches all involve moving away from
the modelled P(y | x; θ), we would expect worse separa-
tion between ID✗ and ID✓ even if overall OOD is better
distinguished from ID.

Figure 3 shows empirically how well different types
of data are separated using MSP (πmax) and Energy (log∑

k exp vk), by plotting false positive rate (FPR) against true
positive rate (TPR). Lower FPR indicates better separation
of the negative class away from the positive class.

Although Energy has better OOD detection performance
compared to MSP, this is actually because the separation
between ID✗ and ID✓ is much less for Energy, so ID as
a whole is better separated from OOD. On the other hand
the behaviour of OOD relative to ID✓ is not meaningfully
different to theMSPbaseline. Therefore, SCODperformance
for Energy is worse in this case. Another way of looking at
it would be that for OOD detection, MSP does worse as it
conflates ID with OOD. However, this doesn’t harm SCOD
performance as much, as those ID samples that are confused
with OOD are mostly incorrect anyway. The ID dataset is
ImageNet-200 (Kim et al., 2021), OOD dataset is iNaturalist
(Huang & Li, 2021) and the model is ResNet-50 (He et al.,
2016).

4 Targeting SCOD—Retaining Softmax
Information

We would now like to develop an approach that is tailored
to the task of SCOD. We have discussed how we expect
softmax-based methods, such as MSP, to perform best for
distinguishing ID✗ from ID✓, and how existing approaches
for OOD detection improve over the baseline, in part, by
sacrificing this. As such, to improve over the baseline for
SCOD, we will aim to retain the ability to separate ID✗ from
ID✓whilst increasing the separationbetweenOODand ID✓.
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Fig. 3 Left: false positive rate (FPR↓) of OOD samples (negative class)
plotted against true positive rate (TPR) of ID (✓+✗) samples (positive
class), i.e. how well each confidence score distinguishes OOD from
ID. Energy performs better (lower) for OOD detection relative to the
MSP baseline. Right: FPR↓ of ID✗ andOODsamples (negative classes)

against TPR of ID✓ (positive class). Energy is worse than the baseline
at separating ID✗|ID✓ and no better for OOD|ID✓, meaning it is worse
for SCOD. Energy’s improved OOD detection arises from pushing ID✗
closer to ID✓ (Fig. 2). The ID dataset is ImageNet-200, OOD data is
iNaturalist and the model is ResNet-50

CombiningConfidence Scores Inspired byGradnorm (Huang
et al., 2021) and ViM (Wang et al., 2022) we consider the
combination of two different confidence scores S1, S2. We
shall consider S1 our primary score, which we wish to aug-
ment by incorporating S2. For S1 we investigate scores that
are strong for selective classification on ID data, but are also
capable of detecting OOD data—MSP and (the negative of)
softmax entropy, (−)H[π]. For S2, the score should be use-
ful in addition to S1 in determining whether data is OOD or
not. We should consider scores that capture different infor-
mation about OOD data to the post-softmax S1 if we want
to improve OOD|ID✓. We choose to examine the l1-norm
of the feature vector ‖z‖1 (Huang et al., 2021), the negative
of the Residual2 score −‖zP⊥‖2 (Wang et al., 2022) and the
negative of the k-th nearest neighbour distance3 (KNN) (Sun
et al., 2022). These scores were chosen as they capture class-
agnostic information at the feature level. Note that although
‖z‖1, Residual and KNN have previously been shown to be
useful for OOD detection (Huang et al., 2021; Wang et al.,
2022; Sun et al., 2022), we do not expect them to be useful
for identifying misclassifications. They are separate from the
classification layer definedby (W , b), so they are far removed
from the categorical P(y | x; θ) explicitly modelled by the
softmax.
Softmax Information Retaining Combination (SIRC) We
want to create a combined confidence score C(S1, S2) that
retains S1’s ability to distinguish ID✗ |ID✓ but is also able to
incorporate S2 in order to augment OOD|ID✓. We develop

2 zP
⊥
is the component of the feature vector that lies outside of a

principle subspace calculated using ID data. For more details see Wang
et al. (2022)’s paper.
3 This is the Euclidean distance between a test feature vector and its k-th
nearest neighbour from an ID dataset. Both features are l2-normalised.
For details see Sun et al. (2022)’s paper.

Fig. 4 Illustration on the (S1, S2)-plane that satisfies the assumptions
behind SIRC. (1) S1 is higher for ID✓ and lower for ID✗ and OOD. (2)
S1 has maximum value Smax

1 . (3) S2 is not useful for ID✗ |ID✓ but is
lower for OOD. (4) S2 is useful in addition to S1 for detecting OOD

our approach based on the following set of assumptions about
the behaviour of S1 and S2:

• S1 will be higher for ID✓ and lower for ID✗ and OOD.
• S1 is bounded by maximum value Smax

1 .4

• S2 is unable to distinguish ID✗ |ID✓ well, but is lower
for OOD compared to ID.

• S2 is useful in addition to S1 for separating OOD|ID.

These assumptions are illustrated roughly in Fig. 4. We
expect our choices of S1 (MSP, −H) and S2 (‖z‖1, Res.,
KNN) to conform to these assumptions for the reasons stated
earlier. Moreover, future choices of confidence score should
conform as well.

4 This holds for our chosen S1 of πmax and −H.
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Given the aforementioned assumptions, we propose to
combine S1 and S2 using

C(S1, S2) = −(Smax
1 − S1) (1 + exp(−b[S2 − a])) , (8)

or equivalently taking logs,5

C(S1, S2) = − log(Smax
1 − S1)

− log (1 + exp(−b[S2 − a])) , (9)

where a, b are parameters chosen by the practitioner. The
idea is for the accept/reject decision boundary of C to be in
the shape of a sigmoid on the (S1, S2)-plane (see Figs. 5, 6).
As such the behaviour of only using the softmax-based S1 is
recovered for ID✗ |ID✓ for high S2, as the decision boundary
tends to a vertical line. However, C becomes increasingly
sensitive to S2 as S2 decreases, and less sensitive to S1 as
S1 decreases (Fig. 5). This allows for improved OOD|ID✓

as S2 is “activated” towards the bottom left of the (S1, S2)-
plane.We term this approach Softmax Information Retaining
Combination (SIRC).

The parameters a, b allow the method to be adjusted to
different distributional properties of S2. Rearranging Eq. (8),

S1 = Smax
1 + C/[1 + exp(−b[S2 − a])] , (10)

we see that a controls the placement of the sigmoid with
respect to S2, and b the sensitivity of the sigmoid to S2.
Figure5 shows that the sensitivity of SIRC to S2 (gradient)
increases from zero as S2 approaches a from above, and then
tends to a linear relationship (constant sensitivity propor-
tional to b).

We use the empirical mean and standard deviation of S2,
μS2 , σS2 on ID data (training or validation) to set the parame-
ters. We choose a = μS2 − 3σS2 so the centre of the sigmoid
is below the ID distribution of S2, and we set b = 1/σS2 , to
match the ID variations of S2. We find the above approach
to be empirically effective, however, other parameter set-
tings are of course possible. Practitioners are free to tune
a, b however they see fit. This may be done using only ID
data (training or validation) as we have, or by additionally
using synthetic validation OOD data (Hendrycks et al., 2019;
Sun et al., 2022).
SIRC Compared to Other Combination Approaches Fig. 6
compares different methods of combination by plotting ID✓,
ID✗ and OOD data densities on the (S1, S2)-plane. Other
than SIRC we consider the combination methods used in
ViM, C = S1 + cS2, where c is a user set parameter, and in

5 For SCOD, we are only concerned with the rank ordering of con-
fidence scores, and log is a monotonic function. This version is more
numerically stable. We implemented it using the logaddexp function
in PyTorch (Paszke et al., 2019).

Gradnorm,C = S1S2. The overlayed contours ofC represent
decision boundaries for values of t [Eq. (4)].

We see that the linear decision boundary of C = S1 + cS2
must trade-off significant performance in ID✗ |ID✓ in order
to gain OOD|ID✓ (through varying c), whilst C = S1S2
sacrifices the ability to separate ID✗ |ID✓ well for higher
values of S1. We also note that C = S1S2 is not robust to
different ID means of S2. For example, arbitrarily adding a
constant D to S2 will completely change the behaviour of
the combined score. On the other hand, SIRC is designed
to be robust to this sort of variation between different S2.
Figure6 also shows an alternative parameter setting for SIRC,
where a is lower and b is higher. The sigmoid is shifted down
and steeper. Here more of the behaviour of only using S1
is preserved, but S2 contributes less. It is also empirically
observable that the assumption that S2 (in this case ‖z‖1)
is not useful for distinguishing ID✓ from ID✗ holds, and
in practice this can be verified on ID validation data when
selecting S2.

We also note that although we have chosen specific S1, S2
in this work, SIRC can be applied to any S that satisfy
the above assumptions. It is a combination method, rather
than a specific confidence score. As such it has the potential
to improve beyond the results we present, especially given
the rapid pace of development of new confidence scores for
uncertainty estimation.
LimitationsWenote that one limitation of SIRC is that it does
not aim to improve ID✗ |ID✓, only OOD|ID✓. Moreoever,
although the approach aims to limit this effect, we expect
inevitable minor degradation in ID✗ |ID✓ as a result of the
inclusion of S2.

5 Experimental Results—SIRC

We present experiments across a range of CNN architectures
and ImageNet-scale OOD datasets. Extended results can be
found in Appendix B.
Data For our ID dataset we use ImageNet-200 (Kim et al.,
2021), which contains a subset of 200 ImageNet-1k (Rus-
sakovsky et al., 2015) classes. It has separate training,
validation and test sets. We use a variety of OOD datasets
for our evaluation that display a wide range of semantics
and difficulty in being identified. Near-ImageNet-200 (Near-
IN-200) (Kim et al., 2021) is constructed from remaining
ImageNet-1k classes semantically similar to ImageNet-200,
so it is especially challenging to detect. Caltech-45 (Kim
et al., 2021) is a subset of the Caltech-256 (Griffin et al.,
2007) dataset with non-overlapping classes to ImageNet-
200. Openimage-O (Wang et al., 2022) is a subset of the
Open Images V3 (Krasin et al., 2017) dataset selected to
be OOD with respect to ImageNet-1k. iNaturalist (Huang
& Li, 2021) and Textures (Wang et al., 2022) are the same
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Fig. 5 Left: SIRC isocontours on the (S1, S2)-plane—they are sig-
moids. Centre: Plot of how the first term in SIRC [Eq. (9)] varies with
S1 – its sensitivity to S1 (gradient) is high close to Smax

1 and gradually

decreases with S1. Right: Plot of how the second term in SIRC varies
with S2—its sensitivity increases from zero as S2 approaches a from
above, eventually tending to a linear relationship proportional to b

Fig. 6 Comparison of different methods of combining confidence
scores S1, S2 for SCOD. OOD, ID✗ and ID✓ distributions are dis-
played using kernel density estimate contours. Graded contours for the
different combinationmethods are then overlayed (lighter means higher
combined score). We see that our method, SIRC (centre right) is able to

better retain ID✗|ID✓whilst improvingOOD|ID✓. An alternate param-
eter setting for SIRC, with a stricter adherence to S1, is also shown (far
right). The ID dataset is ImageNet-200, the OOD dataset iNaturalist
and the model ResNet-50. SIRC parameters are found using ID train-
ing data; the plotted distributions are test data

for their respective datasets (Van Horn et al., 2017; Cimpoi
et al., 2014). SpaceNet (Etten et al., 2018) contains satellite
images of RioDe Janeiro. Colorectal (Kather et al., 2016) is a
collection of histological images of human colorectal cancer,
whilst Colonoscopy is a dataset of frames taken from colono-
scopic video of gastrointestinal lesions (Mesejo et al., 2016).
Noise is a dataset of square images where the resolution,
contrast and pixel values are randomly generated (for details
see Appendix A.2). Finally, ImageNet-O (Hendrycks et al.,
2021) is a dataset OOD to ImageNet-1k that is adversarially
constructed using a trained ResNet. Note that we exclude a
number of OOD datasets from Kim et al. (2021) and Huang
and Li (2021) as a result of discovering samples within said
datasets that match ID labels.
Models and Training We train ResNet-50 (He et al., 2016),
DenseNet-121 (Huang et al., 2017) and MobileNetV2 (San-
dler et al., 2018) using hyperparameters based around stan-
dard ImageNet settings.6 Full training details can be found in

6 https://github.com/pytorch/examples/blob/main/imagenet/main.py.

Appendix A.1. For each architecture, we train 5models inde-
pendently using random seeds {1, . . . , 5} and report themean
result over the runs. Appendix B additionally contains results
on single pre-trained ImageNet-1k models, BiT ResNetV2-
101 (Kolesnikov et al., 2020) and PyTorch DenseNet-121.
Detection Methods for SCOD We consider six variations of
SIRC using the components {MSP, H} × {‖z‖1,Residual,
KNN}, as well as the components individually. We addi-
tionally evaluate various existing post-hoc methods: MSP
(Hendrycks & Gimpel, 2017), Energy (Liu et al., 2020b),
ViM (Wang et al., 2022) and Gradnorm (Huang et al., 2021).
For the Residual score (used in SIRC and ViM) we use the
full ID ImageNet-200 train set to determine parameters. For
KNN we sample 12,500 feature vectors from the training set
and use k = 10. Results for additional approaches, as well
as further details pertaining to the methods, can be found in
Appendices B and A.3.
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5.1 EvaluationMetrics

For evaluating different scoring functions S for the SCOD
problem setting we consider a number of metrics. Arrows
(↑↓) indicate whether higher/lower is better (For graphical
illustrations and additional metrics see Appendix A.4).
AreaUnder theRisk-Recall curve (AURR)↓Weconsider how
empirical risk [Eq. (7)] varies with recall of ID✓, and aggre-
gate performance over different t by calculating the area
under the curve. As recall is only measured over ID✓, the
base accuracy of f is not properly taken into account. Thus,
this metric is only suitable for comparing different g with f
fixed. To give an illustrative example, a f , g pair where the
classifier f is only able to produce a single correct predic-
tion will have perfect AURR as long as S assigns that correct
prediction the highest confidence (lowest uncertainty) score.
Note that results for the AURC metric (Kim et al., 2021;
Geifman et al., 2019) can be found in Appendix B, although
we omit them from the main paper as they are not notably
different to AURR.
Risk@Recall=0.95 (Risk@95)↓ Since a rejection threshold t
must be selected at deployment, we also consider a particular
setting of t such that 95% of ID✓ is recalled. In practice, the
corresponding value of t could be found on a labelled ID val-
idation set before deployment, without the use of any OOD
data. It is worth noting that differences tend to be greater for
this metric between different S as it operates around the tail
of the positive class.
Area Under the ROC Curve (AUROC)↑ Since we are inter-
ested in rejecting both ID✗ and OOD, we can consider ID✓

as the positive class, and ID✗, OOD as separate negative
classes. Then we can evaluate the AUROC of OOD|ID✓ and
ID✗ |ID✓ independently. The AUROC for a specific value
of α would then be a weighted average of the two different
AUROCs. This is not a direct measure of risk, but does mea-
sure the separation between different empirical distributions.
Note that due to similar reasons to AURR this method is only
valid for fixed f .
False Positive Rate@Recall=0.95 (FPR@95)↓ FPR@95 is
similar to AUROC, but is taken at a specific t . It measures
the proportion of the negative class accepted when the recall
of the positive class (or true positive rate) is 0.95.

5.2 Separation of ID✗ |ID✓ and OOD|ID✓
Independently

Table 1 shows %AUROC and %FPR@0.95 with ID✓ as
the positive class and ID✗, OOD independently as different
negative classes (see Sect. 5.1). It is important for a confi-
dence score to have strong ID✗ |ID✓ performance as ID✗

will always be present7 regardless of the volume or type of

7 Assuming < 100% test accuracy of course.

OOD data. It is also important for a confidence score to per-
form consistently over different OOD data, as we assume no
knowledge at the time of deployment of what distribution
shifts may occur.

In general, we see that SIRC, compared to S1, is able
to improve OOD|ID✓ whilst incurring only a small (<
0.2%AUROC) reduction in the ability to distinguish ID✗

|ID✓, across all 3 architectures. On the other hand, non-
softmax methods designed for OOD detection show poor
ability to identify ID✗, with performance ranging from ∼ 8
worse %AUROC than MSP to ∼ 50% AUROC (random
guessing). Furthermore, they cannot consistently outperform
the baseline when separating OOD|ID✓, in line with the dis-
cussion in Sect. 3.

We note that in some cases SIRC slightly improves ID✗

|ID✓, however, the impact is minimal and inconsistent over
model architectures and S2. We provide some additional
empirical analysis in Appendix B.1.1.
SIRC is Robust to Weak S2 Although for the majority of
OOD datasets in Table 1 SIRC is able to outperform S1,
this is not always the case. When SIRC does not provide a
boost over S1, we can see that S2 individually is not useful
for OOD|ID✓. For example, for ResNet-50 on Colonoscopy,
Residual performsworse than random guessing. However, in
cases like this the performance is still close to that of S1.As S2
will tend to be higher for these OOD datasets, the behaviour
of SIRC is similar to that of for ID✗ |ID✓, with the decision
boundaries close to vertical (see Figs. 5, 8). As such SIRC
is robust to S2 performing poorly, but is able to improve
on S1 when S2 is of use. In comparison, ViM, which linearly
combines Energy and Residual, is more sensitive to when the
latter stumbles. This is shown in Fig. 8. On iNaturalist ViM
has ∼ 25 worse %FPR@95 compared to Energy, whereas
SIRC (−H, Res.) loses < 0.5% compared to −H. Note that
the issue of S2 being inconsistent is addressed in Sect. 6,
where we further extend SIRC.

We additionally remark that regardless of the choice of
S2, there is little to no improvement for Near-ImageNet-
200. This suggests that softmax-based scores are best suited
to capturing this type of distributional shift. For Near-
ImageNet-200 the semantic shift from ImageNet-200 is
purposely very small (e.g. “cricket” vs “grasshopper”), and
there is no higher level overarching shift (e.g. photographs
vs cartoons).
OOD Detection Methods are Inconsistent Over Different
Data In Table 1 the performance of existing methods for
OOD detection relative to the MSP baseline varies consid-
erably from dataset to dataset. This is directly illustrated in
Fig. 7. Even though ViM is able to perform very well on
Textures, Noise and ImageNet-O (>50 better %FPR@95 on
Noise), it does worse than the baseline on many other OOD
datasets (>20 worse %FPR@95 for Near-ImageNet-200 and
iNaturalist). This suggests that the inductive biases incor-
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Fig. 7 The change in %FPR@95↓ relative to the MSP baseline across different OOD datasets. SIRC is able to consistently match or improve over
the baseline, whilst ViM is inconsistent depending on the OOD dataset

Fig. 8 Comparison (similar to Fig. 5) between SIRC and ViM with
OOD data iNaturalist. For this OOD dataset S2 =Res. cannot distin-
guish OOD|ID✓. SIRC mostly ignores S2 in this case (close-to-vertical
decision boundaries) leading to performance very close to S1. On the
other hand, ViM incurs a large penalty in FPR@95 from relying on S2.
The ID dataset is ImageNet-200 and the model is ResNet-50

porated, and assumptions made, when designing existing
OODdetectionmethodsmay prevent them fromgeneralising
across a wider variety of OOD data. This behaviour is prob-
lematic as we assume no knowledge of the OOD data prior
to deployment. In this case, a practitioner may be “unlucky”
with the OOD data encountered and incur significant addi-
tional loss for choosing ViM over MSP.

In contrast, SIRC more consistently, albeit modestly,
improves over the baseline (Fig. 7), due to its aforementioned
robustness. These results suggest that methods designed to
deal with OOD data should be evaluated on benchmarks that
represent a wider range of distributional shifts than what is
currently commonly found in the literature.

5.3 Varying the Importance of OOD Data Through˛
andˇ

At deployment, there will be a specific ratio of ID:OOD
data exposed to the model. Thus, it is of interest to inves-

tigate the risk over different values of α (Eq. 5). Similarly,
an incorrect ID prediction may or may not be more costly
than a prediction on OOD data so we investigate differ-
ent values of β (Eq. 6). Figure9 shows how AURR and
Risk@95 are affected as α and β are varied independently
(with the other fixed to 0.5). We use the full test set of
ImageNet-200, and pool OOD datasets together and uni-
formly sample different quantities of data randomly in order
to achieve different values of α. We use 3 different groupings
ofOODdata:All, “Close” {Near-ImageNet-200,Caltech-45,
Openimage-O, iNaturalist} and “Far” {Textures, SpaceNet,
Colonoscopy, Colorectal, Noise}. These groupings are based
on relative qualitative semantic difference to the ID dataset
(see Appendix A.2 for example images from each dataset).
Although the grouping is not formal, it serves to illustrate
OOD-data-dependent differences in SCOD performance.
Relative Performance of Methods Changes with α and β At
high α and β, where ID✗ dominates the risk, the MSP base-
line performs best. However, as α and β are decreased, and
OOD data is introduced, we see that other methods improve
relative to the baseline. There may be a crossover after which
the ability to better distinguish OOD|ID✓ allows a method
to surpass the baseline. Thus, which method to choose for
deployment will depend on the practitioner’s setting of β

and (if they have any knowledge of it at all) of α.
SIRC Most Consistently Improves Over the Baseline SIRC
(−H,Res.) is able to outperform the baseline most con-
sistently over the different scenarios and settings of α, β,
only doing worse for ID✗ dominated cases (α, β close to
1). This is because SIRC has close to baseline ID✗ |ID✓

performance and is superior for OOD|ID✓ (Table 1). In com-
parison, ViM and Energy, which conflate ID✗ and ID✓, are
often worse than the baseline for most (if not all) values of
α, β. Their behaviour on the different groupings of data illus-
trates how these methods may be biased towards different
OOD datasets, as they significantly outperform the baseline
at lower α for the “Far” grouping, but always do worse on
“Close” OOD data.
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Fig. 9 AURR↓ and Risk@95↓ (×102) for different methods as α and
β vary [Eqs. (5), (6)] on a mixture of all the OOD data. We also split
the OOD data into qualitatively “Close” and “Far” subsets (Sect. 5.3).
For high α, β, where ID✗ dominates in the risk, the MSP baseline is the
best. As α, β decrease, increasing the effect of OOD data, other meth-

ods improve relative to the baseline. SIRC is able to most consistently
improve over the baseline. OOD detection methods perform better on
“Far” OOD. The ID dataset is ImageNet-200, and the model is ResNet-
50. We show the mean over 5 independent training runs. We multiply
all values by 102 for readability

Fig. 10 The change in %FPR@95↓ relative to the MSP baseline of
different methods. Different data classes are shown negative|positive.
AlthoughOODdetectionmethods are able to improve OOD|ID, they do
so mainly at the expense of ID✗ |ID✓ rather than improving OOD|ID✓.

SIRC is able to improve OOD|ID✓ with minimal loss to ID✗ |ID✓,
alongsidemodest improvements forOOD|ID.Results forOODare aver-
aged over all OOD datasets. The ID dataset is ImageNet-200 and the
model is ResNet-50

5.4 Comparison Between SCOD and OODDetection

Figure 10 shows the difference in %FPR@95 relative to the
MSP baseline for different combinations of negative|positive
data classes (ID✗ |ID✓, OOD|ID✓, OOD|ID), where OOD
results are averaged over all datasets and training runs. In
line with the discussion in Sect. 3, we observe that the non-
softmaxOODdetectionmethods are able to improve over the
baseline for OOD|ID. However, this comes at the cost of sig-
nificantly degraded ID✗ |ID✓, with only small improvements
in OOD|ID✓. Thus their SCOD performance is poor com-
pared to the MSP baseline. SIRC on the other hand is able to
retain much more ID✗ |ID✓ performance whilst improving

on OOD|ID✓, allowing it to have better OOD detection and
SCOD performance compared to the baseline.

6 Extending SIRC—Improving Performance
over Diverse Distribution Shifts

A salient result from the previous section is that for certain
OOD datasets, certain S2 fail to improve the OOD|ID✓ per-
formance of SIRC compared to S1 by itself (e.g. Residual
on iNaturalist in Table 1). SIRC is robust to scenarios where
S2 fails, as its behaviour defaults to being similar to only
using S1 (Sect. 5.2). However, ideally we want performance
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Fig. 11 Comparison of SIRC performance (�FPR@95↓) compared to
only using S1(−H), over a range of different OOD datasets and S2. Per-
formance improvements are inconsistent over different distributional
shifts (e.g. Residual does not contribute at all for iNaturalist). More-
over, different S2 seem better suited to different OOD datasets, with no
single score being best in all cases. The ID dataset is ImageNet-200,
and the model is ResNet-50

improvements over as wide a range of distribution shifts as
possible. Furthermore, it appears that different S2 are better
suited for different OOD datasets, so there is not necessarily
a “best overall choice” for S2. This is further illustrated in
Fig. 11, which shows the improvement of SIRC vs only S1
for different S2 and OOD datasets.

Additionally, each choice of secondary score {‖z‖1,
Residual, KNN} captures information about distributional
shift in a different way. This suggest that by choosing only
one, we are leaving information that could be used to further
improve SCOD performance on the table. Consequently, we
suggest an extension to SIRC, in order to:

1. improve the consistency of performance over a wider
range of distribution shifts

2. generally boost SCOD performance.

Using Multiple Secondary Scores Given we have access to
a selection of options to use as S2, a natural question to ask
is, can we combine the information from multiple secondary
scores, in order to achieve the above aims? We propose to
extend Eq.8,

C(S1, . . . , SM )

= −(Smax
1 − S1)

M∏

m=2

[1 + exp(−bm[Sm − am])] , (11)

and the log version Eq.9,

C(S1, . . . , SM ) = − log(Smax
1 − S1)

+
M∑

m=2

− log (1 + exp(−bm[Sm − am])) ,

(12)

to includeM−1 secondary scores.8 Fig. 5 can help with intu-
ition for how the different components contribute in Eq. (12).
Multiple secondary scores (righthand plot) contribute addi-
tively. We refer to this extended version of SIRC as SIRC+.
More Consistent Improvements over Different Distribution
Shifts By incorporating multiple secondary scores as in
Eq. (12), the idea is that only a single secondary score in
SIRC+ needs to contribute usefully in order for OOD|ID✓ to
improve. As long as a single score moves into the “sensitive
zone” past or around a (Fig. 5) for OOD data samples, then
SCOD should improve compared to only using S1.

Thus, different secondary scores may be able to compen-
sate for each other’s failures, resulting in more consistent
improvements in SCOD over different OOD data. We aim to
increase the likelihood of SIRC responding to an unknown
distribution shift. In a sense, this approach is an attempt to
“safeguard” against as wide a range of distribution shifts
as possible, where we do not trust any single secondary
score to be able to detect all shifts. This is illustrated for
the Colonoscopy OOD dataset in Fig. 13. It shows how the
additional useful information from the KNN score can be
exploited to improve SCOD even if the Residual score fails
to distinguish OOD from ID.
Generally Improved OOD|ID✓ Additionally, when multiple
secondary scores react to a distribution shift, we intuitively
expect the OOD|ID✓ performance of SIRC+ to be better
than using the scores individually. If the different secondary
scores provide different information about the distribution
shift, then they should contribute in a complementary man-
ner, further improving detection. This is illustrated for the
Openimage-O OOD dataset in Fig. 12. KNN is lower for
OOD given the value of Residual is known, meaning it
is additionally useful for detection. Figure13 then shows
how SIRC+ is able to utilise the information in both scores
together.

Note that by including more secondary scores in SIRC+,
we do expect increased degradation in ID✗ |ID✓. Although
SIRC is insensitive to secondary scores for ID✗ |ID✓ (for
which we do not expect them to contribute useful informa-
tion), we still expect the (slight) negative effects to add up as
M [Eq. (12)] increases.

8 Note that the parameters am , bm are found on a per-score basis in the
same way as described in Sect. 4.

123



International Journal of Computer Vision

Fig. 12 Conditional plots of KNN given Residual. Left and centre: conditional histograms showing empirical distributions. Right: conditional
means. KNN is useful in addition to Residual for detecting OOD Openimage-O

Fig. 13 Visualisation of the combination of multiple secondary scores
in SIRC+. OOD, ID✗ and ID✓ distributions are displayed using kernel
density estimate contours. Graded contours reflect equidistant values of
the second term in Eq. (12). We show two different OOD datasets that
illustrate different scenarios. Colonoscopy: Residual is not useful for
detecting OOD, but KNN is. By considering both scores we are more
likely to improve SCOD performance for an unknown distributional
shift. Openimage-O: both scores are useful and intuitively capture dif-
ferent information about OOD data. We expect to improve OOD|ID✓
vs using either score individually. The ID dataset is ImageNet-200 and
the model is ResNet-50. SIRC parameters are found using ID training
data; the plotted distributions are test data

7 Experimental Results—SIRC+

We extend the evaluation in Sect. 5.2, where we consider
ID✗ |ID✓ and OOD|ID✓ separately, to include SIRC+where
all 3 sary scores are used together (−H, KNN, Res., ‖z‖1).
Figure14 shows, for ResNet-50, the difference in SCOD per-
formance between−H (only using S1) and different variants
of SIRC over the full range of OOD datasets. Full results for
other architectures can be found in Appendix B, as well as
tables in the format of Table 1 including SIRC+.
SIRC+ Improves over S1 More Consistently than SIRC
Fig. 14 shows that, compared to SIRC with each individual
S2, SIRC+ is able to more consistently boost SCOD perfor-

mance over the whole range of OOD datasets. For example,
for the twoOODdatasets iNaturalist andColonoscopy, SIRC
with a single score (−H, Res.) is unable to improve over−H .
This is because the Residual score fails to recognise samples
from these two datasets as OOD. On the other hand, SIRC+
is able to leverage the information in the other two scores
KNN and ‖z‖1, leading to better SCOD performance, even
if the Residual score fails.
SIRC+ Generally Improves SCOD Compared to SIRC For
a number of OOD datasets (e.g. Openimage-O), Fig. 14 also
shows that SIRC+ is able to achieve better SCOD perfor-
mance compared to using any of the secondary scores by
themselves. This is in line with the discussion in Sect. 6, sup-
porting the idea that even better OOD|ID✓ performance can
be achieved by combining multiple secondary scores.

We note that we also observe a slight increase in the
degradation of ID✗ |ID✓ as expected. However, it is small
compared to the improvements in OOD|ID✓, which we
believe justifies this trade-off. This is shown in Fig. 15, which
reproduces part of Fig. 9 and shows that SIRC+ is able to fur-
ther improve SCOD over SIRC for the scenarios considered
in Sect. 5.3.

8 RelatedWork

OOD Detection There is extensive existing research into
OOD detection, a survey of which can be found in Yang et al.
(2021). To improve over the MSP baseline in Hendrycks and
Gimpel (2017), early post-hoc approaches, primarily exper-
imenting on CIFAR-scale data, such as ODIN (Liang et al.,
2018), Mahalanobis (Lee et al., 2018) and Energy (Liu et al.,
2020b) explore how to extract non-softmax information from
a trained network. They investigate the use of logits and
features, as well as the idea of using input perturbations
(inspired by the adversarial attacks literature (Goodfellow
et al., 2015)).

More recent work has moved to larger-scale, higher-
resolution image datasets (Huang & Li, 2021; Hendrycks
et al., 2022;Wang et al., 2022), designed to reflect more real-
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Fig. 14 �%AUROC and �%FPR@95 (where ID✓ is the positive
class) with respect to −H (S1 only). Results are for ResNet-50 trained
on ImageNet-200. We show the mean over models from 5 independent
training runs. SIRC+ is able to provide more consistent improvements

over−H over the different OOD datasets compared to SIRCwith a sin-
gle secondary score.Additionally, on a number ofOODdatasets, SIRC+
is able to further improve SCOD performance compared to SIRC

Fig. 15 Part of Fig. 9 reproduced to include SIRC+. SIRC+ is able to further improve SCOD performance compared to SIRC, especially on the
“Far” OOD data

123



International Journal of Computer Vision

istic computer vision applications. Gradnorm (Huang et al.,
2021), althoughmotivated by the information in gradients, at
its core combines information from the softmax and features
together. Similarly, ViM (Wang et al., 2022) linearly com-
bines Energy with the class-agnostic Residual score. ReAct
(Sun et al., 2021) aims to improve logit/softmax-based scores
by clamping the magnitude of final layer features. KNN (Sun
et al., 2022) takes a non-parametric approach, using the dis-
tance to the k-th nearest ID neighbour of a test feature vector.

There are also many training-based approaches. Outlier
Exposure (Hendrycks et al., 2019) explores training networks
to be uncertain on “known” existing OOD data, so that this
behaviour generalises to unseen test OOD data. On the other
hand VOS (Du et al., 2022) instead generates virtual outliers
during training for this purpose. Hsu et al. (2020) and Techa-
panurak et al. (2020) propose the network explicitly learn a
scaling factor for the logits to improve softmax behaviour.
There also exists a line of research that explores the use of
generative models, p(x; θ), for OOD detection (Caterini &
Loaiza-Ganem, 2021; Zhang et al., 2021; Ren et al., 2019;
Nalisnick et al., 2019). These approaches are separate from
classification, however, so are less relevant to this work.
Selective Classification Selective classification, or misclas-
sification detection, has also been investigated for deep
learning scenarios. Initially examined in Geifman and El-
Yaniv (2017) and Hendrycks and Gimpel (2017), there are
a number of approaches to the task that target the classifier
f through novel training losses and/or architectural adjust-
ments (Moon et al., 2020; Corbière et al., 2019; Geifman
& El-Yaniv, 2019). Post-hoc approaches are fewer. DOC-
TOR (Granese et al., 2021) provides theoretical justification
for using the l2-norm of the softmax output ‖π‖2 as a confi-
dence score for detectingmisclassifications, however,wefind
its behaviour similar to MSP and H (See Appendix B). The
comparatively smaller advancement in the selective classifi-
cation literature, compared to OOD detection, suggests that
improving performance on this task is much more challeng-
ing. This makes sense given the discussion in Sect. 3. The
MSP baseline works well for detecting ID✗ as the softmax
directly models P(y | x), but is inherently ill-suited to OOD
detection as it tends to conflate ID✗ with OOD.
General Methods for Uncertainty Estimation There also
exist general approaches for uncertainty estimation. These
approaches are typically more broadly motivated and aim
to improve the quality of uncertainties over a wider range
of potential downstream objectives. Earlier methods place
neural networks in a Bayesian framework (MacKay, 1995;
Jospin et al., 2022), of which a popular and simple-to-
implement approach is MC-Dropout (Gal & Ghahramani,
2016). Deep Ensembles (Lakshminarayanan et al., 2017),
where multiple models are trained independently using
different random seeds, can also be viewed as Bayesian (Wil-
son, 2020). They offer consistent, and therefore compelling

improvements in downstream tasks (Ovadia et al., 2019; Xia
&Bouganis, 2022b, 2023;Malinin&Gales, 2021), however,
their costs scale linearly with the number of ensemble mem-
bers. Dirichlet Networks (Malinin & Gales, 2018; Malinin
et al., 2020; Ulmer et al., 2023) model a distribution over
categorical distributions in order to capture different types
of uncertainty. SNGP (Liu et al., 2020a) and DDU (Mukhoti
et al., 2021) use spectral normalisation so that shifts in the
input space better correspond to shifts in the output space.
Selective Classification with Distribution Shift Here we dis-
cuss work that is most closely related to this work (some of
which was published after the preliminary version of this
paper (Xia & Bouganis, 2022a)). Kamath et al. (2020) inves-
tigate selective classification under covariate shift for the
natural language processing task of question and answer-
ing. In the case of covariate shift, valid predictions can still
be produced on the shifted data, which by our definition is
not possible for OOD data (see Sect. 2). Thus the problem
setting here is different to our work. They propose that g
be a random forest classifier trained on a mixture of ID and
covariate-shifted data, after f is fully trained.

Kimet al. (2021) introduce the idea that ID✗ andOODdata
should be rejected together and investigate the performance
of a range of existing approaches on an image-classification-
based benchmark. They examine both training and post-hoc
methods (comparingdifferent f and g) onSCOD(which they
term unknown detection). They also evaluate performance
on misclassification detection and OOD detection indepen-
dently. They find that Deep Ensembles (Lakshminarayanan
et al., 2017) perform best overall. They do not provide a novel
approach targeting SCOD, and consider a single setting of
(α, β), where the α is not specified and β = 0.5.

Jaeger et al. (2023) echo a similar sentiment to Kim et al.
(2021), presenting a unified evaluation of selective classi-
fication with both OOD data and covariate-shifted data for
image classification, without presenting a novel approach.

Cen et al. (2023) evaluate the SCODperformance ofmany
approaches under different training regimes. They also pro-
pose a SIRC-inspired approach for a “few-shot” problem
scenario, where a few OOD samples are available before
deployment. They infact benchmark SIRC and report strong
results (see their Table 5).We note thatwhilst both (Cen et al.,
2023; Jaeger et al., 2023) are concurrent work to ours, they do
not propose anymethods that directly competewith SIRC(+),
andperformsimilar classification-based experiments to those
in our work [and (Kim et al., 2021)].

9 FutureWork

In the future, it would be valuable to explore the ideas in
SCOD in problem settings such as Object Detection and
Semantic Segmentation that include classification as a sub-
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task. These scenarios are more complex compared to our
definition of SCOD in Sect. 2 for vanilla classification. For
example, in the case of Object Detection with OOD objects
(Dhamija et al., 2020; Du et al., 2022), one can imagine a
scenario where it is desirable to reject OOD objects as non-
objects alongside low-confidence class predictions (just like
SCOD), for which a SIRC-like approach may be suitable.
However, it may alternatively be desirable to specifically
detect OOD objects as unknown objects with a correspond-
ing bounding box, which would require a different style of
approach. In the case of semantic segmentation with OOD
objects (Hendrycks et al., 2022), there are complications aris-
ing from the need to separate uncertainty relating to the edges
of objects and uncertainty relating to the overall class of an
object. One can easily imagine a SCOD-like problem setting
where incorrect pixel predictions on edges would be irrele-
vant, whereas object-level misclassifications/OOD samples
need to be detected.

Additionally, selective prediction for regression problems
under distributional shift (Malinin & Gales, 2021) is an
underexplored problem setting currently. It could also be pos-
sible in this case to leverage methods similar to SIRC, that
combine multiple confidence scores together.

10 Concluding Remarks

In this work, we consider the performance of existing meth-
ods for OOD detection on selective classification in the
presence of out-of-distribution data (SCOD). We show how
their improved OOD detection vs the MSP baseline often
comes at the cost of inferior SCOD performance. Further-
more, we find their performance is inconsistent over different
OOD datasets.

In order to improve SCOD performance over the baseline,
we develop SIRC. Our approach aims to retain information
useful for detecting misclassifications from a softmax-based
confidence score, whilst incorporating additional informa-
tion useful for identifying OOD samples from a secondary
score. Experiments show that SIRC is able to consistently
match or improve over the baseline approach for a wide
range of datasets, CNN architectures and problem scenarios.
Moreover, by extending SIRC to include information from
multiple secondary scores, we are able to further improve
overall SCOD performance, as well as the consistency of
SIRC over different distribution shifts.

We hope this work encourages the further investigation of
SCOD or other new problem settings that involve detecting
or distinguishing distributional shifts during deployment.
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A Experimental Details

We present detailed information about our experimental
setup. Our code is available at https://github.com/Guoxoug/
SIRC.

A.1 Models and Training

For the main results we train ResNet-50 (He et al., 2016)
using the default hyperparameters found in PyTorch’s exam-
ples.9 We train on ImageNet-200 for 90 epochs with a batch
size of 256. Stochastic gradient descent is used with a weight
decay of 10−4, a momentum of 0.9 and an initial learning
rate of 0.1 that steps down by a factor of 10 at epochs 30 and
60. Images are augmented using RandomResizedCrop
and RandomHorizontalFlip. MobileNetV2 (Sandler
et al., 2018) uses the same setting, but with an initial learning
rate of 0.05. DenseNet-121 is trained with the same settings
are ResNet-50 but with Nesterov momentum as per (Huang
et al., 2017).We perform 5 independent training runs for each
architecture, with random seeds {1, ..., 5}.

Additionally, we also test on two pre-trained ImageNet-1k
models. We use ResNetV2-101 from Google’s Big Trans-
fer10 (Kolesnikov et al., 2020), specificallyBiT-S-R101x1,
and DenseNet-121 provided by PyTorch.11 Note that the BiT
model takes 480 × 480 images as input, whereas all other
models take standard ImageNet-scale 224×224 images.Note
that for evaluating these models we exclude Near-ImageNet-
200 and Caltech-45 due to class overlap with ImageNet-1k.

9 https://github.com/pytorch/examples/tree/main/imagenet.
10 https://github.com/google-research/big_transfer.
11 https://pytorch.org/vision/stable/models.html.
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A.2 ImageNet-Scale Datasets

Figure 16 shows a number of random examples from each
dataset introduced in Sect. 5, alongside the number of sam-
ples in said dataset. Below we describe the methodology
for constructing Colonoscopy and Noise. For the remain-
ing datasets please refer to their original papers for details
(Huang & Li, 2021; Wang et al., 2022; Kim et al., 2021;
Hendrycks et al., 2021;Kather et al., 2016; Etten et al., 2018).
We note that there is a slight discrepancy between the number
of samples reported in Kim et al. (2021) for ImageNet-200
and in the authors’ provided datasets,12 but we do not believe
this affects the validity of our results.
NoiseWe randomly generate 10,000 square images. All sam-
ples are generated independently. Within each image, each
value (in space and RGB) is sampled from the same gaussian
distribution, with mean 0.5. The standard deviation of said
gaussian differs between images. These in turn are generated
by sampling from a unit gaussian and squaring the samples.
Pixel values are then clipped to be in [0, 1] and mapped to
8-bit integers. The widths of each image are sampled uni-
formly from {2, ..., 256}, and the images are all scaled to
256 × 256 using the lanczos interpolation method in PIL.13

The resulting data thus varies in both scale and contrast (see
Fig. 16).
Colonoscopy We separate out frames as individual images
from videos provided in Mesejo et al. (2016).14 We down-
load the first 10 narrow band imaging (NBI) videos in each
class of lesion (hyperplasic, serrated, adenoma) and extract
each frame as an individual image. Although the data is not
independent in this case, we treat it as such for the purposes
of our investigation.

A.3 Confidence Scores

Below we detail all confidence scores S implemented
and evaluated in our investigation. There are additional
approaches that were omitted from the main paper for the
sake of brevity.

• SIRC(+): for a description of the score see Sects. 4 and 6
in the main paper. We use the whole of the ImageNet-
200 training set to determine the values of μS2 , σS2 .
For ImageNet-1k we randomly sample 250, 000 images
from the training set. Note that for all following meth-
ods that require ID data to find parameters, we use the
same ID data as for SIRC. We investigate combinations
of S1, S2 from the cartesian product {MSP, DOCTOR,

12 https://github.com/daintlab/unknown-detection-benchmarks.
13 https://pillow.readthedocs.io/en/stable/_modules/PIL/Image.html#
Image.resize.
14 http://www.depeca.uah.es/colonoscopy_dataset/.

H}×{‖z‖1,Residual, KNN}, as well as the use of all
secondary scores together for SIRC+.

• Maximum Softmax Probability (MSP) (Hendrycks &
Gimpel, 2017): a baseline score that takes the max value
from the softmax πmax = maxk πk .

• DOCTOR (Granese et al., 2021): the original paper does
not directly present it as such, but the confidence score is
equivalent to ‖π‖2.

• Softmax entropy (H): measures softmax uncertainty,
H[π] = −∑

k πk logπk . We use S = −H[π] to change
it to a measure of confidence.

• l1-norm of the features: used in Gradnorm (Huang et al.,
2021), ‖z‖1.

• Residual: used in ViM (Huang et al., 2021), this score
measures the component of the feature vector that is
outside of a principal subspace defined using ID data,
‖zP⊥‖2. We follow Wang et al. (2022) in setting the
dimensionality of the subspace to 1000 if the dimension-
ality of z, L > 1500 and 512 otherwise. Like Entropy,
we use the negative of the score S = −‖zP⊥‖2 as this
score is meant to be higher for OOD data. Please refer to
Wang et al. (2022)’s paper for full details.

• KNN (Sun et al., 2022): a non-parametric approach that
uses the Euclidean distance between a test feature vector
z∗ and its kth nearest neighbour in the training set. Both
vectors are L2-normalised, so this is equivalent to cosine
similarity. Sun et al. (2022) subsample the trainingdataset
to reduce search costs at inference, and proportionally
scale k. We use a similar-sized training subset of 12, 500
to them for ImageNet-scale data and a value of k = 10.

• Max Logit (Hendrycks et al., 2022): Max Logit is similar
to MSP, but the score is taken from the logits before the
softmax vmax = maxk vk .

• Energy (Liu et al., 2020b): this score aggregates over all
logit values as log

∑
k exp vk .

• Gradnorm (Huang et al., 2021): although this score was
originally motivated by gradients, we can view it simply
as the combination of two scores,C = ‖π −1/K‖1‖z‖1.

• ViM (Wang et al., 2022): this linearly combines Energy
and Residual, C = log

∑
k exp vk − c‖zP⊥‖2. The

parameter c is given by the average value of Max Logit
divided by the average value of Residual on ID data,
which scales the importance of Residual to be similar to
that of Energy in the combination.

• Mahalanobis (Lee et al., 2018): this score involves build-
ing a classwise gaussian mixture model over the features
with tied covariancematrix. The confidence is then calcu-
lated as−mink(z−μk)

T �̃(z−μk).We use the approach
in Wang et al. (2022) and Fort et al. (2021) where only
the final layer features are considered.
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Fig. 16 Random examples from each ImageNet-scale dataset, with the #samples in each
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A.4 EvaluationMetrics

Other than the metrics specified in Sect. 5.1, we additionally
use Area Under the Risk-Coverage Curve (AURC)↓, from
Kim et al. (2021) andGeifman and El-Yaniv (2017). It aggre-
gates risk over all values of coverage, which is the proportion
of all input data accepted. For AURC their exists an oracle
curve, where OOD and ID✗ are perfectly disjoint from ID✓.
AURC can be reduced either by lowering the oracle curve
by reducing the number of ID✗ (increasing baseline accu-
racy of f ) or by better separating OOD, ID✗ |ID✓ (better
choice of g) and so bringing the curve closer to the oracle.
Thus the metric is suitable for both training based, and post-
hoc approaches. Figure17 illustrates graphically some of the
metrics we use to evaluate SCOD.

B Additional Results

We provide more complete versions of the results presented
in Sect. 5 of the main work across all architectures and
datasets.

B.1 AUROC and FPR@95

We present results across all post-hoc confidence scores in
Appendix A.3 for all architectures in Tables 2, 3, 4 and 5.
We also include mean ±2 SD. for experiments with multiple
training runs. SIRC performs as expected in all cases – a
small reduction in ID✗ |ID✓ in exchange for a meaningful
uplift in OOD|ID✓ compared to only using S1. SIRC+ is able
to offer further improvements in OOD|ID✓ over SIRC.

DOCTOR in general performs somewhere in between
MSP and −H, both individually and when used in SIRC,
so we relegate it to the appendix. We note that Residual
and Mahalanobis perform much better only for ResNetV2-
101 [these results are inline with Wang et al. (2022)]. This
may be due to the fact that BiT uses Weight Standardisation
and Group Normalisation when training, rather than stan-
dard Batch Normalisation. Mukhoti et al. (2021) show that
limiting the Lipschitz constant of the network during train-
ing improves the OOD detection performance of gaussian
mixture models, which may be also what is occurring in this
example. The Mahalanobis detector performs poorly outside
ResNetV2-101 otherwise. There is non-negligible variance
between training runs on a number of OOD datasets, high-
lighting the need to perform multiple training runs. Some
datasets (e.g. Noise, Colorectal), have especially high varia-
tion.

B.1.1 Additional Analysis for SIRC on ID✗ |ID✓

We note that in some cases for ID✗ |ID✓ SIRC is able to
slightly outperform S1 by itself, even when S2 has ≤ 50%
AUROC by itself (e.g. S2 =Res. in Tables 1 and 2). This
is counter-intuitive as S2 should be harmful to performance.
We provide some analysis to show that in some cases S2 is
indeed useful for ID✗ |ID✓. We train a series of linear logis-
tic classifiers15 with (MSP, Res.) as the input with different
class weightings on the test set of ImageNet-200. Figure18
shows that for ResNet-50, better ID✗ |ID✓ can be achieved
by considering (slightly) the value of Res. alongside MSP.
However, it also shows that for high MSP, Res. ID✓ has
a significant tail of low confidence values. This tail doesn’t
havemuch effect whenRes. is considered togetherwithMSP,
sinceMSP ID✓ is high and heavily weighted, but will reduce
AUROC when Res. is considered by itself for ID✗ |ID✓.

Figure 18 and Tables 1 and 4 show that for DenseNet-
121 Res. provides no benefit at all for ID✗ |ID✓. Generally
over different architectures and S2, no secondary score is able
to consistently help for ID✗ |ID✓. Moreover, any benefit is
minimal andwithin the range of±2 SD. Thus we believe that
S2 should beonly considered for its contribution toOOD|ID✓

when deploying SIRC.

B.2 Varying˛ andˇ

We plot versions of Fig. 9 for all 3 ImageNet-200 architec-
tures (Figs. 19, 20, 21). We also present the mean ± SD.
The ability of SIRC to perform consistently better than the
baseline generalises across the 3 differentCNNarchitectures.
We note that differences in AURC are harder to distinguish,
due to the metric considering the proportion of all input data
accepted, rather than just the recall of ID✓. The behaviour,
however, is similar toAURR in terms of relative performance
to the baseline, so we omit AURC from the main results.

B.3 SCOD vs OOD Detection

Similar to the previous section we include versions of Fig. 10
for all architectures and confidence scores (Figs. 22, 23, 24,
25, 26). The behaviour is as discussed in Sect. 5.4, with
methods designed for OOD detection achieving gains over
the baseline for OOD detection by sacrificing their ability to
separate ID✗ |ID✓.

B.4 Plotting S2 against S1

In a similar vein to Fig. 6, we plot different SIRC com-
binations on the S1, S2-plane for different experimental

15 https://scikit-learn.org/stable/modules/generated/sklearn.
linear_model.LogisticRegression.html.
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Fig. 17 Visualisations of different evaluation metrics for SCOD. We
aim to minimise risk over different selection thresholds t . Left: Risk-
Coverage curve (coverage is the proportion of all data accepted). We
aggregate performance over t by taking the area under the curve. The

oracle represents perfect separation of OOD, ID✗ |ID✓. Right: Risk-
Recall curve. We consider both the area under the curve as well as
risk@recall=0.95

Fig. 18 2DKDE plots of ID✗ and ID✓ samples on ImageNet-200 with decision boundaries from SIRC as well as linear logistic classifiers (decision
boundary at 0.5) trained with different class weightings

configurations (Figs. 27, 28, 29, 30). If there are multiple
training runs, we plot the distributions corresponding to the
outputs of the 1st run. Decision contours corresponding to
the default parameter setting for SIRC are also overlayed.We
note that the inconsistency of Residual can be observed here,
where in some cases the OOD distribution is much lower
than ID, whilst in others, there is almost complete overlap.
In the case of MobileNetV2 on iNaturalist it is in fact higher
for OOD than ID, although the nature of SIRC means that it
is robust to such S2 failure (as discussed in Sect. 5.2).

B.5 SIRC+ on Other Architectures

As in Fig. 14, we plot the change in SCOD performance
relative to only using S1 (−H), for CNN architectures

DenseNet-121 and MobileNet-V2 (Figs. 31, 32). Results tell
a similar story to Sect. 7, with SIRC+ providing more con-
sistent and overall better improvements. We note that for
DenseNet-121 there is a slightly larger drop in ID✗ |ID✓ per-
formance compared to the other two architectures for SIRC+.
From the perspective of a practitioner, this cost should be vis-
ible on a validation set, and so the trade-off between ID✗ and
OOD should be considered when choosing which version of
SIRC to deploy.
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Fig. 19 Varying α and β for ResNet-50 (ImageNet-200) (values ×102)

Fig. 20 Varying α and β for MobileNetV2 (ImageNet-200) (values ×102)
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Fig. 21 Varying α and β for DenseNet-121 (ImageNet-200) (values ×102)

Fig. 22 ResNet-50 (ImageNet-200), comparing the change in %FPR@95 relative to the MSP baseline for different detection methods and data
groups

Fig. 23 MobileNetV2 (ImageNet-200), comparing the change in %FPR@95 relative to the MSP baseline for different detection methods and data
groups
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Fig. 24 DenseNet-121 (ImageNet-200), comparing the change in %FPR@95 relative to the MSP baseline for different detection methods and data
groups

Fig. 25 ResNetV2-101 (ImageNet-1k), comparing the change in %FPR@95 relative to the MSP baseline for different detection methods and data
groups

Fig. 26 DenseNet-121 (ImageNet-1k), comparing the change in %FPR@95 relative to the MSP baseline for different detection methods and data
groups
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Fig. 27 SIRC combinations on the S1, S2-plane, ID: ImageNet-200, OOD: iNaturalist

Fig. 28 SIRC combinations on the S1, S2-plane, ID: ImageNet-200, OOD: Textures
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Fig. 29 SIRC combinations on the S1, S2-plane, ID ImageNet-1k, OOD: iNaturalist

Fig. 30 SIRC combinations on the S1, S2-plane, ID ImageNet-1k, OOD: Textures
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Fig. 31 �%AUROC and �%FPR@95 with respect to −H (S1 only). Results are for MobileNet-V2 trained on ImageNet-200
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Fig. 32 �%AUROC and �%FPR@95 with respect to −H (S1 only). Results are for DenseNet-121 trained on ImageNet-200
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