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Abstract
In this paper, we present our framework for neural face/head reenactment whose goal is to transfer the 3D head orientation
and expression of a target face to a source face. Previous methods focus on learning embedding networks for identity and
head pose/expression disentanglement which proves to be a rather hard task, degrading the quality of the generated images.
We take a different approach, bypassing the training of such networks, by using (fine-tuned) pre-trained GANs which have
been shown capable of producing high-quality facial images. Because GANs are characterized by weak controllability, the
core of our approach is a method to discover which directions in latent GAN space are responsible for controlling head pose
and expression variations. We present a simple pipeline to learn such directions with the aid of a 3D shape model which, by
construction, inherently captures disentangled directions for head pose, identity, and expression. Moreover, we show that by
embedding real images in the GAN latent space, our method can be successfully used for the reenactment of real-world faces.
Our method features several favorable properties including using a single source image (one-shot) and enabling cross-person
reenactment. Extensive qualitative and quantitative results show that our approach typically produces reenacted faces of
notably higher quality than those produced by state-of-the-art methods for the standard benchmarks of VoxCeleb1 & 2.

Keywords Neural face reenactment · Generative adversarial networks (GANs) · Image synthesis · Image editing

1 Introduction

Neural face reenactment aims to transfer the rigid 3D
face/head orientation and the deformable facial expression
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of a target facial image to a source facial image. Such tech-
nology is the key enabler for creating high-quality digital
head avatars that find a multitude of applications in telepres-
ence, Augmented Reality/Virtual Reality (AR/VR), and the
creative industries. Recently, thanks to the advent of Deep
Learning, Neural Face Reenactment has seen remarkable
progress (Burkov et al., 2020; Meshry et al., 2021; Wang et
al., 2021b; Zakharov et al., 2020). In spite of this, synthesiz-
ing photorealistic face/head sequences remains a challenging
problem with the quality of existing solutions being far from
sufficient for the demanding aforementioned applications.

Amajor challenge that most prior works (Bao et al., 2018;
Burkov et al., 2020; Ha et al., 2020; Zakharov et al., 2019,
2020; Zeng et al., 2020) have focused on is how to achieve
identity and head pose/expression disentanglement to both
preserve the appearance and identity characteristics of the
source face and successfully transfer the head pose and the
expression of the target face. A recent line of research relies
on training conditional Generative Adversarial Networks
(GANs) (Deng et al., 2020; Kowalski et al., 2020; Shoshan
et al., 2021) in order to produce disentangled embeddings
and control the generation process. However, such methods
mainly focus on synthetic image generation, rendering reen-
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actment on real faces challenging. Another line of works
(Zakharov et al., 2019, 2020) rely on training with paired
data (i.e., source and target facial images of the same iden-
tity), leading to poor cross-person face reenactment.

In this work, we propose a neural face reenactment
framework that addresses the aforementioned limitations of
state-of-the-art (SOTA), motivated by the remarkable abil-
ity of modern pre-trained GANs (e.g., StyleGAN Karras
et al. 2019; 2020a; 2020b) in generating realistic and aes-
thetically pleasing faces, often indistinguishable from real
ones. The research question we address in this paper is:
Can a pre-trained GAN be adapted for face reenactment?
A key challenge that needs to be addressed to this end is
the absence of any inherent semantic structure in the latent
space of GANs. In order to gain control over the generative
process, inspired by Voynov and Babenko (2020), we pro-
pose to learn a set of latent direction (i.e., direction vectors in
the GAN’s latent space) that are responsible for controlling
head pose and expression variations in the generated facial
images. Knowledge of these directions directly equips the
pre-trained GAN with the ability of controllable generation
in terms of head pose and expression, allowing for effective
face reenactment. Specifically, in this work we present a sim-
ple pipeline to learn such directions leveraging the ability of
a linear 3D shape model (Feng et al., 2021) in capturing dis-
entangled directions for head pose, identity, and expression,
which is crucial towards effective neural face reenactment.
Moreover, another key challenge that needs to be addressed
is how to use the GAN for the manipulation of real-world
images. Capitalizing on Tov et al. (2021), we further show
that by embedding real images in the GAN latent space, our
pipeline can be successfully used for real face reenactment.
Overall, we make the following contributions:

1. Instead of training from-scratch conditional generative
models (Burkov et al., 2020; Zakharov et al., 2020), we
present a novel approach to face reenactment by finding
the directions in the latent space of a pre-trained GAN
(i.e., StyleGAN2 Karras et al. Karras et al. (2020b) fine-
tuned on the VoxCeleb1 dataset) that are responsible for
controlling the rigid head orientation and expression, and
show how these directions can be used for neural face
reenactment on video datasets.

2. We present a simple pipeline that is trained with the
aid of a linear 3D shape model (Feng et al., 2021), that
is inherently equipped with disentangled directions for
facial shape in terms of head pose, identity and expres-
sion. We further show that our pipeline can be trained
with real images by firstly embedding them into the GAN
space, allowing for effective reenactment of real-world
faces.

3. We show that our method features several favorable
properties including requiring a single source image (one-
shot), and enabling cross-person reenactment.

4. We perform several qualitative and quantitative compar-
isons with recent state-of-the-art reenactment methods,
illustrating that our approach typically produces reenacted
faces of notably higher quality for the standard bench-
marks of VoxCeleb1 & 2 (Chung et al., 2018; Nagrani et
al., 2017).

Compared to our previous work in Bounareli et al. (2022),
this paper further investigates the real image inversion step
and proposes a joint training scheme (Sect. 3.4) that elim-
inates the need for the optimization step during inference,
described in Sect. 3.2, resulting in a more efficient inference
process and better quantitative and qualitative results. The
proposed joint training scheme efficiently addresses existing
visual artifacts on the reenacted images caused by large head
pose variations between the source and target faces, result-
ing in improved overall image quality. We qualitatively and
quantitatively show that by jointly learning the real image
inversion encoder and the directions, our method achieves
compelling results without the need of one-shot fine-tuning
during inference. Finally, to further improve the visual qual-
ity of the reenacted images in terms of crucial (for the purpose
of face reenactment) background and identity characteristics,
we propose to further fine-tune the feature space F of Style-
GAN2 (Sect. 3.5).

2 RelatedWork

2.1 Semantic Face Editing

Several recent works (Härkönen et al., 2020; Oldfield et al.,
2021, 2023; Shen & Zhou, 2021; Shen et al., 2020; Voynov
& Babenko, 2020; Tzelepis et al., 2021, 2022; Yang et al.,
2021; Yao et al., 2021) study the existence of directions/paths
in the latent space of a pre-trained GAN in order to perform
editing (i.e., with respect to specific facial attributes) on the
generated facial images. Voynov and Babenko (2020) intro-
duced an unsupervisedmethod that optimizes a set of vectors
in the GAN’s latent space by learning to distinguish (using a
“reconstructor” network) the image transformations caused
by distinct latent directions. This leads to the discovery of a
set of “interpretable”, but not “controllable”, directions—i.e.,
the optimized latent directions cannot be used for control-
lable (in terms of head pose and expression) facial editing
and, thus, for face reenactment. Our method is inspired by
the work of Voynov and Babenko (2020), extending it in
several ways to make it suitable for neural face reenactment.
Another line of recent works allows for explicit controllable
facial image editing (Abdal et al., 2021; Deng et al., 2020;
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Durall Lopez et al., 2021; Ghosh et al., 2020; Nitzan et al.,
2020; Shoshan et al., 2021; Wang et al., 2021a). However,
these methods mostly rely on synthetic image editing rather
than performing face reenactment on real video data. A work
that is related to our framework is StyleRig (Tewari et al.,
2020b), which uses 3DMorphable Model’s (3DMM) (Blanz
& Vetter, 1999) parameters to control the generated images
from a pre-trained StyleGAN2 (Karras et al., 2020b). How-
ever, by contrast to our method, StyleRig’s training pipeline
is not end-to-end and is significantly more complicated than
ours, while in order to learn better disentangled directions,
StyleRig requires the training of distinct models for different
attributes (e.g., head pose and expression). This, along with
the fact that StyleRig operates mainly on synthetic images,
poses a notable restriction towards real-world face reenact-
ment, where various facial attributes change simultaneously.
By contrast, we propose to learn all disentangled directions
for face reenactment simultaneously, allowing in this way
for the effective editing of all, a subset, or a single attribute,
whilst we optimize our framework on real faces as well. A
follow-upwork, PIE (Tewari et al., 2020a), focuses on invert-
ing real images to enable editing using StyleRig (Tewari et
al., 2020b).However, theirmethod is computationally expen-
sive (10 min/image) which is prohibitive for video-based
facial reenactment. By contrast, we propose a framework that
effectively and efficiently performs face reenactment (0.13
sec/image).

2.2 GAN Inversion

GAN inversion methods aim to encode real images into
the latent space of pre-trained GANs (Karras et al., 2019,
2020b), allowing for subsequent editing using existing meth-
ods of synthetic image manipulation. The major challenge
in the GAN inversion problem comprises of the so called
“editability-perception” trade-off; that is, finding a sweet spot
between faithful reconstruction of the real image and the
editability of the corresponding latent code. The majority of
recent inversion methods (Alaluf et al., 2021, 2022; Dinh et
al., 2022; Richardson et al., 2021; Tov et al., 2021; Wang
et al., 2022a) train encoder-based architectures that focus on
predicting the latent codesw that best reconstruct the original
(real) images and that allow for subsequent editing. Zhu et al.
(2020) propose a hybrid approach which consists of learning
an encoder followed by an optimization step on the latent
space to refine the similarity between the reconstructed and
real images. Richardson et al. (2021) introduce a method
that aims to improve the “editability-perception” trade-off,
while recently (Roich et al., 2021) propose to fine-tune the
generator to better capture/transfer appearance features.

The aforementioned works typically perform inversion
onto the W+ latent space of StyleGAN2. However, Parmar
et al. (2022) have shown that W+ is not capable of fully

reconstructing the real images. Specifically, details such as
the background, the hair style or facial accessories i.e., hats
and glasses, cannot be inverted with high fidelity. A recent
line of works (Alaluf et al., 2022; Bai et al., 2022; Wang
et al., 2022a; Yao et al., 2022a) propose to mitigate this by
investigating more expressive spaces of StyleGAN2 (such
as the feature space F ∈ R

h×w×c Kang et al. 2021) to
perform real image inversion. Although such methods are
able to produce high quality reconstructions, their ability
to accurately edit the inverted images is limited. Especially
when changing the head pose, such methods tend to pro-
duce many visual artifacts (Fig. 25). In order to balance
between expressive invertibility and editing performance, the
authors of Parmar et al. (2022) (SAM) propose to fuse dif-
ferent spaces, i.e., theW+ latent space and the feature space
F = {F4,F6,F8,F10}, where each one corresponds to a
different feature layer of StyleGAN2 (Karras et al., 2020b).
In more detail, they propose to break the facial images into
different segments (background, hat, glasses etc.) and choose
themost suitable space to invert each segment, leveraging the
editing capabilities of the W+ latent space and the recon-
struction quality of the feature space F . However, when
performing global editings, i.e., changing the head pose ori-
entation, SAM (Parmar et al., 2022) results in notable visual
artifacts, in contrast to our method, as will be shown in the
experimental section.

2.3 Neural Face Reenactment

Neural face reenactment poses a challenging problem that
requires strong generalization ability across many different
identities and a large range of head poses and expressions.
Many of the proposedmethods rely on facial landmark infor-
mation (Ha et al., 2020;Hsu et al., 2022; Tripathy et al., 2020,
2021;Wang et al., 2022b; Zakharov et al., 2019, 2020; Zhang
et al., 2020). Specifically, Zakharov et al. (2020) propose
an one-shot face reenactment method driven by landmarks,
which decomposes an image on pose-dependent and pose-
independent components. A limitation of landmark based
methods is that landmarks preserve identity information, thus
impeding their applicability on cross-subject face reenact-
ment (Burkov et al., 2020). In order tomitigate this limitation
(Hsu et al., 2022) propose to use an ID-preservingShapeGen-
erator (IDSG) that transforms the target facial landmarks so
that they preserve the identity, i.e. facial shape, of the source
image. Additionally, several methods (Doukas et al., 2021;
Ren et al., 2021; Yang et al., 2022; Yao et al., 2020) rely on
3D shape models to remove the identity details of the driv-
ing images. Warping-based methods (Doukas et al., 2021;
Ren et al., 2021; Siarohin et al., 2019; Wang et al., 2021b;
Wiles et al., 2018; Yang et al., 2022) synthesize the reenacted
images based on the motion of the driving faces. Specifi-
cally, HeadGAN (Doukas et al., 2021) and Face2Face (Yang
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et al., 2022) are warping-based methods conditioned on 3D
Morphable Models. Whilst such methods produce realistic
results, they suffer from several visual artifacts and head pose
mismatch, especially in large head pose variations. Finally,
Meshry et al. (2021) propose a two-step architecture that aims
to disentangle the spatial and style components of an image
that leads to better preservation of the source identity.

By contrast to themethods discussed above, which rely on
the training of conditional generative models on large paired
datasets in order to learn facial descriptors with disentangle-
ment properties, in this paper we propose a novel and simple
face reenactment framework that learns disentangled direc-
tions in the latent space of a StyleGAN2 (Karras et al., 2020b)
pre-trained on the VoxCeleb (Nagrani et al., 2017) dataset.
We show that the discovery of meaningful and disentangled
directions that are responsible for controlling the head pose
and the facial expression can be used for high quality self-
and cross-identity reenactment.

3 ProposedMethod

In this section, we present the proposed framework for one-
shot neural face reenactment via finding directions in the
latent space of StyleGAN2. More specifically, we begin with
the most basic variant of our framework for finding reen-
actment latent directions using unpaired synthetic images
in Sect. 3.1—an overview of this is shown in Fig. 1. Next,
in Sect. 3.2 we extend this methodology for handling real
images alongwith synthetic ones (i.e., towards real face reen-
actment), while in Sect. 3.3 we investigate the incorporation
of paired video data. In Sect. 3.4 we introduce a joint training
scheme that allows for optimization-free reenactment, lead-
ing to efficient and consistent neural reenactment. Finally, in
Sect. 3.5, on top of the previously introduced variants of our
method, we propose the refinement of crucial visual details

(i.e., background, hair style) by leveraging the impressive
reconstruction capability of StyleGAN2’s feature space F .

3.1 Finding Reenactment Latent Directions on
Unpaired Synthetic Images

3.1.1 StyleGAN2 Background

Let G denote the generator of StyleGAN2 (Karras et al.,
2020b), as shown in Fig. 1. Specifically, G takes as input
a latent code w ∈ W ⊂ R

512, which is typically the output
of StyleGAN2’s input MLP-based Mapping Network f that
acts on samples z ∈ R

512 drawn from the standard Gaus-
sian N (0, I). That is, given a latent code z ∼ N (0, I), the
generator produces an image G( f (z)) ∈ R

3×256×256.
StyleGAN2 is typically pre-trained on the Flickr-Faces-

HQ (FFHQ) dataset (Karras et al., 2019), which exhibits poor
diversity in terms of head pose and facial expression; for
instance, FFHQ does not typically account for roll changes
in head pose. In order to compare our method with other
state-of-the-art methods, we fine-tune StyleGAN2’s genera-
tor G on the VoxCeleb dataset (Nagrani et al., 2017), which
provides amuchwider range of head poses and facial expres-
sions, rendering it very useful for the task of neural face
reenactment by finding the appropriate latent directions as
will be discussed in the following sections. We note that we
fine-tune the StyleGAN2’s generator on VoxCeleb dataset
using the method provided by Karras et al. (2020a), while
we do not impose any reenactment objectives. That is, the
fine-tuned generator can produce synthetic images with ran-
dom identities (different from the identities ofVoxCeleb) that
follow the distribution of VoxCeleb dataset in terms of head
poses and expressions.

Fig. 1 Overview of the proposed framework: Given a pair of source Is
and target It images, we calculate the head pose/expression parameter
vectors ps and pt using the Net3D network, respectively. The matrix of
directions A is trained so as, given the shift �w = A�p, the reenacted

image Ir generated using the latent code wr = ws + �w, transfers the
head pose and the expression of the target face, maintaining at the same
time the identity of the source face
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3.1.2 3DMorphable Model (Net3D)

Given an image, Net3D (Feng et al., 2021) encodes the
depicted face’s pose into a facial shape vector s ∈ R

3N , where
N denotes the number of vertices, which can be decomposed
in terms of a linear 3D facial shape as

s = s̄ + Sipi + Sθpθ + Sepe, (1)

where s̄ denotes the mean 3D facial shape, Si ∈ R
3N×mi ,

Sθ ∈ R
3N×mθ and Se ∈ R

3N×me denote the PCA bases
for identity, head orientation and expression, and pi , pθ and
pe denote the corresponding identity, head orientation and
expression coefficients, respectively. The variables mi , mθ

and me correspond to the number of identity, head pose and
expression coefficients. For reenactment, we are interested in
manipulating head orientation and expression, thus, our head
pose/expression parameter vector is given as p = [pθ ,pe] ∈
R
3+me . We note that all PCA shape bases are orthogonal to

each other, and hence they capture disentangled variations
of identity and expression. Finally, we note that they are cal-
culated in a frontalized reference frame, thus, they are also
disentangled from head orientation. These bases can be also
interpreted as directions in the shape space. We propose to
learn similar directions in the GAN latent space as described
in detail in the following section.

3.1.3 Reenactment Latent Directions

In particular, we propose to associate a change �p in the
head pose orientation and expression, with a change �w in
the (intermediate) latentGANspace so that the two generated
images G(w) and G(w + �w) differ only in head pose and
expression by the same amount �s induced by �p. If the
directions sought in the GAN latent space are assumed to be
linear (Nitzan et al., 2021), this implies the following linear
relationship

�w = A�p, (2)

where A ∈ R
dout×din is a matrix, the columns of which

represent the directions in GAN latent space. In our case,
din = (3+me) and dout = Nl ×512, where Nl is the number
of the generator’s layers we opt to apply shift changes.

3.1.4 Training Pipeline

In order to optimize the matrix of controllable latent direc-
tions A, we propose a simple pipeline, shown in Fig. 1.
Specifically, during training, a pair of a source (zs) and a tar-
get (zt ) latent codes are drawn fromN (0, I), giving rise to a
pair of a source (Is = G( f (zs))) and a target (It = G( f (zt )))
images, as shown in the left part of Fig. 1. The pair of images

Is and It are then encoded by the pre-trained Net3D into the
head pose/expression parameter vectors ps and pt , respec-
tively.Using (2),we calculate the shift�w in the intermediate
latent space of StyleGAN2 as �w = A�p = A(pt − ps)
and the reenactment latent code wr = ws + �w. Using the
latter we arrive at the reenacted image Ir = G(wr ).

It is worth noting that the only trainable module of the
proposed framework is the matrix A ∈ R

dout×din—i.e., the
number of trainable parameters of the proposed framework
is 65K . We also note that, before training, we estimate the
distribution of each element of the head pose/expression
parameters p by randomly generating 10K images and cal-
culating using the pre-trained Net3D (Feng et al., 2021)
their corresponding p vectors. Using the estimated distribu-
tions, during training, we re-scale each element of p from its
original range to a common range [−a, a] (a being a hyperpa-
rameter empirically set to 6). In the appendices (Sect. A.1.1)
we further discuss the re-scaling of each element of p. To
further encourage disentanglement in the optimized latent
directions matrix A, we follow a training strategy where for
50% of the training samples we reenact only one attribute
by using �p = [0, . . . , ε, . . . , 0], where ε is uniformly sam-
pled fromU[−a, a]. In the appendices (Sect. A.1.3) we show
that the above training strategy improves the disentanglement
between the learned directions.

3.1.5 Losses

We train our framework by minimizing the following total
loss:

L = λrLr + λidLid + λperLper , (3)

whereLr ,Lid , andLper denote respectively the reenactment,
identity, and perceptual losses with λr , λid , and λper being
weighting hyperparameters empirically set to λr = 1, λid =
10 and λper = 10. We detail each loss term below.

Reenactment loss Lr We define the reenactment loss as

Lr = Lsh + Leye + Lmouth,

where the shape loss term Lsh = ‖Sr − Sgt‖1 imposes head
pose and expression transfer from target to source, where
Sr is the 3D shape of the reenacted image and Sgt is the
reconstructed ground-truth 3D shape calculated using (1).
Specifically, the ground-truth 3D facial shapeSgt should have
the identity, i.e., facial shape, of the source image and the
facial expression and head pose of the target image, either
on the task of self reenactment or on cross-subject reenact-
ment. On self reenactment Sgt is the same with St , where
St is the facial shape of the target image. On cross-subject
reenactment, we calculate Sgt using the identity coefficients
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psi of the source face and the facial expression and head pose
coefficients pte,p

t
θ of the target face as:

Sgt = S̄ + Sipsi + Sθptθ + Septe, (4)

To enhance the expression transfer, we calculate the eye
(Leye) and the mouth (Lmouth) losses. The eye loss Leye (the
mouth loss Lmouth is computed in a similar fashion) com-
pares the inner distances between the eye landmark pairs of
upper and lower eyelids between the reenacted and recon-
structed ground-truth shapes. In Appendix A.2, we provide
a detailed discussion on Leye and Lmouth .

Identity loss Lid We define the identity loss as the cosine
similarity between feature representations extracted from the
source Is and the reenacted Ir image using ArcFace (Deng et
al., 2019). The identity loss imposes the identity preservation
between the source and the reenacted image.

Perceptual loss Lper We defined the perceptual loss simi-
larly to Johnson et al. (2016) in order to improve the quality
of the reenactment face images.

3.2 Fine-Tuning on Unpaired Real Images

In this section, we extend the basic pipeline of the proposed
framework, described in the previous section, in order to learn
fromboth synthetic and real images. For doing so,wepropose
to (a) use a pipeline for inverting the images back to the latent
code space of StyleGAN2, and (b) adopt a mixed training
approach (using both synthetic and inverted latent codes) for
discovering the latent directions (Sect. 3.1.3).

As discussed in previous sections, the main challenge
in the GAN inversion problem is finding a good trade-
off between faithful reconstruction of the real image and
effective editability using the inverted latent code. Although
satisfying both requirements is challenging (Alaluf et al.,
2021; Richardson et al., 2021; Tov et al., 2021), we found
that the following pipeline produces compelling results for
the purposes of our goal (i.e., face/head reenactment). During
training, we employ an encoder based method (e4e) (Tov et
al., 2021) to invert the real images into theW+ latent space
of StyleGAN2 (Abdal et al., 2019). However, directly using
the inverted W+ latent codes performs poorly in face reen-
actment due to the domain gap between the synthetic and
inverted latent codes. To alleviate this, we propose a mixed-
data approach (i.e., using both synthetic and real images) for
training the pipeline presented in Sect. 3.1. Specifically, we
first invert the extracted frames from the VoxCeleb dataset,
and during training, at each iteration (i.e., for each batch) we
use 50% random latent codes w and 50% embedded latent
codes winv .

Fig. 2 Examples of face reenactmentwithout (“w/o opt.”) andwith (“w/
opt.”) the generator’s optimization. We additionally show results using
our proposed joint training scheme (“Joint Training”) and the refinement
of StyleGAN2’s feature space (“FSR”) described in Sect. 3.4 and 3.5,
respectively

Since the inverted images using e4e (Tov et al., 2021)
might still be missing some crucial identity details, we pro-
pose to use an additional optimization step (only during
inference), similarly toRoich et al. (2021), in order to slightly
update the generator G and arrive at better reenacted images
in terms of identity preservation. Note that this step does
not affect the calculation of winv and is used only during
inference to obtain a higher quality inversion. We perform
the optimization for 200 steps and only on the source frame
of each video. In Fig. 2 we illustrate examples of neural
face reenactment without optimizing the generator’s weights
(w/o opt.—third column) and with optimization (w/ opt.—
fourth column), where we observe that, clearly, the reenacted
images without the additional optimization step are not able
to faithfully reconstruct the real images, while the reenacted
images after optimizing the generator weights resembles the
real ones more closely.

3.3 Fine-Tuning on Paired Real Images (Video Data)

In the previous sections, we presented the proposed frame-
work for learning from unpaired synthetic and real images.
Whilst this provides the benefit of learning from a very
large number of identities, making it useful for cross-
person reenactment, we show that we can achieve additional
improvements by optimizing novel losses introduced by fur-
ther training on paired data from the VoxCeleb1 (Nagrani et
al., 2017) video dataset.

Compared to training from scratch on video data, as in
most previous methods (e.g. Zakharov et al. 2020; 2019,
Burkov et al. 2020), we argue that our approach offers a more
balanced strategy that combines the best of both worlds; that
is, training with unpaired images and fine-tuning with paired
video data. From each video of our training set, we randomly
sample a source and a target face that have the same identity
but different head pose/expression. Consequently, we mini-
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mize the following loss function

L = λrLr + λidLid + λperLper + λpixLpix , (5)

where Lr is the same reenactment loss defined in Sect. 3.1,
Lid and Lper are the identity and perceptual losses, how-
ever this time calculated between the reenacted Ir and the
target image It , and Lpix is a pixel-wise L1 loss between the
reenacted and target images.

3.4 Joint Training of the Real Image Inversion
Encoder Ew and the Directions Matrix A

Asdiscussed inSect. 3.2, the encoder-based e4e (Tovet al.,
2021) inversion method often fails to faithfully reconstruct
real images by typically failing to preserve crucial identity
characteristics, as shown in the third column (“w/o opt.”)
of Fig. 2. Clearly, this poses a certain limitation to the face
reenactment methodology presented in Sect. 3.1.4. Optimiz-
ing the generator’s weights leads to notable improvements
(Sect. 3.2), as shown in the fourth column (“w/ opt.”) of
Fig. 2, albeit, this comes at a significant cost for the task of
face reenactment (that is, the optimization of G takes approx-
imately 20 sec. per frame).

In this section, we propose to jointly train the real image
inversion encoder Ew and the directions matrix A, which
leads to optimization-free face reenactment at inference time.
For doing so, we use paired data as described in Sect. 3.3.
An overview of this approach is shown in Fig. 3. Specifi-
cally, we first sample a source (Is) and a target (It ) image
from the same video of VoxCeleb1 (Nagrani et al., 2017)
training set, that have the same identity but different head
pose/expression. Those images are then fed into the inver-
sion encoder Ew to predict the corresponding source (ws) and

Fig. 3 To eliminate the need for the optimization step during inference,
we propose to jointly train the real image inversion encoder Ew and the
directions matrix A. We note that during training both the generator G
and the Net3D network are frozen

target (wt ) latent codes. Then, the pre-trained Net3D network
extracts the corresponding source (ps) and target (pt ) param-
eter vectors. Finally, as described in Sect. 3.1, we generate
the reenacted image using the latent code wr = ws + �w,
where �w = A(pt − ps).

3.4.1 Real Image Encoder Ew Optimization Objective

In order to train the real image encoder Ew we minimize the
following loss:

LEw
= λid(Lid(Is, Îs) + Lid(It , Ît ))

+λper (Lper (Is, Îs) + Lper (It , Ît ))

+λpix (Lpix (Is, Îs) + Lpix (It , Ît ))

+λstyle(Lstyle(Is, Îs) + Lstyle(It , Ît )),

(6)

where Lid , Lper , and Lpix denote the identity, perceptual,
and pixel-wise losses described in the previous sections.

Additionally, to further improve the style and the qual-
ity of the reconstructed images we propose to use a style
lossLstyle similarly to Barattin et al. (2023). Specifically, we
use FaRL (Zheng et al., 2022), a method for general facial
representation learning that leverages contrastive learning
between images and text pairs to learn meaningful feature
representations of facial images. In our method, we use the
image Transformer-based encoder, EFaRL , to extract a 512-
dimensional feature vector from each image. The proposed
style loss is defined as:

Lstyle = ‖EFaRL(Is) − EFaRL(Îs)‖1
+‖EFaRL(It ) − EFaRL(Ît )‖1.

(7)

3.4.2 Directions Matrix A Optimization Objective

In order to train the directions matrix A we minimize the
following loss:

LA = λrLr + λidLid + λperLper

+λpixLpix + λstyleLstyle,
(8)

where Lr , Lid , Lper , Lpix , and Lstyle denote respectively
the reenactment loss defined in Sect. 3.1, the identity, the
perceptual, the pixel-wise, and the style losses calculated
between the reenacted Ir and the target images It .

Moreover, to further improve the reenactment results we
propose an additional cycle loss term Lcycle (Bounareli et
al., 2023; Sanchez & Valstar, 2020). Specifically, as shown
in Fig. 4, given an image pair of a source (I1s ) and a target
(I1t ) images, we calculate the corresponding reenacted image
I1r ≡ I1t . Having as source image the reenacted image I1r and
as target the source image I1s , we calculate a new reenacted
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Fig. 4 Cycle loss: Given a pair of source (I1s ) and target (I1t ) images,
we calculate the corresponding reenacted image I1r . We then use this
image as source and as target the source image from the first image pair
and we calculate the second reenacted image I2r , which is imposed to
be similar with I1s

image I2r that is imposed to be similar to I1s . Consequently,
we calculate all reconstruction losses, i.e. Lid , Lper , Lpix ,
and Lstyle, between the source image I1s and the reenacted
image I2r . In our ablation studies (Sect. 4.2), we show that
using the proposed cycle loss improves the face reenactment
performance.

3.4.3 Joint Optimization Objective

Overall, the objective of the joint optimization is as follows:

L = LA + LEw + Lcycle. (9)

We note that, in this training phase, we fine-tune thematrixA
and the real image inversion encoder Ew, trained as described
in Sect. 3.2. As demonstrated in Fig. 2, using the pro-
posed joint training scheme (Joint Training) our method
is able to reconstruct the identity details of the real faces
without performing any optimization step. In Sect. 4, we
quantitatively demonstrate that our proposed method pro-
duces similar results on self reenactment with our method
when optimizing the generator’s weights. Nevertheless, on
the more challenging tasks of cross-subject reenactment and
on large head pose differences between the source and tar-
get faces, the joint training scheme outperforms our results
with optimization, producing more realistic images with less
visual artifacts.

3.5 Feature SpaceF Refinement

In this section, we propose an additional module for our
face reenactment framework that refines the feature space
F of the StyleGAN2’s generator; taking advantage from its

Fig. 5 Training of feature space encoder EF in the real image inversion
task. EF takes as input a real image and predicts the shift � f4 that
updates the feature map f4 of the 4th feature layer of StyleGAN2’s
generator

exceptional expressiveness (e.g., in terms of background, hair
style/color, or hair accessories). In order to mitigate the lim-
ited editability of F (Kang et al., 2021; Parmar et al., 2022),
we propose a two-step training procedure,whichwe illustrate
in Fig. 5. Specifically, we first train a feature space encoder
EF , using the ResNet-18 (He et al., 2016) architecture, in the
task of real image inversion. EF takes as input a real image
and predicts the shift� f4 that updates the feature map f4 as:

f̂4 = f4 + � f4, (10)

where f4 is the feature map calculated using the inverted
latent code w. The training objective in this step consists of
the reconstruction losses, namely identity, perceptual, pixel-
wise, and style, calculated between the reconstructed Î and
the real images I as described in (Eq. 6). It is worth noth-
ing that we only refine the 4th feature layer of StyleGAN2’s
generator G that we found to be in particular beneficial to the
face reenactment task, in contrast to later feature layers that,
despite their capability in reconstructing almost perfectly the
real images, they suffer from poor semantic editability (as
shown by Yao et al. (2022b)).

As discussed above, using the updated feature map f̂4 to
refine details on the edited images leads to visual artifacts. To
address this, we propose a framework that efficiently learns
to predict the updated feature map of the edited image f̂ r4
using the refined source feature map f̂ s4 . We illustrate this
in Fig. 6, where, given a source and a target image pair,
we first calculate the reenacted latent code wr as described
in Sect. 3.4. We note that the directions matrix A and the
real image inversion encoder Ew are frozen during training.
Then, using the feature encoder EF , we calculate the source
refined feature map f̂ s4 using (10). In order to calculate the

refined feature map of the reenacted image f̂ r4 , we introduce
the Feature Transformation (FT) module, that takes as input
the difference of the source refined feature map f̂ s4 and the
reenacted feature map f r4 , and outputs the shift � f r4 , which

can be used to calculate the updated feature map f̂ r4 given by
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Fig. 6 Training of the feature space encoder EF and the Feature Trans-
formation (FT) module to efficiently refine the feature map f r4 of the
reenacted images

(10). As shown in Fig. 6, the proposed Feature Transforma-
tion (FT) module learns two modulation parameters, namely
γ and β, that efficiently transform the shift� f s4 of the source
feature map into the shift � f r4 of the reenacted feature map
as:

� f r4 = γ � � f s4 + β. (11)

As illustrated in Fig. 6, the FT module consists of two con-
volutional blocks with 2 convolutional layers each. We note
that in this training step we train both the FT module and
the feature space encoder EF . Our training objective con-
sists of the reconstruction losses, namely identity, perceptual,
pixel-wise and style, calculated between the reenacted and
the target images (described in detail in Sect. 3.4).

Finally, in Fig. 7 we give some indicative results of the
proposed reenactment variant of our method that learns to
optimize the feature space F (“FSR”) in comparison to the
variant of our method described in Sect. 3.4 (“Joint Train-
ing”) and Parmar et al. (2022) (“SAM”). We note that using
theW+ latent space (Joint Training / Sect. 3.4) leads to rel-
atively faithful reconstruction performance, albeit, without
being able to reconstruct every detail on the background or
the hair styles. As we will show in the experimental section,
qualitatively and quantitatively, but also in the conducted
user study, such level of detail is crucial for the task of face
reenactment. Similarly, SAM (Parmar et al., 2022) is able
to better reconstruct the background however the reenacted
images suffer from visual artifacts (marked with red arrows
in Fig. 7) and, thus, look unrealistic, especially around the
face area. By contrast, the proposed framework that learns to
optimize the feature space F (“FSR”) leads to both notably
more faithful face reenactment exhibiting less artifacts.

Fig. 7 Face reenactment examples using only the W+ latent space
(“Joint Training”), SAMmethod (Parmar et al., 2022) and our proposed
method for feature space refinement (“FSR”)

4 Experiments

In this section, we present qualitative and quantitative results,
along with a user study, in order to evaluate the proposed
framework (all its variants) in the task of neural face reen-
actment and compare with several recent state-of-the-art
(SOTA) approaches. The bulk of our results and compar-
isons, reported in Sect. 4.1, are on self- and cross-person
reenactment on the VoxCeleb1 (Nagrani et al., 2017) dataset.
Comparisons with state-of-the-art on the VoxCeleb2 (Chung
et al., 2018) test set are provided in the appendices. Finally,
in Sect. 4.2 we report ablation studies on the various design
choices of our method and in Sect. 4.3 we discuss its limita-
tions.

Implementation details We fine-tune StyleGAN2 on the
VoxCeleb1 dataset with 256× 256 image resolution and we
train the e4e encoder of Tov et al. (2021) for real image
inversion. The 3D shape model we use (i.e., the Net3D mod-
ule shown in Figs. 1, 3) is DECA (Feng et al., 2021). For
our training procedure described in Sects. 3.1 3.2, and 3.3,
we only learn the directions matrix A ∈ R

(Nl×512)×k where
k = 3 + me,me = 12 and Nl = 8. We train three matrices
of directions: (i) the first one is on synthetically generated
images (Sect. 3.1), (ii) the second one is on mixed real and
synthetic data (Sect. 3.2), and (iii) the third one is fine-tuning
(ii) on paired data (Sect. 3.3). Additionally, on the proposed
joint training scheme (Sect. 3.4), we fine-tune both the direc-
tions matrix A and the real image inversion encoder Ew.
Finally, in the feature space refinement variant (Sect. 3.5)
we train both the feature space encoder EF and the pro-
pose Feature Transformation (FT) module. It is worth noting
that during the first and second training phases, we per-
form cross-subject training, i.e., the source and target faces
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have different identities. This approach enables our model
to generalize effectively across various identities, resulting
in improved performance on the challenging task of cross-
subject reenactment. On the rest training phases we perform
self reenactment, where the source and target faces are sam-
pled from the same video. For training, we used the Adam
optimizer (Kingma & Ba, 2015) with constant learning rate
10−4. All models are implemented in PyTorch (Paszke et al.,
2019).

4.1 Comparison with State-of-the-Art onVoxCeleb

In this section, we compare the performance of our method
against the state-of-the-art in face reenactment onVoxCeleb1
(Nagrani et al., 2017). We conduct two types of experiments,
namely self- and cross-person reenactment. For evaluation
purposes, we use both the video data provided by Zakharov
et al. (2019) and the original test-set of VoxCeleb1. We note
that there is no overlap between the train and test identi-
ties and videos. We compare our method quantitatively and
qualitatively with nine methods: X2Face (Wiles et al., 2018),
FOMM (Siarohin et al., 2019), Fast bi-layer (Zakharov et al.,
2020), Neural-Head (Burkov et al., 2020), LSR (Meshry et
al., 2021), PIR (Ren et al., 2021), HeadGAN (Doukas et al.,
2021), Dual (Hsu et al., 2022) and Face2Face (Yang et al.,
2022). For X2Face (Wiles et al., 2018), FOMM (Siarohin
et al., 2019), PIR (Ren et al., 2021), HeadGAN (Doukas et
al., 2021) and Face2Face (Yang et al., 2022), we use the
pre-trained (by the authors) model on VoxCeleb1. For Fast
bi-layer (Zakharov et al., 2020), Neural-Head (Burkov et al.,
2020) and LSR (Meshry et al., 2021) we also use the pre-
trained (by the authors) models on VoxCeleb2 (Chung et al.,
2018). Regarding Dual (Hsu et al., 2022), we use the pre-
trained by the authors model on both VoxCeleb (Chung et
al., 2018; Nagrani et al., 2017) andMPIE (Gross et al., 2010)
datasets. For fair comparison with the methods of Neural-
Head (Burkov et al., 2020), LSR (Meshry et al., 2021) and
Dual (Hsu et al., 2022), we evaluate their model under the
one-shot setting. We note that we will be referring to our
method that optimizes the generator’s weights during infer-
ence as Latent Optimization Reenactment (LOR), whereas
LOR+ will be referring to our final model with joint train-
ing and feature space refinement. We note that in the LOR+
model, we do not optimize the generator weights.

4.1.1 Quantitative Comparisons

We report eight different metrics. We compute the Learned
Perceptual Image Path Similarity (LPIPS) (Zhang et al.,
2018) to measure the perceptual similarities, and to quan-
tify identity preservation we compute the cosine similarity
(CSIM) of ArcFace (Deng et al., 2019) features. More-
over, we measure the quality of the reenacted images using

the Fréchet-Inception Distance (FID) metric (Heusel et al.,
2017), while we also report the Fréchet Video Distance
(FVD) (Skorokhodov et al., 2022; Unterthiner et al., 2018)
metric that measures both the video quality and the tempo-
ral consistency of the generated videos. To quantify the head
pose/expression transfer, we calculate the normalized mean
error (NME) between the predicted landmarks in the reen-
acted and target images. We use (Bulat & Tzimiropoulos,
2017) for landmark estimation, and we calculate the NME
by normalizing it with the square root of the ground truth
face bounding box and scaled by a factor of 103. We further
evaluate the head pose transfer by calculating the average
L1 distance of the head pose orientation (Average Rotation
Distance, ARD) in degrees, and the expression transfer by
calculating the average L1 distance of the expression coef-
ficients pe (Average Expression Distance, AED) and the
Action Units Hamming distance (AU-H) computed as in
Doukas et al. (2021).

In Table 1 we report quantitative results on self reenact-
ment, using the original test set of VoxCeleb1 (Nagrani et
al., 2017) and the test set provided by Zakharov et al. (2019).
Additionally, in Table 2 we report results on a more chal-
lenging condition on self reenactment where the source and
target faces have large head pose difference. Specifically,
we randomly selected from the test set of VoxCeleb1 1,000
image pairs with head pose distance larger than 10◦. The
head pose distance is calculated as the average of the abso-
lute differences of the three Euler angles (i.e., yaw, pitch,
and roll) between the source and target faces. In the appen-
dices (Sect. A.4), we provide additional details regarding
our benchmark dataset. We note that in self reenactment,
all metrics are calculated between the reenacted and the tar-
get faces. As shown in Table 1, the warping-based methods,
namely X2Face, PIR, HeadGAN and Face2Face have high
values on CSIM, however we argue that this is due to their
warping-based technique which enables better reconstruc-
tion of the background and other identity characteristics.
Importantly, these results are accompanied by poor quantita-
tive and qualitative results when there is a significant change
on the head pose (e.g., see Fig. 8 and Table 2). Addition-
ally, regarding head pose/expression transfer, our method
(LOR+) achieves similar results on NME with Fast Bi-layer
(Zakharov et al., 2020), while on ARD and AED metrics
we outperform all methods. Finally, our results on FID and
FVDmetrics confirm that the quality of our generated videos
resembles the quality of VoxCeleb dataset. Nevertheless, our
method (LOR+) on the challenging conditionwith large head
pose differences between the source and target faces (Table 2)
outperforms all methods.

Cross-subject reenactment is more challenging compared
to self reenactment, as source and target faces have differ-
ent identities, and in this case it is important to maintain the
source identity characteristics without transferring the tar-
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Table 1 Quantitative results on
self-reenactment. The results are
reported on the combined
original test set of VoxCeleb1
(Nagrani et al., 2017) and the
test set released by Zakharov et
al. (2019). For CSIM metric,
higher is better (↑), while in all
other metrics lower is better (↓)

Method CSIM LPIPS FID FVD NME ARD AED AU-H

X2Face (Wiles et al., 2018) 0.70 0.13 35.5 490 17.8 1.5 0.90 0.22

FOMM (Siarohin et al., 2019) 0.65 0.14 35.6 523 34.1 5.0 1.30 0.28

Fast Bi-layer (Zakharov et al., 2020) 0.64 0.23 52.8 706 13.2 1.1 0.80 0.21

Neural-Head (Burkov et al., 2020) 0.40 0.22 98.4 617 15.5 1.3 0.90 0.23

LSR (Meshry et al., 2021) 0.59 0.13 45.7 484 17.8 1.0 0.75 0.22

PIR (Ren et al., 2021) 0.71 0.12 57.2 545 18.2 1.8 0.94 0.24

HeadGAN (Doukas et al., 2021) 0.68 0.13 52.5 518 15.6 1.8 1.30 0.26

Dual (Hsu et al., 2022) 0.26 0.21 75.0 602 35.0 3.7 1.20 0.27

Face2Face (Yang et al., 2022) 0.72 0.12 55.3 682 16.0 1.5 0.93 0.24

LOR (Ours) 0.66 0.11 35.0 400 14.1 1.1 0.68 0.21

LOR+ (Ours) 0.67 0.10 36.0 440 13.6 0.7 0.60 0.21

Bold values indicate the best values for each metric between the different methods
Underlined values indicate the second best results for each metric between the different methods

Table 2 Quantitative
comparisons on the benchmark
set (Benchmark-L ) with image
pairs from VoxCeleb1 dataset,
where the average head pose
distance is larger than 10◦. For
CSIM metric, higher is better
(↑), while in all other metrics
lower is better (↓)

Method CSIM LPIPS FID ARD AED AU-H

X2Face (Wiles et al., 2018) 0.60 0.14 57.4 1.8 1.1 0.25

FOMM (Siarohin et al., 2019) 0.60 0.15 65.2 2.2 1.1 0.25

Fast Bi-layer (Zakharov et al., 2020) 0.58 0.20 96.2 1.2 0.8 0.22

Neural-Head (Burkov et al., 2020) 0.40 0.18 94.2 1.2 0.9 0.23

LSR (Meshry et al., 2021) 0.55 0.12 56.0 1.2 0.8 0.23

PIR (Ren et al., 2021) 0.57 0.15 67.6 2.4 1.4 0.25

HeadGAN (Doukas et al., 2021) 0.38 0.26 66.2 3.6 1.4 0.29

Dual (Hsu et al., 2022) 0.25 0.22 83.6 4.0 1.3 0.28

Face2Face (Yang et al., 2022) 0.47 0.28 35.3 1.6 1.2 0.27

LOR (Ours) 0.51 0.13 47.0 1.6 0.8 0.35

LOR+ (Ours) 0.62 0.12 46.7 0.8 0.6 0.22

Bold values indicate the best values for each metric between the different methods
Underlined values indicate the second best results for each metric between the different methods

get ones. In Table 3, we report the quantitative results for
cross-subject reenactment, where we randomly select 200
video pairs from the small test set of Zakharov et al. (2019).
In this task, CSIM metric is calculated between the source
and the reenacted faces while ARD, AED and AU-H met-
rics between the target and the reenacted faces. As depicted
in Table 3, our method (LOR+) achieves the best results on
head pose and expression transfer, while we achieve high
score in CSIM metric. It is worth noting that the high CSIM
value for FOMM, HeadGAN and Face2Face is not accom-
panied by good qualitative results as shown in Figs. 8 and 27,
where in most cases, those methods are not able to generate
realistic images.

To further evaluate the performance of reenactment meth-
ods we conduct a user study, where we ask 30 users to select
the method that best reenacts the source frame on self and
cross-subject reenactment tasks. For the purposes of the user
study we utilise only our final model (LOR+). The results
are reported in Table 14 and as shown our method is the
most preferable (by a largemargin—52.1% versus the 19.2%

second best method), which also validates our quantitative
results.

Additionally, in Table 4 we report comparisons on infer-
ence time required to generate a video of 200 frames. As
shown, X2Face (Wiles et al., 2018) and FOMM (Siarohin
et al., 2019) are the fastest methods, however their overall
performance (quantitative and qualitative results) is unsat-
isfactory (i.e., visual artifacts). Nevertheless, our proposed
method (LOR+) is able to generate compelling reenacted
images, while also being competitive in terms of inference
time. Notably, our final model (LOR+) outperforms our
model that requires the optimization step (LOR), which is
a time consuming operation.

4.1.2 Qualitative Comparisons

Quantitative comparisons alone are insufficient to capture the
quality of reenactment. Hence, we opt for qualitative visual
comparisons in multiple ways: (a) results in Fig. 8, (b) in the
appendices, we providemore results in self and cross-subject
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Fig. 8 Qualitative results and comparisons for self (top three rows)
and cross-subject reenactment (last three rows) on VoxCeleb1. The first
and second columns show the source and target faces. Our method pre-

serves the appearance and identity characteristics (e.g., face shape) of
the source face significantly better and also faithfully transfer the target
head pose/expression without producing visual artifacts

Table 3 Quantitative results on
cross-subject reenactment. For
CSIM metric, higher is better
(↑), while in all other metrics
lower is better (↓)

Method CSIM FID ARD AED AU-H

X2Face (Wiles et al., 2018) 0.57 89.0 2.2 1.5 0.31

FOMM (Siarohin et al., 2019) 0.73 116.3 7.7 2.0 0.41

Fast Bi-layer (Zakharov et al., 2020) 0.48 116.0 1.5 1.3 0.29

Neural-Head (Burkov et al., 2020) 0.36 124.1 1.7 1.6 0.30

LSR (Meshry et al., 2021) 0.50 84.2 1.4 1.2 0.30

PIR (Ren et al., 2021) 0.62 110.5 2.2 1.4 0.33

HeadGAN (Doukas et al., 2021) 0.75 122.2 2.1 1.7 0.33

Dual (Hsu et al., 2022) 0.22 107.0 3.5 1.5 0.33

Face2Face (Yang et al., 2022) 0.76 124.2 1.8 1.5 0.32

LOR (Ours) 0.63 86.2 1.2 1.0 0.31

LOR+ (Ours) 0.68 78.4 0.7 0.8 0.30

Bold values indicate the best values for each metric between the different methods
Underlined values indicate the second best results for each metric between the different methods

reenactment both on VoxCeleb1 and VoxCeleb2 datasets
(Figs. 23, 26, 27, 28, 29), and (c) we also provide a sup-
plementary video with self and cross-subject reeenactment
results from VoxCeleb1 and VoxCeleb2 datasets. As we can
see from Fig. 8 and the videos provided in the supplemen-
tarymaterial, ourmethodprovides, for themajority of videos,
the highest reenactment quality including accurate transfer of
head pose and expression and, significantly enhanced iden-
tity preservation compared to all other methods. Importantly,
one great advantage of our method on cross-subject reenact-

ment, as shown in Fig. 8, is that it is able to reenact the source
facewithminimal identity leakage (e.g facial shape) from the
target face, in contrast to landmark-based methods such as
Fast Bi-layer (Zakharov et al., 2020). Finally, to show that
our method is able to generalise well on other facial video
datasets, we provide additional results on the FaceForensics
(Rössler et al., 2018) and 300-VW(Shen et al., 2015) datasets
in the appendices (Fig. 30).
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Table 4 Quantitative comparisons on inference time required to gen-
erate a video of 200 frames

Method Inf. time (sec)

X2Face (Wiles et al., 2018) 11.0

FOMM (Siarohin et al., 2019) 11.0

Fast Bi-layer (Zakharov et al., 2020) 61.0

Neural-Head (Burkov et al., 2020) 115.0

LSR (Meshry et al., 2021) 110.0

PIR (Ren et al., 2021) 54.0

HeadGAN (Doukas et al., 2021) 84

Dual (Hsu et al., 2022) 27.0

Face2Face (Yang et al., 2022) 146

LOR (Ours) 40.0

LOR+ (Ours) 27.0

Bold values indicate the best values for eachmetric between the different
methods
Underlined values indicate the second best results for each metric
between the different methods

4.2 Ablation Studies

In this section, we perform several ablation tests to (a) assess
the different variants of our method, i.e., the optimization of
generator G during inference (Sect. 3.3), the proposed joint
training scheme (Sect. 3.4) and the refinement of the feature
space (Sect. 3.5), (b) measure the impact of the identity and
perceptual losses, and the additional shape losses for the eyes
andmouth (Sect. 3.1), (c) validate our trainedmodels on syn-
thetic, mixed and paired images, and (d) measure the impact
of the style and cycle losses (introduced in Sect. 3.4).

For (a), we report results of our method on self and cross-
subject reenactment, with our model (LOR) described in
Sect. 3.3without performingoptimization (w/oopt.) andwith
optimization (w/ opt.) of the generator G during inference.
We also report results of our final model (LOR+) without
the additional feature space refinement (FSR) (Sect. 3.4)
and with feature space refinement (Sect. 3.5). As shown in
Table 5, the optimization of G during inference improves
our results (as expected) especially regarding the iden-
tity preservation (CSIM) compared to our model without
performing optimization. Nevertheless, our proposed joint
training scheme (LOR+ w/o FSR) achieves the same results

Fig. 9 Qualitative comparisons of the various models of our work on
self reenactment

on image reconstruction metrics (CSIM and LPIPS), and
improves our results on head pose/expression transfer (ARD,
AED) without performing any optimization of the generator.
Additionally, the proposed refinement on the feature space of
StyleGAN2 (LOR+w/FSR) improves all quantitative results.
It is worth mentioning that the new proposed components
(Joint Training and Feature Space Refinement) compared
to our previous work (Bounareli et al., 2022) improve our
results especially on the challenging tasks of self reenact-
mentwith large head pose differences between the source and
target faces and on cross-subject reenactment. Figure 9 illus-
trates results on self reenactment using the above described
models. As shown LOR without optimization cannot accu-
rately reconstruct the identity of the source face, while with
optimization the identity details are better reconstructed but
the reenacted images contain noticeable visual artifacts. On
the contrary, the proposed joint training scheme (LOR+ w/o
FSR) is able to accurately reconstruct the identity of the
source faces and produce artifact-free images without per-
forming any subject fine-tuning. Finally, the proposed feature
space refinement (LOR+ w/ FSR) improves our qualitative
results by producing more realistic images (i.e., better back-
ground and hair style reconstruction).

Table 5 Quantitative results of
the various models of our work
on self reenactment (SR), self
reenactment with image pairs
that have large head pose
difference (SR - large head
pose) and on cross-subject
reenactment (CR)

Method SR SR-large head pose CR
CSIM LPIPS ARD AED CSIM ARD AED CSIM ARD AED

LOR w/o opt. 0.37 0.12 1.4 0.90 0.34 1.7 0.9 0.43 1.5 1.0

LOR w/ opt. 0.66 0.11 1.1 0.68 0.51 1.6 0.8 0.63 1.2 1.0

LOR+ w/o FSR 0.66 0.11 0.8 0.60 0.60 0.9 0.6 0.67 0.7 0.8

LOR+ w/ FSR 0.67 0.10 0.7 0.60 0.62 0.8 0.6 0.68 0.7 0.8

Bold values indicate the best values for each metric between the different methods
Underlined values indicate the second best results for each metric between the different methods
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Table 6 Ablation study on the impact of the identityLid and perceptual
Lper losses, and on the impact of eye Leye and mouth Lmouth losses.
CSIM is calculated between the source and the reenacted images which
are on different head pose and expression

Method CSIM ARD AED

Ours w/ Lid + Lper 0.52 2.4 1.2

Ours w/o Lid + Lper 0.42 2.5 1.2

Ours w/ Leye + Lmouth 0.52 2.4 1.2

Ours w/o Leye + Lmouth 0.52 2.6 1.5

Bold values indicate the best values for eachmetric between the different
methods

Fig. 10 Qualitative comparisons on the impact of the identity Lid and
perceptualLper losses, and on the impact of eyeLeye andmouthLmouth
losses

For (b), we perform experiments on synthetic images with
andwithout the identity and perceptual losses. To evaluate the
models, we randomly generate 5K pairs of synthetic images
(source and target) and reenact the source image with the
head pose and expression of the target. As shown in Table 6,
the incorporation of the identity and perceptual losses is cru-
cial to isolate the latent space directions that strictly control
the head pose and expression characteristics without affect-
ing the identity of the source face. In a similar fashion, in
Table 6, we show the impact of the additional shape losses,
namely the eye Leye and mouth Lmouth losses. As shown,
omitting these losses leads to higher head pose and expres-
sion error. The impact of those losses is also obvious on
our qualitative comparisons in Fig. 10. As shown, when we
exclude the identity and perceptual losses from the train-
ing process, the generated images lack several appearance
details, while omitting the eye and mouth losses leads to less
accurate facial expression transfer.

For (c), we evaluate the three different training schemes,
namely synthetic only (Sect. 3.1), mixed synthetic-real
(Sect. 3.2), and mixed synthetic-real fine-tuned with paired

Table 7 Ablation studies on self-reenactment using three different
models: (a) trained on synthetic images, (b) trained on both synthetic
and real images, and (c) fine-tuned on paired data

Method CSIM ARD AED

Ours synthetic 0.60 1.7 1.1

Ours real & synthetic 0.63 1.6 1.1

Ours paired 0.66 1.1 0.8

Boldvalues indicate the best values for eachmetric between the different
methods

Fig. 11 Qualitative results of the three different models trained on syn-
thetic images, on both synthetic and real images and on paired data

Table 8 Ablation study on the impact of style Lstyle and cycle Lcycle
losses

Method CSIM ARD AED

Ours w/o Lstyle 0.64 0.9 0.7

Ours w/o Lcycle 0.62 1.0 0.7

Ours w/ Lstyle + Lcycle 0.66 0.8 0.60

Boldvalues indicate the best values for eachmetric between the different
methods

data (Sect. 3.3) for self-reenactment. The results, reported in
Table 7 and in Fig. 11, illustrate the impact of each of these
training schemeswith the one using paired data providing the
best results as expected. As shown in Fig. 11, our final model
trained with paired data produces more realistic images with
less artifacts.

Finally, for (d) we perform experiments on self reenact-
ment using our model with joint training scheme, without
using the style loss Lstyle and without the cycle loss Lcycle.
As shown in Table 8 our final model with both those
losses has better results both on identity preservation and on
head pose/expression transfer. Additionally, as illustrated in
Fig. 12, our final model using both the style and the cycle loss
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Fig. 12 Qualitative comparisons on the impact of the style Lstyle and
cycle Lcycle losses

Fig. 13 Cases where the reconstruction of facial accessories like hats
fails. The first two columns show the source and target images, while
the reenacted images are presented on the last column

has improved results in terms of identity/appearance preser-
vation.

4.3 Limitations

As shown both in our quantitative and qualitative results, our
method is able to efficiently reenact the source faces, by pre-
serving the source identity characteristics and by faithfully
transferring the target head pose and expression. Our pro-
posed method, which is based on a pre-trained StyleGAN2
model, enables both self and cross-subject reenactment using
only one source frame and without any further subject fine-
tuning. The proposed joint training scheme of the real image
encoder Ew and the direction matrix A enables more accu-
rate identity reconstruction and facial image editing without

many visual artifacts, especially on the challenging task of
extreme head poses. Additionally, the refinement of Style-
GAN2’s feature space F enables better reconstruction of
various image details including background, hair style/color
and facial accessories, resulting in visually more realistic
images. Nevertheless, in Fig. 13 we observe that especially
on hair accessories, such as hats that are underrepresented
on the training dataset, our method is not able to faithfully
reconstruct every detail when editing the head pose orienta-
tion.

5 Conclusions

In this paper, we presented a novel approach towards neu-
ral head/face reenactment using a 3D shape model to learn
disentangled directions of head pose and expression in the
latent GAN space. This approach comes with specific advan-
tages, such as the use of powerful pre-trained GANs and 3D
shape models, which have been thoroughly developed and
studied by the research community during the past years.
Our method is able to successfully disentangle the facial
movements and the appearance of the input images leverag-
ing the disentangled properties of the pre-trained StyleGAN2
model. Consequently, our framework effectively mimics the
target head pose and expression without transferring identity
details from the driving images. Additionally, our method
features several favorable properties including one-shot face
reenactment without the need for further subject-specific
fine-tuning. It also allows for improved cross-subject reen-
actment through the proposed upaired data training with
synthetic and real images. While our method demonstrates
compelling results, it relies on the capabilities of StyleGAN2
model, which is bounded by the distribution of the training
dataset. If the dataset lacks diversity in terms of complex
backgrounds, facial accessories like hats, glasses e.t.c, this
can affect ourmodel’s ability to generalize well tomore com-
plex datasets. This limitation highlights the importance of
using more diverse video datasets during the training of the
generative models.

Finally, we acknowledge that although face reenactment
can be used in a variety of applications such as art, enter-
tainment, video conferencing etc., it can also be applied for
malicious purposes, including deepfake creation, that could
potentially harm individuals and the society. It is important
for the researchers on our field to be aware of the potential
risks and promote the responsible use of this technology.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-024-02018-
6.
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Data Availibility Statement The VoxCeleb1 and VoxCeleb2 video
datasets are publicly available at https://www.robots.ox.ac.uk/
\nobreakspace{}vgg/data/voxceleb/index.html. One possible issue of
using these two datasets is that videos might be missing or taken
down from YouTube. The FaceForensics and the 300-VW datasets
are available upon the acceptance of End User License forms at
https://github.com/ondyari/FaceForensic and https://ibug.doc.ic.ac.uk/
resources/300-VW/, respectively.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A

In this appendix,wefirst provide an analysis of the discovered
directions in the latent space in App. A.1 and we describe in
detail the calculation of the shape losses in App. A.2. Addi-
tionally, we show results of our method on the task of facial
attribute editing in App. A.3. In App. A.4, we provide details
about the benchmark datasets used to evaluate our method on
large head pose variations. Finally, in App. A.5, we compare
the proposed framework with state-of-the-art methods for
synthetic image editing on FFHQdataset (Karras et al., 2019)
and we show comparisons on real image editing against five
methods that perform real image inversion using the feature
space of StyleGAN2 (Karras et al., 2020b). Moreover, we
provide additional quantitative and qualitative results both
on the VoxCeleb1 (Nagrani et al., 2017) and the VoxCeleb2
(Chung et al., 2018) datasets and we show additional results
on the FaceForensics (Rössler et al., 2018) and the 300-VW
(Shen et al., 2015) datasets.

Fig. 14 Analysis of the correlation between shifts ‖�w‖ in the latent space and the predicted changes |�̂p| in the parameters space. We show
results of four different attributes (yaw and pitch angles, smile, and open mouth). In all attributes the correlation is high, indicating strong linear
relationship
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A.1 Analysis of the Learned Directions

A.1.1 Head Pose/Expression Parameter Vector

The elements of p = [pθ ,pe], i.e., the head pose pθ and the
expression pe coefficients, are typically in different ranges
of values. That is, head pose pθ is given in terms of the three
Euler angles (i.e., yaw, pitch, and roll) in degrees (i.e., in the
range [−90, 90]), while the expression coefficients pe are
given in the range of [−2, 2] with the vast majority (99%)
of samples in VoxCeleb1 dataset being within the range of
[−1, 1]. In order to bring each element of p = [pθ ,pe] into
a common range of values [−a, a], we sampled 10,000 syn-
thetic facial images and calculated the corresponding values
for pθ and pe using the pre-trained DECA (Feng et al., 2021)
network. We then re-scaled each element x of p in [−a, a]
using min-max scaling; i.e., x̂ = x−xmin

x−xmax
× 2a − a. This

way, we guarantee that each component contributes evenly
to the overall facial representation, regardless of its original
range, providing stability in the training process. The spe-
cific re-scaling range, i.e., [−6, 6], is practically imposed
by the StyleGAN’s latent space, as Voynov and Babenko
(2020) originally pointed out, meaning that traversing the
latent space outside this range, often leads to severe degrada-
tion in the quality of the generated images, since latent codes
lie in regions of low density.

A.1.2 Linearity

In this work, we discover the disentangled directions that
control the head pose and the expression by optimising a
matrix A so that:

�w = A�p, (12)

where �w denotes a shift in the latent space and �p denotes
the corresponding change in the parameters space. That is,
independently of the source attributes, we assume linearity
between a shift �w that is applied to an arbitrary code w
and the induced change �p in the parameter space—i.e., the
change between the source and the reenacted attributes.

Several recent methods propose to learn linear directions
in the latent space of StyleGAN (Shen & Zhou, 2021; Shen
et al., 2020; Voynov & Babenko, 2020) in order to perform
synthetic image editing, based on the fact that the W latent
space of StyleGAN (Karras et al., 2019) has been designed to
be linear and disentangled. Furthermore, Nitzan et al. (2021)
provide a comprehensive analysis on the existence of linear
relations between the magnitude of change in the semantic
attributes (e.g., head orientation, smile, etc) and the traversal
distance along the corresponding linear latent paths. In order
to further support our hypothesis (i.e., Eq. 12), we perform
a similar analysis by examining the correlation between ran-

Fig. 15 Visual results illustrating the strongly linear relationship
between‖�p‖ and‖�w‖. Specifically, given twodifferent input images
and ground truth changes ‖�p‖ in the parameter space, we calculate the
corresponding ‖�w‖ shift in the latent space and the predicted changes
‖�p̂‖ between the source and shifted images. We note that a similar
shift ‖�w‖ corresponds to a similar change in the parameter space
independently of the facial attributes of the source images

dom shifts in the latent space,�w, and the predicted shifts in
the parameters space, �̂p. Specifically, given a known change
�p, we calculate the corresponding �w using Eq. 12 and
we apply this change (i.e., �w) onto random latent codes
of images with different attributes. Then, we calculate the
predicted change �̂p between the source and the reenacted
images. In Fig. 14 we demonstrate the results of our analysis
in four different attributes, namely, yaw angle, pitch angle,
smile, and open mouth. In all attributes, the calculated cor-
relation is close to 0.9 indicating strong linear relationship.
Finally, additional visual results of two different subjects in
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Fig. 16 Difference between the source and reenacted facial attributes when transferring only one facial attribute (e.g., yaw angle and smile
expression) from the target images

different head poses and expressions are depicted in Fig. 15.
Specifically, we show the ground truth change ‖�p‖ in the
parameter space, the corresponding ‖�w‖, and the predicted
changes ‖�p̂‖ between the source and shifted images.Above
the presented images in the row where we report ‖�p̂‖ the
two values separated by commas correspond to the subjects
depicted in the first and second row. As shown, a change
‖�w‖ corresponds to a similar change in the parameter space
‖�p̂‖ independently of the facial attributes of the source
images.

A.1.3 Disentanglement

Following the common understanding of disentanglement in
the area ofGANs (Chen et al., 2016;Deng et al., 2020;Karras
et al., 2019), we refer to a disentangled latent direction when
travelling across it leads to image generations where only a
single attribute changes. To assess the directions learnt by our
method in terms of disentanglement, in Fig. 16 we illustrate
the differences between the source and reenacted attributes
when changing a single attribute. In Fig. 16a, we only trans-
fer the yaw angle from the target image, while in Fig. 16b we
only transfer the smile expression from the target image. We
observe that the differences between the rest of the attributes
(i.e., pitch, roll, and expression in Fig. 16a and yaw, pitch, and

Fig. 17 Visual examples of editing only one facial attribute, namely
yaw and pitch angles, and smile. The source images are depicted inside
the red boxes
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Table 9 Ablation on the impact of single attribute change during training

Head pose changing Single attribute change during training Absolute Error (↓)
Yaw Pitch Roll 1

12

∑12
t=1 ei

Yaw True – 1.2 1.3 0.85

False – 1.3 1.4 0.88

Pitch True 1.0 – 0.7 0.58

False 1.2 – 0.9 0.65

Roll True 1.5 0.9 – 0.53

False 1.6 0.9 – 0.57

Expression changing Single expression change during training Yaw Pitch Roll 1
12

∑12
t=0
t �=i

ei

i ei

1 “Expression_1” True 0.3 0.2 0.2 0.49

False 0.7 0.5 0.4 0.53

2 “Expression_2” True 0.4 0.2 0.1 0.27

False 0.8 0.5 0.3 0.40

3 “Expression_3” True 0.3 0.2 0.1 0.18

False 0.7 0.4 0.3 0.30

4 “Expression_4” True 0.4 0.2 0.2 0.16

False 0.7 0.4 0.5 0.30

5 “Expression_5” True 0.3 0.2 0.1 0.25

False 1.0 0.4 0.5 0.50

6 “Expression_6” True 0.4 0.2 0.1 0.35

False 0.7 1.0 0.4 0.50

7 “Expression_7” True 0.4 0.2 0.1 0.26

False 0.7 1.0 0.4 0.36

8 “Expression_8” True 0.3 0.2 0.1 0.11

False 0.7 1.0 0.4 0.25

9 “Expression_9” True 0.3 0.2 0.1 0.23

False 0.7 1.0 0.4 0.37

10 “Expression_10” True 0.4 0.2 0.1 0.18

False 0.7 1.0 0.4 0.30

11 “Expression_11” True 0.3 0.2 0.1 0.18

False 0.7 1.0 0.4 0.30

12 “Expression_12” True 0.4 0.2 0.2 0.16

False 0.7 1.0 0.4 0.35

Bold values indicate the best values for each metric between the different methods

roll in Fig. 16b) are clearly small, which indicates that the dis-
covered directions are disentangled. We note that these plots
were calculated using 2000 random image pairs. In Fig. 16a,
we show the differences in yaw angle that were calculated
as the absolute difference between the source and the target
yaw angles (measured in degrees), while the differences in
the unchanged attributes were calculated between the source
and reenacted images. In a similar way, in Fig. 16b we show
the differences in expression that were calculated as the abso-
lute difference between the source and the target expression
(pe coefficients). Moreover, in Fig. 17 we demonstrate visual
results of editing only one direction, namely yaw, pitch angles

and smile. As shown, when altering the head pose, i.e., yaw
and pitch angles, all other facial attributes, i.e., facial expres-
sions, remain unchanged. Additionally, when altering the
smile expression, we observe changes only around themouth
area, while head orientation remains the same. Inmore detail,
in the first subject where smile is controlled (row 5), the eyes
remain closed despite editing the smile expression, while in
the second subject (row 6) the raised brows remain unaf-
fected.

Finally, in order to encourage better disentanglement
between the facial attributes that we control, during training
we propose to change only one attribute on 50% of the train-
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ing samples within each batch. To validate the effectiveness
of the above training choice, in Table 9we compare twomod-
els trained on synthetic images and report results indicating
with “True" the model trained with single attribute change
and “False" the model without the single attribute change.
Specifically, we change only one attribute, namely the yaw,
pitch, or roll head rotation angles, or one of the expression
coefficients (ei , i = 1, . . . , 12). We then calculate and report
the error, i.e., the l1-distance between the source and the reen-
acted attributes that should remain unchanged. For instance,
when changing only the yaw angle, then both the pitch and
the roll angles, as well as the expressions should remain the
same as those of the source image.We note that regarding the
expression error we report the mean error across all expres-
sions. When we alter a specific expression ei , we calculate
the expression error by excluding that particular expression,
as denoted by the last column of Table 9. As shown, adopt-
ing this training strategy leads to better disentanglement with
respect to all the 3 Euler angles and the 12 facial expressions.

A.2 Shape Losses

In order to transfer the target head pose and expression to the
source face, we calculate the reenactment loss as:

Lr = Lsh + Leye + Lmouth, (13)

where Lsh is the shape loss and Leye, Lmouth the eye and
mouth loss, respectively. As shown in our ablation studies
(Sect. 4.2), Leye, Lmouth losses contribute to more accu-
rate expression transfer from the target face to the source
face. Specifically, eye loss compares the inner distances
d = ‖(·, ·)‖1 of the eye landmark pairs (defined as Peye)
of upper and lower eyelids between the reenacted (Sr ) and
reconstructed ground-truth (Sgt ) shapes:

Leye =
∑

(i, j)∈Peye

∥
∥d

(
Sr (i),Sr ( j)

) − d
(
Sgt (i),Sgt ( j)

∥
∥ ,

(14)

Similarly, mouth loss is computed between the mouth land-
mark pairs. In Fig. 18, we show the landmark pairs that are
used to calculate these losses. Inmore detail, Peye and Pmouth

are defined as:

Peye = [
(37, 40), (38, 42), (39, 41),

(43, 46), (44, 48), (45, 47)
]
,

Pmouth = [
(49, 55), (50, 60), (51, 59), (52, 58),

(53, 57), (54, 56),

(61, 65), (62, 68), (63, 67), (64, 66)
]

Fig. 18 Depiction of the landmark pairs Peye and Pmouth that contribute
to the corresponding losses Leye and Lmouth . The landmarks of each
pair are drawn with the same color

Fig. 19 Our method can perform head pose and expression editing on
real images. Specifically, we are able to edit an attribute by keeping all
other attributes unchanged. The first column shows the source images,
while the rest columns show editings of different expressions and head
poses

Fig. 20 Face frontalization examples. We perform comparisons with
pSp (Richardson et al., 2021) and R&R (Zhou et al., 2020) and we show
that our method successfully perform face frontalization by preserving
the identity of the source face

123



International Journal of Computer Vision

Table 10 Quantitative results on frontalization task. We compare our
method with pSp (Richardson et al., 2021) and R&R (Zhou et al., 2020)
by evaluating the identity preservation (CSIM) and theAverageRotation
Distance (ARD) between the source and the frontalized images

Method CSIM ARD

pSp (Richardson et al., 2021) 0.40 3.0

R&R (Zhou et al., 2020) 0.45 3.5

Ours 0.60 1.2

Boldvalues indicate the best values for eachmetric between the different
methods

A.3 Image Editing

Our method is able to discover the disentangled directions of
head pose and expression in the latent space of StyleGAN2.
Consequently, except from face reenactment, our model can
perform head pose and expression editing by simply setting
the desired head pose or expression. Figure 19 illustrates
results of per attribute editing. As shown, our model can alter
the head pose (i.e., yaw, pitch, and roll) or the expression
(e.g., open mouth, smile) by maintaining all other attributes
unchanged. Similarly, our method can be used in the frontal-
ization task. We compare our model with the methods of pSp
(Richardson et al., 2021) andR&R (Zhou et al., 2020) andwe
report both qualitative (Fig. 20) and quantitative (Table 10)
results. Specifically, we randomly select 250 frames of dif-
ferent identities from the VoxCeleb test set and we perform
frontalization. In Table 10, we evaluate the identity preser-
vation (CSIM) and the Average Rotation Distance (ARD)
between the source and the frontalized images.

Fig. 21 Indicative examples of source-target image pairs from our
benchmark set (Benchmark-L), where the average head pose distance
is larger than 10◦

A.4 Benchmark Datasets with Large Head Pose
Variations

As mentioned in Sect. 4.1.1, the benchmark used in Table 2
(Benchmark-L) in order to evaluate our method on large
head pose reenactment contains 1,000 image pairs from the
VoxCeleb1 dataset with head pose distance larger than 10◦,
calculated as the average L1 distance of the three Euler
angles (yaw, pitch, roll). In Fig. 22, we present a com-
parison of the distributions of the three Euler angles (yaw,
pitch and roll) and the average head pose distance between
the VoxCeleb1 dataset and the aforementioned benchmark
dataset (Benchmark-L). As shown Benchmark-L comprises
image pairs that have larger head pose distances compared
to the average head pose distance observed in the VoxCeleb1
dataset. Additionally, Fig. 21, illustrates some indicative
example image pairs from the benchmark dataset, where
there is a wide range on the head pose variations across all
three Euler angles.

To further validate our method on larger head pose dif-
ferences we generate a new benchmark dataset (Benchmark-
XL) using images from both the VoxCeleb1 and the Vox-
Celeb2 datasets. Specifically, we randomly select 1, 000
image pairs where the distance on the yaw angle is larger
than 30◦ and on the pitch or roll angles larger than 20◦. As
shown inFig. 22,Benchmark-XLconsists of imagepairswith
“extreme" head pose differences compared to the distribu-
tion of the overall dataset. In Tables 11, 12 and in Fig. 23, we
demonstrate the quantitative and qualitative comparisons on
Benchmark-XL both on VoxCeleb1 and VoxCeleb2, respec-
tively. As shown our method is able to better preserve the
identity of the source faces, successfully transfer the tar-
get head pose and expression and generate realistic images
without many visual artifacts compared to the other state-of-
the-art methods.

A.5 Additional Results

A.5.1 Comparisons with Synthetic Image Editing Methods

In order to show the superiority of our method against
methods for synthetic image editing, we compare against
two state-of-the-art methods, namely ID-disentanglement
(Nitzan et al., 2020) and StyleFlow (Abdal et al., 2021). The
authors of ID-disentanglement (Nitzan et al., 2020) introduce
a method that learns to disentangle the head pose/expression
and the identity characteristics using a pre-trained Style-
GAN2 on FFHQ dataset. Additionally, StyleFlow (Abdal et
al., 2021) is a state-of-the-art method that finds meaningful
non-linear directions in the latent space of StyleGAN2 using
supervision frommultiple attribute classifiers and regressors.
Both ID-disentanglement (Nitzan et al., 2020) and StyleFlow
(Abdal et al., 2021) provide pre-trained models using the
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Fig. 22 Comparison of the
distributions of the three Euler
angles (yaw, pitch and roll) and
the average head pose distance
between the VoxCeleb1 dataset,
the benchmark set, called here
Benchmark-L (average head
pose distance larger than 10◦),
and the new benchmark set,
called here Benchmark-XL
(yaw larger than 30◦, pitch/roll
larger than 20◦)

Table 11 Quantitative
comparisons on the
Benchmark-XL with image
pairs from VoxCeleb1 dataset,
where the distance on the yaw
angle is larger than 30◦ and on
the pitch or roll angles larger
than 20◦

Method CSIM LPIPS FID ARD AED AU-H

X2Face (Wiles et al., 2018) 0.55 0.13 91.2 2.2 1.1 0.27

FOMM (Siarohin et al., 2019) 0.56 0.14 92.6 2.7 1.2 0.27

Fast Bi-layer (Zakharov et al., 2020) 0.53 0.19 113.5 1.4 0.8 0.23

Neural-Head (Burkov et al., 2020) 0.40 0.17 109.5 2.0 0.8 0.25

LSR (Meshry et al., 2021) 0.53 0.12 78.1 1.2 0.8 0.23

PIR (Ren et al., 2021) 0.53 0.14 95.5 3.0 1.1 0.27

HeadGAN (Doukas et al., 2021) 0.30 0.27 92.0 3.7 1.4 0.30

Dual (Hsu et al., 2022) 0.25 0.20 101.3 4.6 1.2 0.28

Face2Face (Yang et al., 2022) 0.38 0.28 60.0 3.4 1.1 0.27

LOR (Ours) 0.42 0.15 72.0 2.0 1.0 0.24

LOR+ (Ours) 0.57 0.13 65.6 0.9 0.6 0.22

Bold values indicate the best values for each metric between the different methods
Underlined values indicate the second best results for each metric between the different methods

Table 12 Quantitative
comparisons on the
Benchmark-XL with image
pairs from VoxCeleb2 dataset,
where the distance on the yaw
angle is larger than 30◦ and on
the pitch or roll angles larger
than 20◦

Method CSIM LPIPS FID ARD AED AU-H

X2Face (Wiles et al., 2018) 0.45 0.20 161.4 8.6 1.4 0.31

FOMM (Siarohin et al., 2019) 0.49 0.18 175.3 6.2 1.2 0.28

Fast Bi-layer (Zakharov et al., 2020) 0.47 0.22 172.2 1.7 0.9 0.27

Neural-Head (Burkov et al., 2020) 0.36 0.18 160.1 1.9 1.0 0.25

LSR (Meshry et al., 2021) 0.51 0.15 146.6 1.4 0.8 0.24

PIR (Ren et al., 2021) 0.42 0.19 173.1 4.5 1.2 0.27

HeadGAN (Doukas et al., 2021) 0.28 0.32 170.2 2.5 1.4 0.33

Dual (Hsu et al., 2022) 0.22 0.30 146.3 4.8 1.3 0.27

Face2Face (Yang et al., 2022) 0.29 0.30 151.2 2.5 1.1 0.29

LOR (Ours) 0.39 0.17 155.5 2.5 1.0 0.29

LOR+ (Ours) 0.53 0.18 136.0 1.3 0.7 0.24

Bold values indicate the best values for each metric between the different methods
Underlined values indicate the second best results for each metric between the different methods
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Fig. 23 Qualitative comparisons on the Benchmark-XL with image pairs from VoxCeleb1 and VoxCeleb2 datasets, where the distance on the yaw
angle is larger than 30◦ and on the pitch or roll angles larger than 20◦

StyleGAN2 generator trained on FFHQ dataset (Karras et
al., 2019). Consequently, in order to fairly compare against
these methods, we train our model using synthetically gen-
erated images from StyleGAN2 generator trained on FFHQ.
We compare against ID-disentanglement (Nitzan et al., 2020)
and StyleFlow (Abdal et al., 2021) on cross-subject reenact-
ment using synthetic images. Specifically, we use the small
test set (1000 images) provided by the authors of StyleFlow
(Abdal et al., 2021) and we randomly select 500 image pairs
(source and target faces) to perform face reenactment. In
Table 13 and in Fig. 24, we show quantitative and qualitative
results of our method against ID-disentanglement (Nitzan et
al., 2020) and StyleFlow (Abdal et al., 2021). As shown in
Table 13 our method outperforms all other method both on
identity preservation (CSIM) and on head pose/expression
transfer metrics, namely ARD, AED and NME. Addition-
ally, as illustrated in Fig. 24, our method can successfully

Table 13 Quantitative comparisons against two state-of-the-art meth-
ods for synthetic image editing, namely ID-dis (Nitzan et al., 2020) and
StyleFlow (Abdal et al., 2021). For CSIM metric, higher is better (↑),
while in all other metrics lower is better (↓)
Method CSIM ARD AED NME

ID-dis (Nitzan et al., 2020) 0.56 2.0 0.12 12.0

StyleFlow (Abdal et al., 2021) 0.67 2.6 0.13 16.0

Ours 0.80 1.1 0.09 10.1

Boldvalues indicate the best values for eachmetric between the different
methods

edit the source image given the target head pose/expression,
without altering the source identity. On the contrary, ID-
disentanglement (ID-dis) method (Nitzan et al., 2020) is not
able to preserve the source identity, while StyleFlow (Abdal
et al., 2021) fails to faithfully transfer the target head pose
and expression.
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Fig. 25 Qualitative comparison of the proposed framework (Ours) against SAM (Parmar et al., 2022), FeatureStyle (Yao et al., 2022a), BDInvert
(Kang et al., 2021), HyperStyle (Alaluf et al., 2022), and HFGI (Wang et al., 2022a) on the task of real image head pose editing

Fig. 24 Qualitative comparisons against ID-disentanglement (ID-dis)
(Nitzan et al., 2020) and StyleFlow (Abdal et al., 2021) using random
source-target pairs from the small test set provided by the authors of
StyleFlow (Abdal et al., 2021)

A.5.2 Comparisons with Real Image Inversion Methods

Additionally, in order to validate that our proposed Fea-
ture Transformation module is necessary to perform image
editing without producing visual artifacts when altering the
feature space of StyleGAN2,we compare ourmethod against
fourmethods that perform real image inversion using the fea-
ture space and one method that learns to alter the weights of
the StyleGAN2 generator. Specifically, we compare against
SAM (Parmar et al., 2022), FeatureStyle (Yao et al., 2022b),
BDInvert (Kang et al., 2021), HFGI (Wang et al., 2022a) and
HyperStyle (Alaluf et al., 2022). Both SAM (Parmar et al.,

Table 14 Results of a user study that we conduct to evaluate the user
preference (Pref. (%)) on the generated images of state-of-the-art meth-
ods

Method Pref. (%)

X2Face (Wiles et al., 2018) 1.3

FOMM (Siarohin et al., 2019) 5.0

Fast Bi-layer (Zakharov et al., 2020) 9.4

Neural-Head (Burkov et al., 2020) 19.2

LSR (Meshry et al., 2021) 10.7

PIR (Ren et al., 2021) 2.3

LOR+ (Ours) 52.1

Boldvalue indicates the best values for eachmetric between the different
methods
Underlined values indicate the second best results for each metric
between the different methods

2022) and BDInvert (Kang et al., 2021) are optimization-
based approaches that refine the feature space of StyleGAN2
to perform real image inversion with better reconstruction
quality. Additionally, FeatureStyle (Yao et al., 2022b) is
an encoder-based method that simultaneously predicts the
inverted latent code w and feature map FK at Kth convo-
lution layer of StyleGAN2. Similarly, HFGI (Wang et al.,
2022a) predicts both the latent codew and the spatial feature
of StyleGAN2 generator to improve the inversion quality.
Finally, HyperStyle (Alaluf et al., 2022) proposes to alter
the generator’s weights using a hypernetwork. In Fig. 25,
we demonstrate results of editing the head pose using our
direction matrix A by first inverting the real images using
the above methods. As shown, our method is the only one
without visual artifacts when editing the head pose orienta-
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Fig. 26 Qualitative results and comparisons for self-reenactment on
VoxCeleb1 (Nagrani et al., 2017) dataset. The first and second columns
show the source and target faces. We compare our method against
X2Face (Wiles et al., 2018), FOMM (Siarohin et al., 2019), Fast Bi-

layer (Zakharov et al., 2020), Neural-Head (Burkov et al., 2020), LSR
(Meshry et al., 2021), PIR (Ren et al., 2021), HeadGAN (Doukas et al.,
2021), Dual (Hsu et al., 2022) and Face2Face (Yang et al., 2022)

tion. All the aforementioned methods are able to faithfully
reconstruct the real images but fail on editing.

A.5.3 Additional Comparisons

In Table 14, we report the results of our user study. Specifi-
cally, we ask 30 users to select the method that best reenacts
the source frame on self and cross-subject reenactment tasks.
For the purposes of the user study we utilise only our final
model (LOR+) and we compare against X2Face (Wiles et
al., 2018), FOMM (Siarohin et al., 2019), Fast bi-layer
(Zakharov et al., 2020), Neural-Head (Burkov et al., 2020),
LSR (Meshry et al., 2021) and PIR (Ren et al., 2021). As
shown ourmethod is themost preferable, by a largemargin—
52.1% versus the 19.2% of the second best method.

We provide additional results on self (Fig. 26) and cross-
subject (Figs. 27, 28) reenactment on VoxCeleb1 (Nagrani et
al., 2017) dataset and we compare our method with X2Face
(Wiles et al., 2018), FOMM (Siarohin et al., 2019), Fast bi-
layer (Zakharov et al., 2020), Neural-Head (Burkov et al.,
2020), LSR (Meshry et al., 2021), PIR (Ren et al., 2021),
HeadGAN (Doukas et al., 2021), Dual (Hsu et al., 2022)
and Face2Face (Yang et al., 2022). Moreover, in Fig. 29
we show additional comparisons on VoxCeleb2 (Chung et
al., 2018) dataset both on self and on cross-subject reen-
actment. Additionally, we provide a supplementary video
with randomly selected videos on self-reenactment and ran-
domly selected pairs on cross-subject reenactment from the
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Fig. 27 Qualitative results and comparisons for cross-subject reenact-
ment on VoxCeleb1 (Nagrani et al., 2017) dataset. The first and second
columns show the source and target faces. We compare our method
against X2Face (Wiles et al., 2018), FOMM (Siarohin et al., 2019),

FastBi-layer (Zakharov et al., 2020),Neural-Head (Burkov et al., 2020),
LSR (Meshry et al., 2021), PIR (Ren et al., 2021), HeadGAN (Doukas
et al., 2021), Dual (Hsu et al., 2022) and Face2Face (Yang et al., 2022)

test sets of VoxCeleb1 and VoxCeleb2 datasets. Finally, we
show that our method is able to generalise well on other
facial video datasets. In Fig. 30 we provide results on Face-

Forensics (Rössler et al., 2018) and 300-VW (Shen et al.,
2015) datasets both on self (Fig. 30a) and on cross-subject
(Fig. 30b) reenactment.
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Fig. 28 Qualitative results and comparisons for cross-subject reenact-
ment on VoxCeleb1 (Nagrani et al., 2017) dataset. The first and second
columns show the source and target faces. We compare our method
against X2Face (Wiles et al., 2018), FOMM (Siarohin et al., 2019),

FastBi-layer (Zakharov et al., 2020),Neural-Head (Burkov et al., 2020),
LSR (Meshry et al., 2021), PIR (Ren et al., 2021), HeadGAN (Doukas
et al., 2021), Dual (Hsu et al., 2022) and Face2Face (Yang et al., 2022)
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Fig. 29 Qualitative results and comparisons for the tasks of self (first 5
rows) and cross-subject (last 5 rows) reenactment onVoxCeleb2 (Chung
et al., 2018) dataset. The first and second columns show the source and
target faces. We compare our method against X2Face (Wiles et al.,

2018), FOMM (Siarohin et al., 2019), Fast Bi-layer (Zakharov et al.,
2020), Neural-Head (Burkov et al., 2020), LSR (Meshry et al., 2021),
PIR (Ren et al., 2021), HeadGAN (Doukas et al., 2021), Dual (Hsu et
al., 2022) and Face2Face (Yang et al., 2022)
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Fig. 30 Qualitative results of our method for self (a) and cross-subject (b) reenactment on FaceForensics (Rössler et al., 2018) and 300-VW (Shen
et al., 2015) datasets
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