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Abstract
Modeling in computer vision has long been dominated by convolutional neural networks (CNNs). Recently, in light of the
excellent performance of self-attention mechanism in the language field, transformers tailored for visual data have drawn
significant attention and triumphed over CNNs in various vision tasks. These vision transformers heavily rely on large-scale
pre-training to achieve competitive accuracy, which not only hinders the freedom of architectural design in downstream tasks
like object detection, but also causes learning bias and domain mismatch in the fine-tuning stages. To this end, we aim to get
rid of the “pre-train and fine-tune” paradigm of vision transformer and train transformer based object detector from scratch.
Some earlier works in the CNNs era have successfully trained CNNs based detectors without pre-training, unfortunately, their
findings do not generalize well when the backbone is switched from CNNs to a vision transformer. Instead of proposing a
specific vision transformer based detector, in this work, our goal is to reveal the insights of training vision transformer based
detectors from scratch. In particular, we expect those insights to help other researchers and practitioners, and inspire more
interesting research in other fields, such as remote sensing, visual-linguistic pre-training, etc. One of the key findings is that
both architectural changes and more epochs play critical roles in training vision transformer based detectors from scratch.
Experiments on the MS COCO dataset demonstrate that vision transformer based detectors trained from scratch can also
achieve similar performance to their counterparts with ImageNet pre-training.

Keywords Vision transformer · Object detection · Training from scratch · Large-scale pre-training · Convolutional neural
networks · Detection performance and efficiency
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1 Introduction

The extraordinary performance of AlexNet (Krizhevsky et
al., 2012) on the ImageNet image classification challenge
has sparked the passion in convolutional neural networks
(CNNs), and led to a variety of powerful CNN backbones
through greater scale (He et al., 2016), more extensive con-
nections (Huang et al., 2017), and more sophisticated forms
of convolution (Dai et al., 2017). Consequently, modeling in
computer vision has long been dominated by CNNs, until the
Transformer architecture (Devlin et al., 2019) was recently
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Fig. 1 We train and evaluate Swin-T (Liu et al., 2021) based detec-
tors (FCOS (Tian et al., 2019) and faster R-CNN (Ren et al., 2015))
on the COCO dataset. We observe that: (1) Swin-T based detectors
trained from scratch do not achieve comparable mAP to their Ima-
geNet pre-trained counterpart, even if more epochs of training are
conducted following He et al. (He et al., 2019). (2) The results of
Swin-T based FCOS will increase if its architecture is modified fol-
lowing DSOD (Shen et al., 2017), which is originally proposed to boost

the proposal-free CNNs based detector when pre-training is unavail-
able. However, the performance of “Swin-T + FCOS +DSOD” detector
trained from scratch is still not as good as the ImageNet pre-trained one.
(3) With suitable architectural changes and sufficient training epochs,
the proposed vision transformer based detectors without pre-training
demonstrate competitive mAP to their ImageNet pre-trained counter-
parts (Color figure online)

adapted from natural language processing (NLP) to vision
community. A group of transformers tailored for visual data
has triumphed over numerous CNN-based methods in many
vision tasks (e.g. , image classification (Dosovitskiy et al.,
2021), object detection (Carion et al., 2020), semantic seg-
mentation (Cheng et al., 2021), etc). Among them, object
detection is one of the fastest-moving areas due to its wide
applications in surveillance, autonomous driving, etc.

Most of the advanced object detectors require initializa-
tion from large-scale pre-training to achieve good perfor-
mance, regardless of whether their backbones are CNNs or
vision transformers (Ren et al., 2015; Liu et al., 2021). Typ-
ically, these methods first pre-train the backbone model on
ImageNet (Russakovsky et al., 2015) dataset, then fine-tune
the pre-trained weights on the specific object detection task.
Fine-tuning from pre-trained models has at least two advan-
tages. First, it is convenient to reuse various state-of-the-art
deep models that are publicly available. Second, fine-tuning
can quickly generate the finalmodel and requiresmuch fewer
annotated training samples than the classification task. The
fine-tuning process can also be viewed as an instance of trans-
fer learning (Pan & Yang, 2010).

However, there are also critical limitations when adopt-
ing pre-trained networks in object detection: (1) Limited
structure design space (Shen et al., 2017). The pre-trained
models are usually cumbersome (containing a huge num-
ber of parameters) for performing well on the ImageNet
classification task. Existing object detectors directly adopt
the pre-trained networks, resulting in little flexibility to
control/adjust the network structures. The requirement of
computing resources is also bounded by the complex pre-

trained networks. (2) Learning bias (Xu et al., 2021).
Both the loss functions and category distributions differ
between classification and detection tasks, leading to dif-
ferent searching/optimization spaces. Thus, learning may
be biased towards a local minimum for detection tasks. (3)
Domain mismatch (Gupta et al., 2016). Though fine-tuning
can mitigate the gap between different target category distri-
butions, it is still a severe problem when the source domain
(ImageNet) has a hugemismatchwith the target domain such
as satellite remote sensing, depth camera, medical images,
etc.

Some earlier works have studied training CNNs based
object detection networks from scratch (Shen et al., 2017;
He et al., 2019). Specifically, DSOD, abbreviated for deeply
supervised object detector (Shen et al., 2017), argues that
only proposal-free detectors can be trained from scratch,
though proposal-based methods like faster R-CNN (Ren et
al., 2015) often have superior performance than proposal-
free ones. In detail, DSOD (Shen et al., 2017) augments the
original detector by deep supervision, stem block and dense
prediction, etc., to achieve ideal detection performance. In
contrast, He et al. (2019) point out that no architectural
change is required for training from scratch. As long as suffi-
cient training iterations are executed, detectors trained from
scratch can converge to similar accuracy to their ImageNet
pre-training counterparts.

Given the fact that vision transformers have outperformed
CNNs in numerous computer vision tasks, we are moti-
vated to raise the following two questions: (1). Do the
findings (Shen et al., 2017; He et al., 2019) obtained on
CNNs based detectors remain effective in the era of vision
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transformer? (2). If not, is it still possible to train vision trans-
former based object detectors from scratch?

In this work, we experimentally answer the two questions
above in Sect. 3 and Sect. 4. Specifically, we first show that
naively applying the experiences from Shen et al. (2017) and
He et al. (2019) to vision transformer is not enough. On the
one hand, we modify the architecture of Swin-T (Liu et al.,
2021) based FCOS following DSOD (Shen et al., 2017), and
observe boosted detection performance (the purple curve in
Fig. 1a). Unluckily, the modified FCOS is still not as good
as the pre-trained vanilla one (the blue curve); On the other
hand,we followHe et al. (He et al., 2019) to applymore train-
ing epochs to two Swin-T (Liu et al., 2021) based detectors
FCOS and Faster R-CNN, and illustrate the performance of
these two detectors by the green curves in Fig. 1a, b. Given
sufficient training epochs, both two detectors trained from
scratch cannot converge to comparable solutions to their pre-
trained counterparts (blue curves). Based on the phenomena
above, we conjecture that: if either architectural changes or
more training epochs are solely applied, vision transformer
based detectors that are trained from scratch will achieve
inferior results compared to their pre-trained counterparts.

Thus, instead of proposing a specific vision transformer
based detector, we aim to reveal the insights of training vision
transformer based detectors from scratch. In particular, we
find that both architectural changes and more epochs are
important in training vision transformer based detectors from
scratch. Together with several other techniques, we manage
to train transformer based detectors from scratch and achieve
competitive results to the ImageNet pre-trained counterpart,
as shown by the red curves in Fig. 1a, b. We experimentally
validate the generality of our findings to several advanced
vision transformers for detection task, and anticipate that
these insights will assist other researchers and practitioners,
inspiring further research in fields such as remote sensing,
visual-linguistic pre-training, etc.

Our main findings are summarized as follows:

1. From RoIPooling to RoIAlign We observe that proposal-
based and proposal-free detectors exhibit distinct behav-
ior when trained from scratch, that is, proposal-free
detectors degrade less than proposal-based ones com-
pared to their pre-trained counterparts. We find out
this phenomenon is essentially caused by RoIPooling,
i.e., it hinders the gradient from being smoothly back-
propagated to backbone layers. We address this problem
by replacing RoIPooling with RoIAlign, and achieve
consistencies between proposal-based and proposal-free
detectors when trained from scratch.

2. From T-T-T-T to C-C-T-T Recent studies have revealed
that large-scale pre-training essentially makes lower
attention layers learn inductive bias and “act like con-
volutions” (Raghu et al., 2021). Thus, we replace the

first two stages of vision transformers with convolution
blocks, namely, from T-T-T-T to C-C-T-T, where T and C
stand for transformer and convolution block, respectively.
Such a replacement directly introduces the inductive prior
of convolution into the backbone model, making it less
dependent on ImageNet pre-training.

3. Gradient Calibration. In C-C-T-T architecture, we
observe that the convolution and self-attention layers
exhibit significant differences in terms of the scale of
gradient. Since it is better to adjust all of the layers
a little rather than to adjust just a few layers a large
amount (Yosinski et al., 2014), we propose to calibrate
the gradients of our model, and achieve better conver-
gence property.

4. More training epochs As argued by He et al. (He et al.,
2019), it is unrealistic and unfair to expect models trained
from random initialization to converge as fast as those
initialized from ImageNet pre-training. Typical ImageNet
pre-training can learn not only semantic information, but
also low-level features (e.g., edges, textures) that do not
need to be re-learned during fine-tuning. Therefore, mod-
els trained from scratch must be trained for more epochs
than typical fine-tuning schedules.

2 RelatedWork

2.1 Vision Transformer

Convolutional neural networks have been the dominating
architectures for many computer vision tasks Krizhevsky
et al. (2012); He et al. (2016). Inspired by the recent suc-
cess of self-attention mechanism (Vaswani et al., 2017) in
natural language field, there is growing interest in exploit-
ing transformer architecture for vision tasks. The pioneering
work ViT (Dosovitskiy et al., 2021) directly applies a trans-
former architecture on non-overlapping image patches for
image classification. This approach achieves an impressive
speed-accuracy trade-off in image classification compared
to CNNs. Later work such as (Touvron et al., 2021; Han
et al., 2021; Liu et al., 2021) has made significant progress
in modifying the ViT architecture for better performance.
Particularly, Swin Tranformer (Liu et al., 2021) achieves
state-of-the-art results on various tasks, including object
detection, semantic segmentation, etc. Our analysis of train-
ing a vision transformer based detector will be based on Swin
Transformer.

2.2 CombiningVision Transformer and Convolution

Generally speaking, convolutional layers tend to have faster
converging rate thanks to their strong prior of inductive bias,
while attention layers exhibit higher model capacity that can
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Fig. 2 Qualitative comparisons between the detection results from faster R-CNN (Ren et al., 2015) models that are naively trained from scratch,
and trained using our method. The bottom row (ours) demonstrates significantly better detection performance in terms of both recall and precision

benefit from large-scale pre-training (Raghu et al., 2021). To
achieve the balance of inductive prior and model capacity,
some pioneering works have attempted to combine convolu-
tional and attention layers. For example, Conformer (Peng
et al., 2021) proposes a feature coupling unit to fuse the
features extracted by convolutional and self-attention layers,
ConViT (d’Ascoli et al., 2021) introduces gated positional
self-attention to equip vision transformer with a “soft” con-
volutional inductive bias. BotNet (Srinivas et al., 2021)
replaces the spatial convolutions with global self-attention
in the final three bottleneck blocks of a ResNet (He et al.,
2016). CvT (Wu et al., 2021) designs a hierarchy of trans-
formers containing a convolutional token embedding, and a
convolutional self-attention block leveraging a convolutional
projection.

It is worth noting that CMT (Guo et al., 2022) places a
LPU (essentially depth-wise convolution plus residual con-
nection) ahead of every multi-head self-attention layer, and
manages to train image classifiers from scratch on ImageNet
dataset (Russakovsky et al., 2015). Nevertheless, ImageNet
dataset (Russakovsky et al., 2015) hasmore than10× training
images than COCO (Lin et al., 2014) (1.28M v.s. 118K ), and
object detection is regarded as a more challenging task than
image classification (He et al., 2017). Thus, it is considerably
harder to train object detector on COCO (Lin et al., 2014)
than to train image classifier on ImageNet (Russakovsky et
al., 2015), both from scratch. The fact that CMT (Guo et al.,
2022) is trained from scratch on ImageNet dataset does not
imply that our task is trivial.

2.3 Train Object Detection from Scratch

Earlier object detection methods were trained with no
pre-training (Matan et al., 1992; Rowley et al., 1996;
Szegedy et al., 2013). Given the success of pre-training in
R-CNN (Girshick et al., 2014), the “pre-training and fine-

tuning” paradigm has become a conventional wisdom in
modern CNNs based detectors. Nevertheless, due to the lim-
itations caused by pre-training, research efforts have been
continuously devoted to training CNNs based detector from
scratch (Shen et al., 2017; He et al., 2019; Li et al., 2018;
Law & Deng, 2018). Specifically, DetNet (Li et al., 2018)
and CornerNet (Law & Deng, 2018) concentrate on design-
ing detection-specific architectures, which is not the focus
of this work. DSOD (Shen et al., 2017) contributes a set of
principles that enable detectors to be trained from scratch, but
these principles only work for proposal-free methods. He et
al. (He et al., 2019) do not require any specific architectural
changes, instead, they advocate that training from scratch
only requires more iterations to sufficiently converge.

3 Do the Findings Obtained on CNNs Based
Detectors Remain Effective?

In this section, we experimentally investigate whether DSOD
(Shen et al., 2017) and He et al. (He et al., 2019) generalize
well to vision transformer based detectors.
BackboneWithout loss of generality, we choose the represen-
tative work Swin Transformer (Liu et al., 2021) to investigate
the generality of (Shen et al., 2017; He et al., 2019) to
vision transformer. To be specific,we use Swin-T, an instance
of Swin Transformer, as the backbone for all detectors in
this section. The complexity of Swin-T is similar to that of
ResNet-50 (Liu et al., 2021).
Detectors Modern object detectors can be roughly classi-
fied into two categories: proposal-based and proposal-free,
depending on whether object proposals are utilized as inter-
mediate results. Generally speaking, proposal-free detectors
are more efficient owing to straightforward architectures, but
the proposal-based detectors still take the lead in accuracy.
In this work, we choose faster R-CNN (Ren et al., 2015) and
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Fig. 3 Train Swin-T based detectors on COCO dataset following (He
et al., 2019). We conduct experiments with Faster R-CNN (Ren et al.,
2015) andFCOS (Tian et al., 2019). The green, red and blue curves stand
for short epochs without pre-training, short epochs with pre-training

and long epochs without pre-training. For both detectors, the extended
epochs significantly boosts the detector trained from scratch. Unluck-
ily, the final detection mAP is still inferior to the ImageNet pre-trained
counterpart (Color figure online)

FCOS (Tian et al., 2019) as representative of proposal-based
and proposal-free detectors. Faster R-CNN (Ren et al., 2015)
is the seminal work that innovatively addresses object detec-
tion in an end-to-end manner. It first generates a set of region
proposals based on pre-defined anchors, then classifies and
refines those proposals to obtain final bounding boxes. Thus,
faster R-CNN is also regarded as a two-stage detector. In con-
trast, FCOS (Tian et al., 2019) is a one-stage proposal-free
method, which contributes a significantly simplified detec-
tion framework. The bounding boxes are directly regressed
from the feature map, without involving anchors and propos-
als.
Dataset All experiments are conducted on the challenging
MS COCO (Lin et al., 2014) dataset that includes 80 object
classes. Following the common practice (Liu et al., 2016), all
115K images in the trainval 35k split are used for training,
and all 5K images in the minival split are used as validation
for analysis study.
Training and Inference During training, we resize the input
images to keep their shorter side at 800 pixels and their longer
side at or below 1, 333 pixels. The whole network is ini-
tialized with He method (He et al., 2015) and trained using
AdamW (Loshchilov & Hutter, 2019) optimizer with batch
size as 16. During the inference phase, we resize the input
image in the same way as in the training phase, and forward
it through the whole network to output the predicted bound-
ing boxes with predicted classes. Then, the non-maximum
suppression (NMS) (Girshick et al., 2014) is applied with
the IoU threshold 0.6 per class to generate the final top 100
confident detections per image.

3.1 Train FCOS and Faster-RCNN Following (He et al.,
2019)

He et al. (He et al., 2019) argues that training from scratch on
target dataset is feasible without architectural changes, and
the resulting detection performance is no worse than its Ima-
geNet pre-training counterparts. Since there is no constraint
on proposal-based or proposal-free detectors in (He et al.,
2019), we extend the training iterations of both FCOS and
Faster R-CNN, with Swin-T as their backbones.

Specifically, we train both two detectors with the ini-
tial learning rate and monitor the validation set mAP at
each epoch. When the mAP reaches saturation, we decay
the learning rate and continue to train it until convergence.
The experimental results are shown in Fig. 3. The extended
training epochs significantly boost the detector trained from
scratch, unluckily, the final detection mAP is still inferior to
the ImageNet pre-trained counterpart. Also, one can compare
the gaps in final mAP between ImageNet pre-trained version
and train-from-scratch one, and observe that Faster R-CNN
degrades more than FCOS.

3.2 Train FCOS Following (Shen et al., 2017)

Different from He et al. (He et al., 2019), DSOD (Shen
et al., 2017) advocates 4 principles for training detectors
from scratch, i.e., (1) Proposal-free; (2) deep supervision;
(3) stem block; (4) dense prediction. In line with these prin-
ciples, we made the following modifications to our Swin-T
+ FCOS detector: (1) FCOS is naturally proposal-free; (2)
we add dense connections between stages of Swin-T follow-
ing (Shen et al., 2017); (3) we change the patchify stem to
inception (Szegedy et al., 2016) style. Note that (Xiao et al.,
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Fig. 4 Train FCOS (Tian et al., 2019) following DSOD (Shen et al.,
2017). The green, red and blue curves stand for vanilla architecture
without pre-training, vanilla architecturewith pre-training andmodified
architecture following DSOD (Shen et al., 2017). The modifications do
improve the detection performance when trained from scratch, but the
gap to the pre-trained baseline is still significant (Color figure online)

2021) has also emphasized the importance of stem block in
vision transformer; (4) For each scale, we only learn half of
new feature maps and reuse the remaining half of the previ-
ous ones. Besides, we also train the vanilla Swin-T + FCOS,
with and without initialization from ImageNet pre-training,
so as to provide comparison baselines. All three models are
trained for 24 epochs, with the learning rate decay once at
the 22nd epoch following (Chen et al., 2019).

The experimental results are shown in Fig. 4. The green
and red curves denote thevanilla Swin-T+FCOS,with/without
ImageNet pre-training. As expected, the one with pre-
training significantly outperforms the counterpart that is
trained from scratch, in terms of both convergence rate and
final detection mAP. Also, as shown by the blue curve in
Fig. 4, the variant modified according to DSOD (Shen et al.,
2017) demonstrated improved performance than the vanilla
Swin-T + FCOS architecture. Unfortunately, it still has a
large gap to the pre-trained version.

3.3 Discussion

The results in Figs. 3 and 4 indicate that the findings in CNNs
era, either architectural changes (Shen et al., 2017) or long
epochs (He et al., 2019), do not generalize well enough
on vision transformer based detectors. However, given the
improvement by solely applying (Shen et al., 2017) or (He
et al., 2019), it is natural to consider combining the best of
two worlds, as is elaborated in the next section.

4 Method

In this section, we present the step-by-step modifications to
FCOS and Faster R-CNN, to train both proposal-based and
proposal-free detectors from scratch.

4.1 From RoIPooling to RoIAlign

Wefirst investigate thedistinct behaviors of proposal-free and
proposal-based detectors observed in Sect. 3.1, i.e., Faster
R-CNNdegradesmore than FCOSwhen switched from“pre-
train and fine-tune” to “Train from Scratch”. We find that
the unsatisfactory performance of Faster R-CNN (Ren et
al., 2015) is essentially caused by the internal information
loss in RoIPooling (Girshick, 2015). Specifically, RoIPool-
ing involves max pooling on a region of feature maps. It
requires the execution of quantization or padding if the
coordinates of the RoI are floating-point numbers, or if the
region’s size cannot be exactly divided by the size of the
RoIPooling operator. The quantization or padding inevitably
causes information distortion (He et al., 2017), hence hinders
the gradients from being smoothly back-propagated from
region-level to backbone. The proposal-based methods work
well with pre-trained network models because they are well
initialized by pre-trained weights, while this is not true for
training from scratch.

We empirically find that Faster R-CNN (Ren et al., 2015)
can also converge well if we replace RoIPooing (Girshick,
2015) with RoIAlign (He et al., 2017), in which any quan-
tizations of the RoI boundaries or bins are avoided. Instead,
bilinear interpolation is exploited to compute the exact values
of the output features. We train Swin-T based Faster R-CNN
on the COCO dataset, and show the experimental results
in Table 1. In the case of “Train from Scratch”, RoIAlign
achieves 3.7 points higher mAP than RoIPooling. While in
the “Pre-Train & Fine-tune” setting, the improvement is rel-
atively tiny, which validates our interpretations above.
Discussion RoIAlign is originally proposed to tackle pixel-
based detection tasks in (He et al., 2017). Though it also
helps box-based detection, the gains are actually limited,
e.g., as shown by Row 3 and 6 of Table 3 in (He et al.,
2017), RoIAlign increases APbox by 1.1pt over RoIPooling
(36.2 to 37.3). As a comparison, replacing RoIPooling with
RoIAlign significantly boosts APbox by 3.7pt when trained
from scratch. The insights behind these improvements are
fundamentally different. For pixel-based detection, RoIAlign
works by conducting bilinear interpolation to avoid inaccu-
rate segmentation boundaries. For our work, the involvement
of RoIAlign is to enable smooth gradient propagation, and
help the model converge to a better situation.

4.2 FromT-T-T-T to C-C-T-T

The convolution operations inherently have the inductive
bias towards local processing, which is replaced in vision
transformers by global processing performed by multi-head
self-attention (Vaswani et al., 2017). Intuitively, it seems not
so necessary to conduct long-range attention modeling in
pixel-level or lower stages of backbones. Recent studies have
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Table 1 From RoIPooling to RoIAlign. RoIAlign enables smooth gradient back-propagation and boosts detection mAP by 3.7pt in “Train from
Scratch” setting.

Train from Scratch Pre-train & Fine-tune

mAP mAPS mAPM mAPL mAP mAPS mAPM mAPL

RoIPooling 26.6 13.0 29.0 37.7 42.1 21.3 40.2 49.2

RoIAlign 30.3 15.5 33.0 41.6 42.5 21.6 40.6 49.7

When it moves to the “Pre-train & Fine-tune” case where the weights are properly initialized, the improvement of RoIAlign is not so significant

Table 2 From T-T-T-T to C-C-T-T (All experiments are trained from scratch in this table).

Faster R-CNN FCOS

mAP #Params FLOPs Memory mAP #Params FLOPs Memory

T2-T2-T6-T2 30.3 68.93M 246.30G 15.1G 23.6 35.73M 211.56G 14.2G

C2-C2-T6-T2 26.6 44.08M 188.31G 10.6G 18.8 24.67G 187.16G 9.8G

C2-C2-T9-T3 37.9 68.62M 245.68G 14.8G 29.5 35.51M 207.15G 13.9G

Thanks to the removal of high-resolution self-attention operators in lower layers, we are feasible to enhance the model capacity by heuristically
stacking more self-attention blocks to the latter two T blocks. As highlighted by bold values, the resources consumption of ours and the baseline
T2-T2-T6-T2 (i.e., Swin-T (Liu et al., 2021)) are similar

Algorithm 1: Gradient calibration.
1 Draw a batch of samples from training set
2 Compute the norm of layer gradient Ci = E j

[
Ci, j

]

3 Compute the average ratio C̄ = (
∏

i Ci )
1
N

4 Compute the calibration multiplier rk = (Ck/C̄)α

5 Calibrate the weights of each layer as Wk ← rkWk

also revealed that large-scale pre-training essentially makes
lower attention layers learn inductive bias and “act like con-
volutions” (Raghu et al., 2021). Therefore, a natural idea is
to replace early self-attention layers with convolution, so as
to directly introduce the inductive prior of convolution into
the model and mitigate the dependence on large-scale pre-
training.

Similar toResNet (He et al., 2016), SwinTransformer also
has four stages, each of which consists of multiple stacked
transformer blocks. We dub such an architecture as T-T-T-T,
where T stands for transformer. Further, the typical Swin-T
model is then denoted as T2-T2-T6-T2 (Row 1 in Table 2),
meaning that the Swin-T model consists of 4 blocks, each of
which is stacked by 2, 2, 6 and 2 transformer layers, respec-
tively. To introduce the inductive prior of convolution into
the model, we replace each one of the first two T block
with a stack of residual convolutional units (termed as C)
(He et al., 2016) and obtain the C2-C2-T6-T2 architecture
(Row 2 in Table 2). Though such replacement is efficient
in resource (e.g., parameters, FLOPs and memories), the
resulting detection mAPs of both Faster R-CNN and FCOS
degrade, possibly due to the reduced model capacity.

Fortunately, convolution operation consumes much fewer
resources than transformer block, when the resolution of fea-

ture map is the same. By replacing transformer block with
convolution in the former 2 stages (whose feature maps are
large!), we can allocate more resources to increase the lay-
ers of transformer block in the latter 2 stages (whose feature
maps are much smaller). As shown in Row 3 of Table 2, the
C2-C2-T9-T3 architecture significantly boosts the detection
mAP of both Faster R-CNN and FCOS when trained from
scratch, without consuming more resources than the vanilla
T2-T2-T6-T2 architecture1. More variants of architectures
such as C-C-C-C and C-T-T-T are ablated in Sect. 5.1.

4.3 Gradient Calibration

The heterogeneous C-C-T-T architecture introduces the
hybrid of convolution and self-attention layers. We observe
that they exhibit significant differences in terms of the norm
of layer gradient (defined below). The norm of layer gradient
of self-attention layers can be up to 10 times as that of con-
volution layers. Existing research has found that it is better
to adjust all of the layers a little rather than to adjust just a
few layers a large amount (Yosinski et al., 2014). Therefore,
we propose to calibrate the gradients of our model, so as to
achieve better convergence property.

Definition 1 (Norm of gradient.) Given a N -layer neural net-
work, we define Ci, j to be the expected norm of the gradient

1 Strictly speaking, theC-C-T-Tbased detector cannot be called a vision
transformer based detector. However, for the simplicity of presentation,
we do not explicitly distinguish C-C-T-T and T-T-T-T architectures in
concept, and still refer the process of training both of them as training
vision transformer based detectors.
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Fig. 5 Train Faster R-CNN (Ren et al., 2015) and FCOS (Tian et al.,
2019) on COCO dataset, with and without gradient calibration. The
proposed gradient calibration not only accelerates the convergence rate,
but also improves the final mAP (Color figure online)

w.r.t. weights Wi ( j) of layer i :

Ci, j = Ez0∈D
[(
zi−1( j)yi ( j)

)2]
, (1)

where D is the set of training data, zi−1 is the activation of
layer i − 1, and yi is the backpropagated error of layer i .

Definition 2 (Norm of layer gradient.) Given norm of gradi-
ent, the norm of layer gradient is defined as:

Ci = E j
[
Ci, j

]
. (2)

The proposed gradient calibration works by adjusting the
scale of weights in each layer in initialization, so that they
are all equal to their geometric average. Specifically, we first
compose a batch with randomly selected samples from the

training set. Next, we forward and backward propagate this
batch through our model to obtain the norm of layer gradi-
ent. Then, we compute the geometric average of all norms
of layer gradient, and find out the scale correction multiplier
of each layer. Finally, we multiply the weights with the scale
correctionmultiplier so that they have the same norm of layer
gradient. The entire process is summarized in Algorithm 1,
where α in Line 4 is a hyper-parameter (0.25 in this work)
against oscillatory behavior. Figure5 illustrates the training
curves of Faster R-CNN and FCOS with and without gradi-
ent calibration. The proposed gradient calibration not only
accelerates the convergence rate, but also improves the final
detection mAP.

Here we also present another perspective to intuitively
interpret the benefits of gradient calibration. Typically, Trans-
former models require a small learning rate to converge, for
example, 0.0005 in BERT (Devlin et al., 2019), 0.001 in
Swin Transformer (Liu et al., 2021). In contrast, the learn-
ing rate for CNNs is much larger, i.e., 0.1 for ResNet (He
et al., 2016). Though the optimizers for vision transformer
and CNNs are usually different (e.g., AdamW v.s. SGD), the
significant gap in learning rate suggests that it might be sub-
optimal to naively train a hybrid model of convolution and
self-attention without any adjustment.

4.4 More Training Epochs

Though gradient calibration accelerates the convergence and
improves final mAP, it is still unrealistic and unfair to expect
models trained from random initialization like (He et al.,
2015) to converge as well as those initialized from Ima-
geNet pre-training. Typical ImageNet pre-training can learn
not only semantic information, but also low-level features

Fig. 6 Experiments with various training epochs. a. All four detec-
tors are equiped with C-C-T-T backbones and trained from scratch with
short or long epochs.One can observe that detectors trained from scratch
require more epochs than those with pre-trained weights to reach con-

vergence. b All four detectors are trained with sufficient epochs. Under
the long epochs training schedules, C-C-T-T architecture trained from
scratch converges to a solution that is no worse than the pre-trained
T-T-T-T counterpart (Color figure online)
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Table 3 Different designs of backbone. With “pre-train and fine-tune”,
the full transformer network T-T-T-T demonstrates a better mAP at 45.5
than other four competitors; While in the case of training from scratch,

the C-C-T-T architecture achieves the highest mAP at “45.8”, which
validates the rationale of our choice of C-C-T-T architecture

Training setting mAP mAP50 mAP75 #params FLOPs FPS Memory

T2-T2-T6-T2 Pre-train & Fine-tune 45.5 67.7 49.0 68.93M 246.30G 23.9 15.1G

Train from Scratch 43.4 65.8 46.9

C2-T2-T8-T2 Pre-train & Fine-tune 45.4 67.5 48.5 68.78M 245.92G 23.8 15.0G

Train from Scratch 44.8 66.7 48.0

C2-C2-T9-T3 Pre-train & Fine-tune 45.3 67.4 48.1 68.62M 245.68G 24.1 14.8G

Train from Scratch 45.8 68.1 48.8

C2-C2-C12-T4 Pre-train & Fine-tune 44.1 65.9 47.2 68.76M 246.17G 24.2 14.9G

Train from Scratch 43.7 66.2 47.1

C2-C2-C16-C4 Pre-train & Fine-tune 43.5 66.1 46.8 68.84M 245.88G 23.7 14.9G

Train from Scratch 42.3 64.6 45.5

(e.g., edges, textures) that do not need to be re-learned dur-
ing fine-tuning.

Similar to the settings in Sect. 3.1, we train our detec-
tors with the initial learning rate and monitor the vali-
dation set mAP at each epoch. When the mAP reaches
saturation, we decay the learning rate and continue to
train it until convergence. In consideration of the scale of
the COCO and ImageNet dataset, the iterations of “more
training epochs” setting are still much less than the “pre-
train & fine-tune” pipeline (See Figure 2 of (He et al.,
2019)).

The experimental results are shown inFig. 6a.As expected,
detectors trained from scratch requiremore epochs than those
with pre-trained weights to reach convergence. Particularly,
the final mAP of both Faster R-CNN and FCOS are 45.8
and 38.9, which is superior or similar to their ImageNet pre-
trained counterpart, i.e., 42.5 and 38.8 as shown in Table 1
and Fig. 4, respectively.

Moreover, we train T-T-T-T models initialized by Ima-
geNet pre-trained weights for long epochs, and explore
different training schedules by varying the epochs at which
the learning rate is reduced (where the mAP leaps). As
illustrated in Fig. 6b, the C-C-T-T model trained from ran-
dom initialization needs more iterations to converge, but the
final mAP is no worse than that of the fine-tuning counter-
part.

5 Experiments

We conduct experiments on the MS COCO dataset and
measure detection performance by mean average precision
(mAP).

5.1 Ablation Studies

All ablation studies are based on the Faster R-CNN detec-
tor (Ren et al., 2015). The performance achieved by different
variants and backbones settings are reported in the following.

5.1.1 Different Design Choices of Architecture

Based on the findings that lower attention layers tend to
learn inductive bias and “act like convolutions” (Raghu et
al., 2021), we propose 4 variants with increasingly more
Transformer stages, i.e., C-C-C-C, C-C-C-T, C-C-T-T andC-
T-T-T,whereC andT representConvolution andTransformer
respectively. For the purpose of conducting fair comparisons
of the 4 designs, we will heuristically adjust the number of
layers in each stage (listed in the first column of Table 3), to
make each of them consume similar GPU memory to that of
T2-T2-T6-T2 (roughly 16G in this ablation study).

To systematically study the design choices, we evaluate
their performance in two different settings, i.e., “pre-train
and fine-tune”, “train from scratch”. for “pre-train and fine-
tune”, we pre-train the model on ImageNet dataset, and fine-
tune the weights on the COCO dataset for object detection,
following the setting of Swin Transformer (Liu et al., 2021);
For “train from scratch”, we conducted the training following
our proposed methods in Sect. 4.

The experimental results are shown in Table 3. On one
hand, under the “Pre-train & Fine-tune” paradigm, the full
transformer architecture T-T-T-T, which is exactly Swin-
T (Liu et al., 2021), achieves the highest mAP at 45.5.
Also, we can observe that the performance monotonically
grows during the change from C-C-C-C to T-T-T-T, even
if the total number of layers is decreasing. Such a phe-
nomenon demonstrates the great modeling capacity of the
self-attention operator. On the other hand, when it moves
to “Train from Scratch” setting, C-C-T-T architecture shows
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Fig. 7 Average change rateAflat curve is better, as all layers learn at the
same rate. Random initialization without gradient calibration demon-
strates large variance of average change rate between different layers,
while initialization with ImageNet pre-training and our gradient cali-
bration have relatively flatter curves (Color figure online)

the best detection performance at 45.8, which reveals the
good trade-off between model capacity and inductive prior.
Notably, under the same consumption of memory, the C-C-
T-T architecture trained from scratch achieves even 0.3 point
higher mAP than the T-T-T-T variant initialized from Ima-
geNet pre-trained weights.

5.1.2 On the Effect of GC

To investigate the effect of the proposed gradient calibration
algorithm, we monitor the norm of the layer gradient when
training our C-C-T-T architecture. Specifically, we measure
its relative change rate between before and after training.

The results are shown in Fig. 7. One can observe the
following facts: (1) Random initialization (orange curve)
exhibits large average change rate, while initialization with
ImageNet pre-training and our proposed gradient calibration
have flat curves, which indicates that all layers learn at a sim-
ilar rate; (2) The curve of ImageNet pre-training has smaller

average change rate than ours, especially in the lower layers,
i.e., the convolutional layers.

We hypothesize the reason is that ImageNet pre-training
provides a good initialization of lower layers, which are
mainly responsible to extract low-level visual cues like cor-
ner, edge, etc. Therefore, these layers do not need to be
significantly updated when switching from classification to
detection.

5.2 Working with Variants of Swin Transformer

We study the generability of the proposed method to other
Swin Transformer variants, namely, Swin-T, Swin-S, Swin-
B and Swin-L. Similar to previous settings, we adjust the
number of layers in the latter two stages, to make T-T-T-T
and C-C-T-T architectures consume similar resources.

The experimental results are shown inTable 4. The #Chan-
nels denotes the channel number of the hidden layers in the
first stage for T-T-T-T architecture, and the channel number
of the residual unit in the first stage for C-C-T-T architec-
ture. The proposedmethod, trained fromscratch, consistently
performs favorably against the vanilla Swin Transformer
counterpart that is initialized with ImageNet pre-training,
validating the efficacy of our work.

5.3 Generalizing to Other Vision Transformers

In this section, we apply our findings to other vision trans-
formers, including PVT (Wang et al., 2021), BotNet (Srinivas
et al., 2021) andMViT (Li et al., 2022). All of the three vision
transformers have four stages, and each stage is composed
by stacking multiple multi-head self-attention blocks. Fol-
lowing our proposed principles in Sect. 4, we modified these
three vision transformers by the following steps: (1) Replace
the multi-head self-attention blocks in the former two stages
with residual convolution ops, (2) Increase the number of
layers in the latter two stages so that they consume similar
resources to their vanilla versions, (3) Initialize them with

Table 4 Different scales of backbones

Training setting mAP mAPS mAPM mAPL

T2-T2-T6-T2 (Swin-T) Pre-train and fine-tune 45.5 30.0 49.0 58.7

C2-C2-T9-T3 Train from scratch 45.8 30.5 49.2 59.3

T2-T2-T18-T2, #Channel=96 (Swin-S) Pre-train and fine-tune 48.2 32.9 52.2 62.2

C2-C2-T27-T3 (#Channel=96) Train from scratch 48.6 33.4 52.9 62.8

T2-T2-T18-T2, #Channel=128 (Swin-B) Pre-train and fine-tune 51.0 35.5 54.8 64.4

C2-C2-T27-T3 (#Channel=128) Train from scratch 51.2 35.8 55.1 64.8

T2-T2-T18-T2, #Channel=192 (Swin-L) Pre-train and fine-tune 52.9 37.0 56.7 66.5

C2-C2-T27-T3 (#Channel=192) Train from scratch 53.0 37.2 56.9 66.8

The #Channels denotes the channel number of the hidden layers in the first stage for T-T-T-T architecture, and the channel number of the residual
unit in the first stage for C-C-T-T architecture. Our proposed method works well for various instances of Swin Transformer (Liu et al., 2021)
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Table 5 Generalizing to other vision transformers. The proposed method generalizes well with all of the three vision transformers when trained
from scratch on COCO dataset

Method Specifics Training setting mAP mAP50 mAP75 #params FLOPs FPS

PVT T3-T3-T6-T3 (PVT-Small) Pre-train & Fine-tune 43.0 65.3 46.9 34M 212G 29.5

C3-C3-T9-T3 Train from Scratch 42.8 65.0 46.5 33M 207G 28.1

BoTNet T3-T4-T6-T3 (BoTNet-50) Pre-train & Fine-tune 43.6 66.0 47.4 20M 145G 32.2

C3-C4-T9-T3 Train from Scratch 43.5 65.7 47.2 20M 139G 32.9

MViT T1-T2-T5-T2 (MViT-T) Pre-train & Fine-tune 48.2 70.9 53.3 44M 279G 14.8

C1-C2-T8-T3 Train from Scratch 48.1 70.9 53.1 42M 268G 16.2

Table 6 Working with sota detectors. The proposed method demonstrates promising results than both C-C-C-C and T-T-T-T

Detector Backbone Training setting mAP mAP50 mAP75 #params FLOPs FPS

Cascade Mask R-CNN C3-C4-C6-C3 (ResNet-50) Pre-train & Fine-tune 46.3 64.3 50.5 82M 739G 18.0

T2-T2-T6-T2 (Swin-T) Pre-train & Fine-tune 50.5 69.3 54.9 86M 745G 15.3

C2-C2-T9-T3 Train from Scratch 51.0 69.8 55.3 88M 725G 19.2

ATSS C3-C4-C6-C3 (ResNet-50) Pre-train & Fine-tune 43.5 61.9 47.0 32M 205G 28.3

T2-T2-T6-T2 (Swin-T) Pre-train & Fine-tune 47.2 66.5 51.3 36M 215G 22.3

C2-C2-T9-T3 Train from Scratch 47.5 66.7 51.6 35M 217G 26.1

RepPointsV2 C3-C4-C6-C3 (ResNet-50) Pre-train & Fine-tune 46.5 64.6 50.3 42M 274G 13.6

T2-T2-T6-T2 (Swin-T) Pre-train & Fine-tune 50.0 68.5 54.2 45M 283G 12.0

C2-C2-T9-T3 Train from Scratch 50.4 68.9 54.5 44M 279G 14.6

Sparse R-CNN C3-C4-C6-C3 (ResNet-50) Pre-train & Fine-tune 44.5 63.4 48.2 106M 166G 21.0

T2-T2-T6-T2 (Swin-T) Pre-train & Fine-tune 47.9 67.3 52.3 110M 172G 18.4

C2-C2-T9-T3 Train from Scratch 48.2 67.4 52.6 108M 170G 22.3

the proposed gradient calibration method in Algorithm 1, (4)
Train them from scratch with extended epochs.

The experimental results with Faster R-CNN as detectors
are shown in Table 5. When trained from scratch, these mod-
ified vision transformers demonstrate competitive accuracy
to their pre-trained counterparts, demonstrating the general-
ization effect of our proposed principles of modification.

5.4 Coupled with State-of-the-Art Detectors

Weapply our findings to several state-of-the-art detectors and
train them from scratch, to validate the generability of our
methods. The detectors include Cascade Mask R-CNN (Cai
& Vasconcelos, 2018), ATSS (Zhang et al., 2020), Rep-
PointsV2 (Chen et al., 2020) and Sparse R-CNN (Sun et
al., 2021), whose implementations are adopted from mmde-
tection (Chen et al., 2019).

Particularly, there are 3 types of backbones for each of
the 4 detectors, i.e., (1) The C-C-C-C architecture, which
is essentially ResNet-50 (He et al., 2016); (2) The T-T-T-T
architecture, which is essentially Swin-T (Liu et al., 2021);
(3) The proposed C-C-T-T architecture with gradient cal-
ibration. Note that the C-C-C-C and T-T-T-T models are
pre-trained on ImageNet, while ours is randomly initial-

ized. All combinations are trained on the COCO dataset with
multi-scale learning (resizing the input such that the shorter
side is between 480 and 800 while the longer side is at most
1333), AdamW (Loshchilov & Hutter, 2019) optimizer (ini-
tial learning rate of 0.0001, weight decay of 0.05, and batch
size of 16) and sufficiently long training epochs. The results
are shown in Table 6, the proposed C-C-T-T design with gra-
dient calibration demonstrates competitive performance in
all experiments.

We provide illustrative samples of our vision trans-
former based detector (Swin-T (Liu et al., 2021) + faster
R-CNN (Ren et al., 2015)), trained from scratch. The detec-
tion results on the COCO dataset are shown in Fig. 8.

6 Conclusion

The domination of convolutional neural networks (CNNs)
in vision tasks has recently been challenged by transformer
models, which heavily depend on large-scale pre-training
to achieve competitive accuracy. The dependence on pre-
training not only hinders the freedom of architectural design
in downstream tasks like object detection, but also causes
learning bias and domain mismatch in the fine-tuning stages.
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Fig. 8 Results obtained by our vision transformer based detector, trained from scratch on COCO dataset

In this work, we first show that naively applying the
experiences from training CNNs based detectors to vision
transformer based ones results in unsatisfactory perfor-
mance. These experiments suggest that both architectural
changes and more epochs play critical roles for this task;
neither alone can train vision transformer-based detectors
from scratch to achieve performance comparable to their
pre-trained counterparts. Then, we demonstrate the feasi-
bility of training vision transformer based detectors from
scratch, and contribute a set of principles for realizing this
goal. Particularly, the purpose of this work is not to pro-
pose a specific vision transformer based detector. Instead,
we aim to uncover the insights of training vision transformer
based detector from scratch, and expect those insights can
help other researchers and practitioners, and inspire more
interesting research in other fields, such as remote sensing,
visual-linguistic pre-training, etc. By introducing a series
of effective modifications such as C-C-T-T and gradient
calibration, the proposed detectors demonstrate competitive
mAP to their pre-trained variants, under the same long train-
ing epochs schedule. Extensive experiments demonstrate the
merits and advantages of the proposed method.

Data Availability Statement The data that supports the findings of this
study are available in MS COCO official website (https://cocodataset.
org/#home) with public access.
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