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Abstract
Humans constantly interact with objects to accomplish tasks. To understand such interactions, computers need to reconstruct
these in 3D from images of whole bodies manipulating objects, e.g., for grasping, moving and using the latter. This involves
key challenges, such as occlusion between the body and objects, motion blur, depth ambiguities, and the low image resolution
of hands and graspable object parts. To make the problem tractable, the community has followed a divide-and-conquer
approach, focusing either only on interacting hands, ignoring the body, or on interacting bodies, ignoring the hands. However,
these are only parts of the problem. On the contrary, recent work focuses on the whole problem. The GRAB dataset addresses
whole-body interaction with dexterous hands but captures motion via markers and lacks video, while the BEHAVE dataset
captures video of body-object interaction but lacks hand detail. We address the limitations of prior work with InterCap, a
novel method that reconstructs interacting whole-bodies and objects from multi-view RGB-D data, using the parametric
whole-body SMPL-X model and known object meshes. To tackle the above challenges, InterCap uses two key observations:
(i) Contact between the body and object can be used to improve the pose estimation of both. (ii) Consumer-level Azure Kinect
cameras let us set up a simple and flexible multi-view RGB-D system for reducing occlusions, with spatially calibrated and
temporally synchronized cameras. With our InterCap method we capture the InterCap dataset, which contains 10 subjects (5
males and 5 females) interacting with 10 daily objects of various sizes and affordances, including contact with the hands or
feet. To this end, we introduce a new data-driven hand motion prior, as well as explore simple ways for automatic contact
detection based on 2D and 3D cues. In total, InterCap has 223 RGB-D videos, resulting in 67,357 multi-view frames, each
containing 6 RGB-D images, paired with pseudo ground-truth 3D body and object meshes. Our InterCap method and dataset
fill an important gap in the literature and support many research directions. Data and code are available at https://intercap.is.
tue.mpg.de.

Keywords Computer vision · Computer graphics · 3D virtual human · Human-object interaction · Machine learning · SMPL ·
SMPL-X

1 Introduction

A long-standing goal of Computer Vision is to understand
human actions from videos. Given a video, people effort-
lessly figure out what objects exist in it, the spatial layout
of objects, and the pose of humans. Moreover, they deeply
understand the depicted action. What is the subject doing?
Why are they doing this? What is their goal? How do they
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achieve this? To empower computers with the ability to infer
such abstract concepts from pixels, we need to capture rich
datasets and to devise appropriate algorithms.

Since humans live in a 3D world, their physical actions
involve interacting with objects. Think of how often one goes
to the kitchen, grabs a cup of water, and drinks from it. This
involves contacting the floor with the feet, contacting the
cup with the hand, moving the hand and cup together while
maintaining contact, and drinking while the lips contact the
cup. Thus, to understand human actions, it is necessary to
reason in 3D about humans and objects jointly.

There is significant prior work on estimating 3D humans
without taking into account objects (Bogo et al. 2016) and
estimating 3D objects without taking into account humans
(Zollhöfer et al. 2018). There is even recent work on inserting
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Fig. 1 Humans interact with objects to accomplish tasks. To understand
such interactions we need the tools to reconstruct them from whole-
body videos in 4D, i.e., as 3D meshes in motion. Existing methods
struggle, due to the strong occlusions, motion blur, and low-resolution
of hands and object structures in such videos. Moreover, they mostly
focus on the main body, ignoring the hands and objects. We develop
InterCap, a novel method that reconstructs plausible interacting whole-

body and object meshes from multi-view RGB-D videos, using contact
constraints to account for strong ambiguities. With this we capture the
rich InterCap dataset of 223 RGB-D videos (67,357 multi-view frames,
with 6 Azure Kinects) containing 10 subjects (5 fe-/males) interacting
with 10 objects of various sizes and affordances; note the hand-object
grasps

bodies into 3D scenes such that their interactions appear real-
istic (Zhang et al. 2020c; Li et al. 2019; Hassan et al. 2021).
But there is little work on estimating 3D humans interacting
with scenes and moving objects, in which contact is explic-
itly modeled and exploited. To study this problem, we need
a dataset of videos with rich human-object interactions and
reliable 3D ground truth.
PROX

(Hassan et al. 2019) takes a step in this direction by esti-
mating the 3D body in a known 3D scene. The scene mesh
provides information that helps resolve human pose ambigu-
ities commonly encountered when a single camera is used.
However, PROX involves only coarse interactions of bodies,
static scenes with no moving objects, and no dexterous fin-
gers. The recent BEHAVE dataset (Bhatnagar et al. 2022)
uses multi-view RGB-D data to capture humans interacting
with objects, but does not include detailed hand pose or fine
hand-object contact. Finally, the GRAB dataset (Taheri et al.
2020) captures the kind of detailed hand-object and whole-
body-object interaction that we seek but is captured using
marker-based Motion Capture (MoCap) and, hence, lacks
images.

We argue that what is needed is a new dataset of RGB
videos containing natural human-object interaction in which
the whole body is tracked reliably, the hand pose is captured,
objects are also tracked, and the hand-object contact is real-
istic; see Fig. 1. This is challenging, and requires technical
innovation to create. To that end, we design a system that uses
multipleRGB-D sensors that are spatially calibrated and tem-
porally synchronized. To build this data we fit the SMPL-X
body model, which has articulated hands, by extending the
PROX (Hassan et al. 2019) method to use multi-view data

and grasping hand-pose priors. We also track the 3D objects
withwhich the person interacts. The objects used in this work
are representative of items one finds in daily life. We obtain
accurate 3D models for each object with a handheld Artec
scanner. Altogether we collect 223 sequences (67,357 multi-
view frames, each containing 6 RGB-D images), with 10
subjects (5 males, 5 females) interacting with 10 everyday
objects.

The problem, however, is that separately estimating the
body and objects is not sufficient to ensure accurate 3D body-
object contact. Consequently, a key innovation of this work is
to estimate these jointly, while exploiting information about
contact. Objects do not move independently, so, when they
move, it means the body is in contact. We define likely con-
tact regions on objects and on the body. Then, given frames
with known likely contacts, we enforce contact between the
body and the object when estimating the body and object
poses. The resulting method produces natural body poses,
hand poses, and object poses. Uniquely, it provides detailed
pseudo ground-truth contact information between the whole
body and objects in RGB video.

In summary, our major contributions are as follows: (1)
We develop a novel Motion-Capture method utilizing multi-
ple RGB-D cameras. It is relatively lightweight and flexible,
yet accurate enough, thus suitable for data capture of daily
scenarios. (2) We extend previous work on fitting SMPL-X
to images to fit it to multi-view RGB-D data while taking
into account body-object contact. (3) We capture a novel
dataset that containswhole-body humanmotions and interac-
tion with objects, as well as multi-view RGB-D imagery. (4)
We train a new hand motion prior that improves the smooth-
ness and realism of the reconstructed motion. (5) We explore
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automatic human-object interaction detection by developing
two baselines; their accuracy is around 80% on our dataset.

This article is an extension of our InterCap conference
paper (Huang et al. 2022b); the two latter contributions above
are new over the conference paper, while we also provide
additional discussion and technical details. Our InterCap data
and code are available at https://intercap.is.tue.mpg.de.

2 RelatedWork

There is a large literature on estimating 3D human pose and
shape from images or videos (Bogo et al. 2016; Pavlakos et al.
2019; Choutas et al. 2020; Kanazawa et al. 2018; Kocabas
et al. 2020; Varol et al. 2017; Mehta et al. 2017; Omran
et al. 2018; Kolotouros et al. 2019; Kanazawa et al. 2019;
Rempe et al. 2021; Dwivedi et al. 2024). For an exhaustive
discussion, please see the surveys by (Tian et al. 2022; Wang
et al. 2021; Sarafianos et al. 2016). Here we focus on the
work most closely related to ours, particularly as it concerns,
or enables, capturing human-object interaction.

MoCap fromMulti-view Videos and IMUs.Markerless
MoCap frommulti-view videos (Liu et al. 2011;DeAguiar et
al. 2008; Huang et al. 2017, 2022a; Joo et al. 2018) is widely
studied and commercial solutions exist (e.g., Theia Marker-
less, DeepMotion, The Captury). Compared with traditional
marker-based MoCap, markerless MoCap offers advantages
of convenience, applicability in outdoor environments, non-
intrusiveness, and greater flexibility. However, traditional
MoCap methods, both marker-based and markerless ones,
focus on extracting a 3D skeleton. This is useful for several
applications, such as biomechanics, gaming or fitness. How-
ever, skeletons do not suffice for our goal of reasoning about
body-scene contact. To enable that, we need to capture the
full body surface.

Various 3D human representations have been proposed,
with recent work focused on learning a parametric mesh-
based model of body shape from large-scale collections of
3D scans (Anguelov et al. 2005; Loper et al. 2015; Romero
et al. 2017; Pavlakos et al. 2019; Osman et al. 2020; Xu et al.
2020; Osman et al. 2022). Here we use the SMPL-X model
(Pavlakos et al. 2019) because it contains fully-articulated
hands, which are critical for reasoning about object manip-
ulation. The body parameters are often estimated by fitting
the 3D generative model to various 2D cues, such as joints
detected by neural networks (Cao et al. 2019;Wei et al. 2016;
Newell et al. 2016) or silhouettes (Rhodin et al. 2016; Xu
et al. 2018; Alldieck et al. 2018). Though effective, these
monocular video-basedmethods suffer fromdepth ambiguity
and occlusions. To address this, researchers combine IMUs
with videos to obtain better results (von Marcard et al. 2018;
Pons-Moll et al. 2010), reaching even real-time performance
(Malleson et al. 2017).

Many methods estimate 3D bodies from multi-view
images but focus on skeletons and not 3D bodies (He et al.
2020; Iskakov et al. 2019; Qiu et al. 2019; Tu et al. 2020;
Dong et al. 2019, 2021a; Zhang et al. 2020b). Recent work
addresses 3D body shape estimation from multiple views
(Huang et al. 2017; Dong et al. 2021b; Zhang et al. 2021b).
Most related to our work are two recent datasets. The RICH
dataset (Huang et al. 2022a), fits SMPL-X bodies to multi-
view RGB videos taken both indoors and outdoors. The
method uses a detailed 3D scan of the scene and models
the contact between the body and the world. RICH does not
include any objectmotion; the scenes are completely rigid. In
contrast, BEHAVE (Bhatnagar et al. 2022) contains SMPL
bodies interacting with 3D objects that move. We go beyond
this to integrate novel contact constraints and to capture hand
pose, which is critical for human-object interaction. More-
over,BEHAVE focuses on large objects like boxes and chairs,
whereas we have a wider range of object sizes, including
smaller objects like cups.

Human-Object Interaction.There has been a lot of work
on modeling or analyzing human-object interactions (Yao
and Fei-Fei 2010; Hamer et al. 2009; Oikonomidis et al.
2011; Rogez et al. 2015; Tzionas et al. 2016; Hampali et
al. 2020; Hasson et al. 2019; Karunratanakul et al. 2020;
Bhatnagar et al. 2022). A detailed discussion is out of the
scopeof thiswork.Here,we focus onmodeling and analyzing
human-object interaction in 3D space. Most existing work,
however, only focuses on estimating hand pose (Hasson et al.
2019; Hampali et al. 2020; Hasson et al. 2020; Romero et al.
2010; Tzionas and Gall 2013), ignoring the strong relation-
ship between body motion, hand motion, and object motion.
Recent work considers whole-bodymotion. For example, the
GRAB (Taheri et al. 2020) and ARCTIC (Fan et al. 2023)
datasets provide detailed whole-body motion (in a paramet-
ric SMPL-X body format) and object motion, for rigid and
articulated objects, respectively. Unfortunately, these meth-
ods are based on marker-based MoCap and usually do not
include videos. Here we focus on tracking the whole-body
motion, object motion, and the detailed hand-object contact
to provide ground-truth 3D information in RGB video.

Joint Modeling of Humans and Scenes. There is some
prior work addressing human-object contact in both static
images and video. For example, PHOSA (Zhang et al. 2020a)
estimates a 3D body and a 3D object with plausible interac-
tion from a single RGB image. Our focus here, however,
is on dynamic scenes. Motivated by the observation that
natural human motions always happen inside 3D scenes,
researchers have proposed to model human motion jointly
with the surrounding environment (Hassan et al. 2019; Savva
et al. 2016; Cao et al. 2020; Yi et al. 2022; Taheri et al. 2024,
2022). In PROX (Hassan et al. 2019) the contact between
humans and scenes is explicitly used to resolve ambiguities
in pose estimation. The approach avoids bodies interpenetrat-
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ing scenes while encouraging contact between the scene and
nearby body parts. Recently, IPMAN (Tripathi et al. 2023b)
extends PROX with a body-stability intuitive-physics term.
However, this works only for single frames and interaction
with the ground. Finally, HOT (Chen et al. 2023) detects
contact automatically as 2D heatmaps in the image, while
DECO (Tripathi et al. 2023a) detects 3D body contact given
a natural color image.

Prior work also infers the most plausible position and
pose of humans given a 3D scene (Zhang et al. 2020c; Li
et al. 2019; Hassan et al. 2021). Recently, MOVER (Yi et
al. 2022) estimates the 3D scene and the 3D human directly
froma staticmonocular video inwhich aperson interactswith
the scene. While the 3D scene is ambiguous and the human
motion is ambiguous, by exploiting contact, the method
resolves ambiguities, improving the estimates of both the
scene and the person. Unfortunately, this assumes a static
scene and does not model hand-object manipulation.

Datasets.Traditionally,MoCap is performedusingmarker-
based systems inside lab environments. An approach for this
uses MoSh (Loper et al. 2014) to fit a SMPL or SMPL-X
body to the markers (Mahmood et al. 2019). An advanced
version of this is used for GRAB (Taheri et al. 2020), for
capturing interaction and contact with rigid objects, by also
fitting object meshes to markers. Such approaches typically
lack synchronized RGB videos. Recently, ARCTIC (Fan et
al. 2023) extends GRAB’s approach not only for interactions
with articulated objects, but also for capturing synchronized
multi-view RGB videos (including an egocentric camera).
Moreover, MoYo (Tripathi et al. 2023b) captures SMPL-X
meshes and RGB videos together with synchronized pres-
sure measurements with an instrumented Yoga mat. The
HumanEva (Sigal et al. 2010) andHuman3.6M (Ionescu et al.
2014) datasets combine multi-view RGB video capture with
synchronized ground-truth 3D skeletons from marker-based
MoCap. These datasets lack ground-truth 3D body meshes,
are captured in a lab setting, and do not contain human-
object manipulation. 3DPW (von Marcard et al. 2018) is the
first in-the-wild dataset that jointly features natural human
appearance in video and accurate 3D pose. However, this
dataset does not track objects or label human-object interac-
tion.

PiGraphs (Savva et al. 2016) and PROX (Hassan et al.
2019) provide both 3D scenes and human motions but are
relatively inaccurate, because they rely on a single RGB-D
camera. This makes these datasets ill-suited as evalua-
tion benchmarks. The recent RICH dataset (Huang et al.
2022a) addresses many of these issues with indoor and out-
door scenes, accurate multi-view capture of SMPL-X body
meshes, 3D scene scans, and human-scene contact. However,
RICH is not appropriate for our task, as it does not include
object manipulation.

An alternative approach is the one used by GTA-IM (Cao
et al. 2020) and SAIL-VOS (Hu et al. 2019), which gener-
ate synthetic human-scene interaction data using either 3D
graphics or 2D videos. These datasets feature high-accuracy
ground truth but lack visual realism.

In summary, we believe that a 3D human-object interac-
tion dataset needs to have accurate hand poses to be useful,
since hands are how people most often interact with objects.
We compare our InterCap dataset with other ones in Table 1.

3 InterCapMethod

Our goal is to accurately estimate the human and object
motion throughout a video, without using instrumentation
like IMUsor opticalmarkers.Ourmarkerlessmotion-capture
method is built on top of the PROX-D method (Hassan et al.
2019), which uses a singleRGB-D camera to track the human
motion in a known 3D scene. To improve the body track-
ing accuracy we extend this method to use multiple RGB-D
cameras; here we use the latest Azure Kinect cameras. The
motivation is that multiple cameras observing the body from
different angles give more information about the human and
object motion. Moreover, commodity RGB-D cameras are
much more flexible to deploy out of controlled lab scenarios
than more specialized devices.

The key technical challenge lies in accurately estimating
the 3D pose and translation of the objects while a person
interacts with them. In this work we focus on 10 variously-
sized rigid objects common in daily life, such as cups and
chairs. Being rigid does not make the tracking of the objects
trivial because of the occlusion by the body and hands. This
issue is more severe for small handheld objects like a cup,
despite using many cameras. While there is a rich literature
on 6 DoF object pose estimation, much of it ignores hand-
object interaction. Recent work in this direction is promising
but still focuses on scenarios that are significantly simpler
than ours, cf. (Sun et al. 2022).

Similar to previous work on hand and object pose estima-
tion (Hampali et al. 2020) from RGB-D videos, in this work
we assume that the 3D meshes of the objects are known in
advance. To this end, we first gather the 3D models of these
objects from the Internet whenever possible and scan the
remaining objects ourselves. To fit the known object models
to image data, we first preform semantic segmentation, find
the corresponding object regions in all camera views, and
fit the 3D mesh to the segmented object contours via differ-
entiable rendering. Since heavy occlusion between humans
and objects in some viewsmaymake the segmentation results
unreliable, aggregating segmentation from all views boosts
the object tracking performance.

In the steps above, both the subject and object are treated
separately and processing is conducted per frame, with no
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Table 1 Dataset statistics

Name Real Mov Accur Dext RGB D # of # of # of # of
Data Obj Poses Hands Seq Img Videos Views Img Subj

GTA-IM (Cao et al. 2020) ✗ ✗ ✓ ✗ ✓ ✓ 119 14-67 1M 50

SAIL-VOS (Hu et al. 2019) ✗ ✗ ✗ ✗ ✗ ✗ 201 1 111K ✗

HumanEva (Sigal et al. 2010) ✓ ✗ ✓ ✗ ✓ ✗ 56 4/7 80K 4

Human3.6M (Ionescu et al. 2014) ✓ ✗ ✓ ✗ ✓ ✗ 165 4 3M 11

AMASS (Mahmood et al. 2019) ✓ ✗ ✓ ✗ ✗ ✗ 11.2K ✗ ✗ 344

3DPW (von Marcard et al. 2018) ✓ ✗ ✓ ✗ ✓ ✗ 60 1 51K 5

GRAB (Taheri et al. 2020) ✓ ✓ ✓ ✓ ✗ ✗ 1.33K ✗ ✗ 10

ARCTIC (Fan et al. 2023) ✓ ✓ ✓ ✓ ✓ ✗ 242 8+1 1.2M 9

MoYo (Tripathi et al. 2023b) ✓ ✗ ✓ ✗ ✓ ✗ 200 8 1.7M 1

PiGraphs (Savva et al. 2016) ✓ ✗ ✗ ✗ ✓ ✓ 63 1 100K 5

PROX (Hassan et al. 2019) ✓ ✗ ✗ ✗ ✓ ✓ 20 1 100K 20

RICH (Huang et al. 2022a) ✓ ✗ ✓ ✗ ✓ ✗ 142 6-8 577K 22

BEHAVE (Bhatnagar et al. 2022) ✓ ✓ ✓ ✗ ✓ ✓ 321 4 15K 8

InterCap (ours) ✓ ✓ ✓ ✓ ✓ ✓ 223 6 400K 10

Comparison of InterCap to existing datasets. We define three categories: (top) synthetic data, (middle) marker-based data, (bottom) markerless data.
InterCap achieves a practical balance between accuracy and flexibility of deploying the camera setup. Here “#” stands for “number”, “Obj.” for
“Objects”, “Seq.” for “Sequences”, “Img.” for “Images”, and “Subj.” for “Subjects”

temporal smoothness or contact constraint applied. This
inevitably produces jittery motions and heavy penetration
between objects and the body. Making matters worse, our
human pose estimation exploits OpenPose for 2D keypoint
detection, which struggles when the object occludes the body
or the hands interact with it. To mitigate this issue and still
get reasonable body, hand and object pose in these challeng-
ing cases, we manually annotate the frames where the body
or the hand is in contact with the object, as well as the body,
hand and object vertices that are most likely to be in contact.
This manual annotation can be tedious; automatic detection
of contact is an open problem (we explore this herewith early
baselines).We then explicitly encourage the labeled body and
hand vertices to be in contact with the labeled object vertices.
We find that this straightforward idea works well in practice,
yielding reasonable hand and object poses. More details are
discussed below.

3.1 Multi-kinect Setup

We use 6 Azure Kinects to track the human and object
together, deployed in a “ring” layout in an office; see
Fig. 2. Multiple RGB-D cameras provide a good balance
between body tracking accuracy and applicability to real
scenarios, compared with costly professional MoCap sys-
tems like Vicon, or cheap and convenient but not-so-accurate
monocular RGB cameras. Moreover, this approach does not
require applying any markers, making the images natural.
Intrinsic camera parameters are provided by the manufac-
turer. Extrinsic camera parameters are obtained via camera

1 2 3 45
6

Fig. 2 The setup of our 6 Azure Kinect cameras in an indoor space; the
area where the subject moves is highlighted with green color

calibration with Azure Kinect’s API (Microsoft 2022). How-
ever, these can be a bit noisy, as non-neighbouring cameras
in a sparse “ring” layout don’t observe the calibration board
well at the same time. Thus, we manually refine in MeshLab
the extrinsics by comparing the point clouds for neighbouring
cameras for several iterations. The hardware synchronization
of Azure Kinects is empirically reasonable. Given the cali-
bration information, we choose a camera’s coordinate frame
as the master frame and transform the point clouds from the
other frames into the master one, which is where we fit the
SMPL-X and object models.

3.2 Sequential Object-Only Tracking

Object Segmentation. To track an object during interaction,
we need reliable visual cues about it to compare with the 3D
objectmodel. To this end,we perform semantic segmentation
by applying PointRend (Kirillov et al. 2020) to the images.
We then extract the object instances that correspond to the
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Fig. 3 Object detection and segmentation via PointRend (Kirillov et
al. 2020) for all views; images cropped for visualization purposes

categories of our objects; for examples see Fig. 3.We assume
that the subject interacts with a single object. Note that, in
contrast to previous approaches where the objects occupy a
large portion of the image (Hampali et al. 2020; Hassan et
al. 2019; Tzionas et al. 2016; Oikonomidis et al. 2011), in
our case the entire body is visible, thus, the object takes up
a small part of the image and is often occluded by the body
and hands; our setting is muchmore challenging.We observe
that PointRend works reasonably well for large objects like
chairs, even with heavy occlusion between the object and
the human, while for small objects, like a bottle or a cup, it
struggles significantly due to occlusion.

In extreme cases, it is possible for the object to not be
detected in most of the views. But even when the segmen-
tation is good, the class label for the objects may be wrong.
To resolve this, we take two steps: (1) For every frame, we
detect all possible object segmentation candidates and their
labels. This step takes place offline and only once. (2) Dur-
ing the object tracking phase, for each view, we compare the
rendering of the tracked object from the i th frame with all
the detected segmentation candidates for the (i +1)th frame,
and preserve only the candidate with the largest overlap ratio.
This render-compare-and-preserve operation takes place iter-
atively during tracking; we empirically find that this works
well in practice.

Object Tracking. Given object masks via semantic seg-
mentation over the whole sequence, we track the object by
fitting its model to observations via differentiable rendering
(Kato et al. 2018; Loper and Black 2014). This is similar to
past work for hand-object tracking (Hampali et al. 2020). We
assume that the object is rigid and its mesh is given. The con-
figuration of the rigid object in the t th frame is specified via
a 6D rotation and translation vector ξ . For initialization, we
manually obtain the configuration of the object for the first
frame by matching the object mesh to the measured point
clouds; the rest of the frames are processed automatically.
Let RS and RD be functions that render a synthetic mask
and depth image for the tracked 3D object mesh, M . Let also
S = {Sν} be the observed object masks and D = {Dν} be
corresponding depth values for the current frame, where ν is
the camera view. Then, we minimize EO(ξ ; S, D) =

∑

view ν

λsegm‖(RS(ξ, M, ν) − Sν) ∗ Sν‖2F+

λdepth‖(RD(ξ, M, ν) − Dν) ∗ Sν‖2F ,
(1)

where the two terms compute how well the rendered object
mask and depth imagematch the detectedmask and observed
depth over all views; the symbol ∗ is an element-wise
multiplication, ‖.‖F is the Frobenius norm, and λsegm and
λdepth are steeringweights set empirically. For simplicity, we
assume that transformations from the master to other camera
frames are encoded in the rendering functions RS, RD; we
do not denote these explicitly here.

3.3 Sequential Human-Only Tracking

We estimate body shape and pose over the whole sequence
from multi-view RGB-D videos in a per-frame manner. This
is similar in spirit with PROX-D (Hassan et al. 2019), but, in
our case, there is no 3D scene constraint andmultiple cameras
are used. The human pose and shape are optimized indepen-
dently in each frame. We use the SMPL-X (Pavlakos et al.
2019) model to represent the 3D human body. SMPL-X is a
function that returns a water-tight mesh given parameters for
shape, β, pose, θ , facial expression,ψ , and translation, γ .We
follow the common practice of using a 10-dimensional space
for shape, β, and a 32-dimensional latent space in VPoser
(Pavlakos et al. 2019) to present body pose, θ .

We minimize the loss defined below. For each frame we
essentially extend themajor loss termsused inPROX(Hassan
et al. 2019) to multiple views:

EB(β, θ, ψ, γ ;K , Jest ) = EJ + λDED+
λθb Eθb + λθh Eθh + λθ f Eθ f +
λαEα + λβEβ + λE EE + λP EP ,

(2)

where EE , Eβ , Eθb , Eθh , Eθ f are prior loss terms for facial
expressions (E), whole-body shape (β), and for the pose (θ )
of the body (b), hand (h), and face (f). And Eα is a prior for
extreme elbow and knee bending; for detailed definitions see
(Hassan et al. 2019). EJ is a 2D keypoint re-projection loss:

EJ (β, θ, γ ; K , Jest) =
∑

view ν

∑

joint i

kν
i w

ν
i ρJ

(
�ν

K

(
Rθγ (J (β)i )

) − J ν
est,i

)
, (3)

where θ = {θb, θh, θ f }, ν and i iterate through views and
joints, kν

i andwν
i are the per-joint weight and detection confi-

dence, ρJ is a robust Geman-McClure error function (Geman
and McClure 1987), �ν

K is the projection function with K
camera parameters, Rθγ (J (β)i ) are the posed 3D joints of
SMPL-X, and J ν

est,i the detected 2D joints. The term ED is:

ED(β, θ, γ ; K ) =
∑

view ν

∑

p∈Pν

min
v∈V ν

b

‖v − p‖, (4)

where Pν is Azure Kinect’s segmented point cloud for the
νth view, and V ν

b are SMPL-X vertices that are visible in
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Fig. 4 Virtual marker configuration used in our work to train hand
motion priors on theGRABdataset (Taheri et al. 2020). The blue spheres
indicate the vertices chosen as the proxies for the markers

Fig. 5 Annotation of likely body contact areas (red color)

this view. This term measures how far the estimated body
mesh is from the combined point clouds, so that weminimize
this discrepancy. Note that, unlike PROX, we have multiple
point clouds due to the multiple camera views, i.e., our ED

is a multi-view extension of PROX’s (Hassan et al. 2019)
loss. For each viewwe dynamically compute the visible body
vertices, and “compare” them against the segmented point
cloud for that view.

Finally, the term EP penalizes self-interpenetration of the
SMPL-X body mesh; see PROX (Hassan et al. 2019) for a
more detailed and formal definition of this:

EP (θ, β, γ ) = EPsel f (θ, β). (5)

3.4 Joint Human-Object Tracking Over All Frames

We treat the result of the first rounds of optimization
(Sects. 3.2, 3.3) as initialization for refinement via joint opti-
mization of the body and the object over all frames, subject
to contact constraints.

For this we fix the body shape parameters, β, as the mean
body shape computed over all frames from the first stage,
as done in Huang et al. (2017). Then, we jointly optimize
the object pose and translation, ξ , body pose, θ , and body
translation, γ , over all frames.We add a temporal smoothness
loss to reduce jitter for both the human and the object. We
also penalize the body-object interpenetration, as done in
PROX (Hassan et al. 2019). A key difference is that in PROX
the scene is static, while here the object is free to move.

To encourage contact, we annotate the body areas that
are most likely to be in contact with the objects and, for
each object, we annotate vertices most likely to be contacted.
These annotations are shown in Figs. 5 and 6-right, respec-
tively, in red. We also annotate the range (frame IDs) of
sub-sequences where the body is in contact with objects,
and encourage contact between them explicitly to get rea-
sonable tracking even when there is heavy interaction and
occlusion between hands and objects. Note that the latter
manual annotation is lightweight, as only the range of frames
where contact takes place is recorded.

Formally, we perform global optimization over all T
frames, andminimize a loss, E , that is composed of an object
(O) fitting loss, EO , a body (B) fitting loss, EB , a motion
smoothness prior (Zhang et al. 2021a) loss, ES , and a loss
penalizing object acceleration, EA. We also use a ground
support loss, EG , that encourages the human and the object
to be above the ground plane, i.e., to not penetrate it. More-
over, we use a body-object contact loss, EC , that attaches
the body to the object for frames with contact. Last, we
use two smoothness terms EL and ER for the left and right
hand, respectively; note that, because hands are smaller than
other body parts, the keypoint detections and depth values
are noisy. This makes them more prone to jitter. The loss E
is defined as:

E = 1

T

∑

frame t

[
EO (�t ;St ,Dt ) + EB(β∗,
t , �t , �t ;Jest)

]
+

1

T

∑

frame t

[
EP (
t , β

∗, �t ) + EC(β∗,
t , �t , �t , �t , Mo)

]
+

λG
T

∑

frame t

[
EG(β∗,
t , �t , �t ) + EG′ (�t , Mo)

]
+

λQ
T

∑

frame t

[
Qt ∗ EC′ (β∗,
t , �t , �t , �t , M

′
o)

]
+

λAEA(�, T , Mo) + λSES(
,�,�; β∗, T )+
λS

[
EL (
,�,�; β∗, T ) + ER(
,�,�; β∗, T )

]
, (6)

where for all frames t = {1, . . . , T } of a sequence, 
 = {θt }
and � = {γt } are the body poses and translations, respec-
tively, � = {ψt } are the facial expressions, � = {ξt } is the
object rotations and translations, S = {St } and D = {Dt }
are masks and depth patches, Jest = {Jest,t } are detected
2D keypoints, Mo is the object mesh, and β∗ the mean body
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Fig. 6 The objects of our InterCap dataset. Left: Color photos. Right: Annotations (shown in red) for likely contact areas on the objects

shape. The various energy terms are described in detail in the
following. The parameters λG , λQ, λS , and λA are steering
weights that are set empirically.

The object fitting term, EO , comes from Eq. 1 and the
body fitting term, EB , comes from Eq. 2, while, under the
hood, both go through all views, ν. The self-penetration term,
EP , comes from Eq. 5.

The ground-support terms, EG and EG′ , build on the fact
that no human or object vertex, respectively, should be below
the ground plane, and penalize any vertex penetrating the
ground. We estimate the ground plane surface by fitting a
plane to chosen floor points in the observed point clouds. Let
pG be a point on the ground plane and nG be the correspond-
ing normal; both are defined once and offline. Then, the term
EG for body-ground penetration is defined as:

EG(β∗,
t , �t , �t ) =
∥∥∥RL

(
nG ∗ (

pG − W (β∗,
t , �t , �t )
))∥∥∥

2
,

(7)

where RL is the ReLU function, and ∗ here is the inner prod-
uct of vectors. The term EG′ for object-ground penetration
follows a similar formulation:

EG′(�t , Mo) =
∥∥∥RL(nG ∗ (pG − W ′(�t , Mo)))

∥∥∥
2
. (8)

whereW ′ denotes the operation of first rigidly deforming the
object according to �t and then concatenating the vertices
into a single vector.

The contact term, EC , encourages the annotated likely
contact areas of the body (see Fig. 5) to contact the object as
in PROX (Hassan et al. 2019):

EC(β∗,
t , �t , �t , �t , Mo) =
CD

(
H

(
W (
t , �t , �t , β

∗)
)
,

H ′(W ′(�t , Mo)
))

,

(9)

where CD refers to the Chamfer Distance function, H is a
function that returns only the annotated body-contact ver-
tices of Fig. 5, H ′ returns for these body-contact vertices the
closest points on the object (taking into account the entire
object), W ′ deforms rigidly the object as explained in the
previous paragraph, and W similarly (non-rigidly) deforms

the SMPL-X mesh and concatenates the vertices into a sin-
gle vector. Note that this term considers the entire object for
establishing “general” contacts, but the hands are likely to
contact only certain object parts.

Then, the contact term, EC′ , focuses only on the hands and
only on a subset of each object according to its affordances.
Since grasps are delicate, they need a higher accuracy than
“general” contact (described in the above paragraph), thus,
we need to accurately specify the frames that contain such
contact. Thus, we manually annotate binary vectors Q =
{Qt }, t = {1, . . . , T }; Qt is set to 1 if in the t th frame there
is contact with a “graspable” object, and set to 0 otherwise.

The vertex acceleration term, EA, is a simple hand-crafted
motion prior that encourages smooth motion trajectories for
the object:

EA(�; T , Mo) = 1

T − 2

T−1∑

t=2

∥∥∥W ′(�t−1, Mo)+

W ′(�t+1, Mo) − 2 ∗ W ′(�t , Mo)

∥∥∥
2

(10)

where Mo is the object mesh, and W ′ deforms the object as
described above.

The motion smoothness loss, ES , penalizes abrupt posi-
tion changes for body vertices. ES employs the learned
motion prior of LEMO (Zhang et al. 2021a) and is defined
as:

ES(
,�,�, A; T , β∗) =
∑T−1

t=1

∥∥zoptt+1 − zoptt

∥∥2

Q(T − 2)
, (11)

where T is the sequence length, and Q is a constant repre-
senting the number of virtual body-markers of LEMO; see
the paper of (Zhang et al., 2021a) for an explanation (note
that they use a different symbol). Moreover, zoptt is the latent
vector for the t-th frame from LEMO’s pre-trained motion
auto-encoder (FS):

Zopt = FS(X
opt
� ) = [zopt1 , zopt2 , ..., zoptT−1], (12)

where Xopt
� is a (concatenated) vector containing the tem-

poral position change of LEMO’s virtual body-markers. For
more details, please refer to LEMO (Zhang et al. 2021a).

Hands typically suffer more from jitter compared to the
rest of the body, due to noisy keypoint detections and depth
values. Therefore, we add two additional smoothness loss
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terms for the left hand, EL , and the right hand, ER . These
are defined similarly to the LEMO-style ES (see above para-
graph), and are trained separately for the left and right hand
on the GRAB (Taheri et al. 2020) dataset, which contains
accurate and realistic hand grasping motions. We adopt the
hand marker configuration proposed in GRAB, as shown in
Fig. 4. We use the default network structure and parame-
ter setting as in LEMO (and our ES term described above).
These two terms share the same steering-weight value as ES
in Eq. 6.

3.5 Optimization Details

Similar to the per-frame optimization in the first stages
(Sects. 3.2, 3.3), for the second stage (Sect. 3.4) we use the
L-BFGS optimization method (Nocedal and Wright 2006)
with strong Wolfe line search. The optimization stops when
the loss plateaus (relative decrease less than a threshold) or
when the maximum number of steps is reached; see values
in the code.

For the second stage, the body shape parameters are fixed
as the mean of all per-frame shape parameters obtained in
the first stage. Moreover, the body pose for each frame is
initialized with the corresponding per-frame pose obtained
in the first stage.

In our experiments the first stages take 3 to 5min for a
single frame, while trivially supporting parallel per-frame
computation. In contrast, the second stage takes around 20h
for 1000 frames.

4 Automatic Interaction Detection

Contact has been used to improve 3D human pose recon-
struction (Hassan et al. 2019; Zhang et al. 2021a; Rempe
et al. 2021). Data-driven methods are still at their infancy
(Chen et al. 2023; Shimada et al. 2022). Instead, typically
a distance heuristic is used to “detect” contact (Hassan et
al. 2019). However, our setting features several challenging
objects with a small size, e.g., a cup, or thin parts, e.g., an
umbrella. In these cases, the initially reconstructed hands and
objects (Sects. 3.2, 3.3) are not accurate enough for heuristics
to work successfully. Thus, we manually label each frame by
visually inspecting the multi-view images. Though effective,
this practice does not scale. Thus, belowwe explore ways for
automatic interaction “detection” with two baselines.

“2D” baseline. A simple way is to compare the segmen-
tation masks of the human and the object for all views of a
frame.More formally, for each view, ν, of a certain frame, we
detect the binary body mask, Sbν , and object mask, Soν , where
a value of 1 denotes that the pixel belongs to the body/object.
Then, the number of intersecting mask pixels for the view ν

is given by:

xν = ‖Sbν � Soν‖2F , (13)

where� is the Hadamard product and F the Frobenius norm.
Then, a binary flag, fν , indicating whether there is contact
for the ν-th view can be obtained by comparing xν to an
empirically-set threshold Tview:

fν =
{
1, if xν > Tview
0, otherwise.

(14)

A frame contains contact if the number of its views with
contact is bigger than an empirically-set threshold, Tframe,
namely:

∑
ν fν > Tframe. Thismethoddepends on the quality

of mask segmentation, the image resolution, camera intrin-
sics and distance of the subject to the camera. When object
segmentation fails due to heavy occlusions, the method is not
applicable. In our settings, we set Tview = 10 and Tframe = 2.

“3D” baseline. The first optimization stages (Sects. 3.2,
3.3) produce an initial per-frame 3D reconstruction for both
the human and the object. Thus, another criterion for detect-
ing contact, can be whether the 3D meshes of the human and
object lie close enough to each other in 3D space. More for-
mally, given the reconstructed 3D bodymesh,Mb, and object
mesh, Mo, for a certain frame, we consider that these are in
contact when the closest Chamfer distance between them
is below an empirically-set threshold Td = 1mm, namely:
min(CD(Mb, Mo)) < Td .

5 InterCap Dataset

We use the proposed InterCap algorithm (Sect. 3) to capture
the InterCap dataset, which uniquely features whole-body
interactions with objects in multi-view RGB-D videos.

Data-capture Protocol. We use 10 everyday objects,
shown in Fig. 6-left, that vary in size and “afford” different
interactions with the body, hands or feet; we focus mainly on
hand-object interactions.We recruit 10 subjects (5 males and
5 females) that are between 25 and 40 years old. The sub-
jects are recorded while interacting with 7 or more objects,
according to their time availability. Subjects are showna sam-
ple motion for each object and are instructed to interact with
objects as naturally as possible. However, they are asked to
avoid very fast interactions that cause severe motion blur
(Azure Kinect supports only up to 30 FPS), or misalign-
ment between the RGB and depth images for each Kinect
(due to technicalities of RGB-D sensors). We capture up to
3 sequences per object depending on object shape and func-
tionality, and by picking an interaction intent from the list
below, as in GRAB (Taheri et al. 2020):
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Fig. 7 Samples from our InterCap dataset, drawn from four sequences with different subjects and objects. The estimated 3D object and SMPL-X
human meshes have plausible contacts that agree with the input images. Best viewed zoomed in

• "Pass": The subject passes the object on to another imag-
inary person standing on their left/right side; a graspable
area needs to be free for the other person to grasp.

• "Check": The subject inspects visually the object from
several viewpoints by first picking it up and then manip-
ulating it with their hands to see several sides of it.

• "Use": The subject uses the object in a natural way that
“agrees” with the object’s affordances and functionality
for everyday tasks.

We also capture each subject performing a freestyle inter-
action of their choice. All subjects gave informed written
consent to publicly share their data for research.

4D Reconstruction. Our InterCap method (Sect. 3) takes
as input multi-view RGB-D videos and outputs 4D meshes
for the human and object, i.e., 3Dmeshes over time. Humans
are represented as SMPL-X meshes (Pavlakos et al. 2019),
while object meshes are acquired with an Artec hand-held
scanner. Some dataset frames along with the reconstructed
meshes are shown in Figs. 1 and 7; see also the video on our
website. Reconstructions look natural, with plausible contact
between the human and the object.

Dataset Statistics. InterCap has 223 RGB-D videos with
a total of 67,357 multi-view frames (6 RGB-D images each).
For a comparison with other datasets, see Table 1.

6 Experiments

Contact Heatmaps. Figure8-left shows contact heatmaps
on each object, across all subjects. We follow the proto-
col of GRAB (Taheri et al. 2020), which uses a proximity
metric on reconstructed human and object meshes. First, we
compute per-frame binary contact maps by thresholding (at
4.5mm) the distances from each body vertex to the closest
object surface point. Then, we integrate these maps over time
(and subjects) to get “heatmaps” encoding contact likelihood.
InterCap reconstructs human and object meshes accurately
enough so that contact heatmaps agree with object affor-
dances, e.g., the handle of the suitcase, umbrella and tennis
racquet are likely to be grasped, the upper skateboard sur-
face is likely to be contacted by the foot, and the upper stool
surface by the buttocks.

Figure 8-right shows heatmaps on the body, computed
across all subjects and objects. Heatmaps show that most of
InterCap’s interactions involve mainly the right hand. Con-
tact on the palm looks realistic, and is concentrated on the
fingers andMCP joints. The “false” contact on the dorsal side
is attributed to our challenging camera setup and interaction
scenarios, as well as some reconstruction jitter.
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Fig. 8 Contact heatmaps for
each object (across all subjects)
and the human body (across all
objects and subjects). Contact
likelihood is color-coded; high
likelihood is shown with red,
and low with blue. Color-coding
is normalized separately for
each object, the body, and each
hand

Left hand
(inner)

Left hand
(outer)

Right hand
(inner)

Right hand
(outer)

Fig. 9 Statistics of human-object mesh penetration for all InterCap
sequences. Left: The number of frames (Y-axis) with a certain pene-
tration depth (X-axis). Right: The percentage of frames (Y-axis) with
a penetration depth below a threshold (X-axis). In the legend, “Max”,

“Mean” and “Median” refer to three ways of reporting the penetration
for each frame, i.e., taking the maximum, mean and median value of
the penetration depth of all vertices, respectively

Penetration.We evaluate the penetration between human
and object meshes for all sequences of our dataset. We fol-
low the protocol of GRAB et al. (Taheri et al. 2020); we
first find the “contact frames” for which there is at least

minimal human-object contact, and then report statistics for
these. In Fig. 9-left we show the distribution of penetrations,
i.e., the number of “contact frames” (Y axis) with a certain
mesh penetration depth (X axis). In Fig. 9-right we show the
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Fig. 10 Ablation of contact term. Each pair of images shows results
wo/ (red) and w/ (green) the contact term. Encouraging contact results
in more natural hand poses and hand-object grasps

cumulative distribution of penetration, i.e., the percentage
of “contact frames” (Y axis) for which mesh penetration is
below a threshold (X axis). Roughly 62%of “contact frames”
have ≤ 7 mm, 80% ≤ 9.8 mm, and 98% ≤ 35 mm mean
penetration. The mean penetration depth over all “contact
frames” is 7.2 mm. In theory, being in contact means zero
distance between the deformed (compressed) body part and
the object. In practice, as SMPL-X does not model deforma-
tion due to contact, penetration between body parts and the
object is unavoidable. We empirically find that this amount
of penetration is normally not noticeable, thus acceptable
for most applications that value visual naturalness more than
physical correctness.

Fitting Accuracy. For every frame, we compute the dis-
tance from eachmesh vertex to the closest point-cloud (PCL)
point; for each human or object mesh we take into account
only the respective PCL area obtained with PointRend (Kir-
illov et al. 2020) segmentation. The mean vertex-to-PCL
distance is 19.05 mm for the body, and 18.14 mm for objects.
In comparison, PROX-D (Hassan et al. 2019), our base
method, achieves an error of 13.02 mm for the body. This is
expected since PROX-D is free to change the body shape to
fit each individual frame, while ourmethod estimates a single
body shape for the whole sequence. SMPLify-X (Pavlakos
et al. 2019) achieves a mean error of 79.54 mm, for VIBE the
mean error is 55.59 mm, while ExPose gets an mean error of
71.78 mm. These numbers validate the effectiveness of our
method for body tracking. Note that these methods are based
onmonocular RGB images only, so there is not enough infor-
mation for them to accurately estimate the global position of
the 3D body meshes. Thus we first align the output meshes
with the point clouds, then compute the error. Note that the
error is bounded from below for two reasons: (1) it is influ-
enced by factory-design imperfections in the synchronization
of Azure Kinects, and (2) some vertices reflect body/object
areas that are occluded during interaction and their closest
PCL point is a wrong correspondence. Despite this, InterCap Ta
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Table 3 Evaluation of
automatic interaction detection
(Sect. 4) on the validation set of
RICH (Huang et al. 2022a)

Baseline Sub_1 (%) Sub_2 (%) Sub_3 (%) Sub_4 (%) Sub_5 (%) Mean (%)

“2D” 37 62 59 56 90 63

100 100 100 100 56 94

We report the two metrics of Table 2. Note that there is no “3D” baseline for RICH, as estimating the full 3D
scene from 2D images is too challenging

Fig. 11 Ablation of the temporal smoothing term. Acceleration of a
random vertex on the back of the main body (upper plot) and the right
hand (bottom plot) with (dashed line) and without (solid line) temporal
smoothing for a random sequence over the first 175 frames. Dashed
lines (w/ temporal smoothing) correspond to lower acceleration, i.e.,
less motion jitter. The average acceleration value (in m/s2 for 30 fps
sequences) for the upper figure is 564.75 (wo/ smoothing) and 148.69
(w/ smoothing), while for the lower figure it is 343.33 (wo/ smoothing)
and 101.20 (w/ smoothing). Thus, smoothing reduces jitter, however,
there is still room for improvement

empirically estimates reasonable bodies, hands and objects
in interaction, as reflected in the contact heatmaps and pen-
etration metrics above.

The hand smoothness terms EL and ER in Eq. 6 help
recover more natural and less jittery hand motion at the cost
of increased run-time (roughly 15% slower), compared with
a simple acceleration penalty loss. One may chose one over
the other, depending on the application and its major need
(speed or accuracy).

Ablation of the Contact Term. Figure10 shows results
with-/out our term that encourages body-object contact;
visualization“zooms” into hand-object grasps. We see that
encouraging contact yields more natural hand poses and
fewer interpenetrations. This is backed up by the contact
heatmaps and penetration metrics discussed above.

Ablation of the Temporal Smoothing Term. Figure11
shows results with-/out our temporal smoothing term. The
plots show the acceleration of a randomly-chosen vertex
on the main body (upper plot) and the right hand (bottom
plot). For each plot, we show results for 3 different motions,
denoted with a different color. The solid lines show results
without the temporal smoothing term. The dashed lines of
the same color show the same motions with the smoothing
term; these are clearly smoother. We empirically find that a
learned motion prior in the style of Zhang et al. (2021a), for
both the case of the body and the hands, produces more nat-
ural motion dynamics than handcrafted ones (Huang et al.
2017).

Discussion on Jitter. Despite the smoothing, some jit-
ter is still inevitable. We attribute this to two factors: (1)
OpenPose and PointRend are empirically relatively sensitive
to occlusions and illumination (e.g., reflections, shadows,
poor lighting); the data terms for fitting 3D models depend
on these. (2) Azure Kinects have a reasonable synchroniza-
tion, yet, there is still a small delay among cameras to avoid
depth-camera interference; the point cloud “gathered” across
views is a bit “patchy” as informationpieces have a small time
difference. The jitter is more intense for hands relatively to
the body, due to their low image resolution, motion blur, and
coarse point clouds. Adding our learnedmotion priors for the
main body and the hands encourages smoother andmore nat-
ural motion dynamics, however, balancing the data and prior
terms in the loss to also preserve contacts is tricky.Despite the
aforementioned challenges, InterCap is a good step towards
capturing everyday whole-body interactions with commod-
ity hardware. Future work will study advanced motion and
grasping priors.

Towards Automatic Interaction Detection. Although
we manually annotate the parts of the sequences where the
subject interacts with the object, this does not scale. Thus,
here we explore the automatic detection of interaction in
image sequences with two baselines, as described in Sect. 4.
We evaluate the baselines on our InterCap dataset and the
RICH dataset (Huang et al. 2022a); the latter features accu-
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rate poses and contact between humans and a static scene.We
show the results in Tables 2 and 3, where “2D” denotes the
first and “3D” the second baseline of Sect. 4. We see that the
“3D” baseline outperforms the “2D” one, for both the detec-
tion accuracy (percentage of correctly classified frames) and
the percentage of frames for which the method is applica-
ble (due to effectively segmenting both the body and object).
However, the average accuracy is less than 80%, and themax-
imal accuracy for all subjects is only slightly greater than
80%. This is not so surprising, given that accurate contact
detection is challenging even for human annotators. For the
RICH dataset, where no 3D meshes of (segmented) objects
are available, only the “2D” baseline is applicable. In this
case the average accuracy is around 60%. We conclude that
an automatic detection of contact is promising, butmorework
to this end is necessary in the future.

7 Discussion

Here we focus on whole-body human interaction with every-
day rigid objects.Wepresent a novelmethod, called InterCap,
that reconstructs such interactions frommulti-view full-body
videos, includingnatural handposes and contactwith objects.
With thismethod,we capture the novel InterCap dataset, with
a variety of people interacting with several common objects.
The dataset contains reconstructed 3D meshes for the whole
body and the object over time (i.e., 4D meshes), as well as
plausible contacts between them. In contrast to most previ-
ous work, our method uses no special devices like optical
markers or IMUs, but only several consumer-level RGB-D
cameras. Our setup is lightweight and has the potential to
be used in daily scenarios. Our method recovers reasonable
hand poses even under strong occlusions from the object.
Extensions over (Huang et al., 2022b): We introduce a
new hand smoothness model to reduce the jitter commonly
observed for hands; due to the hands’ small size, both 2D
joint detections and depth observations tend to be noisy. We
also explore simple automatic contact detection based on 2D
or 3D distances, but conclude that a more involved approach
is necessary.
Future work: In future work, we will study reconstruct-
ing (Taheri et al. 2020; Fan et al. 2023; Bhatnagar et al.
2022; Lepetit 2020) interactions with smaller objects and
dexterous manipulation, as well as synthesizing such inter-
actions (Taheri et al. 2024; Braun et al. 2024; Wu et al.
2022). Finally, we will explore learning-based contact detec-
tion from images (Chen et al. 2023; Tripathi et al. 2023a;
Brahmbhatt et al. 2020; Narasimhaswamy et al. 2020).
Code and data: See https://intercap.is.tue.mpg.de.
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