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Abstract
Deep learning has achieved great success in academic benchmarks but fails to work effectively in the real world due to
the potential dataset bias. The current learning methods are prone to inheriting or even amplifying the bias present in a
training dataset and under-represent specific demographic groups. More recently, some dataset debiasing methods have been
developed to address the above challenges based on the awareness of protected or sensitive attribute labels. However, the
number of protected or sensitive attributes may be considerably large, making it laborious and costly to acquire sufficient
manual annotation. To this end, we propose a prototype-based network to dynamically balance the learning of different
subgroups for a given dataset. First, an object pattern embedding mechanism is presented to make the network focus on
the foreground region. Then we design a prototype learning method to discover and extract the visual patterns from the
training data in an unsupervised way. The number of prototypes is dynamic depending on the pattern structure of the feature
space. We evaluate the proposed prototype-based network on three widely used polyp segmentation datasets with abundant
qualitative and quantitative experiments. Experimental results show that our proposedmethod outperforms theCNN-based and
transformer-based state-of-the-art methods in terms of both effectiveness and fairness metrics. Moreover, extensive ablation
studies are conducted to show the effectiveness of each proposed component and various parameter values. Lastly, we analyze
how the number of prototypes grows during the training process and visualize the associated subgroups for each learned
prototype. The code and data will be released at https://github.com/zijinY/dynamic-prototype-debiasing.
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1 Introduction

Deep learning-based models have achieved great success
in computer vision and have become an indispensable part
of modern systems like face analysis, medical imaging, and
autonomous driving. However, a practical challenge in all
applications is the model could often be biased, since it is
trained overly dependent on the training dataset and tends to
inherit the imbalance of data (Buolamwini & Gebru, 2018;
Yoneyama et al., 2017; Tartaglione et al., 2021). In general,
the bias issue is usually defined as one or a collection of
extraneous protected or sensitive attributes that distort the
relationship between the input and output and hence lead to
erroneous conclusions (Pourhoseingholi et al., 2012).

Ranging from face recognition (Buolamwini & Gebru,
2018) to medical imaging analysis (Yoneyama et al., 2017;
Seyyed-Kalantari et al., 2021a, b), data bias can be easily
influenced by skew distributions with respect to different
types of attributes (e.g. race, sex, and age) and distracts the
model from learning the actual discriminative cues (Adeli
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Fig. 1 Categorization of bias problems in segmentation. a Demo-
graphic Bias (Puyol-Antón et al., 2021; Ioannou et al., 2022) b Skin
Tone Bias (Xu et al., 2022) c Visual pattern bias (Ours). We argue
that the visual pattern diversity, which could be induced by tremendous

factors (e.g. demographics, skin tones), is an immediate cause of bias.
While conventional debiasing methods highly depend on annotations
of bias labels, we aim to address pattern bias in an unsupervised way

et al., 2021). Specifically, Buolamwini and Gebru (2018)
found a video-based gender classification model performing
differently for various racial groups because of the under-
representation of black populations in the training set. For
applications in healthcare, examples of this are the studies
carried out bySeyyed-Kalantari et al. (2021a, b) inwhich bias
is examined in chest X-ray pathology classification. These
works demonstrate underdiagnosis disparities between pro-
tected groups defined by sex, race, insurance, and age for
three publicly available chest X-ray datasets. The Multi-
Ethnic Study of Atherosclerosis (MESA) (Yoneyama et al.,
2017) found that there are profound racial disparities among
people with cardiovascular disease. To some extent, this
could reflect how the algorithms are over-optimized by cur-
rent evaluation metrics but ignore the properties such as
fairness and diversity.

To fight against bias in deep learning-based models, a lot
of studies have put efforts to evaluate and mitigate dataset
bias. Generally, these methods can be divided into three cat-
egories: pre-processing, in-processing, and post-processing.
Pre-processing techniques (Calmon et al., 2017) solve the
issue of data itself. For example, the distributions of specific
protectedvariables are discriminatory and imbalanced.These
methods tend to transform the data before model training so
that the underlying discrimination is eliminated or mitigated.
In-processing techniques (Hong & Yang, 2021; Tartaglione
et al., 2021) solve the issue during the training procedure.
They tend to modify the learning algorithms, such as balanc-
ing multiple optimization objectives of both accuracy and
fairness. Post-processing techniques (Chiappa, 2019) often
mitigate the bias of the output of algorithms after the training
procedure. They tend to perform a transformation to model
prediction to mitigate the discrimination towards specific
attributes.

While extensive research has shown great potential for
handling classification bias, very few works (Puyol-Antón
et al., 2021; Ioannou et al., 2022; Xu et al., 2022) concen-
trated on segmentation bias. In cardiac MR segmentation,
Puyol-Antón et al. (2021) found significant racial bias in
segmentation accuracy, caused by a racial imbalance in the

training data. In brain MR segmentation, Ioannou et al.
(2022) found that there are significant sex and race bias
effects in model performances and biases have a strong spa-
tial component with some brain regions exhibiting much
stronger bias than others. In skin segmentation, Xu et al.
(2022) proposed to learn color invariant features by color
space augmentation since the training dataset is significantly
biased toward lighter skin tones.

Previous segmentation debiasing works mainly focus on
the demographic diversity of a dataset (e.g. gender, age, skin
tone), as shown in Fig. 1a, b. In contrast to them,we argue that
the immediate cause of segmentation bias is visual pattern
diversity, as shown in Fig. 1c. Since deep learning models
are prone to capture the major visual pattern and dismiss
the minority (Dong et al., 2018) during the training process,
they may produce biased segmentation results for different
visual patterns and further lose robustness andgeneralization.
Thus, the imbalance of visual patterns induces the inequal-
ity of model representation capability for different samples.
One possible solution is to annotate all the types of visual
patterns and balance the learning process by putting more
emphasis onminor ones.However, the definition of the visual
pattern is multifarious and far more than demographic diver-
sity. For example, previous work (Moayeri et al., 2022) has
collected 18 informative visual attributes (e.g. colored-eyes,
hairy, patterned) to analyze the robustness and interpretabil-
ity of deep networks. Du et al. (2022) and Xu et al. (2022)
utilize six specialized skin subtypes to measure the bias of
neural networks in dermatology. As the number of protected
or sensitive attributes increases, it’s laborious and costly to
acquire manual annotation for all the visual patterns, espe-
cially in medical image analysis where only doctors can
accomplish this job.

In this work, we attempt to answer the question: can a
model automatically balance the learning of different visual
patterns without the awareness of corresponding protected
attributes? To this end, we propose a novel prototype-based
framework that can adaptively discover and extract diverse
visual patterns contained in the whole training dataset to
enhance the representation ability of both majority and
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Fig. 2 a Distribution of subgroups in the PICCOLO dataset (Sánchez-
Peralta et al., 2020). 0-IIa to 0-IIa/c refer to the six polyp subtypes
described by Paris Classification (Vleugels et al., 2017). b Examples

of highest and lowest segmentation accuracy in each subtype. The deep
learning-based model generates more unstable predictions on minority
subtypes

minority samples. Specifically, prototypes are constructed
to store different visual pattern knowledge in a dynamic
way. Given an input sample, we first calculate its similar-
ities with all the prototypes. If the maximum of similarities
is above a pre-defined threshold, the input sample will be
categorized into the corresponding knowledge and further
utilized to update its nearest prototype. Otherwise, the repre-
sentation of the input sample will be considered an unknown
pattern and allocated to construct a new prototype. In this
way, the learned prototypes can aggregate the representa-
tion of similar visual patterns and maintain a large variety
of visual patterns. For model inference, we enhance the rep-
resentation of the input sample with the learned prototypes
via a well-designed attention mechanism to increase the dis-
criminative abilities of all the visual patterns. To evaluate the
proposed framework, we conduct extensive experiments on
polyp segmentation in colonoscopy images. All the polyp
images are divided into different subgroups following the
Paris Classification scale (Vleugels et al., 2017). The seg-
mentation disparity on subgroups is utilized as the fairness
evaluation metric. Figure2 shows the imbalance distribution
of subgroups in the PICCOLO dataset.

The main contributions of this paper can be summarized
as follows:

1. We investigate the dataset bias of image segmentation in
an unsupervised way. In contrast to the previous works,
the labels of the protected or sensitive attributes are not
needed during model training but are only necessary for
model evaluation.

2. A novel prototype-based framework is proposed to dis-
cover and extract visual patterns correlated with the
protected or sensitive attributes. The learned prototypes
can dynamically balance the learning of bothmajority and
minority subgroups.

3. With comprehensive experiments in terms of both effec-
tiveness and fairness, we demonstrate the superiority of
our model over other debiasing methods. In addition,

extensive ablation studies are conducted to show the
effectiveness of each proposed component and various
parameter values.

4. Wefirst propose to use a fairnessmetric for polyp segmen-
tation evaluation. The fairness metric is able to measure
the model performance on each polyp subtype and give
more explanation on the algorithmic underdiagnosis. The
experimental results indicate that the proposed framework
can mitigate the dataset bias more effectively than the
state-of-the-art models.

2 RelatedWork

2.1 Fairness and Debiasing

In the context of decision-making, fairness is defined as the
absence of prejudice or favoritism towards an individual
or group based on their inherent or acquired characteris-
tics (Mehrabi et al., 2021; Saxena et al., 2019). In Verma
and Rubin (2018), authors studied the taxonomy of fair-
ness in algorithmic binary classification problems. There
are many fairness definitions, and they are incompatible
with each other (Barocas et al., 2017; Chouldechova, 2017).
The three most common fairness are (1) equalized odds,
(2) equal opportunity, and (3) statistical parity. Equalized
Odds, provided by Hardt et al. (2016), states that prediction
Ŷ satisfies: P(Ŷ = 1 | S = 1,Y = y) = P(Ŷ = 1 |
S = 0,Y = y), y ∈ {0, 1}, where S is protected attribute
and Y is label. This implies that different protected groups
should have an equal probability of true positives and false
positives. Equal opportunity is formed in a relaxed notion:
P(Ŷ = 1 | S = 1,Y = 1) = P(Ŷ = 1 | S = 0, Y = 1),
which only requires true positives are equal towards different
protected groups. Statistical parity, also known as demo-
graphic parity, is defined to assure independence between
predicted labels and protected attributes, formally: P(Ŷ =
1 | S = 1) = P(Ŷ = 1 | S = 0).

123



International Journal of Computer Vision

There have been a wide collection of approaches devel-
oped to debias machine learning models and achieve group
fairness. Generally, they can be divided into three categories
as follows.
Pre-processing techniques solve the issue of data itself, for
example, the distribution of specific sensitive or protected
variables is biased, discriminatory, and imbalanced. They
tend to transform the data before training so that the underly-
ing discrimination is eliminated or mitigated. For example,
Feng et al. (2019) employ adversarial learning to capture the
data distribution and generate fair latent representations to
ensure that the distributions across different protected groups
are equivalent. Calmon et al. (2017) propose to learn a data
transformationwith three optimization goals: controlling dis-
crimination, limiting distortion in individuals, and preserving
utility.
In-processing techniques solve the issue during the train-
ing procedure. They tend to modify the learning algorithms,
such as incorporating a balance between multiple optimiza-
tion objectives of both accuracy and fairness. For example,
Hong and Yang (2021) designed a distance-weighted con-
trastive loss to pull a pair with the same target class but with
different bias features. Tartaglione et al. (2021) propose a
regularization term, whose aim is to regularize the deep fea-
tures to prevent deep models from learning unwanted biases.
The above two works both attempted to disentangle the cor-
relation between biases and targets.
Post-processing techniques mitigate the output bias after the
training procedure. They tend to perform a transformation
to model prediction to mitigate the discrimination towards
specific sensitive attributes. They can be attached to the end
of any model and only need access to the predictions and
sensitive attributes which makes them flexible and applica-
ble to black-box applications. For example, Chiappa (2019)
proposes to correct observations adversely affected by the
sensitive attribute to form a new prediction.

However, all the prior works (Tartaglione et al., 2021; Chi-
appa, 2019; Thomas&Kovashka, 2021; Georgopoulos et al.,
2021) focused on the group fairness definition which is spec-
ified as conditional independence statements in the binary
classification setting. Contrary to them, our work seeks to
study fairness in segmentation tasks.

2.2 Fairness in Medical Imaging

As deep learning models become increasingly integrated
into medical imaging (Nie & Shen, 2020; Sitenko et al.,
2021; Zhang & Ma, 2021), one primary concern is whether
such algorithms are being employed in an ethical and fair
way (Ahmad et al., 2020; Gichoya et al., 2021; Chen et
al., 2021). Most of the previous works focus on the fair-
ness issues in medical imaging classification (Zhang et al.,
2022a; Seyyed-Kalantari et al., 2021a, b; Petersen et al.,

2022). Seyyed-Kalantari et al. (2021b) demonstrate the dis-
parities of algorithmic underdiagnosis between protected
groups defined by sex, race, insurance, and age for three pub-
licly available chest X-ray pathology classification datasets.
Seyyed-Kalantari et al. (2021a) state that classifiers are found
to consistently and selectively amplify the existing biases
towards patients under-represented in the training set. These
effects are worse on intersectional subpopulations, e.g. Black
females, and persist across three large andmulti-source chest
X-ray datasets. Zhang et al. (2022a) benchmarked the per-
formance of several debiasing models on the task of chest
X-ray image classification, focusing on group fairness and
minimax fairness. Petersen et al. (2022) assessed the robust-
ness of the trained models in the face of varying dataset
splits, sex composition, and stage of disease in MRI-based
Alzheimer’s disease classification. They found performances
of deep networks for male and female test subjects are
strongly dependent on the sex proportion in the training set,
while the conventional linear regression method is robust
to this variation. Du et al. (2022) studied the bias issue on
sensitive attributes unrelated to demographic factors. They
mitigate the performance disparity on different skin types
using contrastive learning in dermatology classification.

Recently, some researchers studied group fairness in the
field of medical imaging segmentation. These works (Puyol-
Antón et al., 2021; Lee et al., 2022; Ioannou et al., 2022;
Yuan et al., 2022) studied the bias towards different racial
and sex populations. Puyol-Antón et al. (2021) performed
extensive experiments to assess the segmentation perfor-
mances of racial and gender groups with the cardiac MR
image dataset. They are the first to show racial bias exists in
deep learning-based segmentation models. Similarly, Lee et
al. (2022) studied the effects of data imbalance on racial and
sex bias in cardiac MR segmentation. Ioannou et al. (2022)
trained multiple trials using different levels of sex imbalance
in white subjects in brainMR segmentation task. They found
that there are significant sex and race biases in the segmenta-
tion model and these biases have a strong spatial component
with some brain regions exhibiting much stronger bias than
others. Moreover, Puyol-Antón et al. (2021) proposed three
debiasing baselines, which were inspired by works from the
literature on fairness in classification.

However, previous works were devoted to measuring
group fairness in terms of demographic factors (e.g. sex
and race) but neglected other properties (e.g. pathology and
morphology (Vleugels et al., 2017)) related to the object of
interest. In our work, we focus on group fairness in terms of
the morphological attributes of lesions.

2.3 Polyp Segmentation

Early solutions for automated polyp segmentation were
mainly based on low-level features, for example, texture
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(Mamonov et al., 2014), geometric features (Mamonov et
al., 2014), and superpixels (Maghsoudi, 2017; Garcia-Peña
et al., 2022). But they are far from satisfactory due to the poor
representation ability of these conventional hand-crafted fea-
tures.

In recent years, the development of polyp segmenta-
tion has been greatly promoted by deep learning techniques
(Simonyan & Zisserman, 2014; Long et al., 2015; He et
al., 2016; Li et al., 2019). Akbari et al. employed a fully
convolutional neural network to solve the polyp segmenta-
tion, and their results are significantly better than traditional
works. The encoder-decoder architectures, such as U-Net
(Ronneberger et al., 2015), U-Net++ (Zhou et al., 2018)
and ResUNet++ (Jha et al., 2019) showed their excellent
performance in this field. Several works (Murugesan et al.,
2019; Fang et al., 2019) attempted to employ auxiliary tasks
or constraints to facilitate representation learning. Muruge-
san et al. (2019) proposed a multi-task learning framework
that leverages distance estimation and boundary prediction
tasks to assist polyp segmentation mask prediction. Sim-
ilarly, Fang et al. (2019) used the area and boundary as
constraints to guide learning better feature representations.
ACSNet (Zhang et al., 2020) combines the global context and
local details in the decoder to deal with the shape and size
variance of polyps. PraNet(Fan et al., 2020) aggregates the
multi-scale features and extract silhouette according to the
local features. SCRNet(Wu et al., 2021) design the semantic
calibration and refinement modules to bridge the semantic
gap between different feature maps. Cheng et al. (2021) con-
centrated on the contour accuracy of predictions because of
the blurred boundary between polyps and surroundings, and
they refine the boundary by calculating eight oriented deriva-
tives at each pixel. In Zhao et al. (2021), authors proposed a
multi-scale subtraction network to eliminate redundancy and
complementary information between themulti-scale features
in conventional encoder-decoder architecture (Ronneberger
et al., 2015). Zhang et al. (2022b) designed a dynamic ker-
nel mechanism to use global context features to generate the
segmentation head and iteratively update it by the extracted
lesion features.

The recent vision transformer techniques (Dosovitskiy et
al., 2020; Liu et al., 2021) significantly boosted the develop-
ment of polyp segmentation tasks. Wang et al. (2022) used a
pyramid Transformer encoder to improve the generalization
ability. Dong et al. (2021) took into account the differences in
contribution between different-level features, and designed
an effective mechanism to fuse them in transformer architec-
ture. TransFuse (Zhang et al., 2021) aggregated convolutional
networkwith a transformer to obtainmore discriminative fea-
ture representations.

However, the above previous works are mostly concerned
with higher performance, such as the Dice similarity score.
There is a growing interest in going beyond mere perfor-

mance by measuring and addressing the robustness, fairness,
interpretability, and generalization aspects of deep learning-
based methods. To the best of our knowledge, our work is the
first to explore more valuable metrics in colonoscopic polyp
segmentation.

2.4 Prototype Learning

Prototype, also known as proxy (Movshovitz-Attias et al.,
2017), or center (Wen et al., 2016), is the one representa-
tive of a class among training examples (Kim et al., 2021).
Contrary the softmaxweights in decisionmaking, prototypes
(Yang et al., 2018; Wang et al., 2019; Zhou et al., 2022), aim
to learn a latent feature spacewhere the prediction ismade by
calculating the distance between the test anchor and proto-
types of each class. Prototype learning has been proved more
robust on data scarcity paradigms, such as few-shot learning
(Xu et al., 2022; Li et al., 2021), open-set recognition (Shu et
al., 2020), incremental learning (Zhu et al., 2021) and object
category discovery (Rambhatla et al., 2021).

Arik and Pfister (2019) provided an interpretable model
that bases decisions on relevant prototypes. Zhou et al.
(2022) proposed a non-parametric alternative based on non-
learnable prototypes in semantic segmentation. The model
represents each class as a collection of prototypes, relying
on the mean features of several training pixels within that
class. Different from building instance-based prototypes, in
Chen et al. (2019), authors dissected an image into parts
and designed prototypes for parts of each object category,
then classified by combining evidence from part prototypes.
Kim et al. (2021) present an attention mechanism in per-
son re-identification by exploiting the prototype as guidance.
Kwon et al. (2021) proposed a prototype-based framework
using contrastive learning to learn discriminative represen-
tation such that features within the same class are close to
each other while features from different classes are far away.
In the domain adaptation field, Yue et al. (2021) leveraged
prototypes to perform cross-domain instance-to-prototype
matching to transfer knowledge fromsource to target domain.
Moreover, Rambhatla et al. (2021) proposed a unified frame-
work to iteratively memorize the past samples by prototypes
and use prototypes to discover novel object discovery.

In this work, we demonstrate the debiasing ability of pro-
totype learning. The proposed framework can adaptively
update the known prototypes and discover the unknown
or abnormal prototypes without corresponding sensitive
attribute labels. Our update paradigm is similar to Kim et
al. (2021) since both methods consider the hard negatives
of prototypes to increase the discriminative ability of pro-
totypes. The key distinction is that their method works in
a fully-supervised manner with initialized fixed number of
prototypes, while we design to update prototypes in an unsu-
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(a) (b) (c)

Fig. 3 aWe resample images of each subtype by varying imbalance factors (IF) from 10 to 100. b The standard deviation of segmentation accuracy
on six types varies along with imbalance factors. (c) The detailed segmentation accuracy on all subtypes with different imbalance factors

pervised manner and the number of prototypes is dynamic
depending on encounter samples.

3 Pattern Bias

In this section, we first introduce the statistical bias previ-
ously studied in MR cardiac and brain segmentation tasks,
then we delineate the pattern bias issues in polyp segmen-
tation. Finally, we conduct an empirical study to further
investigate the cause of the bias problem in polyp segmenta-
tion task.

3.1 Preliminary

Deep learning techniques have increasingly achieved remark-
able performance in medical image segmentation applica-
tions. However, preliminary works (Ioannou et al., 2022;
Lee et al., 2022; Puyol-Antón et al., 2021) demonstrate that,
for brain and cardiac MR segmentation tasks, deep learning
models have been shown to exhibit discrepant results towards
demographic groups when trained in imbalanced datasets.

The structure and anatomy of the brain is widely known
to vary between different demographic groups such as gen-
der (Cosgrove et al., 2007) and race (Isamah et al., 2010).
This situation is the same with cardiac structure (Kishi et al.,
2015). Based on the above factors, prior findings (Ioannou et
al., 2022; Puyol-Antón et al., 2021) suggest that such visual
variations of structures of organs and lesions combined with
imbalance distribution lead to statistical bias in segmentation
performance. Moreover, Du et al. (2022) has demonstrated
that other protected attributes besides demographic factors
(e.g. visual skin type) can induce the biased prediction.

3.2 Polyp Pattern Bias

Based on the conclusions mentioned above, we argue that
statistical bias exists not only among demographics (e.g. gen-
der and race) but also among the properties that can directly

affect the visual pattern of the objects. Therefore, we spec-
ulate that algorithms can exhibit disparity of performances
towards specific visual patterns as they are usually distributed
unevenly in a dataset.

However, the definitions of visual patterns aremultifarious
and changeable in various imaging fields and tasks (Moay-
eri et al., 2022). In polyp segmentation, Paris Classification
(Axon et al., 2005;Vleugels et al., 2017) is a gold standard for
the endoscopic classification of gastrointestinal superficial
neoplastic lesions. It divides polyps into different subtypes by
describing the morphology of superficial neoplastic polyps
in the esophagus, stomach, and colon. Here, we utilize Paris
Classification as the division criterion to conduct all subse-
quent experimental studies.

3.3 Empirical Study

We conduct an empirical study to further prove the above
speculation about the cause of bias on the recently published
dataset PICCOLO (Sánchez-Peralta et al., 2020) (More
details in Sect. 5). Based on the Paris Classification crite-
rion, we partition its training data into six subtypes. The data
distribution is severely unbalanced as shown in Fig. 2.

Following dataset settings in long-tail (Alshammari et al.,
2022) and imbalance learning (Cao et al., 2019), we recon-
struct an imbalanced training set and a balanced validation
set, by varying the Imbalance Factor (IF, the ratio of the num-
ber of samples in the largest subtype and that of the smallest).
The number of the largest subtype is preserved and that of
the other subtypes is re-sampled exponentially according to
the value of IF. The distributions of all subtypes are shown in
Fig. 3. Then we evaluate the effect of the imbalance factor on
the performance of the vanilla U-Net model (Ronneberger et
al., 2015) on all subtypes.

The experimental results of standard deviations and
detailed segmentation accuracy towards different imbalance
factors are presented in Fig. 3. From the results, we can
obtain several vital observations. First, as the imbalance fac-
tor increases, the standard deviation of subtypes growswhich
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Fig. 4 The overall illustration of our proposed prototype-based frame-
work. Images sampled from set X are passed through the encoder E .
Then the object pattern embeddings are computed by function φ. In
prototype learning, we distinguish whether the semantics of pattern
embeddings differ from existing prototypes based on computed simi-
larity. Discovery: If the object is unknown (dissimilar), we utilize its

content to construct a new prototype. Update: If the object is known
(similar), we update its most relevant prototype. In prototype infer-
ence, we enhance the representation ability of features by incorporating
similar prototypes. Finally, the predictions from decoder D and ψ are
supervised by ground truths

indicates the increasing severity of segmentation disparity.
Second, the segmentation accuracy on some minority sub-
types (ID = 3 and 5) drastically decreases when reducing
their samples while the performance of the major subtypes
remains relatively stable. Third, there is no strictly positive
correlation between the segmentation performance on sub-
types and their sample size. For instance, the performance
on subtype ID = 2 is much greater than that of subtype ID
= 1, even though the number of samples of subtype ID=2 is
much less. The result of a balanced setting, which achieves
considerable bias towards subtype ID = 2, also supports this
conclusion. This phenomenon is probably induced by the
complexity of the visual pattern of the subtype, e.g. its intra-
subtype variation is much smaller than that of the others.

In summary, we can see the performance is significantly
biased under the imbalanced distribution of different sub-
types. Constructing a completely balanced dataset seems to
be a promising way to pursue the model’s fairness. How-
ever, it is laborious as some minority groups are naturally
scarce in normal scenarios, especially in clinical applica-
tions. In addition, to mitigate the statistical disparity issue
in imbalanced datasets, collecting corresponding protected
attributes of objects is time-consuming for experts. There-
fore, it’s important to build automated models that can make
fair predictions without relying on additional annotations.

4 Method

4.1 Overview

Since the visual patterns are different across each subgroup,
current algorithms tend to performwell in subjects withmore

common visual patterns and poorly in those with rare pat-
terns. Therefore, we aim to utilize prototypes to discover and
extract different visual patterns of objects from bothmajority
and minority subgroups.

Theproposedprototype-based frameworkgradually learns
prototypes by aggregating similar object patterns and separat-
ing different object patterns. The stored prototypes are further
used to enhance the feature representative ability. In partic-
ular, the network takes the input images and extracts visual
patterns from object feature representations. And we adap-
tivelymodel the similarities between different visual patterns
and perform two operations simultaneously: (1) discover
unknown patterns and (2) update known patterns. Finally,
we employ prototype inference by taking the current state of
the prototypes and features as input to enhance their semantic
representation and discrimination via a well-designed atten-
tion mechanism.

The remainder of this section is structured as follows. In
Sect. 4.2, we describe the base segmentation architecture. In
Sect. 4.3, we present how to extract the visual patterns of
objects from entire images. The prototype learning process
is presented in Sect. 4.4, and the prototype inference is pre-
sented in Sect. 4.5. Finally, we describe the loss function in
Sect. 4.6. The overview of the proposed framework is illus-
trated in Fig. 4.

4.2 Base Architecture

For a set of input images X and the corresponding segmen-
tation masks Y , our objective is to assign labels to the pixels
belonging to foreground regions. We adopt conventional U-
Net (Ronneberger et al., 2015) as the network backbone,
which consists of an encoder E = {e1(·), e2(·), . . . , e5(·)}
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and an decoderD = {d1(·), d2(·), . . . , d5(·)}. Given an input
image I ∈ R

3×H×W sampled from X , the extracted feature
representation from the kth encoder stage can be denoted as
f

′
k = ek(f

′
k−1) ∈ R

Ck×Hk×Wk , where Ck is the number of the
channels, Hk = H/2k and Wk = W/2k are the height and
width of the feature respectively. We discard the notation k
for clarity in the following sections.We cascade the proposed
prototype-based framework after the last encoding block to
discover the global semantics of objects since the last encod-
ing block contains more high-level semantic information and
fewer spatial details.

4.3 Object Pattern Extraction

Thedeep feature representationdepicts the differencebetween
the object and background at pixel-level granularity (Fu et
al., 2019; Huang et al., 2019). Nevertheless, pixel-level fea-
tures with spatial details can not model the visual pattern
of the entire object. We argue that the feature representation
could characterize the discrepancy between different sub-
groups of objects at condensed object-level granularity. Thus,
we leverage to learn the object pattern embedding with the
supervision of ground truth to facilitate the subsequent pro-
cedures.

Let the Object Pattern Extraction is denoted as φ(·). For
a given encoded feature f

′ ∈ R
C×H×W , we first design

a transformation function ψ(·), which is implemented by
conv(3x3) → BN → ReLU → dropout → conv(1x1) →
Sigmoid, to calculate a coarse segmentation map s =
ψ

(
f

′) ∈ R
H×W which indicates the probability of each

pixel belonging to the object region. Then the object pattern
embedding f is computed as below:

f = φ(f
′
) = GAP

(
s � f

′) ∈ R
C (1)

where � is the element-wise multiply and GAP denotes the
Global Average Pooling. With such an operation, we extract
the global pattern information of the object and improve the
semantic consistency inside the object region by suppressing
possible background noise. Then we present details of each
component of our proposed prototype-based framework.

4.4 Prototype Learning

We propose a novel prototype learning method to adaptively
aggregate similar visual patterns and separate different visual
patterns in an unsupervised way. Similar visual patterns will
be allocated to the same prototype. And the rare patterns
of minority subgroups will be stored in a unique prototype.
Therefore, we can improve the representational capability of
both the majority and minority, and hence mitigate the bias
issue.

The prototypes are denoted as a collection of object pat-
tern embeddings Mt = {mi

t ∈ R
C | i = 1, . . . , N } at

time t ∈ {1, . . . , T }. Our method performs two operations
simultaneously: 1) Unknown Pattern Discovery: discover-
ing the unknown (which can also be viewed as "dissimilar")
visual patterns of objects based on existing prototypes, and 2)
Known Pattern Update: updating the known patterns stored
in existing prototypes using similar objects.

4.4.1 Unknown Pattern Discovery

Concretely, given the obtained object pattern embedding f ,
we first establish the association with current prototypes by
computing their correlation. The soft weightwi is calculated
using the cosine similarity as follows:

wi = f�mi
t

‖f‖2
∥∥mi

t

∥∥
2

, i ∈ 1, ..., N (2)

wheremi
t is the i-th prototype ofMt at the time step t . The

weight wi , i ∈ 1, ...N denotes the correlation between the
object pattern embedding and existing prototypes.

Threshold μ is then utilized to decide whether the object
has a similar or dissimilar visual pattern with respect to pro-
totypes. If wi < μ,∀i ∈ {1, . . . , N }, where μ ∈ [0, 1] is
conventionally set to 0.5, the object f is considered outlier
from the existing prototypes, which implies that the visual
pattern is unknown for current knowledge stored in exist-
ing prototypes. This condition prompts us to initialize a new
prototype using the content of the object pattern embedding.
Thus, the new state of prototypes at the time step t + 1 is
denoted as:

Mt+1 = {mi
t+1 ∈ R

C | i = 1, . . . , N + 1} (3)

where mN+1
t+1 = f and mi

t+1 = mi
t for i ∈ {1, . . . , N }.

4.4.2 Known Pattern Update

On one hand, we discover a new visual concept of objects
from the coming training data; on the other hand, we also
successively update and enrich the known visual knowledge
stored in the prototypes by incorporating similar object pat-
tern embeddings.

Concretely, if wi > μ, ∃i ∈ {1, . . . , N }, the feature
embedding f matches to existing prototypes, which implies
that the visual appearance of the object is known for cur-
rent knowledge. In this situation, we can update the matched
prototype by aggregating its previous state with the current
object pattern embedding. Then we detail the conventional
naive prototype updating mechanism and our proposed
Adaptive Momentum Update.
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Preliminary.We first need to identify which prototype is
the most relevant to the current object pattern embedding f :

p = argmax
i∈{1...N }

wi (4)

The straightforward way to update the content of prototypes
is using the exponential moving average as follows:

mp
t+1 ← ηmp

t + (1 − η)f (5)

where η ∈ [0, 1] is an update momentum characterizing
the amplitude of the adjusting distance of the prototype in
latent space. It is normally set to a relatively large value, e.g.
0.9, the weight of the prototype mp

t in Eq. (5) is extremely
larger than that of object pattern embedding f , which indi-
cates that the adjusting distance of mp

t is much less than f .
Thus the distribution of the prototypes in embedding space
varies successively by updating the prototypes online. This
operation allows contents to be retained in the correspond-
ing prototype while progressively erasing older or irrelevant
information, and hence can stabilize the remembrance and
updating of long-term knowledge. The separability between
prototypes is correlated to the discrimination of different
object pattern embeddings.

However, in hard negative scenarios, we argue that the
conventional updating mechanism obstructs the learning of
discrimination between prototypes. As shown in Fig. 5a, the
embedding f is used to update its nearest prototype mp

t , the
small value of adjusting the distance of the prototype in the
update procedure hampers the differentiation between pro-
totypes and their close neighbors. Therefore, the traditional
method encounters a dilemma: a large momentum value
can stabilize the prototype updating but probably decrease
separability between prototypes, while a small momentum
value can increase separability between prototypes but insta-
bilize the updating procedure. This situation necessitates an
advanced update mechanism to explicitly increase separabil-
ity among prototypes and ensure learning stability.

Adaptive Momentum Update. Therefore, we propose
a novel Adaptive Momentum Update mechanism by tak-
ing into account the structural information of prototypes and
input data. Concretely, for the prototype mp

t involving the
update process, we first identify its hardest negative by cosine
similarity:

q = argmax
i∈{1...N }\p

mp�
t mi

t∥∥mp
t

∥∥
2

∥∥mi
t

∥∥
2

(6)

When the prototypemp
t ismore similar to its hard negative

mq
t than to the object pattern embedding f , the weight of f

on update process should be greater compared to that ofmp
t .

So we define our Adaptive Momentum Update process as
follows:

Fig. 5 Illustration of different prototype updatingmechanisms in a hard
negative scenario. aNaive mechanism, bOur adaptive mechanism. Our
proposed adaptive mechanism can explicitly increase the separability
between the prototype and its close neighbor

mp
t+1 ← wp

wq + wp
mp

t + wq

wq + wp
f (7)

where wp and wq represent the similarity, computed from
Eq. (2), between the object pattern embedding f with the pro-
totype mp

t and mq
t , respectively.

As shown in Fig. 5b, in a hard negative scenario, as wq ≈
wp, the adaptive momentum can considerably pull away the
prototype from its close neighbor, and hence increase separa-
bility between prototypes. The inter-difference of the learned
prototypes can facilitate distinguishing discriminative visual
patterns of both majority and minority groups of objects.
Eventually, the stored knowledge especially rarely seen in
training improves prediction performance on minority, and
hence improves the fairness of the algorithm. Furthermore,
as wq � wp, which means prototypes and their neigh-
bors already have enough discrimination, the small adjusting
distancemaintains the stability of the prototype learning pro-
cedure.

4.5 Prototype Inference

It is critical to retrieve appropriate and relevant knowledge
from the prototypes and assimilate it to enhance the represen-
tation of target features, especially for minority cases. The
conventional attention mechanism (Fu et al., 2019; Wang
et al., 2020; Yuan et al., 2020) achieves the adaptive spa-
tial highlighting of the features at the pixel-wise granularity.
But prototypes are supposed to own conceptual knowledge
of visual patterns of integral objects without spatial details.
Therefore, we propose incorporating global prototypes into
the spatial details of feature representations.
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4.5.1 Context Encoding

Concretely, we first pre-process the prototypes using the spa-
tial content of the target feature f

′
:

a j = σ1(Wu(M)) × σ2(Wv(f
′
))∑HW

k=0 σ1(Wu(M)) × σ2(Wu(f
′
))

(8)

where A = {a1, ..., aHW } ∈ R
N×HW , and × is matrix

multiplication, Wu and Wv are 1x1 two convolution layers
respectively, σ1(·) and σ2(·) denote tensor reshape operators.
A depicts the encoded association of prototypes on the fea-
ture of each pixel. Then, we need to calculate the similarity
coefficient between f

′
and all the prototypes:

E = σ1(A) × σ2(f
′
) ∈ R

C×N (9)

Therefore, E represents the context information between
knowledge contained by learned prototypes and the target
feature.

4.5.2 Feature Enhancement

Then we need to select the useful context semantics to
enhance the representation ability of f

′
. We leverage the

global max-pooling-layer ε(·) to identify the most context
from E:

e = Sigmoid(Wz(ε(E))) (10)

Hence e ∈ R
C reflects the semantic correlation of the target

feature and the prototype most relevant to it. We enhance the
feature representation by composition:

f
′′ = f

′ � e (11)

where � indicates the element-wise multiplication. This
operation allows the most similar knowledge from the exter-
nal prototypes to be incorporated into the features. For the
minority subtypes with rare visual patterns, the recalled sim-
ilar conceptual knowledge increase the representative ability
of features and hence mitigates the bias issue.

4.6 Loss Functions

We utilize a deep supervision strategy for three interme-
diate maps of the decoder branch to jointly optimize the
model parameters. In addition, the coarse segmentation map
s is guided by the supervision which is acquired by down-
sampling the ground-truth segmentation mask.

Similar to the previous study (Fan et al., 2020), we employ
the combination of a Weighted Binary Cross Entropy loss

Lwbce and a Dice loss Ldice as the total loss function:

L = Lwbce + Ldice. (12)

In theweighted binary cross-entropy loss, each pixel (i, j)
will be assigned aweight according to the difference between
the center pixel and its surroundings:

αi j = ‖
∑

m,n∈Ui j
ymn∑

m,n∈yi j 1
− yi j‖ (13)

where Ui j is the area surrounding the target pixel and yi j is
the ground-truth label. Thus, hard pixels such as boundaries
correspond to a larger weight and hence get more attention
during training. In contrast, simple pixels like the inner area
will be assigned a smaller weight. So the weighted binary
cross entropy loss is as shown in:

Lwbce =
∑

i, j

(
1 + γαi j

)Lbce(i, j)∑
i, j γαi j

(14)

where γ is a hyper-parameter, hi j is the prediction of the
pixel at location (i, j), andLbce(i, j) is binary cross entropy
function in pixel (i, j):

Lbce(i, j) = −yi j log(hi j ) − (1 − yi j ) log(1 − hi j )) (15)

The Dice loss is calculated as follows:

Ldice = 1 − 2
∑

i, j hi j yi j∑
i, j hi j + ∑

i, j yi j
(16)

Ldice can better compare the structural similarities between
the prediction and ground truth. Therefore, our strategy could
consider both pixel-level and region-level measurements.

5 Experiments

In this section, we perform extensive experiments to evaluate
ourmethods from two perspectives of segmentation accuracy
and fairness. We conduct ablation studies to verify the effec-
tiveness of each component and explore the effect of various
parameter values. In addition, we discuss further revealing
the intrinsic properties of prototypes and verify our design
intuition.

5.1 Datasets

To extensively verify the effectiveness of our method in
segmentation fairness, we conduct experiments on various
medical imaging domain: three popular benchmark datasets
in colonoscopy for polyp segmentation, and one widely-used
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benchmark dataset in dermatoscopy for skin lesion segmen-
tation.
Kvasir-SEG (Jha et al., 2020) consists of images and annota-
tions verified by experienced endoscopists, including several
classes showing anatomical landmarks, pathological find-
ings, or endoscopic procedures in the GI tract. The anatomi-
cal landmarks include Z-line, pylorus, cecum, etc., while the
pathological finding includes polyps, colitis, etc. The data is
collected using endoscopic equipment at VestreVikenHealth
Trust in Norway. We choose the pixel-wise annotations of
polyps, and we randomly split the 1000 samples into 600
training images, 200 validation images, and 200 test images.
EndoScene (Vázquez et al., 2017) is a widely-used bench-
mark for binary polyp segmentation in colonoscopy. It
consists of 912 white-light images and the corresponding
pixel-wise segmentation annotations.We follow the standard
protocol in Vázquez et al. (2017) with the constraint that the
lesions of the same patient should not appear in different
sets, and the default split setting that 547 training images
and 182 testing images, and 183 validating images. In order
to investigate the bias issue of models’ segmentation per-
formance, we adopt the Paris Classification (Vleugels et al.,
2017)which is perceived as the gold standard in colonoscopy,
to categorize lesions into different subtypes according to
polyp morphology for superficial neoplastic lesions in the
esophagus, stomach, and colon. The corresponding categor-
ical annotations on all images are extended by us and will be
released to facilitate the following study.
PICCOLO (Sánchez-Peralta et al., 2020) is a recently pub-
lished dataset collected in colonoscopy for polyp segmen-
tation. It comprises 3433 manually annotated images (2131
white-light images and 1302 narrow-band images), originat-
ing from 76 lesions from 40 patients, which are distributed
into training (2203 images), validation (897 images) and test
(333 images) sets assuring patient independence between
sets. In addition, clinical metadata involving themorphologi-
cal and pathological attributes including Paris Classification
is also provided for each lesion by default. It contains the
largest number of samples, and the polyps appearing on it
are much more complex and diverse than those on the other
two datasets. Since the imbalance distribution of all sub-
types inherently appears in itself, we decide to evaluate the
fairness of all approaches in original datasets without re-
manufacturing. Besides, the subtype named 0-IIb exists in
the test set but not in the training set, it hence can be regarded
as an out-of-distribution subgroup.
ISIC-2017 (Codella et al., 2018) is a widely-used bench-
mark for binary skin lesion segmentation in dermatoscopy.
It consists of 2750 high-resolution dermatoscopic images,
along with corresponding binary segmentation masks, which
are distributed into training (2000 images), validation (150
images), and test (600 images) sets assuring patient indepen-
dence between sets. In addition, clinical metadata involv-

ing pathological diagnosis of skin lesions (three subtypes:
melanoma, nevus, and keratosis) as well as patient demo-
graphics (age and gender) is also provided for each lesion by
default. Similar to findings in polyp segmentation datasets,
the data distribution on lesion diagnostic attributes is also
severely unbalanced.

5.2 Experimental Settings

5.2.1 Comparison Methods

Following the experimental settings of the previous study
(Fan et al., 2020), we adopt three medical image segmenta-
tion methods i.e., UNet (Ronneberger et al., 2015), UNet++
(Zhou et al., 2018) and ResUNet++ (Jha et al., 2019) as
the baseline comparisons. In the polyp segmentation task,
several state-of-the-art frameworks, i.e., PraNet (Fan et al.,
2020), ACSNet (Zhang et al., 2020), SCRNet (Wu et al.,
2021), SANet (Wei et al., 2021), CCBANet (Nguyen et al.,
2021) and MSNet (Zhao et al., 2021) are adopted as the
strong comparison approaches. Recently vision transformers
demonstrated promising performance in medical image seg-
mentation (Zhang et al., 2021; Dong et al., 2021; Valanarasu
et al., 2021), thus we further include two transformer-based
frameworks i.e., Swin Transformer (Liu et al., 2021) and
TransFuse (Zhang et al., 2021) for more exhaustive compari-
son. In the skin lesion segmentation task, several competitive
methods, i.e., MedT (Valanarasu et al., 2021), UNext (Vala-
narasu & Patel, 2022) and FATNet (Wu et al., 2022) are
adopted as the strong comparison approaches.

Following the experimental design of the preliminary
work (Puyol-Antón et al., 2021), we adopt four bias miti-
gation algorithms to examine the fairness of segmentation
accuracy on different polyp subtypes:
Group-Balanced Weighting (GBW): Being aware of the
protected attribute, this strategy aims to manipulate the
weight of the loss of individual samples to guarantee the
balance of different groups in loss computation. Specifically,
based on distributional frequencies of groups in training data,
majority groups are assigned to smaller weights whileminor-
ity groups are assigned to larger weights.
Group-Balanced Sampling (GBS): Being aware of the
protected attributes, this strategy aims tomanipulate the sam-
pling strategy to balance the group distribution. For each
mini-batch, the data are resampled by the protected attributes,
i.e., Paris Classification, and individuals are selected to
ensure each protected group is equally represented.
Attribute-aware Meta Learning (AML): This strategy is
originally proposed by Dwork et al. (2012) which includes
separate networks or branches trained for classifying differ-
ent sensitive attributes. It is employed in facial expression
recognition for biasmitigation (Xu et al., 2020). In our exper-
iments, we use a shared encoder and separate decoders to
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Table 1 Comparison results on three benchmarks of polyp segmentation

Method EndoScene Kvasir-SEG PICCOLO

MAE↓ Dice↑ IoU↑ F ↑ MAE↓ Dice↑ IoU↑ F ↑ MAE↓ Dice↑ IoU↑ F ↑
U-Net (15’) (Ron-
neberger et al., 2015)

0.032 0.839 0.772 0.688 0.520 0.842 0.760 0.679 0.061 0.605 0.519 0.422

U-Net++ (18’) (Zhou et
al., 2018)

0.045 0.729 0.646 0.637 0.052 0.842 0.760 0.703 0.054 0.682 0.615 0.581

ResUNet++ (19’) (Jha et
al., 2019)

0.063 0.524 0.443 0.436 0.056 0.811 0.727 0.648 0.058 0.602 0.537 0.470

PraNet (20’) (Fan et al.,
2020)

0.035 0.817 0.744 0.758 0.031 0.892 0.836 0.779 0.030 0.717 0.698 0.659

ACSNet (20’) (Zhang et
al., 2020)

0.030 0.852 0.787 0.816 0.032 0.893 0.838 0.790 0.035 0.788 0.733 0.696

SCRNet (21’) (Wu et al.,
2021)

0.029 0.853 0.788 0.821 0.036 0.886 0.825 0.804 0.049 0.666 0.594 0.492

CCBANet (21’)
(Nguyen et al., 2021)

0.034 0.839 0.765 0.781 0.031 0.894 0.834 0.783 0.028 0.763 0.717 0.686

SANet (21’) (Wei et al.,
2021)

0.031 0.842 0.772 0.789 0.029 0.902 0.845 0.789 0.035 0.792 0.730 0.696

MSNet (21’) (Zhao et al.,
2021)

0.035 0.808 0.745 0.760 0.034 0.890 0.831 0.787 0.032 0.813 0.753 0.722

LDNet (22’) (Zhang et
al., 2022b)

0.031 0.844 0.778 0.792 0.031 0.893 0.835 0.775 0.028 0.829 0.772 0.737

Swin (21’) (Liu et al.,
2021)

0.032 0.839 0.723 0.782 0.028 0.902 0.838 0.712 0.028 0.823 0.764 0.735

TransFuse (21’) (Zhang
et al., 2021)

0.033 0.824 0.764 0.735 0.032 0.898 0.834 0.759 0.029 0.777 0.709 0.645

Ours 0.028 0.858 0.795 0.826 0.027 0.912 0.859 0.812 0.018 0.860 0.825 0.786

The best and second best results are highlighted and underlined

perform object segmentation and protected attribute classifi-
cation.
Stratified GroupModel (SGM): Contrary to the above two
approaches, this strategy assumes that the protected attributes
are accessible at inference as well as training time. It applies
an independent segmentation model for each group. We ini-
tially train the vanilla U-Net (Ronneberger et al., 2015) using
the unbalanced full training data and then fine-tune separated
models using samples of protected groups.

Compared to the above debiasing approaches, our method
does not need any supervision from the protected attributes
during training. For a fair comparison, we implement the
above methods using the same U-Net architecture.

5.2.2 Evaluation Metrics

The performance of all methods is evaluated from three
aspects: effectiveness which identifies the overall segmen-
tation accuracy, fairness which measures the segmentation
disparity on different subgroups and trade-off which com-
bines the effectiveness and fairness.
Effectiveness: Following the previous work (Fan et al.,
2020), we evaluate segmentation performances from pixel

precision, region similarity, and contour accuracy.Weemploy
mean absolute error (MAE) to calculate pixel-level errors. To
measure the region-based segmentation similarity, we utilize
the Dice similarity coefficient (Dice), and the intersection-
of-union coefficient (IoU). For contour accuracy, we apply
the boundaryDicemeasurement (F). Concretely, let the con-
tours of the predictionmask h and ground truth y are denoted
as ch and cy , respectively. The precision Pc and recall Rc

between ch and cy can be calculated by a bipartite graph
matching (Martin et al., 2004). Thus, the boundaryDice coef-
ficient is defined as:

F = 2PcRc

Pc + Rc
(17)

Among these evaluationmetrics, a higher value ofDice, IoU,
F and a lower value of MAE indicate better segmentation
results.
Fairness: Following the previous study (Puyol-Antón et al.,
2021), we employ the same metrics to evaluate fairness: the
standard deviation (SD) and the skewed error ratio (SER) of
the Dice value. The standard deviation measures the amount
of disparity of the Dice values between different subtypes.
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Table 2 Quantitative results of fairness on PICCOLO dataset

Method Effectiveness Fairness Trade-off

0-IIa Is Ip Isp Unknown 0-IIa/c 0-IIb Overall↑ SD↓ SER↑ CAI↑
U-Net (15’) (Ron-
neberger et al., 2015)

0.679 0.932 0.658 0.610 0.661 0.350 0.326 0.605 0.193 0.342 0

Group-Balanced
Weighting

0.683 0.953 0.843 0.799 0.646 0.722 0.402 0.667 0.162 0.415 0.047

Group-Balanced Sam-
pling

0.728 0.943 0.866 0.895 0.605 0.734 0.376 0.659 0.182 0.392 0.033

Attribute-aware Meta
Learning

0.631 0.947 0.626 0.856 0.687 0.740 0.352 0.650 0.177 0.365 0.031

Stratified Group Model 0.693 0.954 0.853 0.756 0.612 0.699 0.399 0.652 0.164 0.412 0.038

PraNet (20’) (Fan et al.,
2020)

0.788 0.951 0.914 0.896 0.703 0.821 0.374 0.717 0.183 0.386 0.061

ACSNet (20’) (Zhang et
al., 2020)

0.855 0.962 0.916 0.950 0.813 0.777 0.483 0.788 0.153 0.496 0.112

SCRNet (21’) (Wu et al.,
2021)

0.759 0.934 0.874 0.664 0.709 0.795 0.190 0.666 0.227 0.195 0.014

CCBANet (21’)
(Nguyen et al., 2021)

0.876 0.953 0.925 0.879 0.786 0.859 0.365 0.763 0.187 0.377 0.082

SANet (21’) (Wei et al.,
2021)

0.856 0.952 0.875 0.932 0.788 0.825 0.569 0.792 0.118 0.594 0.131

MSNet (21’) (Zhao et al.,
2021)

0.870 0.959 0.917 0.949 0.783 0.858 0.647 0.813 0.102 0.671 0.150

LDNet (22’) (Zhang et
al., 2022b)

0.835 0.952 0.931 0.918 0.815 0.835 0.718 0.829 0.076 0.751 0.171

Swin (21’) (Liu et al.,
2021)

0.862 0.951 0.924 0.912 0.849 0.880 0.569 0.823 0.119 0.594 0.146

TransFuse (21’) (Zhang
et al., 2021)

0.820 0.954 0.911 0.866 0.841 0.842 0.387 0.777 0.175 0.399 0.095

Ours 0.858 0.953 0.900 0.862 0.914 0.864 0.746 0.860 0.060 0.780 0.194

Best and second best results are highlighted and underlined. All methods are reproduced using the officially released codes

The skewed error ratio is calculated by the ratio of the highest
error rate to the lowest error rate among different subtypes,
which can be denoted as

SER = ming
(
1 − Diceg

)

maxg
(
1 − Diceg

) (18)

where g represents different subgroups. Among these two
metrics, a higher value of SER and a lower value of SD indi-
cate better fair results.
Trade-off: We modify the Conjunctive Accuracy Improve-
ment (CAI) (Paul et al., 2022) which is proposed to measure
both the effectiveness and fairness of algorithms. The new
CAI is defined as the weighted linear combination of two
terms including the (signed) standard deviation among sub-
types decrement and the (signed) overall accuracy improve-
ment, whose computed with respect to a baseline and the
candidate debiased algorithm:

CAI = (SDb − SDd) + (Diced − Diceb)

2
(19)

where SDb and SDd denote the standard deviation of the
baseline and the debiasedmodel. Similarly, Diceb and Diced

are the Dice scores of the baseline and the debiasing model,
respectively. A higher value of CAI represents greater supe-
riority of the debiasing method.

5.2.3 Implementation Details

Our model is implemented in Pytorch and trained on a single
NVIDIA RTX 3090.We adopt the pretrained ResNet-34 (He
et al., 2016) as the encoder backbone of U-Net architecture.
Wang et al. (2020) reveals the feature "slow drift" phenom-
ena, which speculates features change drastically at the early
phase of training but become relatively stable within a certain
number of training iterations. Based on this observation, we
leverage the warm-up strategy to apply prototype learning
and inference after 30 epochs, allowing the model to reach a
certain local optimal field where feature embeddings and the
learned prototypes become more stable.

123



International Journal of Computer Vision

Table 3 Quantitative results of fairness on EndoScene dataset

Method Effectiveness Fairness Trade-off

Is Isp Ip Overall↑ SD↓ SER↑ CAI↑
U-Net (15’) (Ronneberger et al., 2015) 0.873 0.916 0.512 0.839 0.181 0.554 0

Group-Balanced Weighting 0.909 0.905 0.542 0.848 0.172 0.591 0.009

Group-Balanced Sampling 0.906 0.908 0.543 0.847 0.172 0.593 0.009

Attribute-aware Meta Learning 0.886 0.914 0.522 0.844 0.178 0.567 0.003

Stratified Group Model 0.887 0.852 0.453 0.799 0.197 0.505 −0.028

PraNet (20’) (Fan et al., 2020) 0.899 0.908 0.472 0.837 0.204 0.515 −0.013

ACSNet (20’) (Zhang et al., 2020) 0.894 0.902 0.552 0.844 0.163 0.608 0.011

SCRNet (21’) (Wu et al., 2021) 0.826 0.790 0.306 0.724 0.237 0.363 −0.086

CCBANet (21’) (Nguyen et al., 2021) 0.901 0.876 0.594 0.839 0.139 0.656 0.021

SANet (21’) (Wei et al., 2021) 0.892 0.912 0.510 0.842 0.185 0.555 −0.001

MSNet (21’) (Zhao et al., 2021) 0.891 0.861 0.428 0.808 0.212 0.474 −0.031

LDNet (22’) (Zhang et al., 2022b) 0.886 0.914 0.523 0.844 0.178 0.567 0.004

Swin (21’) (Liu et al., 2021) 0.929 0.898 0.504 0.848 0.193 0.538 −0.004

TransFuse (21’) (Zhang et al., 2021) 0.872 0.885 0.583 0.833 0.139 0.655 0.018

Ours 0.928 0.888 0.631 0.858 0.132 0.676 0.034

The best and second best results are highlighted and underlined. All methods are reproduced using the officially released codes

Table 4 Quantitative results of fairness on ISIC-2017 dataset

Method Effectiveness Fairness Trade-off

Nevus Melanoma Keratosis Overall↑ SD↓ SER↑ CAI↑
U-Net (15’) (Ronneberger et al., 2015) 0.829 0.686 0.590 0.766 0.099 0.415 0

Group-Balanced Weighting 0.858 0.749 0.737 0.818 0.055 0.532 0.048

Group-Balanced Sampling 0.846 0.723 0.698 0.800 0.065 0.509 0.034

Attribute-aware Meta Learning 0.844 0.753 0.716 0.807 0.054 0.551 0.043

Stratified Group Model 0.852 0.709 0.655 0.795 0.083 0.429 0.023

UNet++ (18’) (Zhou et al., 2018) 0.865 0.786 0.760 0.835 0.044 0.559 0.061

ResUNet++ (19’) (Jha et al., 2019) 0.799 0.661 0.512 0.729 0.117 0.411 −0.027

MedT(21’) (Valanarasu et al., 2021) 0.741 0.618 0.554 0.689 0.078 0.579 −0.028

UNext (22’) (Valanarasu & Patel, 2022) 0.852 0.792 0.755 0.826 0.040 0.603 0.059

FATNet (22’) (Wu et al., 2022) 0.857 0.781 0.774 0.830 0.038 0.629 0.063

Ours 0.874 0.795 0.805 0.848 0.035 0.617 0.073

The best and second best results are highlighted and underlined. All methods are reproduced using the officially released codes

To enlarge the data diversity, we utilize data augmentation
strategies such as random horizontal and vertical flips, zoom,
shift, and rotation. All augmented images are then resized to
352× 352 for training. We deploy the Adam optimizer with
an initial learning rate of 1e-4, a batch size of 32, and a
maximum epoch number of 150.

5.3 Results

5.3.1 Performance on Effectiveness

We validate the effectiveness of the proposed approach on
three widely-used benchmarks, by comparing it with previ-

ous state-of-the-art polyp segmentation methods including
both convolutional networks and transformers.

The quantitative results are exhibited in Table 1. On
EndoScene, our proposed method outperforms all meth-
ods with a relatively marginal increment of all metrics. On
Kvasir-SEG, in particular, our model further raises the previ-
ous best results from0.902/0.845/0.804 to 0.912/0.859/0.812
in terms of Dice/I oU /F , respectively. On PICCOLO, our
method significantly advances the state-of-the-art results
from 0.829 to 0.860 in Dice. The improvement in I oU ,
MAE , and F are also substantial, achieving 0.825, 0.018,
and 0.786, respectively. It is noteworthy that the perfor-
mance of the vision transformer on PICCOLO is obviously
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Fig. 6 Qualitative results of colonoscopy polyp segmentation. Especially on minority subtypes, e.g. 0-IIb, 0-IIa/c and Unknown, our method
produces more accurate segmentation results compared with other State-of-the-art models

better than that on EndoScene. Since PICCOLO has more
diverse lesions and complex scenes than those on the other
two datasets, it indicates the vision transformer owns the
capability to better handle massive samples and complex
circumstances which is consistent with the recent finding
(Bhojanapalli et al., 2021). These observations suggest that
our prototype-based representation learning method is more
applicable in more diverse lesions in the practical clinical
scenario.

5.3.2 Performance on Fairness

Experimental results are summarized in Tables 2, 3 and 4.
The Dice accuracy on different subtypes is reversely sorted
according to their amount in the training set.
State-of-the-Art Methods. First, the quantitative results
exhibit that our approach is fairer than state-of-the-art meth-
ods, especially inminority subtypes. For example, in Table 2,
CCBANet, SCRNet, PraNet, and our method achieve 0.187,
0.227, 0.183, and 0.060 on SD, respectively. Second, we
also notice that overall segmentation performance is approx-
imately related to the fairness of the model. For example, in
Table 2, from the SCRNet (Wu et al., 2021) to the LDNet
(Zhang et al., 2022b), the overall Dice grade increases from
0.666 to 0.829,meanwhile the SD score decreases from0.227
to 0.076. However, there are also exceptions. For exam-
ple, in Table 3, as the overall Dice of ACSNet is higher

than that of CCBANet, the SD score of ACSNet is still
higher than that of CCBANet. These observations indicate
that the introduction of advanced techniques, e.g. context
information, attention mechanisms, and strong pretrained
backbone, enhances the learning ability on rarely seen hard
cases, achievesmore improvement onminority subtypes, and
eventually contributes to the progress of fairness. But not all
advanced mechanisms benefit from fairness, e.g. in Table 3
PraNet owns equivalent overall Dice but heavily worse SD
compared with U-Net. As illustrated in Fig. 6, our method
can produce accurate segmentation masks on various polyp
subtypes.
Bias Mitigation Algorithms. The first five rows show the
comparison between the baseline and four approaches for
bias mitigation. We can notice that all bias mitigation strate-
gies gain considerable decrement on SD and increment on
SER. And they have great improvement onminority subtypes
while marginal raising on majority subtypes. For exam-
ple, in Table 2, the Group-Balanced Weighting significantly
promotes Dice score on 0-IIa/c from 0.350 to 0.722, but
marginally increasesDice score on 0-IIa from0.679 to 0.683.
In Table 4, the Attribute-aware Meta Learning improves
Dice score on Keratosis from 0.590 to 0.716, but marginally
increases Dice score on Nevus from 0.829 to 0.844. Among
all debiasing methods, Group-Balanced Weighting achieves
the best segmentation parity on all subgroups. Besides, we
can observe that Attribute-aware Meta Learning, which is
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Fig. 7 a The standard deviations of all bias mitigation algorithms under
different values of Imbalance Factor (IF) varying from 10 to 100. b, c,
d The detailed results on all subtypes. The segmentation disparity of

our method even obtains a minor decline with the increase of the imbal-
ance factor. And our method consistently outperforms other models by
a significant margin

a widely-used debiasing method in the classification task,
can’t mitigate the bias issue in segmentation well. This is
because of the intrinsic difference between bias issue in clas-
sification and our setting: the bias in classification is mainly
caused by the entanglement of deep features on sensitive
attributes and target attributes (Creager et al., 2019; Hong
& Yang, 2021; Tartaglione et al., 2021), while bias in seg-
mentation is induced by the imbalance distribution among
sensitive attributes. In summary, all debiasing methods can
reduce the bias issue at a certain intensity.

The experimental results in the last row of Table 2 and
Table 3 indicate that our proposed approach significantly out-
performs all debiasing comparisons in terms of all fairness
metrics. It is noteworthy that, compared to othermethods, our
approach obtains more significant improvement in minority
subtypes. For example, our method achieves the best or sec-
ond best performances on minority subtypes of unknown,
0-IIa/c, and 0-IIb. This demonstrates that our learned proto-
typesmainly representminority subtypes, and further verifies
that our framework is able to explore and store rare visual
patterns from massive and complex data.
Effect of Imbalance Factor. Consistent with the settings of
Sect. 3.3, we vary the Imbalance Factor (IF) of the training set
of PICCOLO to further evaluate the debiasing ability of our
method under different circumstances. From the results illus-
trated in Fig. 7, we can obtain several observations. First, our
method consistently outperforms other debiasing algorithms
by a significant margin, achieving the best performance on
all subtypes under different imbalance distributions. Second,
our method owns a greater ability against the increasing
data imbalance. For instance, as IF increases, the standard
deviation of our method only obtains a minor increment,
while those of the three debiasing algorithms(GBS, AML,
and SGM) gain a considerable increment. It is noteworthy
that the segmentation disparity of Group-Balanced Weight-
ing (GBW) approximately also remains unchanged. These
conclusions suggest the superiority of our approach against
the imbalance distribution.

Table 5 Ablation analysis for coarse segmentation map s in Object
Pattern Extraction function on three benchmarks

Method EndoScene Kvasir-SEG PICCOLO

Dice IoU Dice IoU Dice IoU

Ours 0.858 0.795 0.912 0.859 0.860 0.825

w/o s 0.815 0.743 0.881 0.824 0.786 0.727

The best results are highlighted in bold

5.4 Ablation Study

In this section, we conduct extensive studies to explore the
effects of each proposed component and various parameter
values.

5.4.1 Object Pattern Extraction

In object pattern extraction, a coarse segmentation map s is
designed to force the network to concentrate on the visual
pattern of the interesting object and eliminate the interfer-
ence of irrelevant information, e.g. background. We evaluate
the effectiveness of the above operation on segmentation per-
formance on three benchmarks. As shown in Table 5, as the
coarse segmentation map s is discarded, the accuracy drasti-
cally decreases from0.858/0.912/0.860 to 0.815/0.881/0.786
in terms of Dice, on EndoScene/Kvasir-SEG/PICCOLO,
respectively. The ablation results clearly demonstrate that
concentrating on the foreground pattern can facilitate the
subsequent prototype learning and improve the segmenta-
tion performance.

5.4.2 Unknown Pattern Discovery

The Unknown Pattern Discovery mechanism identifies whe
ther coming samples are dissimilar from existing prototypes.
If a feature is considered dissimilar from the current pro-
totypes, it will be utilized to construct a new prototype.
Therefore, our method can dynamically determine the num-
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Table 6 Ablation results of different prototype-based strategies on PICCOLO

Method Effectiveness Fairness Trade-off

0-IIa Is Ip Isp Unknown 0-IIa/c 0-IIb Overall↑ SD↓ SER↑ CAI↑
Baseline 0.679 0.932 0.658 0.610 0.661 0.350 0.326 0.605 0.193 0.342 0

# proto=6 + 0.178 + 0.022 + 0.251 + 0.174 + 0.159 + 0.472 + 0.264 + 0.212 0.114 0.615 0.146

# proto=12 + 0.180 + 0.018 + 0.243 + 0.327 + 0.185 + 0.474 + 0.274 + 0.216 0.110 0.624 0.150

# proto=18 + 0.173 + 0.017 + 0.223 + 0.313 + 0.225 + 0.494 + 0.301 + 0.234 0.098 0.658 0.165

# proto=24 + 0.156 + 0.011 + 0.234 + 0.321 + 0.228 + 0.480 + 0.233 + 0.221 0.121 0.588 0.146

Ours (# proto=6) + 0.178 + 0.021 + 0.242 + 0.252 + 0.253 + 0.514 + 0.420 + 0.255 0.060 0.780 0.194

We select three prototype amounts: # proto=6, 10, 20. Best and second best results are highlighted and underlined. Our dynamic discovery
mechanism gets a relatively small increment in the majority whilst a tremendous raising in minority subtypes

Table 7 Ablation analysis of different clustering algorithms on ISIC-2017

Methods Clustering quality Effectiveness Fairness Trade-off

SC↑ DBI↓ Nevus Melanoma Keratosis Overall↑ SD↓ SER↑ CAI↑
Kmeans (#clusters=5) 0.41 1.31 0.866 0.772 0.771 0.833 0.045 0.584 0.061

GMM (#clusters=5) 0.45 1.39 0.826 0.746 0.725 0.796 0.044 0.630 0.042

Mean Shift (#clusters=4) 0.34 1.65 0.827 0.735 0.714 0.792 0.049 0.605 0.038

DBSCAN (#clusters=3) 0.04 1.50 0.857 0.750 0.734 0.817 0.065 0.539 0.048

FINCH (#clusters=5)
(Sarfraz et al., 2019)

0.34 1.41 0.866 0.770 0.752 0.830 0.050 0.539 0.056

Ours (#proto=5) 0.47 1.18 0.874 0.795 0.805 0.848 0.035 0.617 0.073

We report the results in terms of both clustering quality and segmentation effectiveness and fairness. The best and second best results are highlighted
and underlined

ber of prototypes in the training procedure.Wehence conduct
an ablation analysis to compare our discovery mechanism
with the approaches utilizing a fixed number of prototypes
and explore the impact of prototype amounts on fairness.
All comparison methods use the same prototype updating
and inference schemes as us, and own initialized prototypes
following a uniform distribution. We manually select three
amounts: # proto=6 (same prototype quantity as us), and 12,
18, and 24.

Several observations can bemade from the ablation results
on the PICCOLO dataset in Table 6. First, as the number
of prototypes increases from 6 to 18, the performance on
fairness also increases. For example, the improvements on
minority subtypes 0-IIa/c/0-IIb significantly improve from
0.472/0.264 to 0.494/0.301, respectively. However, as the
number of prototypes continuously increases to 24, the per-
formance on fairness starts to deteriorate. Second, from the
last row, we can see that the proposed adaptive discovery
mechanism obtains a relatively small increment in the major-
ity but a tremendous raise in minority subtypes, and achieves
the best performance on fairness.

Moreover, since the essence of prototype learning entails
aggregating knowledge of similar visual patterns within the
deep feature space, our approach is similar with conventional
unsupervised clustering algorithms. Therefore, we perform

a ablation analysis comparing our proposed method with
conventional clustering techniques. We select both paramet-
ric and non-parametric clustering techniques as comparative
methods. Parametric clustering methods include K-Means
and Gaussian Mixture Model (GMM), which require the
number of clusters as input. We use the number of discov-
ered prototypes from our approach for a fair comparison.
Non-parametric clustering methods include Mean Shift,
DBSCAN, and FINCH (Sarfraz et al., 2019). These meth-
ods can automatically discover groupings in the data based
on different statistical criteria. We select the clustering that
is closest to our discovered number of prototypes for a fair
comparison. In our analysis, we additionally adopt internal
evaluation schemes to assess the quality of clustering results
without requiring ground truth cluster assignments. The Sil-
houette Score (SC) is calculated as the ratio of the average
distance to other data points within the same cluster to the
minimum distance to data points in other clusters. A higher
value indicates better clustering quality. The Davies-Bouldin
Index (DBI) is calculated as the average maximum ratio of
the within-cluster distance and the between-cluster distance
for each cluster. A lower value indicates better clustering
quality. These two metrics can both measure the separation
and compactness of clusters. Experimental results on the
ISIC-2017 dataset are exhibited in Table 7. First, from the
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Table 8 Quantitative results of various discovery thresholds on PIC-
COLO dataset

Threshold Effectiveness Fairness # proto

Dice IoU SD SER

0.3 0.723 0.696 0.256 0.204 3

0.4 0.768 0.725 0.215 0.282 4

0.5 0.860 0.825 0.060 0.780 6

0.6 0.822 0.770 0.096 0.682 23

0.7 0.828 0.772 0.121 0.555 30

The best results are highlighted in bold

last row, we can see that the proposed adaptive discovery
mechanism obtains the best performance in both clustering
quality and segmentation effectiveness and fairness. Sec-
ond, the parametric clustering methods demonstrate superior
performance compared to non-parametric ones. Since the
non-parametric methods highly depend on the chosen of
other hyper-parameters, e.g. distance functions, the maxi-
mum distance between two samples for one to be considered
as in the neighborhood of the other, the minimum number
of samples to be a cluster, they are sensitive in deep feature
spaces where high dimensionality and data sparsity cause
unstable distance measuring and numerous outliers.

In summary, the experimental results validate that our
dynamic prototype learning can better explore scarce visual
patterns than a fixed prototype scheme and conventional clus-
tering algorithms, by measuring the similarities between the
past known knowledge and current features.

5.4.3 Discovery Threshold

During pattern discovering, feature assignment to a prototype
in M is based on a threshold μ using the cosine similar-
ity of the object pattern embedding with prototypes. If the
computed similarity is smaller than μ, the object pattern
embedding is considered different from existing prototypes.
The larger value of μ, the easier it is for our framework to
discover different visual patterns. Therefore, the threshold μ

indirectly controls the number of prototypes, thereby mea-
suring the ability of visual pattern modeling.

In Table 8, we conduct experiments with various thresh-
olds. First, we notice that the amount of discovered proto-
types increases as the threshold increases, which is consistent
with our intuition. Second, adopting threshold μ = 0.5
reaches the greatest performance on both effectiveness and
fairness. Third, we notice that the performance of μ =
0.6, 0.7 is much greater than that of μ = 0.3, 0.4. These
observations indicate that the visual pattern knowledge cap-
tured by a relatively small threshold is deficient, while that
captured by a relatively large threshold is adequate but tends
to be redundant.

Table 9 Analysis of naive update with various coefficients adaptive
momentum update on PICCOLO

Methods η Effectiveness Fairness

Dice IoU SD SER

w/ naive update 0.9 0.844 0.793 0.104 0.646

0.7 0.830 0.773 0.112 0.603

0.3 0.804 0.733 0.153 0.435

w/ adaptive update – 0.860 0.825 0.060 0.780

The best results are highlighted in bold

Fig. 8 Comparison of average cosine distance between a prototypes
and their hardest negative, and b all prototypes per epoch on training
procedure. The curves are properly smoothed for clarity

5.4.4 Known Pattern Update

The prototype update mechanism successively enriches the
known prototypes by incorporating similar objects. Our
proposed Adaptive Momentum Update can increase the sep-
arability among prototypes. In Table 9, we compare our
proposed update strategy in Eq. (7) with the conventional
updating method using fixed momentum update coefficient
in Eq. (5). We notice that with the increase of the update
momentum, the model has witnessed considerable perfor-
mance promotion on both effectiveness and fairness. That is
because a high value of η reduces the changing amplitude of
prototypes during updating, and hence stabilizes the accumu-
lation of long-term knowledge. In the last row, our proposed
strategy improves the performance of Dice by 0.016 and SD
by 0.044 and achieves the best performance on all metrics of
effectiveness and fairness.

Moreover, we conduct an experiment to validate the capa-
bility of our Adaptive Momentum Update for increasing the
separability among prototypes. Concretely, we record the
average cosine distance between prototypes and their hardest
negatives, as well as between all prototypes in the train-
ing procedure. In Fig. 8, obviously, prototypes learned by
our adaptive momentum have larger separability. Besides,
the learning procedure of the naive updating mechanism is
more stable than ours, because the naive momentum is rel-
atively larger than that of ours, which is consistent with the
intuition that the large updatingmomentum can stabilize pro-
totype learning. In summary, the ablation results demonstrate
that explicit consideration of separability between prototypes
improves the fairness of the approach.
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Table 10 Comparisonof different distance functions in prototype learn-
ing on three benchmarks

Distance function EndoScene Kvasir-SEG PICCOLO

Dice IoU Dice IoU Dice IoU

euclidean 84.42 77.36 90.27 82.69 85.22 78.95

cosine 85.83 79.48 91.16 85.87 86.01 82.47

The best results are highlighted in bold

Fig. 9 The normalized statistics of images belong to different pro-
totypes on subtypes. There are great distributional variations among
different prototypes

5.4.5 Distance Function

In prototype learning, we utilize the cosine distance func-
tion to measure similarities between object pattern embed-
dings and prototypes. Moreover, we conduct experiments by
replacing cosine distance with euclidean distance. As shown
in Table 10, the performance of cosine distance is better than
euclidean distance on all three benchmarks. That is because,
euclidean distance, which paysmore attention to the absolute
numerical differences between embeddings, probably cannot
mine actual differences between pattern embeddings.

5.5 Discussion

In this section, we discuss and analyze the intrinsic properties
of our prototype-based algorithm.

5.5.1 Prototype Sequential Analysis

To understand the behavior of prototype growth during the
training procedure, we deliver the time sequential analysis
of prototypes on EndoScene and PICCOLO datasets. The
results are presented in Fig. 9. First, the number of proto-

types dramatically increases at the start and then gradually
stabilizes. This observation reflects that the stored knowl-
edge is vacant at an early stage of training, and eventually
saturated at the late stage, which is consistent with our intu-
ition. Second, the error band indicates the differences in the
behavior of the prototype growing between trials. When the
training data is shuffled, there is a discrepancy between the
sequence of training samples in each trial. We can observe
that the error band of our prototype amount suppresses under
[− 1,1], which implies that our dynamic prototype is robust
to shuffle training data.

5.5.2 Prototype Visualization

In this part, we further interpret the prototypes learned from
our framework.Wecalculate the number of images belonging
to each prototype in terms of subtypes. The distributions are
normalized to [0, 1]. From illustrations in Fig. 10, we observe
that there are great distributional variations among differ-
ent prototypes. For example, the last prototype characterizes
the majority subtypes (e.g. 0-IIa and Is), while the second
and third prototypes mainly characterize the minority sub-
types (e.g. 0-IIb and 0-IIa/c). These significant observations
demonstrate that, without the supervision of corresponding
protected attributes, our learned prototypes can still con-
sciously correlate to different subtypes. And our method can
explore inherent distinctions between embeddings with dif-
ferent visual patterns.

6 Limitations

Dataset bias (Puyol-Antón et al., 2021; Khosla et al., 2012)
and task bias (Tartaglione et al., 2021) are the twomost preva-
lent biases in recent research. Dataset bias is often induced
due to the imbalance distribution of data with respect to pro-
tected attributes (Adeli et al., 2021). Task bias is induced by
the intrinsic dependency between protected attributes and the
target task. For instance, hair length has distorted associations
with gender in face recognition (Adeli et al., 2021). Since the
proposed framework aims to discover the visual patterns in
an unsupervised way, it can only mitigate the dataset bias
introduced by imbalance distribution, but can not deal with
the scenarios where protected variables and target tasks are
entangled in feature space.

Fig. 10 The number of prototypes growing during the training process on a EndoScene and b PICCOLO
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In our work, the proposed method aims to balance the
learning of visual pattern diversity. In fact, the cause of diver-
sity may come from many kinds of aspects such as gender,
race, object subtypes, environmental conditions, and so on.
Therefore, it is very interesting to evaluate themodel fairness
in several aspects simultaneously. However, sincemost of the
segmentation datasets do not contain enough meta informa-
tion, our evaluation of fairness is limited to polyp subtypes.

7 Conclusions

In this paper, we extend the model bias from demographic
diversity to visual pattern diversity. We argue that demo-
graphic bias can also be attributed to visual pattern diversity
in the segmentation task. To this end,we propose a prototype-
based network that can balance the learning of different
groups for a given dataset. We first propose an object pat-
tern embedding mechanism to make the network focus on
the foreground region. Then we design a prototype learning
method to discover and memorize different visual patterns
contained in data to dynamically balance the learning of both
majority and minority groups. Moreover, our proposed net-
work can build and update prototypes in an unsupervised
manner and the number of prototypes is dynamic depend-
ing on encounter samples. Therefore, our method is more
applicable to scenarios where the labels of visual patterns
are various and costly to acquire.

We evaluate the proposed prototype-based network on
threewidely used polyp segmentation datasets with abundant
qualitative and quantitative experiments. The performance
is quantified on both effectiveness and fairness. For effec-
tiveness, our proposed method outperforms both the con-
volutional network-based and the transformer-based state-
of-the-art methods. Especially on the large-scale PICCOLO
dataset, our method significantly surpasses the state-of-the-
art results from 82.91% to 86.78% in Dice. Since PICCOLO
has more diverse lesions and complex scenes, the improve-
ment suggests that our prototype learning method is more
applicable tomore diverse lesionswhich aremore commonly
seen in the clinical scenario. For fairness, compared to other
methods, our approach obtains significant improvement in
minority subtypes (e.g. unknown, 0-IIa/c, and 0-IIb). This
demonstrates that part of the learned prototypes can enhance
the representation of minority subtypes, and further verifies
that our framework is able to discover and extract rare visual
patterns from massive and complex data.

Moreover, extensive ablation studies are conducted to
show the effectiveness of each proposed component and var-
ious parameter values. Lastly, we analyze how the number
of prototypes grows during the training process and visualize
the nearest images for each learned prototype. This further
verifies that different prototypes store various visual patterns

and the diversity constraint of prototypes can better mitigate
the bias.

In the further work, we aim to find more evidence to
show the intermediate cause of bias in the imbalance dis-
tribution is different visual patterns. Furthermore, we plan to
further evaluate the model segmentation fairness on several
protected attributes simultaneously.
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