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Abstract
Discriminating salientmoving objects against complex, cluttered backgrounds,with occlusions and challenging environmental
conditions like weather and illumination, is essential for stateful scene perception in autonomous systems. We propose a
novel deep architecture, named DeepFTSG, for robust moving object detection that incorporates single and multi-stream
multi-channel USE-Net trellis asymmetric encoders extending U-Net with squeeze and excitation (SE) blocks and a single
shared decoder network for fusing multiple motion and appearance cues. DeepFTSG is a deep learning based approach
that builds upon our previous hand-engineered flux tensor split Gaussian (FTSG) change detection video analysis algorithm
which won the CDNet CVPR Change Detection Workshop challenge competition. DeepFTSG generalizes much better
than top-performing motion detection deep networks, such as the scene-dependent ensemble-based FgSegNet_v2, while
using an order of magnitude fewer weights. Short-term motion and longer-term change cues are estimated using general-
purpose unsupervisedmethods—flux tensor andmulti-modal background subtraction, respectively. DeepFTSGwas evaluated
using the CDnet-2014 change detection challenge dataset, the largest change detection video sequence benchmark with 12.3
billion labeled pixels, and had an overall F-measure of 97%. We also evaluated the cross-dataset generalization capability
of DeepFTSG trained solely on CDnet-2014 short video segments and then evaluated on unseen SBI-2015, LASIESTA and
LaSOT benchmark videos. On the unseen SBI-2015 dataset, DeepFTSG had an F-measure accuracy of 87%, more than 30%
higher compared to the top-performing deep network FgSegNet_v2 and outperforms the recently proposed KimHamethod by
17%. On the unseen LASIESTA, DeepFTSG had an F-measure of 88% and outperformed the best recent deep learningmethod
BSUV-Net2.0 by 3%. On the unseen LaSOTwith axis-aligned bounding box ground-truth, network segmentation masks were
converted to bounding boxes for evaluation, DeepFTSG had an F-Measure of 55%, outperforming KimHa method by 14%
and FgSegNet_v2 by almost 1.5%. When a customized single DeepFTSG model is trained in a scene-dependent manner for
comparison with state-of-the-art approaches, then DeepFTSG performs significantly better, reaching an F-Measure of 97%
on SBI-2015 (+10%) and 99% on LASIESTA (+11%). The source code, pre-trained weights, and video demo for DeepFTSG
are available at https://github.com/CIVA-Lab/DeepFTSG.
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1 Introduction

The world is in motion, and stateful dynamic perception that
provides reactive information to the perceiver about theworld
is essential for the interpretation of visual motion across
different time scales. The perception of moving objects is
a hallmark of visual intelligence since autonomous sys-
tems need to interact with the world, not just perceive
it. Gibson’s ecological optics conceptualized vision as an
active perceptual system in which space and motion per-
ception are inseparable (Gibson, 1950). A stateful moving
object detection stream focuses attention on visual per-
ceptual processes such as tracking, recognition, avoidance,
comprehension, interaction, behavior, etc. General motion
detection and segmentation is a challenging task because of
background clutter, distracting surfaces, occlusions, sporadic
object motion, and changing environments such as camera
motion, degraded imaging optics, weather, haze, fog, dust,
smoke, dynamic background, illumination changes, specu-
larities, shadows, repetitive textures or camouflage effects.
Many approaches and pipelines have been proposed for
moving object detection to tackle the challenges mentioned
above (Barnich & Van Droogenbroeck, 2011; Bianco et al.,
2017; Shervin et al., 2020). Earlier approaches typically con-
sisted of hand-crafted solutions with limited adaptation to
changing scenarios and often relied on a collection of spe-
cial case procedures to handle challenging conditions and
video categories. Recently, deep learning architectures have
been developed for supervised learning-based moving object
change detection. Transfer learning combined with many
state-of-the-art CNN models like VGG-16 and ResNet-18
trained on large benchmark datasets provides suitable fea-
ture embeddings to be learned for new visual tasks with
only minor modifications and limited training requirements.
Autoencoders are a popular deep learning architecture for
segmentation tasks. The features extracted in the encoder
module, using a series of convolution and pooling layers,
are upsampled by the decoder module to recover the original
spatial resolution of the input image.

However, many current deep learning networks proposed
for moving object detection rely on a single image using
spatial-only appearance cues within an encoder-decoder
framework and ignore the rich temporal dimension (Lim &
Keles, 2018, 2020).

In this paper, we propose a novel hybrid moving object
detection system, Deep Flux Tensor with Split Gaussian
(DeepFTSG), which integrates a learned neural appearance
model with FTSG motion and change cues using a single
and multi-encoder with a shared decoder fusion network for
robust moving object detection.

The proposed DeepFTSG networks extend our recent
single-stream Motion U-Net (Rahmon et al., 2021) hybrid
deep architecture for motion segmentation which augments

Fig. 1 DeepFTSG generalization result on a frame from unseen SBI-
2015 video HumanBody2 (Fr = 730). First row: original image, ground
truth mask, mixture of Gaussians (MoG). Second row: Flux, MoG
Union Flux, our DeepFTSG mask

deep appearance with shallowmotion and change cues using
early fusion. In our earlier work, the unsupervised Flux
Tensor with Split Gaussian (FTSG) motion analysis algo-
rithm (Wang et al., 2014a), which detects motion across
multiple temporal scales, won the CVPR 2014 Change
Detection Workshop challenge with an overall F-measure
of 72.83% (Goyette et al., 2012; Wang et al., 2014b).

TheproposedDeepFTSGnetworkswith early andmiddle-
fusion architectures consist of single and multi-stream
encoder modules extended by squeeze and excitation blocks,
followed by a shared decoder module after multiple bot-
tleneck stages associated with each stream which can be
viewed as a joint topological fused feature representation
prior to the decoding stream. The squeeze and excitation
blocks allow the network to perform feature recalibration
by emphasizing informative features and suppressing less
useful ones. Figure 1 shows sample moving object detection
results using the proposed DeepFTSG network. Figures 2
and 5 provide an overview of the proposed architectures
and squeeze and excitation blocks that will be described in
detail in later sections. Two versions of DeepFTSG were
tested—DeepFTSG-1 consists of a single-stream, where
appearance-based and spatiotemporal features are fused early
before being fed to the network. DeepFTSG-2 consists of two
streams, where the first stream receives a three-channel RGB
frame as input and extracts appearance-based, spatial-only
features; the second stream receives pixel-level motion and
change cues for the corresponding video frame and encodes
spatiotemporal features. The featuremaps generated by these
multi-streams are then concatenated and processed through
the network’s decoder part resulting in a robust, multi-cue,
moving object detection system. Pixel-level flux motion and
background subtraction change cues are obtained using unsu-
pervised hand-crafted approaches that do not require any
training stage or labeled frames.

Robust multiscale object detection, image segmentation,
and tracking tasks require object-level and pixel-level cues.
The proposed DeepFTSG integrates pixel-level motion, and
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change cues efficiently computed using hand-crafted meth-
ods, with learned pixel and object-level appearance cues
within a deep learning framework. The motion and change
cues enable spatiotemporal reasoning, while the learned
appearance features and feature fusion incorporate region
and object-level information and semantic reasoning, signif-
icantly improving performance.

Themain contributions of this paper are: (1) a robust mov-
ing object detection approach that integrates complementary
appearance, motion, and change cues for spatiotemporal rea-
soning; (2) a novel multi-stream deep autoencoder network
for fusing appearance-based and spatiotemporal information;
(3) a hybrid, decoupled processing pipeline that takes advan-
tage of hand-crafted pixel-level cues for reduced network
complexity and labeled training data; and (4) the generaliza-
tion capability of the proposed DeepFTSG to unseen videos,
scenes and object categories compared to other approaches.
The proposed system has been tested and evaluated on the
comprehensive Change Detection 2014 Challenge dataset
(Wang et al., 2014b).

2 Background and RelatedWork

Classical moving object detection approaches can be catego-
rized into three broad classes; optical flowmethods, temporal
differencing, and background subtraction. Comprehensive
reviews of these classical moving object detection methods
can be found in Radke et al. (2005); Benezeth et al. (2008);
Brutzer et al. (2011). Optical flow methods can be used
with non-stationary cameras. However, reliable motion field
computation under real-world conditions is challenging and
computationally expensive, and these methods cannot deal
with stopped objects. Temporal differencing-based methods
are simple, fast, and can quickly adapt to different changes
and thus are suitable for dynamic backgrounds, illumina-
tion changes, uncovered backgrounds by removed objects,
etc. However, without an explicit background model, they
cannot detect slow-moving or stopped objects, often result-
ing in foreground aperture problems and failing to detect
parts of objects (particularly large objects with homogeneous
interiors resulting in holes). Background subtraction-based
methods that rely on change from an explicit background
model are among the most popular moving object detec-
tion methods since they can handle slow-moving or stopped
objects and do not suffer from foreground aperture prob-
lems. Sparse recovery methods for background subtraction
are widely studied in the literature (Candes et al., 2011; Zhou
et al., 2012; Liu et al., 2017; Xin et al., 2015; Liu et al., 2015).
These methods identify moving objects by extracting sparse
components from surveillance video frames, while low-rank
components represent a background of stationary objects.
However, background subtraction methods are sensitive to

dynamic scene changes due to illumination changes, revealed
background from moving objects, etc. Methods combining
these approaches, such asWang et al. (2014a), have produced
better results.

The development of real-world computer vision systems
has been revolutionized with the adoption of deep neu-
ral learning methods. Recent approaches for moving object
detection explore deep learning architectures including con-
volutional neural networks (CNNs), generative adversarial
networks (GANs), autoencoders (AE), recurrent neural net-
works (RNNs), multibranch networks trained with labeled
data. DeepBS (Babaee et al., 2018) proposed a convolutional
neural network trained using a combination of input frames
and associated background images using the patch-based
technique. The network is trained with randomly selected
video frames (5% of the CDnet-2014 dataset) and associated
ground truth masks. BSUV-net 2.0 (Tezcan et al., 2021) uses
a fully convolutional neural network for background sub-
traction of unseen videos. The network input consists of a
current frame and two background frames taken at different
time points, along with their semantic segmentation results.
A pre-trained DeepLabv3 is used to extract semantic seg-
mentation results. BSGAN (Wenbo et al., 2020) uses median
filtering for background estimation and then trains aBayesian
GAN to classify each pixel, to handle slow and sudden illumi-
nation changes, non-stationary backgrounds, and ghosting.
Deep CNNs are adopted to construct the generator and the
discriminator of Bayesian GAN. A 3D convolutional neural
networkwith long short-termmemory (LSTM)was proposed
by Akilan et al. (2020) to incorporate temporal information
in a deep learning framework for background subtraction. 3D
convolutions manage the time-dependent video cues to cap-
ture the short temporal motions, and LSTM modules handle
the long-short temporal motions during the down-sampling
and up-sampling stages. Cascade CNN (Wang et al., 2017)
is based on multi-resolution CNNs with a cascaded archi-
tecture. The network is trained with hand-picked frames that
are made publicly available by the authors. FgSegNet (Lim
&Keles, 2018) uses two encoder-decoder networks that pro-
duce multi-scale feature encodings. In the first model, three
scales of inputs are given to an encoder. In the second model,
a feature pooling module is included to extract multi-scale
features. Both models use transposed CNNs on the decoder
side. For training, 50 to 200 informative frames were manu-
ally selected with ground truth masks from the CDnet-2014
dataset. FgSegNet approach uses multiple networks that are
optimized per video-sequence. FC-Siam (Caye Daudt et al.,
2018) uses an encoder-decoder network with single andmul-
tiple streams to detect the change between two data images
from large-scale Earth observation systems such as Coperni-
cus or Landsat. Since two streams carry similar information,
the authors used shared weights between them in the encoder
part of the proposed fully connected siamese network.
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Because many moving object detection benchmarks were
established before the recent popularity of deep learning
methods, no specific training and testing dataset partitions
have been established in the benchmarks. That leads to dif-
ferent training and testing video frame partitioning schemes
in various papers, making a fair comparison difficult. Con-
sequently, as pointed out by Tezcan et al. (2021), most of
the top-performing deep-moving object detection systems
have been video frame- or video group-optimized and have
never been tested on unseen videos, making it hard to judge
their generalization capabilities. We address this limitation
by using CDnet-2014 for training and validation, and SBI-
15 (Maddalena & Petrosino, 2015) and LASIESTA (Carlos
et al., 2016) as unseen testing videos.

Change detection can help us track and study the move-
ment and behavior of arbitrary objects in a video sequence
(Theau, 2008). Accurate video segmentation is, therefore,
a crucial step in change detection. Moreover, video seg-
mentation is an initial step of video object tracking. Hence,
object-tracking datasets can also be used to evaluate the gen-
eralization capabilities of moving object detection methods.
Many publicly available object tracking datasets, either sin-
gle or multiple object tracking, could be used to address
the generalization capability of the moving object detection
methods. However, the evaluation result won’t be that accu-
rate since moving object detection detects moving objects
in the scene, and there might be more than one object mov-
ing in that scene, but in the case of single object tracking,
only one object (object of interest) in the scene would have
a ground truth and the other object even if they are moving
would be ignored. Therefore, we used some video sequences

of LaSOT (Fan et al., 2019) single object tracking dataset as
unseen test videos to evaluate the generalization capability
of the proposed methods.

3 Change Detection Deep Learning
Networks

We have designed a novel hybrid system to robustly detect
moving foreground objects. The proposed system com-
bines unsupervised computer vision methods for motion and
change detection with deep learning-based semantic seg-
mentation and fusion frameworks. This approach reduces
architecture complexity and the need for extensive labeled
training datasets by taking advantage of available hand-
crafted solutions that produce fast, reliable results. We built
two deep networks to better analyze the contribution of
motion and change cues to overall system performance. The
first network, DeepFTSG-1 in Fig. 2, consists of a U-Net-
like semantic segmentation architecture extended by squeeze
and excitation blocks with single input streams, where the
appearance-based and spatiotemporal information are fused
early before being fed to the network. Our second network,
DeepFTSG-2 in Fig. 5, extends DeepFTSG-1 by decoupling
appearance-based information from spatiotemporal using
multiple input streams. The first stream has appearance infor-
mation, and the second stream incorporates spatiotemporal
reasoning through motion and change cues. Finally, the two
streams are combined after the joint topological representa-
tion through middle fusion.

Fig. 2 The single-stream DeepFTSG-1 architecture with early fusion,
and SE-ResNet-50 backbone, where each residual block uses a final
squeeze and excitation. (a) shows the general architecture with 3-

channel input (Gray, BGS, Flux), (b) shows the detailed conv block
in the decoder, (c) shows the detailed conv block in the encoder
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3.1 DeepFTSG-1: Single-Stream Early Fusion for
Spatiotemporal Change Detection

Single frame object of interest detection and semantic seg-
mentation tasks have been revolutionized by using recent
deep learning architectures (Girshick, 2015; He et al., 2017;
Redmon et al., 2016; Chen et al., 2018). While effective,
single-frame detection networks similar to FgSegNet_v2 that
rely only on appearance cues for change detection suffer
from three main limitations: (1) they cannot detect untrained
new (moving) objects, (2) they fail when appearance cues
are limited (e.g. small targets when objects are far from the
camera), and (3) they cannot differentiate between moving
and stationary object instances. This brittleness leads to a
lack of generalization power in such networks and likely will
not scale well in real-world applications with unanticipated
inputs (Yuille & Liu, 2020).

DeepFTSG augments appearance-based features with
hand-engineered motion and change cues using fast unsuper-
vised vision algorithms. The proposed single-streammoving
object detection network, DeepFTSG-1, is an extension to
our previous network named MU-Net2 (Rahmon et al.,
2021), based on a SE-ResNet-50 (Hu et al., 2018) back-
bone instead of a normal U-Net encoder, where squeeze
and excitation blocks are used after each residual block of
the ResNet-50. That enables deeper layers without gradi-
ent degradation during network learning by using identity
shortcut connections that skip one or more layers to facili-
tate deeper information propagation. In addition, the squeeze
and excitation blocks allow the network to perform feature
recalibration by emphasizing informative features and sup-
pressing less useful ones. The proposed DeepFTSG-1 uses
motion cues as input computed from multi-modal change
detection and flux motion through our fast tensor-based
motion estimation (Bunyak et al., 2007) and an adaptive
split-gaussian multi-modal background subtraction model
(Wang et al., 2014a; Zivkovic & van der Heijden, 2006;
Zivkovic, 2004) respectively. DeepFTSG-1 incorporates a
three-channel input processing stream, with the first (red)
channel being the appearance (the three-channel RGB color
input is converted to grayscale). The motion and change cues
corresponding to the current frame computed using a back-
ground model based on past frames for the case of slower
temporal change and a temporal sliding window of frames
for the case of flux motion are assigned to the second (G) and
third (B) channels.

Figure 2 shows the overall architecture of the proposed
DeepFTSG-1 single-streammovingobject detectionnetwork
with an early fusion of motion cues. The overall network
is similar to the U-Net architecture (Ronneberger et al.,
2015) with skip connections after each block of SE-ResNet-
50. The decoder part of the proposed network consists of
four blocks, where the feature maps are upsampled and

concatenated in each block to the feature maps from the
corresponding SE-ResNet-50 block. Finally, a 1×1 convolu-
tion layer is applied to decrease the number of feature maps,
and a final sigmoid activation layer produces the class label
probabilities. Thresholding these probabilities leads to fore-
ground/background segmentation masks. Table 1 provides
detailed configuration and specifications of the proposed
DeepFTSG-1.

We detail belowhow fast unsupervised scene-independent
methods estimate change and motion cues.

3.1.1 Multi-modal Background Subtraction for Change
Estimation

Change is estimated using a background subtraction (BGS)
approach. There is extensive literature on estimating back-
ground subtraction models for identifying temporal change
(Crivelli et al., 2011; Andrews & Antoine, 2014; Yizhe &
Elgammal, 2017). To efficiently tackle multi-modal back-
grounds, we use the adaptive mixture of Gaussians method
described in Zivkovic and van der Heijden (2006); Zivkovic
(2004) and implemented in OpenCV library (Background-
SubtractorMOG2). The method supports a variable number
of Gaussian models per pixel. The OpenCV implementation
also enables shadowdetection by default. The only parameter
that we are setting is the variance threshold for the pixel-
model matching (setVarThreshold), and it is empirically
chosen as 16. Before feeding to the background subtrac-
tion module, the image sequence is smoothed using a 5 × 5
Gaussian filter. Foreground masks obtained from the back-
ground subtraction module are given to the DeepFTSG-1
and DeepFTSG-2 networks as input. The process returns
information on longer-term change corresponding to mov-
ing objects, once moving but then become stopped objects
and other long-term changes in the scene. Fig. 3 demonstrates
the result of background subtraction for a single time-step.

3.1.2 Tensor-Based Motion Estimation

While background subtraction algorithms have advantages
such as robustness to aperture problems and response to
stopped objects, they are prone to dynamic background
changes. Due to the recursive nature of these approaches,
any error in background estimation also tends to persist for
a long time. The temporal dynamics are slowly updated. To
account for fast motion or short-term change, while being
robust to dynamic background changes and background esti-
mation errors, we use an explicit motion detection module.
For fast and robust motion estimation, we use our efficient
tensor-based motion computation scheme flux tensor (Bun-
yak et al., 2007) and build upon our previous experience in
optimizing FTSG (Wang et al., 2014a). Optical flow-based
motion estimation using deep and traditional methods can be
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alternatively used (Dosovitskiy et al., 2015; Sun et al., 2018;
Schuster et al., 2020). The flux tensor represents the tem-
poral variation of the optical flow field within the local 3D
spatiotemporal volume (Bunyak et al., 2007; Palaniappan et
al., 2011; Wang et al., 2014a). In expanded matrix form, the
flux tensor is defined as,

JF =

⎡
⎢⎢⎢⎢⎣

∫
�

{
d2 I
dxdt

}2
dy

∫
�

d2 I
dxdt

d2 I
dydt dy
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d2 I
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∫
�
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(1)

where I is a spatiotemporal image volume and derivatives are
calculated in x, y, t and integratedwithin the local area�. The
elements of theflux tensor incorporate information about spa-
tiotemporal gradient changes. By analyzing the changes in
the gradient of the image intensity over time, the flux tensor
can identify regions of the image that correspond to mov-
ing objects. This information can be used to segment the
image into moving and stationary regions, allowing for effi-
cient discrimination between the two. Sequential and parallel
computations of the flux tensor matrix are described in Pala-
niappan et al. (2011). The trace of the flux tensor matrix can
be compactly written,

trace(JF ) =
∫

�

|| d
dt

� I ||2dy (2)

and computed efficiently to classify moving and non-moving
regions without expensive eigenvalue decompositions (Pala-
niappan et al., 2010; Dardo et al., 2016). There are four
hyper-parameters that needs to be set, andwe set them empir-
ically as follows: spatial filter size = 7, spatial averaging
size = 5, temporal filter size = 7, and temporal averaging
size = 5. The output of the flux tensor is given directly to
DeepFTSG-1 and DeepFTSG-2 networks as input. Figure 3
shows the sample result of flux analysis for a single frame of
processed video. In Fig. 4 the spatio-temporal volumes of a
video sequence are demonstrated and in (b) the flux is shown
to visualize motion through time.

3.2 DeepFTSG-2: Multi-StreamMiddle
Spatiotemporal Fusion

The proposed DeepFTSG-2 extends DeepFTSG-1 by decou-
pling appearance-based information from spatiotemporal
using multiple input streams. The first input stream receives
three-channel RGB color input from the current frame, and
the second input stream receivesmotion and change cues cor-
responding to the current frame, which is computed using a

Fig. 3 BGS and flux result on a frame from CDnet-2014 video foun-
tain01 (Fr = 730). First row: original image, ground truth. Second row:
BGS, Flux

temporal slidingwindowof frames for the case ofmotion and
using a backgroundmodel computed frompast frames for the
case of change. The two input streams go through two paral-
lel feature extraction modules. The first processing stream
(appearance encoder) extracts spatial appearance features
using the SE-ResNet-50 backbone, and the second process-
ing stream (motion encoder) extracts spatiotemporal,motion,
and change-based features using the ResNet-18 backbone.
The feature maps generated by these two encoders are then
fused and processed through the network’s decoder. The
motion and change cues are stacked channel-wise, where the
red channel (R) corresponds to the background subtraction
mask, the green channel (G) corresponds to themotionmask,
and the blue channel (B) is set to 0. Three-channel input is
used to complywith theResNet-18 input format.DeepFTSG-
2 does not share weights between the two streams and uses
intermediate fusion since the input streams are of different
phenomena, such as RGB and motion.

A deep encoder backbone is adopted for the appearance
encoder as we take the raw image as input. The deep architec-
ture (SE-ResNet-50), equipped with squeeze and excitation
blocks, allows for deep feature extraction. A shallower back-
bone (ResNet-18) is used for the motion encoder since we
use higher-level featuremaps as input. Both streams have five
spatial resolutions, each of which feeds into the correspond-
ing block of the decoder through skip connections. Fig. 5
illustrates the architecture of the multi-stream DeepFTSG-2
with middle fusion along with the temporal domain. Table 2
provides detailed configuration and specifications of the pro-
posed DeepFTSG-2. We provide a comprehensive set of
results in Tables 16 and 17 to show the effect of different
architectures/backbones on the quality of change detection.
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Fig. 4 Motion visualized as oriented energy fields. Spatio-temporal
brightness volumes (x − y − t) of a video sequence fountain01 from
CDnet-2014: a original input, b flux motion, c combination of motion

and change (green channel is flux (fast) motion, red channel is multi-
modal (persistent) change). In c amaximum intensity volume rendering
is shown without alpha transparency for the black voxels

Fig. 5 The multi-stream DeepFTSG-2 USE-Net trellis architecture
with middle fusion (or intermediate fusion), which includes appear-
ance (RGB 3-channels) in the first stream, and multi-channel motion

(flux) plus change cues (BGS 2-channels) in the second stream. The fea-
ture embedding backbones are fused in the decoder stage with shared
forward connections

4 Experimental Results

In this section, we present details on test datasets, evaluation
metrics, qualitative and quantitative results of the proposed
DeepFTSG deep learning change detection architecture.

4.1 Benchmark Evaluation Datasets

We used four benchmark datasets to evaluate the proposed
method, CDnet-2014 change detection challenge dataset

(Wang et al., 2014b), SBI-2015 scene background initial-
ization dataset (Maddalena & Petrosino, 2015), Labeled and
Annotated Sequences for Integral Evaluation of SegmenTa-
tion Algorithms (LASIESTA) dataset (Carlos et al., 2016)
and Large-scale Single Object Tracking (LaSOT) dataset
(Fan et al., 2019). CDnet-2014 was developed to enable
objective and precise quantitative comparison and ranking
of change detection algorithms. It consists of nearly 159,278
frames, with 118,173 labeled from 53 video sequences, orga-
nized into 11 categories corresponding to realistic scenarios
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Table 3 Distribution of major
foreground object categories in
each dataset collection
indicating number of videos
(vid) and total number of frames
(fr)

Dataset Person Vehicle Animal Synthetic Other
vid, fr vid, fr vid, fr vid, fr vid, fr

CDnet-2014 30, 89459 31, 93800 0, 0 0, 0 4, 12200

SBI-2015 8, 2991 2, 933 0, 0 0, 0 1, 345

LASIESTA 43, 14860 5, 2975 0, 0 24, 8580 0, 0

LaSOT 4, 10090 2, 5060 4, 9224 0, 0 0, 0

and challenging conditions, including illumination change,
bad weather, dynamic background, night videos, PTZ, ther-
mal, etc. Spatial resolutions of the videos in the dataset vary
from 320×240 to 720×576 and may include multiple mov-
ing objects. CDnet-2014 is the most comprehensive dataset
for change and moving object detection, with continuously
updated evaluations posted on the Change Detection Work-
shop website. We used the same approach as in FgSegNet
(Lim & Keles, 2018) and (Wang et al., 2017) by selecting
200 frames from each video sequence within the labeled
frames of the original CDnet-2014 dataset for training the
proposed DeepFTSG networks. This split used only 10,600
CDnet frames for training, corresponding to approximately
6.6% of the whole dataset, with the remainder of the labeled
frames used for testing, including hidden frames.

The Scene Background Initialization (SBI) 2015 dataset
contains 14 video sequences with ground-truth labels pro-
vided by (Wang et al., 2017). We used 10 suitable video
sequences from this dataset to evaluate our video segmenta-
tion models trained only on the CDnet-2014 dataset to see
the generalization capability. However, the video sequences
“Foilage”, “PeopleAndFoilage”, “Snellen” and “Toscana”
were not used in the evaluation of our pre-trained model. The
reason is that “Foilage”, “PeopleAndFoilage”, and “Snellen”
eventually deal with the moving branch of a tree, which is
not our object of interest, and “Toscana” has only six frames
in total.

The Labeled and Annotated Sequences for Integral Eval-
uation of SegmenTation Algorithms (LASIESTA) dataset is
composed of many real indoor and outdoor sequences orga-
nized in different categories, each of one covering a specific
challenge in moving object detection strategies. Moreover, it
contains sequences recorded with static and moving cam-
eras and provides information about the moving objects
remaining temporally static. LASIESTA dataset contains
26 indoor and 20 outdoor sequences (having 12 simulated
motion sequences in both indoor/outdoor), and it is fully
annotated at both pixel-level and object-level. We used all
video sequences from this dataset to evaluate our video seg-
mentation models trained only on the CDnet-2014 dataset to
see the generalization capability.

There are few fully annotated video datasets for mov-
ing object detection with precise ground truth segmentation
masks. However, there is an extensive collection of video

datasets for object tracking with ground truth bounding
boxes. Large-scale SingleObject Tracking (LaSOT) is a large
video collection for a single object tracking. LaSOT con-
sists of 1550 video sequences with more than 3.87 million
high-quality manually annotated frames incorporating care-
ful inspection. We did an initial motion segmentation test
using five object categories from LaSOT, including bicy-
cle, car, dog, giraffe, and person, with two sample video
sequences from each category to evaluate the generaliza-
tion capacity of our video segmentation architecture models
trained using only the CDnet-2014 dataset.

The Table 3 demonstrates the category distribution of each
dataset used in this paper. The categories are person, vehicle
(car, bus, track, etc.), animal (dog, giraffe, etc.), synthetic
(simulated motion), and other. We demonstrate how many
video sequences of each dataset have those categories and an
approximate number of frames.

4.2 DeepFTSG Training Details

Weights for the ResNet-18 and SE-ResNet-50 modules used
in DeepFTSG-1 and DeepFTSG-2 are initialized with pre-
trained weights on ImageNet. The input image size to the
deep networks is 320× 480. Adam optimizer is used during
training with an initial learning rate of 10−4 that is reduced
by a factor of 10 after every 20 epochs. The CDnet-2014
training data is shuffled and split into 90% for training and
10% for validation per video basis, with 200×53=10,600
total frames in training set out of almost 160K in the total
dataset. Since there is an imbalance between the foreground
and background classes (i.e. in some frames foreground area
constitutes less than 20%of the total image area), a combined
loss function consisting of Dice loss (Eq. 3) (Sudre et al.,
2017) and binary cross-entropy loss (Eq. 4) is used to train
the network. The smoothed Dice loss is defined as,

LDice = 1 − 2
∑N

i=1 pi gi∑N
i=1 p

2
i + ∑N

i=1 g
2
i + ε

(3)

in which pi are the predicted foreground probabilities and
gi is the corresponding ground-truth label, N is the total
number of pixels in the mini-batch set of images, and ε is a
small regularization value. The binary cross-entropy (BCE)
loss is defined as,
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Fig. 6 Ground-truth images from CDnet-2014 dataset with ignored or
don’t care regions shown in dark-gray color

LBCE = 1

N

N∑
i=1

[−gi log pi + (1 − gi ) log(1 − pi )
]

(4)

where gi is the true label and pi is the predicted probability
as in LDice. The final combined loss to be minimized during
training is given by,

Loss = λ ∗ LBCE + (1 − λ) ∗ LDice (5)

where λ is the weight parameter and is empirically chosen as
0.5. Using λ that changes with epoch number can lead to a
small improvement in performance by emphasizing the seg-
mentation boundary accuracy (Dice loss). In addition, since
the labels provided by the CDnet-2014 dataset have ignored
(masked out) regions, to avoid a penalty for those regions
during training, we updated the loss function to ignore the
regions that are not used and not penalize if the foreground is
generated in these (don’t care)masked regions. Fig. 6 demon-
strates the ground-truth images from CDnet-2014 dataset
with ignore regions specified in dark-gray.

The proposed DeepFTSG-1 and DeepFTSG-2 models
were implemented in PyTorch and trained for 50 epochs with
a mini-batch size of 16. For each epoch, the training and val-
idation samples are reshuffled.

It took ≈ 10 hours (each epoch takes about 12min) on
an NVIDIA GeForce GTX 1080 Ti GPU and ≈ 7.5 hours
(each epoch takes about 9min) on an NVIDIA Tesla V100
GPU to finish the whole training process for the single-
streamDeepFTSG-1. For multi-streamDeepFTSG-2, it took
≈ 15 hours (each epoch takes about 18min) on an NVIDIA
GeForce GTX 1080 Ti GPU and ≈ 13.33 hours (each epoch
takes about 16min) to finish the whole training process on
an NVIDIA Tesla V100 GPU.

4.3 EvaluationMetrics

We evaluated the performance of the proposed DeepFTSG
deep neural architecture on unseen frames in each video and
compared it to the top-ranked methods listed in the Change
Detection Workshop website using seven assessment met-
rics (Goyette et al., 2012). The seven metrics are: recall (Re),
specificity (Sp), false-positive rate (FPR), false-negative rate
(FNR), precision (P), F-Measure (F), and percentage of

wrong classifications (PWC), and defined as,

Re = T P

(T P + FN )
; Sp = T N

(T N + FP)
(6)

FPR = FP

(FP + T N )
; FN R = FN

(T P + FN )
(7)

P = T P

(T P + FP)
; F = 2 × P × Re

(P + Re)
(8)

PWC = 100 × (FN + FP)

(T P + T N + FP + FN )
(9)

where TP (true positive) denotes the number of correctly
labeled foreground pixels; TN (true negative) denotes the
number of correctly labeled background pixels; FN (false
negative) represents the number of wrongly classified fore-
ground pixels, and FP (false positive) represents the number
of wrongly classified background pixels. We have computed
these metrics using the standardized assessment tool given
by Goyette et al. (2012). Lower values indicate better per-
formance for PWC, FNR, and FPR metrics, while higher
values indicate better performance for Recall, Precision, and
F-Measure metrics. Among these metrics, we use the F-
Measure (F) also known as F1 score, which is the harmonic
mean of precision and recall, that is generally accepted as a
good indicator of overall change detection performance, bal-
ancing precision and recall accuracy to reduce Type I (FP)
and Type II (FN ) errors.

4.4 Experiments on CDnet-2014 Benchmark Videos

Using the CDnet-2014 dataset, we trained two networks,
DeepFTSG-1 and DeepFTSG-2. Quantitative evaluation
results for the proposed DeepFTSG-1 and DeepFTSG-2
are shown in Table 4. The proposed DeepFTSG-1 net-
work produced an overall F-measure of 0.9652, while the
DeepFTSG-2 network produced a slightly better overall F-
measure of 0.97. The lowest performance is in the difficult
Night Videos category for both networks with an F-measure
of 0.8481 for DeepFTSG-1 and 0.9023 for DeepFTSG-2. For
reference,we include the results of our previousFTSG (Wang
et al., 2014a) non-deep learning unsupervised approach
that won the original CDnet-2014 challenge. The signifi-
cant improvement (around 25%) of DeepFTSG compared
to FTSG demonstrates that incorporating object appearance
and fusing change semantics, results in better motion detec-
tion without necessarily requiring direct object recognition.
DeepFTSG does not use an explicit object detection and clas-
sification network to learn object bounding box labels like
vehicle, person, animal, bike, etc. though this could be incor-
porated in the future.
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Table 5 Comparison using
CDnet-2014 of DeepFTSG-1
and DeepFTSG-2 to top
performing deep learning
methods, including methods
FgSegNet_v2 (Lim & Keles,
2020), FgSegNet_S (Lim &
Keles, 2018), FgSegNet (Lim &
Keles, 2018), BSPVGAN
(Wenbo et al., 2020), MU-Net2
(Rahmon et al., 2021), BSGAN
(Wenbo et al., 2020), FTSG
(Wang et al., 2014a)

Methods Overall

Rank Re PWC P F

FgSegNet_v2 1 0.9891 0.0402 0.9823 0.9847

FgSegNet_S 2 0.9896 0.0461 0.9751 0.9804

FgSegNet 3 0.9836 0.0559 0.9758 0.9770

BSPVGAN 4 0.9544 0.2272 0.9472 0.9501

MU-Net2 5 0.9454 0.2347 0.9407 0.9369

BSGAN 6 0.9476 0.3281 0.9232 0.9339

FTSG 22 0.7657 1.3763 0.7696 0.7283

M_FgSegNet_v2(50%)* 0.2705 2.9684 0.7182 0.3406

M_FgSegNet_v2* 0.8675 0.3751 0.9521 0.9078

M_KimHa* 0.9351 0.3331 0.9201 0.9275

DeepFTSG-1 0.9566 0.1640 0.9776 0.9652

DeepFTSG-2 0.9663 0.1051 0.9756 0.9700

The definition for the significance of the bold in Table is that themethods proposed in this paper are highlighted
in bold and the best result in each column is highlighted in bold
M_FgSegNet_v2* andM_KimHa*with * indicating single networkmodels trained using the same configura-
tion used to train the DeepFTSG network. M_FgSegNet_v2(50%)* has 11 models, one for each CDnet-2014
category, and the majority voting rule is used to get a final mask

We compare the performance of the proposedDeepFTSG-
1 and DeepFTSG-2 methods with the top six state-of-the-art
methods listed in Goyette et al. (2012) as shown in Table 5.
Evaluations were done by uploading the results to the CDnet-
2014 challenge website. Since the results are not published
yet, they can be reached through these links, for DeepFTSG-
11 and for DeepFTSG-2.2 It can be seen from Table 5 that
our proposed DeepFTSG is competitive with current state-
of-the-art supervised methods and outperforms BSPVGAN
and our previous work MU-Net2.

Since the authors of the current top-rankedmethod FgSeg-
Net_v2 made their code publicly available on GitHub, we
could run the code and produce the same results as the ones
supplied by the authors. Table 6 summarizes the main differ-
ences between FgSegNet_v2 and our proposed DeepFTSG
architectures.

One of the key differences is that FgSegNet_v2 trains
a separate deep network for each video sequence, result-
ing in an ensemble of 53 distinctly parameterized networks
for inference. The process takes considerable training time
(29 days) to generate the ensemble of networks. On the
other hand, our approach trains a single network, using
only 200 frames per video, sufficient for inference across
all 53 video sequences. Training takes a fraction of the
time, 10h for DeepFTSG-1 and 15h for DeepFTSG-2. Com-
pared to FgSegNet_v2, DeepFTSG requires less than 2.2%
of the training time, and the inference is more efficient using
less than 10% of the neural weights, robustly fuses appear-

1 http://jacarini.dinf.usherbrooke.ca/results2014/1192/
2 http://jacarini.dinf.usherbrooke.ca/results2014/1193/

ance and motion, has competitive accuracy on CDnet-2014
and most importantly shows high generalizability across all
objects and scenes using a single network. DeepFTSG can
readily distinguish between moving and stationary states of
the same object type, whereas FgSegNet_v2 and other simi-
lar architectures cannot.

Initially, to make a fair comparison between our proposed
networks and top performing network FgSegNet_v2 on the
CDnet-2014 dataset, we trained FgSegNet_v2 network for
each category of the CDnet-2014 dataset instead of at the
video level, resulting in 11 network models, instead of 53.
Those 11modelswere used to generate binarymasks using an
average voting procedure for each CDnet-2014 video frame.
Usually, FgSegNet_v2 would require one trained network
per video, which does not enable assessing the generaliza-
tion capacity of FgSegNet_v2. Because of that, we used a
voting-based approach to generate FgSegNet_v2 detection
masks. Using the 11 FgSegNet_v2 masks, one from each
CDnet-2014 category model, we used pixel-based averaging
for each frame and applied a simple (majority) voting rule; if
the pixel average is greater than 50% (e.g. sum greater than
5.5) then the pixel votingmask resultwill be true.We refer the
result of this experiment asM_FgSegNet_v2(50%). It can be
seen from Table 5 that when the ensemble approach is used
with 11 models instead of 53 models, the performance of
the top-performing method decreases dramatically and has
an F-Measure of 34% that is 63% lower than our proposed
method DeepFTSG.

In terms of the original training regimen, FgSegNet_v2
trains 53 distinctively parameterized networks for inference
while the recently proposed method by Kim and Ha (2020),
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Table 6 Training duration and
parameter sizes for
FgSegNet_v2 and DeepFTSG
using common hardware

Methods # of models GPU Training time

FgSegNet_v2 53 GTX 1080 Ti 29 days

M_FgSegNet_v2* 1 GTX 1080 Ti 27 days

DeepFTSG-1 1 GTX 1080 Ti 10h

DeepFTSG-2 1 GTX 1080 Ti 15h

Methods Network size (# parameters)

FgSegNet_v2 489M (53 * 9,225,161)

M_FgSegNet_v2* 9M (1 * 9,225,161)

DeepFTSG-1 35M (1 * 35,037,041)

DeepFTSG-2 48M (1 * 48,185,777)

M_FgSegNet_v2* with * indicating a single network model trained using the same configuration used to train
the DeepFTSG network

which we refer to as KimHa, trains a single network using
61,593 images almost six times the number of images from
CDnet-2014 used by FgSegNet and DeepFTSG, that also
excludes four categories including camera jitter, PTZ, ther-
mal and turbulence. For a fair comparisonwith FgSegNet_v2
and KimHa, we retrain both methods using the same con-
figuration that we used to train DeepFTSG models, that is,
selecting 200 frames from each video sequence (200 x 53
= 10,600 frames) within the labeled frames of the origi-
nal CDnet-2014 dataset without excluding any categories.
We refer to a trained single model corresponding version
using all of the training video frames asM_FgSegNet_v2 and
M_KimHa, respectively. It can be observed from Table 5 that
when a single model is trained for FgSegNet_v2, instead of
separate 53 models, the performance of the top-performing
method decreases significantly and has an F-Measure of
90.78% that ismore than 6% lower than our proposedmethod
DeepFTSG. Compared to M_FgSegNet_v2, DeepFTSG
requires less than 2.4% of the training time. Fig. 7 demon-
strates a qualitative comparison ofmethods on sample frames
fromvarious challenging categories of aCDnet-2014 dataset.
Conventional background subtraction techniques such as
SuBSENSE produce either ghost artifacts or fragmented
foregrounds in the region of interest, as shown in Fig. 7.

4.5 Evaluation of Generalization Power

To assess the generalization or transfer learning capabili-
ties of our proposed DeepFTSG and the contribution of the
motion and change cues on unseen videos, we evaluated
DeepFTSG-1 and DeepFTSG-2 trained only on CDnet-
2014 and tested on the unseen SBI-2015 and LASIESTA
videos. The DeepFTSG weights were frozen without addi-
tional training on any portion of the SBI-2015 or LASIESTA
dataset.

We compare the classical algorithms and recently pro-
posed methods with our proposed DeepFTSG networks on
unseen videos from SBI-2015 as shown in Table 7 and

Table 8. The results of the other methods are taken from
the following papers (Mandal et al., 2021; Kim&Ha, 2020).

It can be observed from Table 7 that our proposed method
provides better performance for the selected four video
sequences (Candela, CAVIAR2, CaVignal, HighwayII) than
two classical methods, existing state-of-the-art methods, and
recently proposed methods even without retraining using
new scenes in the SBI-2015 dataset. More specifically, our
proposed method achieves an overall 44% performance
improvement over the FgSegNet_v2 and 24% performance
improvement over the recently proposed method 3DCD.
Moreover, from Table 8, we can see that our method pro-
vides better performance than two classical methods and
have a competitive result, less than 0.8% compared to the
recently proposedmethod (Kim&Ha, 2020).However,when
comparing with the recent proposed method (Kim & Ha,
2020), we need to consider also the fact that KimHa uses
almost 61,593 images from CDnet-2014 for training the
network model excluding categories such as camera jitter,
PTZ, thermal and turbulence, but we use only 10,600 frames
from CDnet-2014 for training the network model (stated in
Sect. 4.2) without excluding any categories. To make a fair
comparison with KimHa, we used a trained model refer-
ring as M_KimHa (stated in Sect. 4.4), that was trained on
CDnet-2014 dataset and evaluated it on SBI-2015 dataset
without any retraining. It can observed from Table 8 that
the performance of the KimHa method drops around 18%
(from KimHa (88%) to M_KimHa (70%)) when the same
video sequences from CDnet-2014 dataset is used to train
the method as DeepFTSG.

To compare the performance of our proposed networks
to the top performing network FgSegNet_v2 on unseen
data, we trained FgSegNet_v2 network and referred it as
M_FgSegNet_v2 (described in Sect. 4.2), that was trained
on CDnet-2014 dataset using a single model, and evaluate
it on SBI-2014 dataset without any retraining. The Table 8
shows that the top performing method M_FgSegNet_v2 has
the worst generalization performance with an F-measure

123



790 International Journal of Computer Vision (2024) 132:776–804

Fig. 7 Qualitative comparison of the proposed methods with top
performing algorithms on sample frames from different categories
of CDnet-2014. Column left to right: input images, ground truth,
SuBSENSE, M_KimHa, M_FgSegNet_v2, MU-Net2, DeepFTSG-
1, and DeepFTSG-2. Row top to bottom: cameraJitter/badminton,

PTZ/continuousPan, intermittentObjectMotion/winterDriveway, bad-
Weather/blizzard, nightVideos/tramStation, thermal/park, dynam-
icBackground/fountain01. The dark-gray areas represent pixels outside
of CDnet-2014 regions of interest

Table 7 Comparative F-Score performance on a subset of the SBI-
2015 dataset, including PAWCS (St-Charles et al., 2016), SuBSENSE
(St-Charles et al., 2015), FgSegNet-S (Lim & Keles, 2018), FgSegnet-
M (Lim & Keles, 2018), FgSegnet_v2 (Lim & Keles, 2020), 3DCD
(Mandal et al., 2021), KimHa (Kim & Ha, 2020), FTSG (Wang et al.,
2014a)

Method Cand CAV2 CaV HigII Avg

PAWCS 0.87 0.68 0.37 0.90 0.71

SuBSENSE 0.54 0.87 0.40 0.89 0.67

FgSegNet-S 0.23 0.11 0.68 0.24 0.32

FgSegNet-M 0.15 0.14 0.72 0.21 0.31

FgSegNet_v2 0.27 0.10 0.63 0.58 0.40

3DCD 0.67 0.62 0.53 0.59 0.60

KimHa 0.74 0.93 0.45 0.96 0.77

FTSG 0.88 0.58 0.69 0.77 0.73

DeepFTSG-1 0.67 0.76 0.96 0.91 0.82

DeepFTSG-2 0.72 0.77 0.98 0.91 0.84

The definition for the significance of the bold inTable is that themethods
proposed in this paper are highlighted in bold and the best result in each
column is highlighted in bold

of 54% on an unseen data SBI-2015 when it has a single
model or an F-Measure of 35% when it has 11 models, and

majority voting is used. These results in Table 8 for both
M_FgSegNet_v2 andDeepFTSGsupport the observation that
transfer learning to new unseen videos is more effective with
better generalization capacity when a single network is used
and with DeepFTSG when multi-cue video streams captur-
ing motion, change and object appearance are fused using a
unified network architecture. Fig. 8 demonstrates a qualita-
tive comparison of methods on sample frames from various
categories of the SBI-2015 dataset.

To further compare the generalization power of the pro-
posed method, we evaluate it on the unseen LASIESTA
dataset. Table 9 (per-video) andTable 10 (per-category) show
a comparison of DeepFTSG with an unseen video perfor-
mance of the algorithms reported in Mandal et al. (2021);
Tezcan et al. (2021).

It can be observed from both Table 9 and Table 10 that
DeepFTSG achieves significantly better results than state-of-
the-art on an unseen video from LASIESTA. To make a fair
comparison with KimHa and FgSegNet_v2, we used trained
models referring as M_KimHa and M_FgSegNet_v2 (stated
in Sect. 4.4), that were trained on CDnet-2014 dataset, and
evaluate them on LASIESTA dataset without any retrain-
ing. It can be observed from Table 9 that the performance
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Table 8 Comparative F-Score performance on the full SBI-2015
dataset, including methods PAWCS (St-Charles et al., 2016), SuB-
SENSE (St-Charles et al., 2015), KimHa (Kim & Ha, 2020), FTSG

(Wang et al., 2014a); CAV1: CAVIAR1, CAV2: CAVIAR2, CaV: CaV-
ignal, Cand: Candela, HAM: HallAndMonitor, HigI: HighwayI, HigII:
HighwayII, HB2: HumanBody2, IBt2: IBMtest2

Methods Board CAV1 CAV2 CaV Cand HAM HigI HigII HB2 IBt2 Avg

SuBSENSE 0.578 0.914 0.871 0.398 0.536 0.776 0.552 0.894 0.835 0.939 0.729

PAWCS 0.780 0.859 0.677 0.370 0.873 0.741 0.702 0.903 0.701 0.939 0.754

KimHa 0.929 0.966 0.927 0.449 0.737 0.974 0.927 0.963 0.940 0.979 0.879

M_KimHa* 0.705 0.827 0.566 0.580 0.459 0.766 0.707 0.783 0.726 0.864 0.698

M_FgSegNet_v2* 0.477 0.846 0.121 0.895 0.386 0.762 0.531 0.144 0.646 0.611 0.542

M_FgSegNet_v2(50%)* 0.148 0.680 0.116 0.429 0.248 0.156 0.512 0.517 0.221 0.493 0.352

FTSG 0.796 0.652 0.577 0.687 0.881 0.727 0.438 0.769 0.782 0.841 0.715

DeepFTSG-1 0.760 0.916 0.759 0.956 0.674 0.909 0.833 0.909 0.942 0.947 0.861

DeepFTSG-2 0.814 0.923 0.766 0.975 0.720 0.877 0.892 0.905 0.902 0.940 0.872

The definition for the significance of the bold in Table is that the methods proposed in this paper are highlighted in bold and the best result in each
column is highlighted in bold
M_FgSegNet_v2* and M_KimHa* with * indicating single network models trained using the same configuration used to train the DeepFTSG
network. M_FgSegNet_v2(50%)* with * has 11 models, one for each CDnet-2014 category, and the majority voting rule is used to get a final mask

Fig. 8 Qualitative comparison of the proposed methods with top per-
forming algorithms on sample frames from different categories of
SBI-2015. Column left to right: input images, ground truth, SuB-

SENSE, M_KimHa, M_FgSegNet_v2, MU-Net2, DeepFTSG-1, and
DeepFTSG-2. Row top to bottom: Candela_m1.10, CAVIAR1, High-
wayI

of the KimHa method is comparable when the same video
sequences from CDnet-2014 dataset is used to train the
method as DeepFTSG, but DeepFTSG-2 still outperforms
it by 5%. The top-performing method M_FgSegNet_v2 has
the worst generalization performance with an F-measure of
51% on an unseen data LASIESTA. Moreover, DeepFTSG-
2 outperforms the BSUV-Net2.0 by 7%. In Table 9 the
BSUV-Net2.0*, DeepFTSG-1*, and DeepFTSG-2* shows
the result of using the scene dependent assessment strat-
egy that is explained in Sect. 4.6. From Table 10 it can
be seen that DeepFTSG-2 outperforms the BSUV-Net2.0 by
3% and M_KimHa by 9%. Many recent proposed methods
ignored the simulated motion and moving camera for both
indoor and outdoor sequences except BSUV-Net2.0. Since
we run on every video of the LASIESTA dataset, we com-
pare our performance on those videos with BSUV-Net2.0.
The videos under moving camera and simulated motion cat-
egories in LASIESTA dataset are divided into four groups
by the BSUV-Net2.0 authors (Tezcan et al., 2021), and the

performance was evaluated with three different versions of
BSUV-Net2.0, that is shown inTable 11.We also used trained
models referred to asM_KimHa andM_FgSegNet_v2 (stated
in Sect. 4.4), which were trained on the CDnet-2014 dataset,
and evaluated on LASIESTA dataset without any retraining.
It can be seen from Table 11 that DeepFTSG outperforms all
other methods in three video categories (Indoor pan & tilt,
Indoor jitter, Outdoor jitter) and has a comparable result in
the Outdoor pan & tilt category. DeepFTSG has low results
in Outdoor pan & tilt category because in the Outdoor Mov-
ing Camera (OMC) sequences of the LASIESTA dataset,
the camera is moving continually, and spatiotemporal infor-
mation will not provide any reasonable information. The
results from the generalization experiments show that the
proposed appearance-based and spatiotemporal features fus-
ing networkDeepFTSG either using early ormiddle fusion is
not specific to CDnet-2014 dataset, which it was trained on,
and can be very effective on other datasets as well. Figure 9
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Table 9 Comparative per-video F-Score performance on LASIESTA
dataset, including methods Maddalena1 (Maddalena & Petrosino,
2008), Maddalena2 (Maddalena & Petrosino, 2012), Haines (Haines
& Xiang, 2014), Cuevas (Daniel et al., 2018), FgSegNet-M (Lim &

Keles, 2018), FgSegNet_v2 (Lim & Keles, 2020), 3DCD (Mandal et
al., 2021), BSUV-Net2.0 (Tezcan et al., 2021)), SuBSENSE (St-Charles
et al., 2015), FTSG (Wang et al., 2014a)

Method ISI-2 ICA-2 IOC-2 IIL-2 IMB-2 IBS-2 OCL-2 ORA-2 OSN-2 OSU-2 Overall

Maddalena1 0.85 0.74 0.85 0.38 0.68 0.45 0.85 0.86 0.46 0.86 0.70

Maddalena2 0.94 0.87 0.95 0.23 0.85 0.40 0.88 0.86 0.71 0.88 0.76

Haines 0.81 0.87 0.95 0.81 0.71 0.73 0.96 0.90 0.04 0.90 0.77

Cuevas 0.76 0.63 0.88 0.79 0.68 0.66 0.90 0.87 0.09 0.81 0.71

FgSegNet-M 0.56 0.55 0.65 0.42 0.56 0.19 0.28 0.18 0.01 0.33 0.37

FgSegNet_v2 0.53 0.58 0.25 0.41 0.63 0.25 0.54 0.54 0.05 0.29 0.41

3DCD 0.86 0.49 0.93 0.85 0.79 0.87 0.87 0.87 0.49 0.83 0.79

BSUV-Net2.0 0.89 0.60 0.95 0.89 0.76 0.69 0.89 0.93 0.70 0.91 0.82

SuBSENSE 0.81 0.76 0.80 0.63 0.81 0.61 0.75 0.72 0.55 0.68 0.71

M_KimHa* 0.90 0.87 0.92 0.86 0.90 0.69 0.91 0.84 0.58 0.91 0.84

M_FgSegNet_v2* 0.70 0.72 0.69 0.37 0.70 0.18 0.74 0.91 0.02 0.05 0.51

FTSG 0.86 0.79 0.89 0.70 0.83 0.63 0.84 0.87 0.48 0.79 0.77

DeepFTSG-1 0.94 0.78 0.85 0.84 0.91 0.76 0.95 0.95 0.79 0.95 0.87

DeepFTSG-2 0.94 0.84 0.91 0.84 0.85 0.87 0.96 0.96 0.81 0.93 0.89

BSUV-Net2.0* 0.98 0.99 0.97 0.97 0.88 0.95 0.97 0.97 0.55 0.95 0.92

DeepFTSG-1* 0.98 0.99 0.99 0.99 0.99 0.97 0.98 0.99 0.97 0.97 0.98

DeepFTSG-2* 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99 0.98 0.98 0.99

The definition for the significance of the bold in Table is that the methods proposed in this paper are highlighted in bold and the best result in each
column is highlighted in bold
M_FgSegNet_v2* and M_KimHa* with * indicating single network models trained using the same configuration used to train the DeepFTSG
network. BSUV-Net2.0*, DeepFTSG-1*, and DeepFTSG-2* with * indicating scene dependent assessment strategy that is explained in Sect. 4.6

demonstrates a qualitative comparison of methods on sample
frames from various categories of the LASIESTA dataset.

Our next generalization experiment of the proposedmeth-
ods involves using a single object tracking dataset named
Large-scale Single Object Tracking (LaSOT) (Fan et al.,
2019). To make a fair comparison of our proposed and recent
methods along with FgSegNet_v2 on the LaSOT dataset, we
usedmodels trained on the CDnet-2014 dataset and ran infer-
ence on 5 categories of the LaSOT dataset. The categories
are bicycle, car, dog, giraffe, and person. We select only two
video sequences from each category. Those categories are
selected on purpose to see how the methods would perform
on the ones that they are familiar with, such as car, person,
and somewhat bicycle, and the ones they are not familiar with
at all, such as dog and giraffe. To evaluate the outputs of the
proposed methods, since the LaSOT dataset ground truth is a
bounding box and the output of the method is a segmentation
mask, we convert the segmentation masks to bounding boxes
and save them as binary image for both cases LaSOT ground
truth and methods output, where foreground is a bounding
box region and everything else is background (see Fig. 10).
We use the same evaluation metrics stated in Sect. 4.3, espe-
cially recall, precision, and F-Measure. It can be seen from
Table 12 that DeepFTSG-2 outperforms all other methods

with an F-Measure of 55%. We can also observe that on
new categories, dog and giraffe, DeepFTSG outperforms all
other methods as well, having 74% F-Measure for a dog
and 52% F-Measure for a giraffe. Since all of those video
sequences in the LaSOT dataset involves a moving camera,
manymethods usingbackground subtraction techniques such
as SuBSENSE andM_KimHa fails to detect object properly.
Hence M_FgSegNet_v2 performs better than those methods
having F-Measure of 53.6%. This evaluation method is inac-
curate since we first convert the segmentation mask to a
bounding box (makingmany false positive pixels). However,
by using this strategy, we can test the proposed methods on
different dataset types to see the generalization capabilities.

The proposed DeepFTSG network uses a generalized
multi-stream architecture that can be readily extended to
support additional multimodal stream cues with varying
fusion stages. To demonstrate it, we ran an additional experi-
ment where we extended DeepFTSG-2 with an additional
streaming cue having infrared information and named it
DeepFTSG-3. Instead of two streams, DeepFTSG-3 has
three streams, where the first stream input is an RGB frame
(VIS), the second stream is infrared (IR) information of that
frame, where we used SE-ResNet-50 backbone, and the third
stream is a combination of BGS and flux for both RGB and
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Table 10 Comparative
per-category F-Score
performance on LASIESTA
dataset with stationary camera
video subset, including methods
Maddalena1 (Maddalena &
Petrosino, 2008), Maddalena2
(Maddalena & Petrosino, 2012),
Haines (Haines & Xiang, 2014),
Cuevas (Daniel et al., 2018),
BSUV-Net2.0 (Tezcan et al.,
2021), SuBSENSE (St-Charles
et al., 2015), FTSG (Wang et al.,
2014a)

Method ISI ICA IOC IIL IMB IBS OCL ORA OSN OSU Overall

Maddalena1 0.87 0.85 0.91 0.61 0.76 0.42 0.88 0.84 0.58 0.80 0.75

Maddalena2 0.95 0.86 0.95 0.21 0.91 0.40 0.97 0.90 0.81 0.88 0.78

Haines 0.89 0.89 0.92 0.85 0.84 0.68 0.83 0.89 0.17 0.86 0.78

Cuevas 0.88 0.84 0.78 0.65 0.93 0.66 0.93 0.87 0.78 0.72 0.80

BSUV-Net2.0 0.92 0.68 0.96 0.88 0.81 0.77 0.93 0.94 0.84 0.79 0.85

SuBSENSE 0.80 0.83 0.79 0.43 0.86 0.58 0.83 0.78 0.71 0.69 0.73

M_KimHa* 0.91 0.89 0.93 0.67 0.90 0.69 0.80 0.68 0.73 0.72 0.79

M_FgSegNet_v2* 0.80 0.77 0.41 0.64 0.74 0.51 0.46 0.49 0.07 0.11 0.50

FTSG 0.87 0.78 0.85 0.70 0.89 0.64 0.88 0.87 0.67 0.81 0.80

DeepFTSG-1 0.92 0.82 0.90 0.82 0.91 0.84 0.85 0.95 0.88 0.93 0.88

DeepFTSG-2 0.95 0.89 0.93 0.88 0.89 0.90 0.81 0.81 0.86 0.92 0.88

The definition for the significance of the bold in Table is that themethods proposed in this paper are highlighted
in bold and the best result in each column is highlighted in bold
M_FgSegNet_v2* and M_KimHa* with * indicating single network models trained using the same configu-
ration used to train the DeepFTSG network

Table 11 F-Score comparison on LASIESTA dataset subset with moving camera and simulated motion sequences combined

Categories BSUV-Net2.0-v1 BSUV-Net2.0-v2 BSUV-Net2.0-v3 SuBSENSE M_KimHa M_FgSegNet_v2 DeepFTSG-1 DeepFTSG-2

Indoor pan & tilt 0.48 0.52 0.58 0.42 0.36 0.66 0.70 0.88

Outdoor pan & tilt 0.56 0.42 0.58 0.20 0.21 0.61 0.56 0.56

Indoor jitter 0.81 0.88 0.84 0.71 0.70 0.72 0.87 0.92

Outdoor jitter 0.75 0.85 0.50 0.63 0.53 0.7 0.81 0.89

The definition for the significance of the bold in Table is that themethods proposed in this paper are highlighted in bold and the best result in each
column is highlighted in bold
Data augmentation as used by BSUVNet includes a combination of SAC: spatially-aligned crop, RSC: randomly-shifted crop, and PTZ: PTZ camera
crop; BSUV-Net2.0-v1: SAC, BSUV-Net2.0-v2: SAC+RSC, BSUV-Net2.0-v3: SAC+PTZ. The other methods did not use any augmentation

Fig. 9 Qualitative comparison of the proposed methods with top per-
forming algorithmson sample frames fromdifferent categories ofLASI-
ESTA. Column left to right: input images, ground truth, SuBSENSE,

M_KimHa, M_FgSegNet_v2, DeepFTSG-1, and DeepFTSG-2. Row
top to bottom: I_MC_02, I_OC_1, O_CL_01, O_MC_01
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Fig. 10 Qualitative comparison on LaSOT (bounding box single object
tracking as masks) of the proposed methods with top performing
algorithms on sample frames from different video categories. Col-
umn left to right: input images, ground truth, SuBSENSE, M_KimHa,
M_FgSegNet_v2, DeepFTSG-1, and DeepFTSG-2. Row top to bot-

tom: bicycle/bicycle-12, car/car-11, dog/dog-8, giraffe/giraffe-16,
person/person-10. The first row on each category represents the out-
put mask from each method, and the second row is a bounding box
obtained from the first-row mask

infrared cues, making the third stream having four chan-
nels as input (1st-channel: BGS of RGB frame, 2nd-channel:
flux of RGB frame, 3rd-channel: BGS of the infrared frame,
4th-channel: flux of infrared frame). In infrared, the non-
visible heat radiation emitted or reflected by all objects,
regardless of lighting conditions, can be imaged. Hence,
infrared information provides a superior advantage in chal-
lenging conditions, such as low light, night-time, shadows,
visual obstructions, degraded visual environments, and cam-
ouflaging foliage. Figure 11, illustrates the generalization
of the DeepFTSG network architecture to support scalable

multi-stream learning and inference. The 2- and 3-stream
architectures correspond to DeepFTSG-2 and DeepFTSG-3.
The 4-stream network is a future extension to support optical
flow or stereo-based depth information as additional streams.

For this experiment, we used theGrayscale-Thermal Fore-
ground Detection (GTFD) dataset (Li et al., 2017) that
includes 25 aligned grayscale-thermal video pairs with high
diversity and has a segmentation mask as a ground truth.
We used 21 video sequences to train and 2 to test our pro-
posed networks DeepFTSG-2 and DeepFTSG-3 using the
same training strategy explained in Sect. 4.2. The only dif-
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Fig. 11 Schematic viewof how theDeepFTSGUSE-Net trellis network
architecture can be extended to support multi-stream architectures in a
scalable way. The 2-stream network architecture is DeepFTSG-2 with
RGB appearance and 2-channel motion streams. The middle diagram
shows a sample 3-stream network DeepFTSG-3 incorporating RGB-
Appearance (blue color), Infrared-Appearance (red color), andRGB+IR
4-channel motion (green color) encoder streams with a single decoder
stream (gray color) for fusion (Color figure online)

Table 13 Comparison of FTSG, DeepFTSG-2 and DeepFTSG-3 on
four unseen 4-channel (RGB+IR) video sequences from GTFD (2) and
FPSS (2) dataset

Methods GTFD dataset Overall

Re PWC P F

FTSG 0.5344 0.4321 0.3950 0.4513

DeepFTSG-2 0.6799 0.2743 0.5859 0.6241

DeepFTSG-3 0.7512 0.1543 0.7884 0.7691

Methods FPSS dataset Overall

Re PWC P F

FTSG 0.2550 0.6754 0.7054 0.3740

DeepFTSG-2 0.4374 0.6205 0.6670 0.5176

DeepFTSG-3 0.4415 0.5619 0.7688 0.5424

ference is that we used 852 frames for training and 46 frames
for validation. For DeepFTSG-2, we used appearance and
motion cues as input to the streams, and for DeepFTSG-3,
we used appearance, infrared, and motion cues as input to
the streams. We used two unseen video sequences (moving-
Clouds, pedestrian7) from the GTFD dataset that was not
included in the training to evaluate the models; note that
GTFD uses a subset of 24 and 30 frames, respectively, in
both of these sequences that are from the OSU dataset. The
same evaluation metrics described in Sect. 4.3 were used.

Table 13 shows the result ofDeepFTSG-2andDeepFTSG-
3 on two unseen video sequences of the GTFD dataset. It
can be observed that by adding infrared information along
with motion cues from infrared, our accuracy improved from
62.4% (DeepFTSG-2) to 76.9% (DeepFTSG-3), which is
around 14.5% improvement in F-Measure. Figure 12, shows
the qualitative result of DeepFTSG-2 and DeepFTSG-3 on
unseen video sequences of the GTFD dataset; note that in the
Ground Truth segmentation image only those people mov-
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ing within the short video segment are marked. In Fig. 13 the
spatio-temporal volumes of a video sequence ofGTFD (OSU
video) dataset are demonstrated to visualize the motion and
change through time in both VIS and IR.

To further test the generalization ability of DeepFTSG-3,
we run another experiment using Force Protection Surveil-
lance System (FPSS) dataset (Chan, 2009). The FPSS dataset
consists of 53 pairs of color and FLIR video sequences
collected at the Adelphi Laboratory Center (ALC) of ARL
between Nov 2004 and Jan 2005. All video sequences con-
sist of 640 × 480 pixel images collected using a thermal
vision sentry personnel observation device (POD) manufac-
tured by FLIRSystems. The primarymoving objects selected
were people and vehicles. Classes and centroids of the mov-
ing objects in the video sequences were provided. Using
those centroids, we created bounding boxes for each moving
object manually as ground truth for the first two sequences
(rf20041120_161701fc, rf20041216_143701fc). To test the
generalization, we used DeepFTSG-2 and DeepFTSG-3
trained on the GTFD dataset and tested it on these two
sequences of the FPSS dataset that we created a bounding
box manually without any additional training.

Table 13 shows the result ofDeepFTSG-2andDeepFTSG-
3 on two new video sequences of the FPSS dataset. We
can observe that by adding infrared information along with
motion cues from infrared, our accuracy improved from
51.8% (DeepFTSG-2) to 54.2% (DeepFTSG-3), which is
around 2.4% improvement in F-Measure. Figure 14, shows
the qualitative result of DeepFTSG-2 and DeepFTSG-3 on
new video sequences of the FPSS dataset. This experiment
demonstrates the extension ability of the proposed network
DeepFTSG to support additional streaming cues.

4.6 Scene Dependent Assessment

Recently proposedmethods also evaluate theirmethods using
scene dependent assessment (SDA) strategy, where some
frames from the test videos are also used for training (fine
tuning or transfer learning) the deep network. That is con-
sistent with current approaches that train one network per
video, one per class of similar videos, or one per video col-
lection. However, such networks need to be trained for each
real-world scenario and are often brittle to environmental
changes. Moreover, the SDA approach is also not ideal for
evaluating the generalization capacity of deep learning mod-

Fig. 12 Qualitative result of DeepFTSG-2 and DeepFTSG-3 on two unseen video sequences of GTFD (OSU videos) dataset

Fig. 13 Spatio-temporal
(x − y − t) volumes of a video
sequence of GTFD (OSU video)
dataset for VIS (Row 1) and IR
(Row 2) channels. a original
input, b flux motion, c
combination of change and
motion (green ← flux, red ←
change) (Color figure online)
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Fig. 14 Qualitative result of DeepFTSG-2 and DeepFTSG-3 on two new video sequences of FPSS dataset

Table 14 Comparative F-Score performance using scene dependent
assessment (SDA) training strategy on SBI-2015 dataset, including
methods FgSegNet-S (Lim&Keles, 2018), FgSegNet-M (Lim&Keles,
2018), FgSegNet_v2 (Lim&Keles, 2020), 3DCD (Mandal et al., 2021);

Cand: Candela, CAV1: CAVIAR1, CAV2: CAVIAR2, CaV: CaVignal,
Fol: Foilage, HAM: HallAndMonitor, HigI: HighwayI, HigII: High-
wayII, HB2: HumanBody2, IBt2: IBMtest2, PAF: PeopleAndFoilage,
Snel: Snellen

Methods Board Cand CAV1 CAV2 CaV Fol HAM HigI HigII HB2 IBt2 PAF Snel Avg

FgSegNet-S 0.88 0.25 0.67 0.04 0.52 0.68 0.62 0.83 0.42 0.78 0.72 0.88 0.22 0.58

FgSegNet-M 0.89 0.27 0.74 0.19 0.61 0.60 0.67 0.73 0.36 0.79 0.78 0.87 0.42 0.61

FgSegNet_v2 0.89 0.25 0.55 0.10 0.65 0.86 0.46 0.82 0.59 0.63 0.57 0.88 0.68 0.61

3DCD 0.85 0.31 0.81 0.58 0.55 0.66 0.63 0.73 0.79 0.67 0.74 0.80 0.74 0.68

DeepFTSG-1 0.99 0.92 0.98 0.94 0.99 0.99 0.97 0.98 0.98 0.98 0.98 0.99 0.85 0.97

DeepFTSG-2 0.99 0.98 0.99 0.94 0.99 0.99 0.97 0.99 0.99 0.98 0.98 0.99 0.86 0.97

The definition for the significance of the bold in Table is that the methods proposed in this paper are highlighted in bold and the best result in each
column is highlighted in bold

els to detect and segment motion across different temporal
scales. However, to make a fair comparative analysis of our
proposed networks with existing deep learning methods, we
also did experiments following the SDA approach. Using the
SDA strategy, our proposed methods are trained similarly to
the 3DCD method (Mandal et al., 2021), such that for both
SBI-2015 and LASIESTA datasets, the training is performed
on 50% of the frames (for SBI-2015 50% of frames = 2380
frames, for LASIESTA 50% of frames = 4010 frames) and
evaluation is performed using the complete 100% of frames.

The accuracyon theSBI-2015dataset using theSDAtrain-
ing strategy is shown in Table 14. The overall F-Measure of
the proposed methods are 97% that is almost 30% higher
than the recently proposed 3DCD method (68%) and 36%
higher than the final version of FgSegNet (61%).

The comparison of the proposed methods with the exist-
ing methods in terms of an average F-Measure in each video
category of the LASIESTA, except the simulated motion and
moving camera sequences, are demonstrated in the Table 15.
From quantitative analysis on Table 15, it can be seen that
the proposed DeepFTSG outperforms in all ten categories
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Table 15 Comparative F-Score
performance of SDA strategy on
LASIESTA dataset, including
methods FgSegNet-S (Lim &
Keles, 2018), FgSegNet-M (Lim
& Keles, 2018), FgSegNet_v2
(Lim & Keles, 2020), 3DCD
(Mandal et al., 2021)

Method ISI ICA IOC IIL IMB IBS OCL ORA OSN OSU Overall

FgSegNet-S 0.32 0.57 0.37 0.33 0.64 0.21 0.17 0.10 0.08 0.27 0.31

FgSegNet-M 0.44 0.71 0.29 0.32 0.68 0.27 0.24 0.17 0.18 0.21 0.35

FgSegNet_v2 0.44 0.60 0.30 0.32 0.50 0.22 0.31 0.24 0.28 0.38 0.36

3DCD 0.91 0.76 0.90 0.90 0.90 0.81 0.89 0.89 0.72 0.85 0.85

DeepFTSG-1 0.99 0.99 0.98 0.99 0.99 0.97 0.98 0.99 0.98 0.97 0.98

DeepFTSG-2 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99

The definition for the significance of the bold in Table is that themethods proposed in this paper are highlighted
in bold and the best result in each column is highlighted in bold

Table 16 Ablation study using different inputs and losses for DeepFTSG-1 on different datasets

Exp Input Ignore Mask CDnet-2014 SBI-2015 LASIESTA

RGB Gray Flux BGS No Yes Re P F Re P F Re P F

Exp 1 � � 0.9460 0.9762 0.9593 0.8900 0.5862 0.6763 0.9376 0.4556 0.5398

Exp 2 � � � 0.9380 0.9786 0.9550 0.8442 0.8848 0.8594 0.8538 0.8077 0.8135

Exp 3 � � � 0.9378 0.9767 0.9554 0.8573 0.8458 0.8415 0.7214 0.7214 0.7204

Exp 4 � � � � 0.9413 0.9799 0.9578 0.8389 0.9070 0.8632 0.8542 0.8231 0.8261

Exp 5 � � � � 0.9566 0.9776 0.9652 0.8378 0.9021 0.8605 0.8853 0.8334 0.8465

The definition for the significance of the bold in Table is that the methods proposed in this paper are highlighted in bold and the best result in each
column is highlighted in bold

Table 17 Ablation study using different inputs, losses and backbones for DeepFTSG-2 on different datasets

Exp Input 2nd Stream B-bone Ignore Mask CDnet-2014 SBI-2015 LASIESTA

RGB Flux BGS SE-RN-50 RN-18 No Yes Re P F Re P F Re P F

Exp 1 � � � � � 0.8938 0.9887 0.9345 0.7688 0.9271 0.8270 0.8665 0.8156 0.8137

Exp 2 � � � � � 0.9472 0.9777 0.9608 0.7784 0.9099 0.8132 0.8608 0.8255 0.8169

Exp 3 � � � � � 0.9299 0.984 0.9514 0.8181 0.8931 0.8394 0.9205 0.8198 0.8503

Exp 4 � � � � 0.9619 0.9698 0.9642 0.8578 0.7451 0.7923 0.8988 0.4960 0.5755

Exp 5 � � � � 0.9559 0.9812 0.9677 0.8316 0.8307 0.8164 0.9030 0.6706 0.7112

Exp 6 � � � � � 0.9663 0.9756 0.9700 0.8689 0.8844 0.8715 0.9130 0.8343 0.8510

The definition for the significance of the bold in Table is that the methods proposed in this paper are highlighted in bold and the best result in each
column is highlighted in bold

of the LASIESTA dataset. Moreover, the DeepFTSG per-
formance 63% higher than FgSegNet_v2 (36%) and 14%
higher than 3DCD (85%). From Table 9 it can be observed
that DeepFTSG outperforms BSUV-Net2.0 (92%) by 7%
in overall F-Measure. The results of the other methods are
taken from 3DCD paper (Mandal et al., 2021), which has
the same SDA strategy for training and evaluation as the
proposed methods. Those experiments demonstrate that the
proposed DeepFTSG networks are not specific to the CDnet-
2014 dataset and can be very effective on other datasets.

4.7 Ablation Study

To understand the impact of fusing appearance-based fea-
tureswith spatiotemporal features of theproposedDeepFTSG
for moving object detection, we did an ablation study by per-

forming different experiments with different combinations
of appearance-based features and spatiotemporal features.
Table 16 demonstrates an ablation study performed using
DeepFTSG-1, with different inputs and including ignore
region in the loss function. For all experiments, there is
not a significant improvement in the CDnet-2014 dataset,
because all of those experiments include sequences from the
CDnet-2014 dataset for training and validation of a network.
To make a better assumption of how each piece of infor-
mation improves the accuracy of the network, we need to
look at the results of unseen datasets, SBI-2015 and LASI-
ESTA. From Experiment 1, it can be observed that if we
had only appearance-based information, we obtained an F-
Score of 67.6% for SBI-2015 and 54% for LASIESTA, even
though we had an F-Score of almost 96% for CDnet-2014. In
Experiments 2 and 3, we fused spatiotemporal information
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Fig. 15 Sample results and comparative analysis of detection
performance. Rows top to bottom: input images, ground truth
masks, change mask, flux motion, flux motion (green chan-
nel) and change (red channel), DeepFTSG-1, and DeepFTSG-2
masks. Columns left to right: first three columns from CDnet-

2014 (nightVideos/streetCornerAtNight, lowFramerate/turnpike, tur-
bulence/turbulence3); the next three columns from SBI-2015
(CAVIAR1, CaVignal, HighwayI); the last three from LASIESTA
(IndoorBootstrap (I_BS_01), IndoorMovingCamera (I_MC_01), Out-
doorSimulatedMotion (O_SM_04)) (Color figure online)

with appearance-based information by separatingmotion and
change cues to observe how they will impact separately. In
Experiment 2, only the change cue (BGS) was fused with
appearance, and in Experiment 3, only the motion cue (Flux)
was fused with appearance. We can observe that only fus-
ing change cue increase the accuracy of the network for
unseen SBI-2015 almost by 19% and 27% for LASIESTA.
Fusing only motion cues also increases the network’s accu-
racy but not as much as change cues. However, fusingmotion
and change cues with appearance-based information (Exper-
iment 4) improves the accuracy of the network by almost
1%, with respect to Experiment 2. By not penalizing regions
labeled as ignore mask in CDNet-2014 ground-truth, in the
loss function, we slightly improve the accuracy on unseen
video, which is demonstrated by Experiment 5 in Table 16
(2% on LASIESTA)

The ablation study performed using DeepFTSG-2, with
different inputs, backbone in the second stream, and includ-
ing ignoring region in the loss function, is shown in Table 17.
The difference between Experiments 1 and 2 is the backbone
used for the second stream of the network. Using ResNet-18
instead of SE-ResNet-50 for spatiotemporal feature extrac-
tion improved the network accuracy on CDnet-2014 by
almost 2.5%, and there was no significant change in unseen

videos. Conducting the same experiments, but this time not
penalizing the ignore mask regions in CDNet-2014 in the
loss function (Experiment 2 and 6), increased the accuracy of
the network by nearly 1% and significantly more for unseen
videos (5.8% and 3.4% for SBI-2015 and LASIESTA respec-
tively). To understand how motion and change cues impact
the network accuracy, we did two more experiments (Exper-
iment 4 and 5), where we give only change cue (BGS) in
the second stream (Experiment 4), and in Experiment 5 only
motion cue (Flux) is given. Even so, there was no significant
change in the accuracy on CDnet-2014, we can observe that
having motion cue increase the accuracy on unseen videos
SBI-2015 by more than 2% and almost 14% for LASIESTA,
with respect to having change cue (Experiment 4). Having
both motion and change cues in the second stream (Experi-
ment 6), we can observe that for the case of unseen videos, the
accuracy improved by almost 5.5% in SBI-2015 and almost
14% in LASIESTA, with respect to having only motion
cue (Experiment 5). The best accuracy for seen and unseen
datasets was achieved in Experiment 6, having appearance-
based information in the first stream and motion and change
cues in the second stream, and using ResNet-18 backbone to
extract spatiotemporal features, and not penalizing the ignore
regions in the loss function during training and validation,
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has the accuracy of 97% in CDnet-2014, 87.2% in unseen
SBI-2015 and 85.1% in unseen LASIESTA. From those
experiments, we can observe that motion and change cues,
when given along with appearance-based features, improve
the performance of themoving object detection networks sig-
nificantly on unseen videos, and the best results are achieved
when they are fused instead of used separately. Qualitative
results for one frame in 9 videos across three datasets are
shown in Fig. 15, illustrating the improved accuracy of the
proposed DeepFTSG networks. The video demo is available
for the results of DeepFTSG-23 on CDnet-2014, SBI-2015
and LASIESTA datasets, where SBI-2015 and LASIESTA
are completely unseen datasets that are used for generaliza-
tion purposes.

5 Conclusions

We developed DeepFTSG, a deep convolutional neural
network, to robustly detect moving objects in videos.
DeepFTSG consists of a novel U-Net encoder-decoder struc-
ture that integrates object appearance cues with hand-crafted
motion and change cues, using an early or middle fusion
of single or multiple streams. Unsupervised tensor-based
motion estimation and an unsupervised mixture of Gaus-
sian background subtraction cues are used as part of the
input stream to DeepFTSG, incorporating intrinsic temporal
dynamics for accurate change detection. Decoupling pixel-
level motion and change estimation from the network and
assigning them to hand-crafted methods greatly reduces net-
work complexity, training times, and most important amount
of training data. DeepFTSG can learn object-level modeling,
spatiotemporal fusion, and semantic change analysis using
just 200 frames per video from the CDnet-2014 collection
of 53 video sequences. The performance difference between
DeepFTSG and FTSGhelps to quantify the benefit of appear-
ance information and visual cue fusion. DeepFTSG, which
incorporates learned object appearance models along with a
supervised fusion of visual motion cues, improves accuracy
by about 25% over FTSG, which uses onlymotion cues with-
out supervised learning. Usingmotion and change cues along
with appearance generates accurate detection on unseen
video sequences when fused altogether, instead of fusing
just appearance with motion or change cues separately. The
decoupled structure of DeepFTSG improves the adaptability
of the proposed system to new domains using transfer learn-
ing. Compared to the top ranking FgSegNet_v2, and recently
proposed methods, such as 3DCD, KimHa or BSUV-Net2.0,
the DeepFTSG multi-cue multi-stream network, produces

3 https://youtu.be/kdDxea5xalU

considerablymore accurate detection performance on unseen
video sequences. The proposed DeepFTSG network uses
a generalized multi-stream architecture that can be readily
extended to support additional streaming cues with varying
fusion stages. Like ventral visual stream processing in the
human visual system, DeepFTSG is a multi-stream multi-
cue fusion framework that can be generalized to more than
two streams; for example incorporating infrared cue, depth
cue and optical flow streams.
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Appendix A Ablation Experiments

More ablation experiments are demonstrated in this appendix
to evaluate the contribution of each component in the pro-
posed method (Table 18). Most of the experiment involves
different input streams, either one, two, or three streams, to
the proposed method. Various combinations of input infor-
mation were tested as well. The best result on all three
datasets was achieved when the inputs were Grayscale, BGS,
and flux for DeepFTSG-1 and RGB, BGS and flux for
DeepFTSG-2 (explained in the main section of the paper).
However, instead of using BGS, if the SuBSENSE back-
ground model is used, there is a slight improvement in
F-Measure for the CDnet-2014 dataset, but for the LASI-
ESTA dataset, the F-Measure drops significantly (76.45%)
for DeepFTSG-2. Moreover, instead of using Binary Cross
Entropy loss, using Focal Loss did not significantly improve.
Using theSE-ResNet-50backbone in the encoder part instead
of the ordinary U-Net encoder significantly improved F-
Measure in all three datasets.
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