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Abstract
Most of us are not experts in specific fields, such as ornithology. Nonetheless, we do have general image and language
understanding capabilities that we use to match what we see to expert resources. This allows us to expand our knowledge
and perform novel tasks without ad-hoc external supervision. On the contrary, machines have a much harder time consulting
expert-curated knowledge bases unless trained specifically with that knowledge in mind. Thus, in this paper we consider a
new problem: fine-grained image recognition without expert annotations, which we address by leveraging the vast knowledge
available in web encyclopedias. First, we learn a model to describe the visual appearance of objects using non-expert image
descriptions. We then train a fine-grained textual similarity model that matches image descriptions with documents on a
sentence-level basis. We evaluate the method on two datasets (CUB-200 and Oxford-102 Flowers) and compare with several
strong baselines and the state of the art in cross-modal retrieval. Code is available at: https://github.com/subhc/clever.

Keywords Fine-grained classification · Clever · Non-expert annotations · Multimodal retrieval

1 Introduction

Deep learning and the availability of large-scale labelled
datasets have led to remarkable advances in image recog-
nition tasks, including fine-grained recognition (Wah et al.,
2011; Nilsback and Zisserman, 2006; Horn et al., 2017). The
problem of fine-grained image recognition amounts to iden-
tifying subordinate-level categories, such as different species
of birds, dogs or plants. Thus, the supervised learning regime
in this case requires annotations provided by domain experts
or citizen scientists (Van Horn et al., 2015).

Whilemost people, unless professionally trained or enthu-
siasts, do not have knowledge in such specific domains, they

Communicated by Tu Bui.

B Subhabrata Choudhury
subha@robots.ox.ac.uk

Iro Laina
iro@robots.ox.ac.uk

Christian Rupprecht
chrisr@robots.ox.ac.uk

Andrea Vedaldi
vedaldi@robots.ox.ac.uk

1 Visual Geometry Group, University of Oxford, Oxford OX1
3PJ, UK

are generally capable of consulting existing expert resources
such as books or online encyclopedias, e.g. Wikipedia. As
an example, let us consider bird identification. Amateur bird
watchers typically rely on field guides to identify observed
species. As a general instruction, one has to answer the
question “what is most noticeable about this bird?” before
skimming through the guide to find the best match to
their observation. The answer to this question is typically
a detailed description of the bird’s shape, size, plumage col-
ors and patterns. Indeed, in Fig. 1, the non-expert observer
might not be able to directly identify a bird as a “Vermillion
Flycatcher”, but they can simply describe the appearance of
the bird: “this is a bright red bird with black wings and tail
and a pointed beak”. This description can be matched to an
expert corpus to obtain the species and other expert-level
information.

On the other hand, machines have a much harder time
consulting off-the-shelf expert-curated knowledge bases. In
particular,most algorithmic solutions are designed to address
a specific task with datasets constructed ad-hoc to serve
precisely this purpose. Our goal, instead, is to investigate
whether it is possible to re-purpose general image and
text understanding capabilities to allow machines to consult
already existing textual knowledge bases to address a new
task, such as recognizing a bird.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-023-01885-9&domain=pdf
http://orcid.org/0000-0001-7839-4562
https://github.com/subhc/clever


538 International Journal of Computer Vision (2024) 132:537–554

Fig. 1 Fine-Grained Image Recognition without Expert Labels. We
propose a novel task that enables fine-grained classification without
using expert class information (e.g. bird species) during training. We

frame the problem as document retrieval from general image descrip-
tions by leveraging existing textual knowledge bases, such asWikipedia

We introduce a novel task inspired by the way a layper-
son would tackle fine-grained recognition from visual input;
we name this CLEVER, i.e. Curious Layperson-to-Expert
Visual Entity Recognition. Given an image of a subordinate-
level object category, the task is to retrieve the relevant
document from a large, expertly-curated text corpus; to this
end, we only allow non-expert supervision for learning to
describe the image. We assume that: (1) the corpus dedicates
a separate entry to each category, as is, for example, the case
in encyclopedia entries for bird or plant species, etc., (2) there
exist no paired data of images and documents or expert labels
during training, and (3) to model a layperson’s capabilities,
we have access to general image and text understanding tools
that do not use expert knowledge, such as image descriptions
or language models.

Given this definition, the task classifies as weakly-
supervised in the taxonomy of learning problems. We note
that there are fundamental differences to related topics,
such as image-to-text retrieval and unsupervised image clas-
sification. Despite a significant amount of prior work in
image-to-text or text-to-image retrieval (Peng et al., 2017;
Wang et al., 2017; Zhen et al., 2019; Hu et al., 2019; He et al.,
2019), the general assumption is that images and correspond-
ing documents are paired for training a model. In contrast
to unsupervised image classification, the difference is that
here we are interested in semantically labelling images using
a secondary modality, instead of grouping similar images
(Asano et al., 2020; Caron et al., 2020; Van Gansbeke et al.,
2020).

To the best of our knowledge, we are the first to tackle the
task of fine-grained image recognition without expert super-
vision. Since the target corpus is not required during training,
the search domain is easily extendable to any number of
categories/species—an ideal use case when retrieving doc-
uments from dynamic knowledge bases, such as Wikipedia.
We provide extensive evaluation of ourmethod and also com-
pare to approaches in cross-modal retrieval, despite using
significantly reduced supervision.

Table 1 Overview of related topics (K: known, U: unknown)

Class Information
Task Train Test

FGVR K K

ZSL K U

GZSL K K + U

CLEVER U U

2 RelatedWork

In this paper, we address a novel problem (CLEVER). Next
we describe in detail how it differs from related problems in
the computer vision and natural language processing litera-
ture and summarise the differences with respect to how class
information is used in Table 1.

2.1 Fine-Grained Recognition

The goal of fine-grained visual recognition (FGVR) is cat-
egorising objects at sub-ordinate level, such as species of
animals or plants (Wah et al., 2011; Van Horn et al., 2015,
2018; Nilsback and Zisserman, 2008; Kumar et al., 2012).
Large-scale annotated datasets require domain experts and
are thus difficult to collect. FGVR is more challenging than
coarse-level image classification as it involves categories
with fewer discriminative cues and fewer labeled samples.
To address this problem, supervised methods exploit side
information such as part annotations (Zhang et al., 2014),
attributes (Vedaldi et al., 2014), natural language descriptions
(He and Peng, 2017), noisy web data (Krause et al., 2016; Xu
et al., 2016; Gebru et al., 2017) or humans in the loop (Bran-
son et al., 2010; Deng et al., 2015; Cui et al., 2016). Attempts
to reduce supervision in FGVR are mostly targeted towards
eliminating auxiliary labels, e.g. part annotations (Zheng et
al., 2017; Simon and Rodner, 2015; Ge et al., 2019; Huang
and Li, 2020). There have also been efforts to classify out-
of-domain data by using a semi-supervised approach where
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in-domain labeled examples alongside unlabeled data are
used (Du et al., 2021; Su et al., 2021). In contrast, our goal is
fine-grained recognition without access to categorical labels
during training. Our approach only relies on side information
(captions) provided by laymen and is thus unsupervised from
the perspective of “expert knowledge”.

2.2 Zero/Few Shot Learning

Zero-shot learning (ZSL) is the task of learning a classi-
fier for unseen classes (Xian et al., 2018). A classifier is
generated from a description of an object in a secondary
modality, mapping semantic representations to class space
in order to recognize said object in images (Socher et al.,
2013). Various modalities have been used as auxiliary infor-
mation: word embeddings (Frome et al., 2013; Xian et
al., 2016), hierarchical embeddings (Kampffmeyer et al.,
2019), attributes (Farhadi et al., 2009; Akata et al., 2015) or
Wikipedia articles (Elhoseiny et al., 2017; Zhu et al., 2018;
Elhoseiny et al., 2016; Qiao et al., 2016). Most recent work
uses generative models conditioned on class descriptions to
synthesize training examples for unseen categories (Long et
al., 2017; Kodirov et al., 2017; Felix et al., 2018; Xian et al.,
2019; Vyas et al., 2020; Xian et al., 2018), attention-enabled
feature extractors (Yuet al., 2018;Zhu et al., 2019; Shermin et
al., 2022; Chen et al., 2022). The multi-modal and often fine-
grained nature of the standard and generalised (G)ZSL task
renders it related to our problem. However, different from the
(G)ZSL settings our method uses neither class supervision
during training nor image-document pairs as in (Elhoseiny
et al., 2017; Zhu et al., 2018; Elhoseiny et al., 2016; Qiao et
al., 2016).

2.3 Cross-Modal and Information Retrieval

While information retrieval dealswith extracting information
from document collections (Manning et al., 2008), cross-
modal retrieval aims at retrieving relevant information across
various modalities, e.g. image-to-text or vice versa. One of
the core problems in information retrieval is ranking doc-
uments given some query, with a classical example being
Okapi BM25 (Robertson et al., 1995). With the advent of
transformers (Vaswani et al., 2017) and BERT (Devlin et
al., 2019), state-of-the-art document retrieval is achieved in
two-steps; an initial ranking based on keywords followed by
computationally intensiveBERT-based re-ranking (Nogueira
and Cho, 2019; Nogueira et al., 2020; Yilmaz et al., 2019;
MacAvaney et al., 2019). In cross-modal retrieval, the com-
mon approach is to learn a shared representation space for
multiple modalities (Peng et al., 2017; Andrew et al., 2013;
Wang and Livescu, 2016; Peng et al., 2016, 2017; Wang et
al., 2017; Zhen et al., 2019; Hu et al., 2019; He et al., 2019;
Zheng et al., 2021; Wang et al., 2022, 2021). In addition to

paired data in various domains, some methods also exploit
auxiliary semantic labels; for example, theWikipedia bench-
mark (Pereira et al., 2013) provides broad category labels
such as history, music, sport, etc.

We depart substantially from the typical assumptions
made in this area. Notably, with the exception of He et al.
(2019); Wang et al. (2009), this setting has not been explored
in fine-grained domains, but generally targets higher-level
content association between images and documents. Fur-
thermore, one major difference between our approach and
cross-modal retrieval, including (He et al., 2019;Wang et al.,
2009), is that we do not assume paired data between the input
domain (images) and the target domain (documents). We
address the lack of such pairs using an intermediarymodality
(captions) that allows us to perform retrieval directly in the
text domain.

2.4 Natural Language Inference (NLI) and Semantic
Textual Similarity (STS)

Also related to our work, in natural language processing,
the goal of the NLI task is to recognize textual entailment,
i.e. given a pair of sentences (premise and hypothesis), the
goal is to label the hypothesis as entailment (true), con-
tradiction (false) or neutral (undetermined) with respect to
the premise (Bowman et al., 2015; Williams et al., 2018).
STSmeasures the degree of semantic similarity between two
sentences (Agirre et al., 2012, 2013). Both tasks play an
important role in semantic search and information retrieval
and are currently dominated by the transformer architec-
ture Vaswani et al. (2017); Devlin et al. (2019); Liu et al.
(2019); Reimers and Gurevych (2019). Inspired by these
tasks,wepropose a sentence similarity regime that is domain-
specific, paying attention to fine-grained semantics.

3 Method

We introduce the problem of layperson-to-expert visual
entity recognition (CLEVER), which we address via image-
based document retrieval. Formally, we are given a set of
images xi ∈ I to be labelled given a corpus of expert doc-
uments Dj ∈ D, where each document corresponds to a
fine-grained image category and there exist K = |D| cat-
egories in total. As a concrete example, I can be a set of
images of various bird species and D a bird identification
corpus constructed from specialized websites (with one arti-
cle per species). Crucially, the pairing of xi and Dj is not
known, i.e. no expert task supervision is available during
training. Therefore, the mapping from images to documents
cannot be learned directly but can be discovered through the
use of non-expert image descriptions Ci for image xi .

123



540 International Journal of Computer Vision (2024) 132:537–554

Fig. 2 Overview. We train a model for fine-grained sentence matching (FGSM) using layerperson’s annotations, i.e. class-agnostic image descrip-
tions. At test time, we score documents from a relevant corpus and use the top-ranked document to label the image

Ourmethod consists of three distinct parts. First, we learn,
using “layperson’s supervision”, an image captioning model
that uses simple color, shape and part descriptions. Sec-
ond, we train a model for Fine-Grained Sentence Matching
(FGSM). The FGSMmodel takes as input a pair of sentences
and predicts whether they are descriptions of the same object.
Finally, we use the FGSM to score the documents in the
expert corpus via voting. As there is one document per class,
the species corresponding to the highest-scoring document
is returned as the final class prediction for the image. The
overall inference process is illustrated in Fig. 2.

3.1 Fine-grained SentenceMatching

The overall goal of our method is to match images to expert
documents—however, in absence of paired training data,
learning a cross-domainmapping is not possible.On the other
hand, describing an image is an easy task formost humans, as
it usually does not require domain knowledge. It is therefore
possible to leverage image descriptions as an intermediary
for learning to map images to an expert corpus.

To that end, the core component of our approach is the
FGSM model f (c1, c2) ∈ R that scores the visual similar-
ity of two descriptions c1 and c2. We propose to train f in a
manner similar to the textual entailment (NLI) task in natural
language processing. The difference to NLI is that the infor-
mation that needs to be extracted here is fine-grained and
domain-specific e.g. “a bird with blue wings” vs. “this is a
uniformly yellow bird”. Since we do not have annotated sen-
tence pairs for this task, we have to create them synthetically.
Instead of the terms entailment and contradiction,
here we use positive and negative to emphasize that
the goal is to find matches (or mismatches) between image
descriptions.

We propose to model f as a sentence encoder, per-
forming the semantic comparison of c1, c2 in embedding
space.Despite theirwidespread success in downstream tasks,
most transformer-based language models are notoriously
bad at producing semantically meaningful sentence embed-

dings (Reimers andGurevych, 2019; Li et al., 2020).We thus
follow (Reimers and Gurevych, 2019) in learning an appro-
priate textual similarity model with a Siamese architecture
built on a pre-trained language transformer. This also allows
us to leverage the power of large language models while
maintaining efficiency by computing an embedding for each
input independently and only compare embeddings as a last
step. To this end, we compute a similarity score for c1 and
c2 as f (c1, c2) = h ([φ1; φ2; |φ1 − φ2|]), where [·] denotes
concatenation, and h and φ are lightweight MLPs operating
on the average-pooled output of a large language model T(·)
with the shorthand notation φ1 = φ(T(c1)).

3.1.1 Training

One requirement is that the FGSM model should be able to
identify fine-grained similarities between pairs of sentences.
This is in contrast to the standardSTSandNLI tasks in natural
language understanding which determine the relationship (or
degree of similarity) of a sentence pair on a coarser seman-
tic level. Since our end-goal is visual recognition, we instead
train themodel to emphasize visual cues and nuanced appear-
ance differences.

Let Ci be the set of human-annotated descriptions for
a given image xi . Positive training pairs are generated by
exploiting the fact that, commonly, each image has been
described by multiple annotators; for example in CUB-
200 (Wah et al., 2011) there are |Ci | = 10 captions per image.
Thus, each pair (from Ci × Ci ) of descriptions of the same
image can be used as a positive pair. The negative counter-
parts are then sampled from the complement C̄i = ⋃

l �=i Cl ,
i.e. among the available descriptions for all other images in
the dataset.While not perfect, there is a very high chance that
these come from images of different classes. We specifically
do not add specific rules for constructing negative pairs, other
than the fact that they describe different images, as it is not
easy to automatically infer reliable noun-attribute combina-
tions from sentences that would allow for further checking
(e.g. “the bids is overall yellow, but has dark speckles on its

123



International Journal of Computer Vision (2024) 132:537–554 541

belly”—what color is the belly?) We construct this dataset
with an equal number of samples for both classes and train
f with a binary cross entropy loss.

3.1.2 Inference

During inference, the sentence embeddings φ for each sen-
tence in each document can be precomputed and only h needs
to be evaluated dynamically given an image and its corre-
sponding captions, as described in the next section. This
greatly reduces the memory and time requirements.

3.2 Document Scoring

Although trained from image descriptions alone, the FGSM
model can take any sentence as input and, at test time,
we use the trained model to score sentences s ∈ D j

from an expert corpus against image descriptions c ∈ Ci .
Specifically, we assign a score zi j ∈ R to each expert doc-
ument Dj given a set of descriptions for the i-th image:
zi j = 1

|Ci×Dj |
∑

(c,s)∈Ci×Dj
f (c, s), Since there are sev-

eral descriptions in Ci and sentences in Dj , we compute the
final document score as an average of individual predictions
(scores) of all pairs of descriptions and sentences. Aggregat-
ing scores across the whole corpus D, we can then compute

the probability p(Dj | xi )� e−zi j
∑

k e
−zik

of a document Dj ∈ D
given image xi and assign the document (and consequently
class) with the highest probability to the image.

3.3 Bridging the Domain Gap

While training the FGSM model, we have so far only used
laypersons’ descriptions, disregarding the expert corpus.

However, we can expect the documents to contain signifi-
cantly more information than visual descriptions. In the case
of bird species, encyclopedia entries usually also describe
behavior, migration, conservation status, etc. In addition,
even the descriptions of visual appearance may utilize spe-
cialized jargon. This causes a gap between the style of data
observed during training and that encountered during the
inference phase. We can adapt the model to the new domain
by additionally leveraging information (but not labels) from
the target corpus during training. In this section, we thus
employ twomechanisms to bridge the gap between the image
descriptions and the documents.

3.3.1 Neutral Sentences

We introduce a third, neutral class to the classification
problem, designed to capture sentences that do not provide
relevant (visual) information. We generate neutral training
examples by pairing an image description with sentences
from the documents (or other descriptions) that do not have
any nouns in common. Avoiding common nouns in neutral
pairs is based on the rationale that if one sentence describes
one part (e.g., “black wings”) while another sentence focuses
on another (e.g., “white belly”), there is insufficient infor-
mation to classify the pair as positive or negative. This
additionally allows the model to adapt to the style of sen-
tences in the document, which can be very different from
image descriptions. Some examples are shown in Fig. 3.

Instead of binary cross entropy, we train the three-
class model (positive/neutral/negative) with softmax cross
entropy.

Fig. 3 Positive, negative and neutral sentence pairs (CUB-200). We show examples of the automatically generated pairs used to train FGSM. For
each pair, the top sentence is a ground-truth caption of the image on the left
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3.3.2 Score Distribution Prior

Another way of leveraging the document pool during train-
ing, without requiring paired data, is by imposing priors on
document scoring. To this end, we consider the probability
distribution p(D | x) over the entire corpusD given an image
x in a training batchB.We can then derive a regularizer R(B)

that operates at batch-level:

R(B) =
∑

x∈B

(
− 〈p(D | x), p(D | x)〉

+
∑

x ′∈B\x
〈p(D | x), p(D | x ′)〉

) (1)

where 〈·, ·〉 denotes the inner product of two vectors. The
intuition of the two terms of the regularizer is as follows.
〈p(D |x), p(D |x)〉 is maximal when the distribution assigns
all mass to a single document. Since the score zi j is averaged
over all captions of one image, this additionally has the side
effect of encouraging all captions of one image to vote for the
same document. The second term of R(B) then encourages
the distributions of two different images to be orthogonal,
favoring the assignment of images uniformly across all doc-
uments.

Since R(B) requires evaluation over the whole document
corpus for every image, we first pre-train f , including the
large transformer model T , (c.f. Sect. 3.1). After conver-
gence, we extract sentence features for all documents and
image descriptions and train only the MLPs φ and h with
L + λR, where λ balances the 3-class cross entropy loss L
and the regularizer.

4 Experiments

We validate our method empirically for bird and plant iden-
tification. To the best of our knowledge, we are the first to
consider this task, thus in absence of state-of-the-art meth-
ods, we ablate the different components of our model and
compare to several strong baselines.

4.1 Datasets and Experimental Setup

Datasets We evaluate our method on Caltech-UCSD Birds-
200-2011 (CUB-200) (Wah et al., 2011) and the Oxford-102
Flowers (FLO) dataset (Nilsback and Zisserman, 2006). For
both datasets, Reed et al. (2016) have collected several visual
descriptions per image by crowd-sourcing to non-experts on
Amazon Mechanical Turk (AMT).

CUB-200 The Caltech-UCSD Birds-200-2011 (CUB-
200) (Wah et al., 2011) contains images of 200 different
bird species. The train and test set contains 5,994 and 5,794

images respectively. We have collected expert documents—
one document corresponding to each of the 200 categories—
by crawling AllAboutBirds1 (AAB), which includes bird
identification guides made available by the Cornell Lab of
Ornithology. Each document consists of an Overview and
ID info sections.We obtain basic description fromOverview.
Frompage ID infowe use Identification, Size&Shape, Color
Pattern, Behavior and Habitat. For Size & Shape key we omit
the relative size table. For 17 categories thatwere not found in
AAB, we resorted to Wikipedia articles instead. We queried
the article for the bird class using MediaWiki API. We use
introduction, description, life history sections and ignore the
rest. If the class name appears in the text we replace it with
the phrase “a bird". We replace any mention of the classes in
corpus with the word ‘a bird’ so that the model is unable to
cheat by using expert labels.

Oxford-102 Flowers The Oxford-102 Flowers (FLO)
dataset (Nilsback and Zisserman, 2006) contains images of
102 categories of flowers. We use the official train and test
set of 1,020 and 6,149 images respectively. Similar to CUB-
200,we create an expert document corpuswith one document
per category by parsingWikipedia data using theMediaWiki
API. We use summary, cultivation, distribution, description,
ecology, flowers, habitat sections and ignore the rest. We
replace the expert labels in the corpus with the phrase ‘a
flower’.

Setup We use the image-caption pairs to train two image
captioningmodels: “Show, Attend and Tell” (SAT) (Xu et al.,
2015) and AoANet (Huang et al., 2019). Unless otherwise
specified, we report the performance of our model based on
their ensemble, i.e. combining captions frombothmodels.As
the backbone T of our sentence transformer model, we use
RoBERTa-large (Liu et al., 2019) fine-tuned on NLI and STS
datasets using the setup of (Reimers and Gurevych, 2019).

4.1.1 Image Captioning

We consider the following captioning models.
SAT We train Show-Attend-and-Tell (SAT) (Xu et al.,

2015) for 100 epochs with 64 batch size using the implemen-
tation of (Vedantam et al., 2017). We use a ResNet-34 (He et
al., 2015) based encoder, and LSTM decoder with input size
of 512 and hidden state size of 1800.We use Adam optimizer
with learning rate of 0.002. Dropout rate is 0.5, vocabulary
size is 5726.

AoANet For AoANet (Huang et al., 2019), we extract
the bottom-up features with a Faster-RCNN (Ren et al.,
2016) backbone pretrained on ImageNet (http://image-
net.org/challenges/LSVRC/2015/results) andVisual Gnome
(Krishna et al., 2017). The original 2048 dimensional vectors
are projected to D=1024. In the decoder LSTM hidden state

1 https://allaboutbirds.com
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size is 1024. The vocabulary size for CUB-200 is 1682 and
for FLO it is 1711. We use batch size 10 and train for 30
epochs. We use the Adam (Kingma and Ba, 2015) optimizer
with initial learning rate of 2e − 4. We anneal the learning
rate by 0.8 every 5 epochs. For our experiments we use the
implementation from the authors’ repository2. During infer-
ence, we apply beam search with a beam size of 10 to sample
multiple captions from both methods. We have trained the
captioning models on the official data splits, reserving 10%
of the images from training split for validation for all experi-
ments except the zero-shot experiments where we follow the
zero-shot data split.

BLIP2 We finetune BLIP2 (Li et al., 2023) 2.7b model
starting from COCO captioning weights for 5 epochs with
learning rate of 1e − 5, batch size of 256, warmup step of
1000. We set image resolution is set to 364, drop path to 0.
We use AdamWoptimizer with β = (0.9, 0.999) and weight
decay of 0.05. Layerwise decay rate is set to 0.95.

OFA We train OFA (Wang et al., 2022) separately on
CUB-200 and FLO datasets. We use OFA-base and start
from the COCO captioning weights. We train the model for
5 epochs with learning rate of 1e − 5, batch size of 32. We
use cross-entropy loss with label smoothing of 0.1.

For Table 4, we follow the GZSL split proposed in (Xian
et al., 2018), using the trainval set to train the caption-
ing models, with 10% of the images being again kept aside
for validation. Therefore, we explicitly avoid using “unseen"
categories when training the captioning models.

While general image captioning is known to suffer from
low diversity, in our fine-grained setting, this is less prob-
lematic because of two reasons. Firstly, the vocabulary used
is specific to the domain, e.g. , captions describe specific
parts (beak, wings, tail) of birds. Secondly, captions describ-
ing similar images, such as images of the same class, should
indeed exhibit similarity rather than distinctiveness.

4.1.2 FGSM implementation details

T is a sentence transformer with a RoBERTa-large backbone
pretrained on the SNLI (Bowman et al., 2015), Multi-Genre
NLI (Williams et al., 2018) and STS (Cer et al., 2017) bench-
marks. The pretrained model is obtained from the publicly
available repository3 of (Reimers and Gurevych, 2019). φ is
implemented as a two layer MLP with intermediate and out-
put dimensions of 256 and 64 respectively and tanh activation
function. For h we use a linear layer with output dimension
of 2 (for the binary classification task). During the first stage
of training, we use a constant learning rate of 0.5 · 10−6 for
T and 10−5 for φ and h respectively; weight decay is set to
zero for φ and h. We follow (Reimers and Gurevych, 2019)

2 https://github.com/husthuaan/AoANet
3 http://sbert.net/models/

for rest of the hyper-parameters. During the second stage,
we aim to reduce the gap between the data that the model
is exposed to for training and the target domain. We add the
regularizer R and fix T , pre-computing all embeddings for
computational efficiency. We retrain φ and h from scratch
with the Adam optimizer (Kingma and Ba, 2015) and an ini-
tial learning rate of 10−5. For φ we use a three layer MLP
with 256, 64, and 32 output dimensions. For h we use a linear
layer with an output dimension of 3 to predict positive, nega-
tive and neutral sentence pairs, training with a cross-entropy
loss and the regularizer with a weight factor λ = 10. The
neutral sentence pairs are either a pair of captions from two
different images that have no nouns in common, or a pair
containing a image caption and a random sentence from the
target corpus that have no nouns in common.We sample with
equal probability from these two pools. The reasoning behind
common nouns is that sentences containing the same nouns
could potentially describe the same parts—e.g. head, beak,
wings—while adjectives are often used as attributes, e.g. red
wings, short beak. Pairs of sentences without common nouns
contain neither entailing nor contradicting information, i.e.
they describe different objects/parts, and can be thus safely
considered as neutral.

We use three metrics to evaluate the performance on the
benchmark datasets. We compute top-1 and top-5 per-class
retrieval accuracy and report the overall average. Addition-
ally, we compute the mean rank (MR) of the target document
for each class. Here, retrieval accuracy is identical to classi-
fication accuracy, since there is only a single relevant article
per category.

4.2 Baseline Comparisons

Since this work is the first to explore the mapping of images
to expert documents without expert supervision, we compare
our method to several strong baselines (Table 2).

Our FGSMperforms text-based retrieval, we evaluate cur-
rent text retrieval systems.

TF-IDF Term frequency-inverse document frequency
(TF-IDF) is widely used for unsupervised document retrieval
(Jones, 1972). For each image, we use the predicted captions
as queries and use the TF-IDF textual representation for doc-
ument ranking instead of our model. We empirically found
the cosine distance and n-grams with n = 2, 3 to perform
best for TF-IDF.

BM25 Similar to TF-IDF, BM25 (Robertson et al., 1995)
is another common measure for document ranking based on
n-gram frequencies. We use the BM25 Okapi implemen-
tation from the python package rank-bm25 with default
settings.

RoBERTaOne advantage of processing caption-sentence
pairs with a Siamese architecture, such as SBERT/
SRoBERTa (Reimers and Gurevych, 2019), is the reduced
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Table 2 Comparison to baselines

CUB-200 FLO
Method top-1↑ top-5↑ MR↓ top-1↑ top-5↑ MR↓
ResNet50 (He et al. 2015) (class-supervised) 68.6 90.9 2.6 87.7 97.8 1.3

Random guess 0.5 2.5 100.0 0.9 4.9 51.0

SRoBERTa-STSb (Reimers and Gurevych 2019) (no-ft) 1.3 6.4 73.4 1.1 7.7 45.2

SRoBERTa-NLI (Liu et al. 2019) (no-ft) 1.9 5.3 81.3 0.9 5.7 48.2

Okapi BM25 (Robertson et al. 1995) 1.0 7.5 78.2 1.6 8.0 43.9

TF-IDF (Jones 1972) 2.2 9.7 72.1 1.4 5.0 45.2

RoBERTa (Liu et al. 2019) 4.3 16.6 44.6 1.1 9.6 42.6

Ours 7.9 28.6 31.9 6.2 14.2 39.7

We report the retrieval performance of our method on CUB-200 and Oxford-102 Flowers (FLO) and compare to various strong baselines

complexity.Nonetheless,we have trained a transformer base-
line for text classification, using the same backbone (Liu et
al., 2019), concatenating each sentence pair with a SEP token
and training as a binary classification problem.We apply this
model to score documents, instead of FGSM, aggregating
scores at sentence-level.

SRoBERTa-NLI/STSb Finally, to evaluate the impor-
tance of learning fine-grained sentence similarities, we also
measure the performance of the same model trained only
on the NLI and STSb benchmarks (Reimers and Gurevych,
2019), without further fine-tuning.

Following (Reimers and Gurevych, 2019) we rank docu-
ments based on the cosine similarity between the caption and
sentence embeddings.

Our method outperforms all bag-of-words and learned
baselines. Approaches such as TF-IDF and BM25 are very
efficient, albeit less performant than learnedmodels.Notably,
the closest in performance to our model is the transformer
baseline (RoBERTa), which comes at a large computational
cost (347 sec vs. 0.55 sec for our model per image on CUB-
200).

Class Supervised For completeness we also report the
performance of a class-supervised model in Table 2. Specif-
ically, we train a ResNet50 (He et al., 2016) classifier to
predict the class label given an image.Wefine-tune themodel
on each dataset (starting from ImageNet-pretrained weights)
for 100 epochs with a learning rate of 1e − 4 and SGD opti-
mizer.

4.3 Ablation & User Interaction

We ablate the different components of our approach in Table
3. We first investigate the use of a different scoring mecha-
nism, i.e. the cosine similarity between the embeddings of c
and s as in (Reimers and Gurevych, 2019); we found this to
perform worse (FGSM + cosine).

Next, we evaluate the performance of our model after the
final training phase, with the proposed regularizer and the

Table 3 Ablations and user study

Method top-1↑ top-5↑ MR↓
user interaction 11.9 37.5 24.8

FGSM + cosine 4.5 17.8 35.5

FGSM + R(B) [2-cls] 7.4 24.6 29.9

FGSM + R(B) [3-cls] 7.9 28.6 31.9

On CUB-200 we evaluate scoring functions, captioning models and the
regularizer R(B)

Bold indicates the best performance

inclusion of neutral pairs (Sect. 3.3). R(B) imposes prior
knowledge about the expected class distribution over the
dataset and thus stabilizes the training, resulting in improved
performance ([2-cls]). Further, through the regularizer and
neutral sentences ([3-cls]), FGSM is exposed to the target
corpus during training, which helps reduce the domain shift
during inference compared to training on image descriptions
alone (FGSM w/ ensemble).

Finally, our method enables user interaction, i.e. allowing
a user to directly enter own descriptions, replacing the auto-
matic description model. In Table 3 we have simulated this
by evaluating with ground-truth instead of predicted descrip-
tions. Naturally, we find that human descriptions indeed
perform better, though the performance gap is small. We
attribute this gap to a much higher diversity in the human
annotations. Current image captioning models still have
diversity issues, which also explains why our ensemble vari-
ant improves the results.

To measure the influence of captions, in Table 5 we
evaluate four captioning methods, SAT (Xu et al., 2015),
AoANet (Huang et al., 2019), OFA (Wang et al., 2022) and
BLIP2 (Li et al., 2023), and show our model’s performance.
For this experiment, we train and compare all models without
the regularizer R(B).We observe that captioningmodels that
score higher in captioning metrics, e.g., ROUGE, CIDER,
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etc., also perform well with FGSM. We show examples of
captions predicted by the models in Fig. 5

We also an ensemble of captions obtained by twomethods,
SAT and AoANet. The ensemble is created using the combi-
nation of captions of both models and computing the average
matching score over all captions. As in almost all tasks, the
ensemble improves the performance. The gain, however, is
small as (1) captions produced by different models tend to
describe similar aspects of the image (Fig. 5), and (2) inac-
curate captions will still affect performance, when averaging
scores across captions.

4.4 Comparison with Cross-Modal Retrieval

Since the nature of the problempresented here is in fact cross-
modal, we adapt a representative method, DSCMR (Zhen et
al., 2019), to our data to compare to the state of the art in
cross-media retrieval.We note that such an approach requires
image-document pairs as training samples, thus using more
supervision than our method. Instead of using image descrip-
tions as an intermediary for retrieval, DSCMR thus performs
retrieval monolithically, mapping the modalities in a shared
representation space.We argue that, although this is the go-to
approach in broader category domains, it may be sub-optimal
in the context of fine-grained categorization.

Since in our setting each category (species) is represented
by a single article, in the scenario that a supervised model
sees all available categories during training, the cross-modal
retrieval problem degenerates to a classification task. Hence,
for a meaningful comparison, we train both our model and
DSCMR on the CUB-200 splits for ZSL (Xian et al., 2018)
to evaluate on 50 unseen categories. We report the results
in Table 4, including a TF-IDF baseline on the same split.
Despite using no image-documents pairs for training, our
method still performs significantly better.

Additionally, we compare to representative methods from
the vision-and-language representation learning space. ViL-
BERT (Lu et al., 2019) is a multi-modal transformer model

Table 4 Comparison to cross-media retrieval

Method sup. top-1↑ top-5↑ MR↓
Random guess ✗ 2.0 10.0 25.0

ViLBERT (Lu et al. 2019) ✗ 3.5 14.8 20.2

TF-IDF (Jones 1972) ✗ 7.2 28.6 18.9

CLIP (Radford et al. 2021) ✓ 10.0 32.9 14.0

DSCMR (Zhen et al. 2019) ✓ 13.5 34.7 15.2

Ours ✗ 20.9 50.7 9.6

We evaluate the performance of methods on the ZSL split of CUB-200.
Ourmethodperforms favorably against existing approaches trainedwith
more supervision (sup.=supervision)
Bold indicates the best performance

capable of learning joint representations of visual content
and natural language. It is pre-trained on 3.3M image-caption
pairs with two proxy tasks. We use their multi-modal align-
ment prediction mechanism to compute the alignment of
the sentences in a document to a target image, similar to
ViLBERT’s zero-shot experiments. The sentence scores are
averaged to get the document alignment score and the docu-
ment with the maximum score is chosen as the class. Finally,
we compare to CLIP (Radford et al., 2021), that learns a
multimodal embedding space from 400M image-text pairs.
CLIP predicts image and sentence embeddings with separate
encoders. For a target image we score each sentence using
cosine similarity and average across the document for the
final score. CLIP’s training data is not public, but we find
that there is a high possibility it does indeed contain expert
labels as removing class names from documents hurts its
performance.

4.5 Qualitative Results

4.5.1 Model Performance

In Fig. 4, we show qualitative retrieval results. The input
image is shown on the left followed by the predicted descrip-
tions. We then show the top-5 retrieved documents/classes
together with an example image for the reader. Note that the
example images are not used for matching, as the FGSM
module operates on text only. We find that in most cases,
even when the retrieved document does not match the ground
truth class, the visual appearance is still similar. This is espe-
cially noticeable in families of birds for which discriminating
among individual species is considered to be particularly dif-
ficult even for humans, e.g. warblers (last row).

4.5.2 Sentence Composition

We observe FGSM, alongside our contrastive learning on
captions, also benefits from using a pretrained large language
model RoBERTa. We show an example in Fig. 6. The first
row shows the retrieval result for the caption "this bird
has wings that are blue". As we add another cri-
terion the retrieval becomes more fine-grained, scoring
documents with the additional specification more positively.

4.5.3 Effectiveness of FGSM Training

We show the change in fine-grained scoring of sentence-
transformer embeddings when training with our method. For
this experiment we find the subset of pairs which have one or
more color-part pairs present in them (e.g. brownwings, blue
tail etc.). For Fig. 7 we randomly sample a caption “this
bird has a long wide beak, and black
wings, belly, and head.” and calculated the sim-
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Table 5 Captioning models

Cap. Model Data. CLEVER Image Captioning
top1↑ top5↑ MR↓ B-1 B-2 B-3 B-4 M R C

SAT (Xu et al. 2015) CUB 4.3 15.0 42.9 87.0 71.7 57.5 45.5 31.3 62.2 40.7

AoANet (Huang et al., 2019) CUB 5.7 20.8 38.3 91.3 82.7 73.9 65.4 38.8 73.8 75.9

OFA (Wang et al., 2022) CUB 4.3 19.8 36.7 92.4 81.8 71.4 62.3 38.0 72.9 70.2

BLIP2 (Li et al., 2023) CUB 5.0 23.2 33.3 93.6 82.9 72.4 63.3 39.5 73.8 75.5

SAT+AoANet CUB 5.9 20.0 36.1 – – – – – – –

BLIP2+AoANet CUB 5.6 23.1 31.3 – – – – – – –

SAT (Xu et al., 2015) FLO 2.8 14.5 39.4 87.1 75.2 65.4 57.7 37.0 69.4 42.6

AoANet (Huang et al., 2019) FLO 2.7 13.7 39.0 92.0 85.8 78.8 73.5 42.4 79.9 60.6

OFA (Wang et al., 2022) FLO 2.7 14.5 38.4 94.3 88.5 82.6 77.3 45.2 81.3 76.5

BLIP2 (Li et al., 2023) FLO 3.0 15.4 38.7 96.1 90.6 85.0 79.8 49.3 85.0 91.9

SAT+AoANet FLO 3.0 14.3 38.2 – – – – – – –

BLIP2+AoANet FLO 2.8 15.4 38.2 – – – – – – –

Performance on the CLEVER task generally increases with captioning performance. (Data.: Dataset, B: BLEU, M: METEOR, R: ROUGE, C:
CIDEr-D)
Bold indicates the best performance

Fig. 4 Qualitative Results (CUB-200). We show examples of input images and their predicted captions, followed by the top-5 retrieved documents
(classes). For illustration purposes, we show a random image for each document; the image is not used for matching
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Fig. 5 Predictions of Captioning models (CUB-200). We show examples of captions predicted by the captioning models we use - SAT (Xu et al.,
2015), AoANet (Huang et al., 2019), OFA (Wang et al., 2022) and BLIP2 (Li et al., 2023)

Fig. 6 Sentence Composition Results (CUB-200). We show examples
of the FGSM model being able to understand compound sentences.
We start with a single caption and retrieve the best matching corpus
classes in the first row. In the second and third row we add an additional

condition to the caption which retrieves even finer-grained classes. For
illustration purposes, we show a random image for each document; the
image is not used for matching

ilarity score for a set of captions using (Fig. 7a) FGSM and
(Fig. 7b) RoBERTa. The set is created by combining vari-
ous part and color names. The figure shows the distribution
of similarity scores across the set of color-part combina-
tions. We color the pairs with the mean score of the captions
containing that pair. We observe only the captions contain-
ing similar colors to black are scored positive by FGSM -
showing our model can perform contrastive separation based
on visual attributes. Whereas RoBERTa scores all captions
positive and cannot discriminate between sentences with dif-
ferent visual attributes. Some other combinations are scored
positively by our method, potentially reflecting the expected
variance between different human descriptions. For example,

blue and black often appear similar in an image depending
on lighting and visibility of the part.

4.5.4 Image Description Generalization

As an integral part of our approach, we analyze the per-
formance of the captioning module. In particular, we are
interested in the degradation (if any) in the capability of the
captioning models to describe images of previously unseen
categories. To this end, to understand whether the learned
image descriptions are dependent on the training categories,
we train the captioning model with the zero-shot learn-
ing split and compare the validation performance (in terms
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Fig. 7 Effectiveness of FGSM training (CUB-200). We use a
random caption "this bird has a long wide beak, and
black wings, belly, and head." and find its similarity
with all the ground truth captions using FGSM and RoBERTa extracted
features. The figures show the distribution where the size of the radius
denotes the relative occurrence of that pair in captions. We color each
color-part pair, e.g., {brown bill, black wings}, using the mean simi-

larity score of all captions containing that pair. Red denotes the mean
positive score and blue mean negative score. We find that, as a general-
purpose text model, RoBERTa matches all captions with a positive
score, while FGSM can contrast based on visual attributes and return
positive matches only for colors/parts that are actually present in the
caption (Color figure online)

Table 6 Captioning
performance

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr-D

CUB-200 (seen) 87.4 72.1 58.0 45.9 31.7 62.6 39.6

CUB-200 (unseen) 86.9 70.9 56.5 44.6 31.1 62.0 38.1

CUB-200 (overall) 87.1 71.4 57.1 45.1 31.4 62.2 38.9

FLO (seen) 88.1 76.3 66.3 58.2 38.6 70.1 54.5

FLO (unseen) 85.6 73.3 63.4 55.1 35.7 67.7 32.6

FLO (overall) 87.0 74.9 65.0 56.8 37.3 69.0 44.5

We verify that the captioning model generalizes to unseen classes

of common captioning metrics) between seen and unseen
classes in Table 6. We report results using common met-
rics, BLUE1-4(Cho et al., 2014), METEOR (Denkowski
and Lavie, 2014), ROUGE-L (Lin et al., 2004) and CIDEr-
D (Vedantam et al., 2015). Interestingly, we find no signif-
icant difference in performance between seen and unseen
classes, indicating that the model generalizes well to the
appearance of novel categories. This is on par with our
intuition and motivation for a layperson-inspired system to
describe the appearance of objects without necessarily being
able to recognize or name them and even when they have
never previously encountered a given object.

4.5.5 Word Relevance

In Table 7 we show pairs of image descriptions and sentences
from the expert corpus, along with the predicted score (after
sigmoid). We highlight the importance of individual words

which is estimated by masking the word and computing the
difference between the new and initial score. The model has
learned to pay attention to colors and body parts, which affect
its decision the most. The third example also shows that the
model is sensitive to negative evidence, as it correctly iden-
tifies the color mismatch between the two sentences.

4.5.6 Sentence Relevance

While sensitivity to individual words is important, the model
also needs to identify which parts of the expert document are
relevant, as the descriptions often contain much more infor-
mation such as the behavior or history of a species. In Tables
8 and 9we showmatching results between a query and a doc-
ument. We highlight the sentence with the highest matching
score within the document, given the query (image descrip-
tion), which indeed identify the visual description within the
long document.
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Table 7 Word relevance
visualization

Words are highlighted in blue (red) to highlight positive (negative) changes in the output when the word is
occluded (replaced by [UNK]). The darker the shade, the bigger the change in the output

Table 8 FGSM qualitative results

Query This bird has a black body yellow head and gray wings.

Document With a golden head, a white patch on black wings, and a call that sounds like a rusty farm gate
opening, the bird demands your attention. look for them in wesa bird and prairie wetlands, where
they nest in reeds directly over the water. they’re just as impressive in winter, when huge flocks
seem to roll across farm fields. each bird gleans seeds from the ground, then leapfrogs over its flock
mates to the front edge of the ever-advancing troupe. in the midwest and west, look for birds both
in freshwater wetlands and in nearby farm fields. though they are striking in appearance, these birds
spend a substantial time perched out of view in cattails or reeds, so listen for their harsh check calls
and bizarre grinding, buzzing songs in order to pinpoint their location. when searching in farm fields,
look for large concentrations of a birds and then scan them carefully. if the bulk of the birds are a
bird or some other species, don’t despair-focus on finding a white wing patch or yellow head among
the other species. birds are fairly large a birds, with a stout body, a large head, and a long, conical
bill. males are striking a birds with yellow heads and chests, and black bodies with prominent white
patches at the bend of the wing. females and immatures are brown instead of black, with duller
yellow heads. immature males show some white at the bend of the wing, while females don’t. birds
breed in loose colonies, and males mate with several females. during the breeding season, they eat
insects and aquatic invertebrates. they form huge flocks in winter, often mixing with other species of
a birds, and feed on seeds and grains in cultivated fields. birds breed and roost in freshwater wetlands
with dense, emergent vegetation such as cattails. they often forage in fields, typically wintering in
large, open agricultural areas.

Query This is a bird with a white belly black back and a red head.

Document The gorgeous bird is so boldly pata birded it’s been called a “flying checkerboard,” with an entirely
crimson head, a snow-white body, and half white, half inky black wings. these birds don’t act quite
likemost other a birds: they’re adept at catching insects in the air, and they eat lots of acorns and beech
nuts, often hiding away extra food in tree crevices for later. this magnificent species has declined
severely in the past half-century because of habitat loss and changes to its food supply. look for birds
in scattered, open woodlots in agricultural areas, dead timber in swamps, or pine savannas. walk
slowly, listening for tapping or drumming, and keep your eyes alert for telltale flashes of black and
white as these high-contrast a birds fly in between perches. the red head can be hard to see in strong
glare. raucous, harsh weah!. calls will also give away the presence of a bird. birds are medium-sized
a birds with fairly large, rounded heads, short, stiff tails, and powerful, spike-like bills. adults have
bright-red heads, white underparts, and black backs with large white patches in the wings, making
the lower back appear all white when perched. immatures have gray-brown heads, and the white
wing patches show rows of black spots near the trailing edge. in addition to catching insects by the
normal a bird method of hammering at wood, birds also catch insects in flight and hunt for them on
the ground. they also eat considerable amounts of fruit and seeds. their raspy calls are shriller and
scratchier than the red-bellied a bird’s. birds live in pine savannahs and other open forests with clear
understories. open pine plantations, treerows in agricultural areas, and standing timber in beaver
swamps and other wetlands all attract birds. smaller than a northern flicker; about the size of a a bird.

We show several examples of query-document pairs and highlight the best matching sentence
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Table 9 FGSM qualitative results

Query This particular bird has a belly that is white with black spots.

Document The active little bird is a familiar sight at backyard feeders and in parks and woodlots, where it joins
flocks of a bird and a bird, barely outsizing them. an often acrobatic forager, this black-and-white a
bird is at home on tiny branches or balancing on slender plant galls, sycamore seed balls, and suet
feeders. downies and their larger lookalike, the a bird, are one of the first identification challenges
that beginning bird watchers master. look for birds in woodlots, residential areas, and city parks. be
sure to listen for the characteristic high-pitched pik note and the descending whinny call. in flight,
look for a small black and white bird with an undulating flight path. during winter, check mixed-
species flocks and don’t overlook birds among the a bird and a bird - birds aren’t much larger than
white-breasted a bird. birds are small versions of the classic a bird body plan. they have a straight,
chisel-like bill, blocky head, wide shoulders, and straight-backed posture as they lean away from
tree limbs and onto their tail feathers. the bill tends to look smaller for the bird’s size than in other
a birds. birds give a checkered black-and-white impression. the black upperparts are checked with
white on the wings, the head is boldly striped, and the back has a broad white stripe down the center.
males have a small red patch on the back of the head. the outer tail feathers are typically white with
a few black spots. birds hitch around tree limbs and trunks or drop into tall weeds to feed on galls,
moving more acrobatically than larger a birds. their rising-and-falling flight style is distinctive of
many a birds. in spring and summer, birds make lots of noise, both with their shrill whinnying call
and by drumming on trees. you’ll find birds in open woodlands, particularly among deciduous trees,
and brushy or weedy edges. they’re also at home in orchards, city parks, backyards and vacant lots.
about two-thirds the size of a a bird between a bird and a bird.

Query This is a black bird with a white stripe on its face and a red crown.

Document The bird is one of the biggest, most striking forest birds on the continent. it’s nearly the size of a a
bird, black with bold white stripes down the neck and a flaming-red crest. look (and listen) for birds
whacking at dead trees and fallen logs in search of their main prey, carpenter ants, leaving unique
rectangular holes in the wood. the nest holes these birds make offer crucial shelter to many species
including swifts, owls, a birds, bats, and pine martens. look for birds in stands of mature forest with
plenty of dead trees and downed logs-deep excavations into rotten wood are telltale signs of this
species. also listen for this bird’s deep, loud drumming and shrill, whinnying calls. birds occur at all
heights in the forest, and are often seen foraging on logs and near the bases of trees. the bird is a very
large a bird with a long neck and a triangular crest that sweeps off the back of the head. the bill is long
and chisel-like, about the length of the head. in flight, the wings are broad and the bird can seem a
birdlike. birds are mostly black with white stripes on the face and neck and a flaming-red crest. males
have a red stripe on the cheek. in flight, the bird reveals extensive white underwings and small white
crescents on the upper side, at the bases of the primaries. birds drill distinctive rectangular-shaped
holes in rotten wood to get at carpenter ants and other insects. they are loud birds with whinnying
calls. they also drum on dead trees in a deep, slow, rolling pata bird, and even the heavy chopping
sound of foraging carries well. their flight undulates like other a birds, which helps separate them
from a a bird’s straight flight path. birds are forest birds that require large, standing dead trees and
downed wood. forests can be evergreen, deciduous, or mixed and are often old, particularly in the
west. in the east they live in young forests as well and may even be seen in partially wooded suburbs
and backyards. nearly the size of an a bird a bird-sized.

We show several examples of query-document pairs and highlight the best matching sentence

4.6 Comparison with Zero-Shot Learning

CLEVER is loosely related to the zero-shot learning (ZSL)
problem, where, during inference, a model is tasked with
classifying samples from classes that have not been observed
during training. Unlike CLEVER, however, ZSL explic-
itly makes use of a subset of expert labels during training,
and sometimes additional information (attributes, captions,
etc.). Consequently, the CLEVER setting uses significantly
reduced supervision (i.e., relying only on captions) in con-
trast to the ZSL setting.

To put our method in context, we compare it against ZSL
approaches, even though they employ a higher degree of
supervision. Due to the difference in available information

during training in ZSL (i.e., some classes are known), it is
important to evaluate seen and unseen classes separately.
Overcoming this difference is one of the main challenges
for generalized zero-shot methods (GZSL). In both settings,
training is carried out on a set of 150 seen classes on CUB-
200. InGZSL, during testing, themodel has to label an image
correctly among all 200 classes, including 50 unseen classes.

In Table 10, we evaluate our method on the ZSL and
GZSL splits for CUB-200. To be compatible with the splits
used for the (G)ZSL setting, we also train the captioning
models and the FGSM module only on the “seen” classes
(although no labels are observed). We do not use the regular-
izer R(B) for this experiment. The lack of expert annotations
during training explains the gap in performance between our
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Table 10 Contextualization of the CLEVER task

Method Paired data #classes annotated ZSL GZSL Sup.
U↑ U↑ S↑ H↑ top-1↑

Supervised

ResNet50 (He et al. 2015) ✓ 200 – – – – 68.6

Zero Shot

LATEM (Xian et al. 2016) ✓ 150 49.3 15.2 57.3 24.0 –

ALE (Akata et al. 2015) ✓ 150 54.9 23.7 62.8 34.4 –

SAE (Kodirov et al. 2017) ✓ 150 61.4 8.8 18.0 11.8 –

Cycle-WGAN (Felix et al. 2018) ✓ 150 57.8 46.0 60.3 52.2 –

f-VAEGAN-D2 (Xian et al. 2019) ✓ 150 61.0 48.4 60.1 53.6 –

CLEVER

Ours (ensemble) ✗ 0 16.9 6.5 6.7 6.6 7.9

We compare the performance of our method relative to zero-shot learning methods as well as a supervised method. Different from our approach,
supervised and (G)ZSL methods utilize expert labels during training. The supervised method uses labels for all 200 classes, while (G)ZSL uses
only a subset of these (150). In contrast, our setting uses no expert labels

approach and ZSL/class-supervised methods, as we are tack-
ling a significantly harder problem. However, while many
GZSL methods show a large performance gap between seen
and unseen classes, our method performs consistently on
both sets. This implies that the document pool can be safely
expanded to include more classes, if necessary, without the
need to re-train for these new classes.

5 Discussion

Like with any method that aims to reduce supervision, our
method is not perfect. There are multiple avenues where our
approach can be further optimized.

First, we observe that models trained for image caption-
ing tend to produce short sentences that lack descriptiveness,
focusing on the major features of the object rather than
providing detailed fine-grained descriptions of the object’s
unique aspects (Fig. 5). We believe there is a scope for
improvement if the captioning models could extensively
describe each different part and attribute of the object. We
have tried to mitigate this issue by using an ensemble of
two popular captioning networks. However, using multi-
ple models and sampling multiple descriptions may lead to
redundancy. Devising image captioning models that produce
descriptive fine-grained image descriptions may provide
improved performance on CLEVER task; there is an active
area of research (Wang et al., 2020a, b) that is looking into
this problem.

Second, the proposed approach to scoring a document
given an image uses all the sentences in the document clas-
sifying them as positive, negative or neutral with respect to
each input caption. Given that the information provided by an
expert document might be noisy, i.e. not necessarily related
to the visual domain, it is likely worthwhile to develop a

filtering mechanism for relevancy, effectively using only a
subset of the sentences for scoring.

Third, in-domain regularization results in a significant per-
formance boost (Table 3), which implies that the CLEVER
task is susceptible to the domain gap between laypeople’s
descriptions and the expert corpus. Language models such
as BERT/RoBERTa partially address this problem already
by learning general vocabulary, semantics and grammar dur-
ing pre-training on large text corpora, enabling generalization
to a new corpus without explicit training. However, further
research in reducing this domain gap seems worthwhile.

Finally, in the recent time there has been an explosion of
work on large multi-modal foundation models that are self-
supervised with internet scale datasets. These models have
been found to contain strong priors about the world (Radford
et al., 2021). Our model is trained on a very small scale
dataset compared to that, it would be an interesting avenue
to explore how the FGSM will scale with data and how to
use the existing foundation models as a prior.

6 Conclusion

We have shown that it is possible to address fine-grained
image recognition without the use of expert training labels
by leveraging existing knowledge bases, such as Wikipedia.
This is the first work to tackle this challenging problem, with
performance gains over the state of the art on cross-media
retrieval, despite their training with image-document pairs.
While humans can easily access and retrieve information
from such knowledge bases, CLEVER remains a challenging
learning problem that merits future research.
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