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Abstract
In this paper, we focus on exploring effective methods for faster and accurate semantic segmentation. A common practice
to improve the performance is to attain high-resolution feature maps with strong semantic representation. Two strategies are
widely used: atrous convolutions and feature pyramid fusion, while both are either computationally intensive or ineffective.
Inspired by the Optical Flow for motion alignment between adjacent video frames, we propose a Flow Alignment Module
(FAM) to learn Semantic Flow between feature maps of adjacent levels and broadcast high-level features to high-resolution
features effectively and efficiently. Furthermore, integrating our FAM to a standard feature pyramid structure exhibits superior
performance over other real-time methods, even on lightweight backbone networks, such as ResNet-18 and DFNet. Then
to further speed up the inference procedure, we also present a novel Gated Dual Flow Alignment Module to directly align
high-resolution feature maps and low-resolution feature maps where we term the improved version network as SFNet-Lite.
Extensive experiments are conducted on several challenging datasets, where results show the effectiveness of both SFNet
and SFNet-Lite. In particular, when using Cityscapes test set, the SFNet-Lite series achieve 80.1 mIoU while running at 60
FPS using ResNet-18 backbone and 78.8 mIoU while running at 120 FPS using STDC backbone on RTX-3090. Moreover,
we unify four challenging driving datasets (i.e., Cityscapes, Mapillary, IDD, and BDD) into one large dataset, which we
named Unified Driving Segmentation (UDS) dataset. It contains diverse domain and style information. We benchmark several
representative works on UDS. Both SFNet and SFNet-Lite still achieve the best speed and accuracy trade-off on UDS, which
serves as a strong baseline in such a challenging setting. The code and models are publicly available at https://github.com/
lxtGH/SFSegNets.
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1 Introduction

Semantic segmentation is a fundamental vision task that aims
to classify every pixel in the images correctly. It involves
many real-world applications, including auto-driving, robot
navigation, and image editing. The seminal work of Long
et al. (2015) built a deep Fully Convolutional Network
(FCN), which is mainly composed of convolutional layers
to carve strong semantic representation. However, detailed
object boundary information, which is also crucial to the
performance, is usually missing due to the use of the down-
sampling layers.

To alleviate this problem, state-of-the-art methods (Zhao
et al., 2017, 2018; Jun et al., 2019; Zhu et al., 2019) apply
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atrous convolutions (Yu & Koltun, 2016) at the last several
stages of their networks to yield feature maps with strong
semantic representation while at the same time maintain-
ing the high-resolution. Meanwhile, several state-of-the-art
approaches (Xiao et al., 2018; Chen et al., 2018; Li et al.,
2020) adopt multiscale feature representation to enhance
final segmentation results. Recently, several methods (Cheng
et al., 2021; Wang et al., 2021; Zheng et al., 2021) adopt
vision transformer architectures and model the semantic
segmentation as a per-segment prediction problem. In par-
ticular, they achieve stronger performance for the long-tailed
datasets, including ADE-20k (Zhou et al., 2016) and COCO-
stuff (Caesar et al., 2018) due to the stronger pre-trained
models (Liu et al., 2021) and query-based mask representa-
tion (Carion et al., 2020).

Despite those methods achieving state-of-the-art results
on various benchmarks, one fundamental problem is the real-
time inference speed, particularly for high-resolution image
inputs. Given that the FCN using ResNet-18 (He et al., 2016)
as the backbone network has a frame rate of 57.2 FPS for a
1024 × 2048 image, after applying atrous convolutions (Yu
& Koltun, 2016) to the network as done in Zhao et al. (2017,
2018), the modified network only has a frame rate of 8.7
FPS. Moreover, under a single GTX 1080Ti GPU with no
other ongoing programs, the previous state-of-the-art model
PSPNet (Zhao et al., 2017) has a frame rate of only 1.6
FPS for 1024 × 2048 input images. Consequently, this is
problematic formany advanced real-world applications, such
as self-driving cars and robot navigation, which desperately
demand real-time online data processing.

In order to not only maintain detailed resolution infor-
mation but also get features that exhibit strong semantic
representation, another direction is to build FPN-like (Lin
et al., 2017; Kirillov et al., 2019; Ronneberger et al., 2015)
models which leverage the lateral path to fuse feature maps
in a top-down manner. In this way, the deep features of the
last several layers strengthen the shallow features with high
resolution, and therefore, the refined features are possible to
satisfy the above two factors and are beneficial to the accuracy
improvement. Such designs are mainly adopted by real-time
semantic segmentation models. However, the accuracy of
these methods (Ronneberger et al., 2015; Badrinarayanan
& Kendall, 2017; Orsic et al., 2019; Peng et al., 2022) still
needs improvement when compared to those networks that
hold large feature maps in the last several stages. Is there
a better solution for high accuracy and high-speed seman-
tic segmentation? We suspect that the low accuracy problem
arises from the ineffective propagation of semantics from
deep layers to shallow layers, where the semantics are not
well aligned across different stages.

To mitigate this issue, we propose explicitly learning the
Semantic Flow between two network layers of different res-
olutions. Semantic Flow is inspired by optical flow, which

is widely used in video processing task (Zhu et al., 2017) to
represent the pattern of apparent motion of objects, surfaces,
and edges in a visual scene caused by relative motion. In a
flash of inspiration, we find the relationship between two fea-
ture maps of arbitrary resolutions from the same image can
also be represented with the “motion” of every pixel from
one feature map to the other one. In this case, once precise
Semantic Flow is obtained, the network is able to propagate
semantic features with minimal information loss. It should
be noted that Semantic Flow is different from optical flow,
since Semantic Flow takes feature maps from different levels
as input and assesses the discrepancy within them to find a
suitable flow field that will give a dynamic indication about
how to align these two feature maps effectively.

Based on the concept of Semantic Flow, we design a novel
network module called Flow Alignment Module (FAM) to
utilize Semantic Flow in semantic segmentation. Feature
maps after FAM are embodied with both rich semantics and
abundant spatial information. Because FAM can effectively
transmit semantic information from deep to shallow layers
through elementary operations, it shows superior efficacy in
improving accuracy and keeping superior efficiency. More-
over, FAM is end-to-end trainable and can be plugged into
any backbone network to improve the results with a minor
computational overhead. For simplicity, we call the networks
that all incorporate FAM but have different backbones as
SFNet. As depicted in Fig. 1, SFNets with different back-
bone networks outperform competitors by a large margin at
the same speed. In particular, our method adopting ResNet-
18 as backbone achieves 79.8%mIoU on the Cityscapes test
server with a frame rate of 33 FPS. When adopting DF2 (Li
et al., 2019) as the backbone, our method achieves 77.8%
mIoU with 103 FPS and 74.5% mIoU with 134 FPS when
equippedwith theDF1 backbone (Li et al., 2019). The results
are shown in Fig. 1 (green node).

Fig. 1 Inference speed versus mIoU performance on test set of
Cityscapes. Previous models are marked as blue points, and our models
are shown in red and green pointswhich achieve the best speed/accuracy
trade-off. Note that our methods with ResNet-18 as backbone even
achieve comparable accuracy with all accurate models at much faster
speed. SFNet methods are the green nodes while SFNet-Lite methods
are the red nodes (Color figure online)
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The original SFNet (Li et al., 2020) achieves satisfactory
results on speed and accuracy trade-off, and several following
works (Huang et al., 2021) generalize the idea of SFNet into
other domains. However, the inference speed of SFNet still
needs to be faster due to the multi-stage features involved.
To speed up the SFNet and maintain accuracy at the same
time, we propose a new version of SFNet, named SFNet-
Lite. In particular, we design a new flow-aligned module
named Gated Dual Flow Aligned Module (GD-FAM). Fol-
lowing FAM, GD-FAM takes two features as inputs and
learns two semantic flows to refine both high-resolution and
low-resolution features simultaneously. Meanwhile, we also
generate a shared gate map to control the flow warping pro-
cessing before the final addition dynamically. The newly
proposed GD-FAM can be appended at the end of SFNet
backbone only once, directly refining the highest and lowest
resolution features. Such design avoids multiscale feature
fusion and speeds up the SFNet by a large margin. We name
our new version of SFNet as SFNet-Lite. Moreover, to keep
the origin accuracy, we carry out extensive experiments on
Cityscapes by introducing more balanced datasets training
(Zhu et al., 2019). As a result, our SFNet-Lite with ResNet-
18 backbone achieves 80.1 mIoU on Cityscapes test set
but with the speed of 49 FPS (16 FPS improvements with
slightly better performance over original SFNet (Li et al.,
2020)). Moreover, when adopting with STDCv1 backbone,
our method can achieve 78.7 mIoU while running with the
speed of 120 FPS. The results are shown in Fig. 1 (red node).

Since various driving datasets (Fisher et al., 2020; Varma
et al., 2019; Cordts et al., 2016) are from different domains,
previous real-time semantic segmentation methods train dif-
ferent models on different datasets, which results in that
the trained models are sensitive to trained domains and can
not generalize well to unseen domain (Choi et al., 2021).
Recently, M-Seg propose a mixed dataset for multi-dataset
semantic to achive one model for multiple dataset training
and test. Motivated by above, we verify whether our SFNet
series can be more effective in a unified dataset benchmark.
Firstly, we benchmark our SFNet and SFNet-Lite on var-
ious driving datasets (Fisher et al., 2020; Neuhold et al.,
2017; Varma et al., 2019) in the experiment part. Secondly,
we creat a challenging benchmark by mixing four challeng-
ing driving datasets, including Cityscapes, Mapillary, BDD,
and IDD. We term our merged dataset Unified Driving Seg-
mentation (UDS). As shown in Fig. 2, our goal is to train
a unified model to perform semantic segmentation on vari-
ous scenes. To the best of our knowledge, UDS is the largest
public semantic segmentation dataset for the driving scene. In
particular, we extract the typical semantic class as defined by
Cityscapes and BDD with 19 class labels and merge several
classes in Mapillary. We further benchmark representative
works on our UDS. Our SFNet also achieves the best accu-
racy and speed trade-off, which indicates the generalization

Fig. 2 Illustration of the merged Unified Driving Segmentation (UDS)
benchmark. It contains four datasets including Cityscapes (Cordts et al.,
2016)a, IDD (Varma et al., 2019)b, Mapillary (Neuhold et al., 2017)c
and BDD (Fisher et al., 2020)d. These datasets have various styles
and texture information, which make the merged UDS dataset more
challenging

ability of semantic flow. In particular, using DFNet (Li et al.,
2019) as the backbone, our SFNet and SFNet-Lite achieve
7–9% mIoU improvements on UDS. This indicates that our
proposed FAM and GD-FAM are more practical to multiple-
dataset training.

In summary, a preliminary version of this work was pub-
lished in Li et al. (2020). In this paper, wemake the following
significant extensions: (1) We introduce a new flow align-
ment module (GD-FAM) to increase the speed of SFNet
while maintaining the original performance. Experiments
show that this newdesign consistently outperforms our previ-
ous module with higher inference efficiency. (2) We conduct
more comprehensive ablation studies to verify the proposed
method, including quantitative improvements over baselines
andvisualization analysis. (3)WeextendSFNet intoPanoptic
Segmentation, where we achieve 1.0%−1.5% PQ improve-
ments over three strong baselines. (4) We further benchmark
SFNet and several recent representativemethods on twomore
challenging datasets, including Mapillary (Neuhold et al.,
2017) and IDD (Varma et al., 2019). Our SFNet series sig-
nificantly improve over different baselines and achieve the
best speed and accuracy trade-off. In particular, we propose
a new setting for training a unified real-time semantic seg-
mentationmodel bymerging existingdrivingdatasets (UDS).
Our SFNet series also achieve the best accuracy and speed
trade-off, which can be a solid baseline for mixed driving
segmentation. We further prove the effectiveness of SFNet
and SFNet-Lite on transformer architecture on the ADE20k
dataset.Moreover, aidedby theRobustNet (Choi et al., 2021),
we further show the effectiveness of SFNet on domain gen-
eralization setting.

2 RelatedWork

Generic Semantic Segmentation Current state-of-the-art
methods on semantic segmentation are based on the FCN
framework, which treats semantic segmentation as a dense
pixel classification problem. Lots of methods focus on global
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context modeling with dilated backbone. Global average
pooled features are concatenated into existing feature maps
in Liu et al. (2015). In PSPNet (Zhao et al., 2017), average
pooled features of multiple window sizes, including global
average pooling, are upsampled to the same size and concate-
nated together to enrich global information. The DeepLab
variants (Chen et al., 2015, 2017, 2018) propose atrous
or dilated convolutions and atrous spatial pyramid pooling
(ASPP) to increase the effective receptive field. DenseA-
SPP (Yang et al., 2018) improves on Chen et al. (2018)
by densely connecting convolutional layers with different
dilation rates to further increase the receptive field of the net-
work. In addition to concatenating global information into
feature maps, multiplying global information into feature
maps also shows better performance (Zhang et al., 2018;
Woo et al., 2018; Yue et al., 2018; Changqian et al., 2018).
Moreover, several works adopt the self-attention design to
encode the global information for the scene. Using non-local
operator (Wang et al., 2018), impressive results are achieved
in Yuan and Wang (2021); Zhang et al. (2019); Jun et al.
(2019). CCNet (Huang et al., 2019) models the long-range
dependencies by considering its surrounding pixels on the
criss-cross path via a recurrent way to save computation and
memory cost. Meanwhile, several works (Ronneberger et al.,
2015; Xiao et al., 2018; Kirillov et al., 2019; Li et al., 2021;
He et al., 2021) adopt encode-decoder architecture to learn
the multi-level feature representation. RefineNet (Lin et al.,
2017) and DFN (Changqian et al., 2018) adopted encoder-
decoder structures that fuse information in low-level and
high-level layers to make dense prediction results. Following
such architecture design, GFFNet (Li et al., 2020), CCLNet
(Ding et al., 2018), and G-SCNN (Takikawa et al., 2019)
use gates for feature fusion to avoid noise and feature redun-
dancy. AlignSeg (Huang et al., 2021) proposes to refine the
multiscale features via bottom-up design. IFA (Hanzhe et
al., 2022) proposes an implicit feature alignment function to
refine the multiscale feature representation. In contrast, our
method transmits semantic information top-down, focusing
on real-time application. However, only some of these works
can perform inference in real-time, which makes it hard to
employ in practical applications.

VisionTransformerbasedSemantic Segmentation Recently,
transformer-based approaches (Dosovitskiy et al., 2021; Liu
et al., 2021; Zheng et al., 2021; Yuan et al., 2022) replace
the CNN backbones with vision transformers and achieve
more robust results. Several works (Zheng et al., 2021; Liu
et al., 2021; Xie et al., 2021; Strudel et al., 2021) show that
the vision transformer backbone leads to better results on
long-tailed datasets due to the better feature representation
and stronger pre-training on ImageNet classification. SETR
(Zheng et al., 2021) replaces the pixel level modeling with
token-based modeling, while Segformer (Xie et al., 2021)

proposes a new efficient backbone for segmentation. More-
over, several works (Wang et al., 2021; Cheng et al., 2021;
Zhang et al., 2021) adopt Detection Transformer (DETR)
(Carion et al., 2020) to treat per-pixel prediction as a per-
mask prediction. In particular, Maskformer (Cheng et al.,
2021) treats the pixel-level dense prediction as a set pre-
diction problem. However, all of these works still can not
perform inference in real-time due to the huge computation
cost.

Fast Semantic Segmentation Fast (Real-time) semantic
segmentation algorithms attract attention when demanding
practical applications that need fast inference and response.
Several works are designed for this setting. ICNet (Zhao et
al., 2018) uses multiscale images as input and a cascade net-
work to be more efficient. DFANet (Li et al., 2019) utilizes
a light-weight backbone to speed up its network and pro-
poses a cross-level feature aggregation to boost accuracy,
while SwiftNet (Orsic et al., 2019) uses lateral connections
as the cost-effective solution to restore the prediction resolu-
tion while maintaining the speed. ICNet (Zhao et al., 2018)
reduces the high-resolution features into different scales to
speed up the inference time. ESPNets (Mehta et al., 2018,
2019) save computation by decomposing standard convolu-
tion into point-wise convolution and spatial pyramid of atrous
convolutions. BiSeNets (Changqian et al., 2018, 2021) intro-
duce spatial path and semantic path to reduce computation.
Recently, several methods (Nekrasov et al., 2019; Zhang et
al., 2019; Li et al., 2019) use AutoML techniques to search
efficient architectures for scene parsing. Moreover, there are
several works (Fan et al., 2021; Si et al., 2019) using multi-
branch architecture to improve the real-time segmentation
results. However, these works result in poor segmentation
results compared with those general methods on multiple
benchmarks such as Cityscapes (Cordts et al., 2016) and
Mapillary (Neuhold et al., 2017). Our previous work SFNet
(Li et al., 2020) achieves high accuracy via learning semantic
flow between multiscale features while running in real-time.
However, its inference speed is still limited since more fea-
tures are involved. Moreover, the capacity of multiscale
features needs to be better explored via stronger data aug-
mentation and pre-training. Thus, simultaneous achievement
of high speed and high accuracy is still challenging and of
great importance for real-time application purposes.

Panoptic Segmentation Earlier works (Kirillov et al., 2019;
Li et al., 2019; Chen et al., 2020; Porzi et al., 2019; Yang et
al., 2020) are proposed to model both stuff segmentation and
thing segmentation in one model with different task heads.
Detection-based methods (Xiong et al., 2019; Kirillov et al.,
2019; Qiao et al., 2021; Hou et al., 2020) usually represent
thingswith the box prediction, while several bottom-upmod-
els (Cheng et al., 2020; Wang et al., 2020) perform grouping
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instance via pixel-level affinity or center heat maps from
semantic segmentation results. The former introduces the
complex process, while the latter suffers from performance
drops in complex scenarios. Recently, several works (Wang
et al., 2021; Zhang et al., 2021; Cheng et al., 2021) propose
directly obtaining segmentation masks without box supervi-
sion. However, all of these works ignore the speed issue. In
the experiment, we further show that our method can also
lead to better panoptic segmentation results.

Lightweight Architecture Design Another critical research
direction is to design more efficient backbones for the down-
stream tasks via various approaches (Howard et al., 2017;
Sandler et al., 2018; Ma et al., 2018; Fan et al., 2021). These
methods focus on efficient representation learning with var-
ious network search approaches. Our work is orthogonal to
thoseworks, sincewe aim to design a lightweight and aligned
segmentation head.

Multi-dataset Segmentation MSeg (Lambert et al., 2020)
firstly proposes tomergemost existing datasets in one unified
taxonomy and train a unified segmentation model for vari-
ant scenes. Meanwhile, several following works (Zhou et al.,
2022; Li et al., 2022) explore multi-dataset segmentation or
detection. Compared with MSeg, our UDS dataset mainly
focuses on the driving scene and has only 19 classes com-
pared with more than 100 classes in MSeg. The input images
are high-resolution and are used for auto-driving applica-
tions.

Domain Generalization in Segmentation The goal domain
generalization (DG) (Wang et al., 2022)methods assume that
themodel cannot access the target domain during training and
aim to improve the generalization ability to perform well in
an unseen target domain. DG is slightly different frommulti-
data segmentation. As for segmentation, several works (Pan
et al., 2018; Yue et al., 2019; Kim et al., 2022; Choi et al.,
2021) adopt synthetic data such asGTAV for training and real
dataset such as cityscapes for testing. Recently, RobustNet
(Choi et al., 2021) disentangles the domain-specific style and
domain-invariant content encoded in higher-order statistics.
Our method can also be applied in DG segmentation settings
by combing RobustNet (Choi et al., 2021), where we also
find significant improvements over various baselines.

3 Method

In this section, we will first provide some preliminary knowl-
edge about real-time semantic segmentation and introduce
the misalignment problem therein. Then, we propose the
Flow Alignment Module (FAM) to resolve the misalign-
ment issue by learning Semantic Flow and warping top-layer

feature maps accordingly. We also present the design of
SFNet. Next, we introduce the proposed SFNet-Lite and the
improved GD-FAM to speed up SFNet. Finally, we describe
the building process of our UDS dataset and several improve-
ment details for SFNet-Lite training.

3.1 Preliminary

The task of scene parsing is to map a RGB image X ∈
R

H×W×3 to a semantic map Y ∈ R
H×W×C with the same

spatial resolution H × W , where C is the number of prede-
fined semantic categories. Following the setting of FPN (Lin
et al., 2017), the input image X is firstly mapped to a set
of feature maps {Fl}l=2,...,5 from each network stage, where
Fl ∈ R

Hl×Wl×Cl is a Cl -dimensional feature map defined on
a spatial grid Ωl with size of Hl × Wl , Hl = H

2l
,Wl = W

2l
.

The coarsest feature map F5 comes from the deepest layer
with the strongest semantics. FCN-32s directly predicts upon
F5 and achieves over-smoothed results without fine details.
However, some improvements can be achieved by fusing pre-
dictions from lower levels (Long et al., 2015). FPN takes
a step further to gradually fuse high-level feature maps
with low-level feature maps in a top-down pathway through
2× bilinear upsampling, which is originally proposed for
object detection (Lin et al., 2017) and recently introduced
for scene parsing (Xiao et al., 2018; Kirillov et al., 2019).
The whole FPN framework highly relies on upsampling
operator to upsample the spatially smaller but semantically
stronger feature map to be larger in spatial size. However,
the bilinear upsampling recovers the resolution of downsam-
pled featuremaps by interpolating a set of uniformly sampled
positions (i.e., it can only handle one kind of fixed and prede-
finedmisalignment),while themisalignment between feature
maps caused by residual connection, repeated downsampling
and upsampling operations, is far more complex. Therefore,
position correspondence between feature maps needs to be
explicitly and dynamically established to resolve their actual
misalignment.

3.2 Original Flow Alignment Module and SFNet

Design Motivation For more flexible and dynamic align-
ment, we thoroughly investigate the idea of optical flow,
which is very effective and flexible for aligning two adja-
cent video frame features in the video processing task (Brox
et al., 2004; Zhu et al., 2017). The idea of optical flow moti-
vates us to design a flow-based alignment module (FAM)
to align feature maps of two adjacent levels by predicting a
flow field inside the network. We define such flow field as
Semantic Flow, which is generated between different levels
in a feature pyramid.
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Fig. 3 Visualization of feature maps and semantic flow field in FAM.
Feature maps are visualized by averaging along the channel dimension.
Larger values are denoted by hot colors and vice versa.We use the color
codeproposed inBaker et al. (2011) to visualize theSemantic Flowfield.

The orientation and magnitude of flow vectors are represented by hue
and saturation, respectively. As shown in this figure, using our proposed
semantic flow results in more structural feature representation

Module Details FAM is constructed using the FPN frame-
work, which involves compressing the feature map of each
level into the same channel depth using two 1×1 convolution
layers before passing it on to the next level. Given two adja-
cent featuremapsFl andFl−1 with the same channel number,
we up-sample Fl to the same size as Fl−1 via a bi-linear
interpolation layer. Then, we concatenate them together and
take the concatenated feature map as input for a subnetwork
that contains two convolutional layers with the kernel size of
3 × 3. The output of the subnetwork is the prediction of the
semantic flow field Δl−1 ∈ R

Hl−1×Wl−1×2. Mathematically,
the aforementioned steps can be written as:

Δl−1 = convl(cat(Fl ,Fl−1)), (1)

where cat(·) represents the concatenation operation and
convl(·) is the 3 × 3 convolutional layer. Since our network
adopts the strided convolutions, which could lead to very low
resolution, for most cases, the respective field of the 3×3
convolution convl is sufficient to cover most large objects in
that feature map. Note that, we discard the correlation layer
proposed in FlowNet-C (Dosovitskiy et al., 2015), where
positional correspondence is calculated explicitly. Because
there exists a huge semantic gap between higher-level layer
and lower-level layer, explicit correspondence calculation on
such features is difficult and tends to fail for offset predic-
tion. Furthermore, including a correlation layer to address
this issue would increase the computational cost substan-
tially, which contradicts our objective of developing a fast
and accurate network.

After having computed Δl−1, each position pl−1 on the
spatial grid Ωl−1 is then mapped to a point pl on the upper
level l via a simple addition operation. Since there exists a
resolution gap between features and flow field as shown in
Fig. 4b, the warped grid and its offset should be halved as

Eq.2,

pl = pl−1 + Δl−1(pl−1)

2
. (2)

We then use the differentiable bi-linear sampling mechanism
proposed in the spatial transformer networks (Jaderberg et
al., 2015), which linearly interpolates the values of the 4-
neighbors (top-left, top-right, bottom-left, and bottom-right)
of pl to approximate the final output of the FAM, denoted by
˜Fl(pl−1). Mathematically,

˜Fl(pl−1) = Fl(pl) =
∑

p∈N (pl )

wpFl(p), (3)

where N (pl) represents neighbors of the warped points pl
in Fl and wp denotes the bi-linear kernel weights estimated
by the distance of warped grid. This warping procedure may
look similar to the convolution operation of the deformable
kernels in deformable convolution network (DCN) (Dai et al.,
2017). However, our method has a lot of noticeable differ-
ence from DCN. First, our predicted offset field incorporates
both higher-level and lower-level features to align the posi-
tions between high-level and low-level feature maps, while
the offset field of DCN moves the positions of the kernels
according to the predicted location offsets in order to pos-
sess larger and more adaptive respective fields. Second, our
module focuses on aligning features, while DCNworksmore
like an attention mechanism that attends to the salient parts
of the objects. More detailed comparison can be found in the
experiment part.

On the whole, the proposed FAM module is light-weight
and end-to-end trainable because it only contains one 3×3
convolution layer and one parameter-free warping operation
in total. Besides these merits, it can be plugged into net-
works multiple times with only a minor extra computation
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Fig. 4 a The details of Flow Alignment Module. We combine the
transformed high-resolution feature map and low-resolution feature
map to generate the semantic flow field, which is utilized to warp the
low-resolution feature map to a high-resolution feature map. b Warp
procedure of FlowAlignment Module. The value of the high-resolution
feature map is the bilinear interpolation of the neighboring pixels in

the low-resolution feature map, where the neighborhoods are defined
according to the learned semantic flowfield. cOverviewof our proposed
SFNet. ResNet-18 backbone with four stages is used for exemplar illus-
tration. FAM: FlowAlignmentModule. PPM: Pyramid PoolingModule
(Zhao et al., 2017). Best view it in color and zoom in

cost overhead. Figure4a gives the detailed settings of the
proposed module, while Fig. 4b shows the warping process.
Figure3 visualizes the feature maps of two adjacent levels,
their learned semantic flow and the finally warped feature
map. As shown in Fig. 3, the warped feature is more struc-
turally neat than the normal bi-linear upsampled feature and
leads to more consistent representation of objects, such as
the bus and car.

Figure 4c illustrates the whole network architecture,
which contains a bottom-up pathway as the encoder and a
top-down pathway as the decoder. While the encoder has a
backbone network offering feature representations of differ-
ent levels, the decoder can be seen as a FPN equipped with
several FAMs.

Encoder Part We choose standard networks pre-trained on
ImageNet (Russakovsky et al., 2015) for image classification
as our backbone network by removing the last fully con-
nected layer. Specifically, our experiments use and compare
the ResNet series (He et al., 2016) and DF series (Li et al.,
2019). All backbones consist of 4 stageswith residual blocks.
To achieve both computational efficiency and larger recep-
tive fields, we include a convolutional layer with a stride of 2
as the first layer in each stage, which downsamples the fea-
turemap.We additionally adopt the PyramidPoolingModule
(PPM) (Zhao et al., 2017) for its superior power to capture
contextual information. In our setting, the output of PPM
shares the same resolution as that of the last residual module.
In this situation, we treat PPM and the last residual mod-
ule together as the last stage for the upcoming FPN. Other
modules like ASPP (Chen et al., 2017) can also be plugged
into our network, which is also experimentally ablated in the
experiment part.

Aligned FPN Decoder Our SFNet decoder takes feature
maps from the encoder and uses the aligned feature pyra-
mid for final scene parsing. By replacing normal bi-linear
up-sampling with FAM in the top-down pathway of FPN
(Lin et al., 2017), {Fl}4l=2 is refined to {˜Fl}4l=2, where top-
level feature maps are aligned and fused into their bottom
levels via element-wise addition and l represents the range
of feature pyramid level. For scene parsing, {˜Fl}4l=2 ∪ {F5}
are up-sampled to the same resolution (i.e., 1/4 of the input
image) and concatenated together for prediction. Consider-
ing there still exists misalignment during the previous step,
we also replace these up-sampling operations with the pro-
posed FAM. To be noted, we only verify the effectiveness
of such design in ablation studies. Our final models for the
real-time application do not contain such a replacement for
better speed and accuracy trade-off.

3.3 Gated Dual Flow Alignment Module and
SFNet-Lite

Motivation Original SFNet adopts a multi-stage flow-based
alignment process, it leads to a slower speed than several rep-
resentative networks like BiSegNet (Changqian et al., 2018;
Zhao et al., 2018). Since the lightweight backbone design is
not our main focus, we explore the more compact decoder
with only one flow alignment module. Decreasing the num-
ber of FAM leads to inferior results (shown in experiment
part, see Table 9(d)). To make up this gap, motivated by the
recent success of gating design in segmentation (Takikawa
et al., 2019; Li et al., 2020), we propose a new FAM variant
named Gated Dual Flow Alignment Module (GD-FAM) to
directly align and fuse both highest-resolution feature and
lowest-resolution feature. Since there is only one aligment,
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which means less operators are involved, we can speed up
the inference time.

Gated Dual Flow Alignment Module As FAM, GD-FAM
takes two features F4 and F1 as inputs and directly outputs
a refined high resolution feature. We up-sample F4 to the
same size as F1 via a bi-linear interpolation layer. Then, we
concatenate them together and take the concatenated feature
map as input for a subnetwork convF that contains two con-
volutional layers with the kernel size of 3× 3. Such network
directly outputs a new flow map ΔF ∈ R

H4×W4×4.

ΔF = convF (cat(F4,F1)). (4)

We split such map ΔF into ΔF1 and ΔF4 to jointly align
both F1 and F4. Moreover, we propose to a shared gate map
to highlightmost important area onboth aligned features.Our
key insight is to make full use of high level semantic feature
and let the low level feature as a supplement of high level
feature. In particular, we adopt another subnetwork convg
to that contains one convolutional layer with the kernel size
of 1 × 1 and one Sigmoid layer to generate such gate map.
To highlight the most important regions of both features, we
adoptmaxpooling (Maxpool) and average pooling (Avepool)
over both features. Then we concatenate all four maps to
generate such learnable gating maps. This process is shown
as following:

ΔG = convg(cat(Avepool(F4,F1)).Maxpool(F4,F1))),

(5)

Then we adopt ΔG to weight the aligned high semantic fea-
tures and use inversion of ΔG to weight the aligned low
semantic features as fusion process. The key insights are two
folds. Firstly, sharing the same gates can better highlight the
most salient region. Secondly, adopting the subtracted gating
supplies the missing details in low resolution feature. Such
process is shown as following:

F f use = ΔGWrap(ΔF1, F1)

+(1 − ΔG)Wrap(ΔF4, F4). (6)

where the Wrap process is the same as Eq.3. Our key insight
is that a better fusion of both features can lead to more
fine-grained feature representation: rich semantic and high
resolution featuremap. The entire process is shown in Fig. 5a.

Lite Aligned Decoder The Lite Aligned Decoder is the
simplified version of Aligned Decoder, which contains one
GD-FAM and one PPM. As shown in Fig. 5b, the final seg-
mentation head takes the output ofF f use and upsampled deep
features in last stage as inputs and outputs the final segmenta-
tion map via one 1×1 convolution over the combined inputs.
Lite Aligned Decoder speeds up the Aligned Decoder via
involving lessmultiscale features (only two scales). Avoiding
shortcut design can also lead to faster speed when deploying
the models on devices for practical usage. More results can
be found in the experiment part.

Speed Comparison Analysis In Table 1, we compare the
speed of SFNet and SFNet-Lite on different devices. SFNet-
Lite runs faster on various devices. In particular, when

Fig. 5 a The details of GD-FAM (Gated Dual Flow Alignment Mod-
ule). We combine the transformed high-resolution feature map and
low-resolution feature map to generate the two semantic flow fields
and one shared gate map. The semantic flows are utilized to warp
both the low-resolution feature map and the high-resolution feature

map. The gate controls the fusion process. b Overview of our proposed
SFNet-Lite. ResNet-18 backbone with four stages is used for exem-
plar illustration. GD-FAM: Gated Dual FlowAlignment Module. PPM:
Pyramid Pooling Module (Zhao et al., 2017). Best view it in color and
zoom in
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Table 1 Speed comparison
(FPS) on different devices for
SFNet and SFNet-Lite

Device 1080-TI TTIAN-RTX 3090-RTX TITAN-RTX(TensorRT)

SFNet 18.1 20.1 24.2 33.3

SFNet-Lite 26.5 27.2 40.2 48.9

We adopt Resnet-18 as backbone. The FPS is measured by 1024 × 2048 input images

deploying both on TensorRT, the SFNet-Lite is even much
faster than SFNet since it involves less cross scale branches
and leads to better optimization for acceleration.

3.4 The Unified Driving Segmentation Dataset

Motivation Learning a unified driving-target segmentation
model is useful since the environment may change a lot dur-
ing the moving of self-driving cars. MSeg (Lambert et al.,
2020) presents a more challenging setting while we only
focus on high resolution out-door driving scene. Since the
concepts of road scenes are limited, we only have small
label space compared with M-Seg, which it has several com-
mon scenes (COCO (Lin et al., 2014), ADE20k (Zhou et al.,
2016)).

We verify the effectiveness of our SFNet series on new
setting for feature alignment in various domains without
introducing domain aware learning (Choi et al., 2021). The
goal of UDS is to provide more fair comparison on driv-
ing scene segmentation. To our knowledge, we are the first
to benchmark such large-scale driving datasets using one
model.

Data Process and Results We merge four challenging
datasets including Mapillary (Neuhold et al., 2017),
Cityscapes (Cordts et al., 2016), IDD (Varma et al., 2019) and
BDD(Fisher et al., 2020). SinceMapillary has 65 class labels,
wemerge several semantic labels into one label. Themerging
process follows the previous work (Choi et al., 2021). We set
other labels as ignore region. In this way, we keep the same
label definition as Cityscapes and IDD. For IDD dataset, we
use the same class definition as Cityscapes and BDD. For
BDD and Cityscapes datasets, we keep the original setting.
The merged dataset UDS totally has 34,968 images for train-
ing and 6,500 images for testing. The details of the UDS
dataset are shown in Table 2. Moreover, we find that several
recent self-attention based methods (Jun et al., 2019; Yuan et

al., 2020; Li et al., 2019) cannot perform well than previous
method DeeplabV3+ (Chen et al., 2018). This implies a bet-
ter generalized method is needed for this setting. We provide
the code and model on the github pages.

Discussion Note that despite designing more balanced sam-
pling methods or including domain generalization based
method can improve the results onUDS, the goal of this work
is only to verify the effectiveness of our SFNet and SFNet-
Lite on this challenging setting. Both GD-GAM and FAM
perform image feature level alignment, which are not sen-
sitive to the domain variations. Moreover, we also show the
effectiveness of SFNet on domain generation settings using
RobustNet (Choi et al., 2021). More details can be found in
experiment part.

3.5 Improvement Details and Extension

Improvement Details We use deeply supervised loss (Zhao
et al., 2017) to supervise intermediate outputs of the decoder
for easier optimization. In addition, following (Changqian et
al., 2018), online hard example mining (Shrivastava et al.,
2016) is also used by only training on the 10% hardest pixels
sorted by cross-entropy loss. During the inference, we only
use the results from the main head. We also use uniform
sampling methods to balance the rare class during training
for all benchmarks. For the Cityscapes dataset, we also use
the coarse boosting training tricks (Zhu et al., 2019) to boost
rare classes on Cityscapes. For backbone design, we also
deploy the latest advanced backbone STDC (Fan et al., 2021)
to speed up the inference speed on the device.

Extending SFNet into Panoptic Segmentation Panoptic
Segmentation unifies both semantic segmentation and instan-
ce segmentation, which is a more challenging task. We also
explore the proposed SFNet on such task with the proposed

Table 2 Dataset information of
our merged UDS dataset

Dataset name Train images Validation images Number of class labels

Cityscapes 2975 500 19

IDD 6993 3000 19

Mapillary 18, 000 2000 65

BDD 7000 1000 19

UDS (ours) 34, 968 6500 19

We merged Mapillary labels into cityscapes label format
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panoptic segmentation baseline K-Net (Zhang et al., 2021).
K-Net is a state-of-the-art panoptic segmentation method
where each thing and stuff is represented by kernels in its
decoder head. In particular, we replace the backbone part
of K-Net with our proposed SFNet backbone and aligned
decoder. Then we train the modified model using the same
setting as K-Net.

4 Experiment

4.1 Experiment Settings

Overview Wefirst review the dataset and training setting for
SFNet. Then, we present the result comparison on five road-
driving datasets, including the original SFNet and the newly
proposed SFNet-lite. After that, we give detailed ablation
studies and analysis on our SFNet. Finally, we present the
generalization ability of SFNet on the Cityscapes Panoptic
Segmentation dataset.

DataSets Wemainly carry out experiments on the road driv-
ing datasets, including Cityscapes, Mapillary, IDD, BDD,
and our proposed merged driving dataset. We also report
panoptic segmentation results on the Cityscapes validation
set. Cityscapes (Cordts et al., 2016) is a benchmark densely
annotated for 19 categories of urban scenes, which contains
5,000 fine annotated images in total and is divided into 2975,
500, and 1525 images for training, validation, and testing,
respectively. In addition, 20,000 coarse-labeled images are
also provided to enrich the training data. Images are all
with the same high resolution in the road driving scene, i.e.,
1024 × 2048. Note that we use the fine-annotated dataset
for ablation study and comparison with previous methods.
We also use the coarse data to boost the final results of
SFNet-Lite. Mapillary (Neuhold et al., 2017) is a large-
scale road-driving dataset, which is more challenging than
Cityscapes since it contains more classes and various scenes.
It contains 18,000 images for training and 2000 images for
validation. IDD (Varma et al., 2019) is another road-driving
dataset that mainly contains the India scene. It contains more
images than Cityscapes. It has 6,993 training images and
981 validation images. To our knowledge, we are the first
to benchmark the real-time segmentation models on Map-
illary and IDD datasets. Another research group develops
the BDD dataset, which mainly contains various scenes in
American areas. It has 7,000 training images and 1000 vali-
dation images. All the datasets, including UDS dataset, are
available online.

Implementation Details We use PyTorch (Paszke et al.,
2017) framework to carry out all the experiments. All net-
works are trained with the same setting, where stochastic

gradient descent (SGD) with batch size of 16 is used as an
optimizer, with amomentumof 0.9 andweight decay of 5e-4.
All models are trained for 50K iterations with an initial learn-
ing rate of 0.01. As a common practice, the “poly” learning
rate policy is adopted to decay the initial learning rate by
multiplying (1 − iter

total_iter )
0.9 during training. Data augmen-

tation contains random horizontal flip, random resizing with
a scale range of [0.75, 2.0], and random cropping with crop
size of 1024 × 1024 for Cityscapes, Mapillary, BDD, IDD,
and UDS datasets. For quantitative evaluation, the mean of
class-wise Intersection-Over-Union (mIoU) is used for an
accurate comparison, and the number of Floating-pointOper-
ations Per Second (FLOPs) and Frames Per Second (FPS)
are adopted for speed comparison. Moreover, to achieve a
stronger baseline, we also adopt the class-balanced sam-
pling strategy proposed in Zhu et al. (2019), which obtains
stronger baselines. For the Cityscapes dataset, we also adopt
coarse annotated data boosting methods to improve rare
class segmentation quality. Our code andmodel are available
for reference. Also note that several non-real segmentation
methods in Mapillary, BDD, IDD, and USD datasets are
implemented using our codebase and trained under the same
setting.

TensorRT Deployment Device The testing environment is
TensorRT 8.2.0 with CUDA 11.2 on a single TITAN-RTX
GPU. In addition, we re-implement the grid sampling oper-
ator by CUDA to be used together with TensorRT. The
operator is provided by PyTorch and used in warping opera-
tions in the Flow Alignment Module. We report an average
time of inferencing 100 images. Moreover, we also deploy
our SFNet and SFNet-Lite on different devices, including
1080-TI and RTX-3090. We report the results in the next
part.

4.2 Main Results

Results on Cityscapes Test Set We first report our SFNet
on the Cityscapes dataset in Table 3. With ResNet-18 as
the backbone, our method achieves 79.8% mIoU and even
reaches the performance of accurate models, which will be
discussed next. Adopting STDC net as the backbone, our
method achieves 79.8% mIoU with full resolution inputs
while running at 80 FPS. This suggests that our method can
be benefited from a well-human-designed backbone. For the
improved SFNet-Lite, our method can achieve even better
results than the original SFNet while running faster using
ResNet-18 as the backbone. For the STDC backbone, our
method achievesmuch faster speedwhilemaintaining similar
accuracy. In particular, using STDC-v1, our method achieves
78.8% mIoU while running at 120 FPS, a new state-of-the-
art result on balancing speed and accuracy. This indicates the
effectiveness of our proposed GD-FAM.
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Table 3 Comparison on Cityscapes test set with state-of-the-art real-time models

Method InputSize mIoU (%) #FPS #Params

ESPNet (Mehta et al., 2018) 512 × 1024 60.3 132 0.4M

ESPNetv2 (Mehta et al., 2019) 512 × 1024 62.1 80 0.8M

ERFNet (Romera et al., 2018) 512 × 1024 69.7 41.9 –

BiSeNet(ResNet-18) (Changqian et al., 2018) 768 × 1536 74.6 43 12.9M

BiSeNet(Xception-39) (Changqian et al., 2018) 768 × 1536 68.4 72 5.8M

BiSeNetv2(ResNet-18) (Changqian et al., 2021) 768 × 1536 75.3 47.3 –

BiSeNetv2(Xception-39) (Changqian et al., 2021) 768 × 1536 72.6 156 –

ICNet (Zhao et al., 2018) 1024 × 2048 69.5 34 26.5M

DF1-Seg (Li et al., 2019) 1024 × 2048 73.0 80 8.6M

DF2-Seg (Li et al., 2019) 1024 × 2048 74.8 55 18.9M

SwiftNet (Orsic et al., 2019) 1024 × 2048 75.5 39.9 11.8M

SwiftNet-ens (Orsic et al., 2019) 1024 × 2048 76.5 18.4 24.7M

DFANet (Li et al., 2019) 1024 × 1024 71.3 100 7.8M

CellNet (Zhang et al., 2019) 768 × 1536 70.5 108 –

STDC1-Seg75 (Fan et al., 2021) 768 × 1536 75.3 126.7 12.0M

STDC2-Seg75 (Fan et al., 2021) 768 × 1536 76.8 97.0 16.1M

HyperSeg-M (Nirkin et al., 2021) 512 × 1024 75.8 36.9 10.1M

HyperSeg-S (Nirkin et al., 2021) 768 × 1536 78.1 16.1 10.2M

DDRNet-23 (Hong et al., 2022) 1024 × 2048 77.4 108.1 5.7M

SFNet(DF1) 1024 × 2048 74.5 134.5 9.0M

SFNet(DF2) 1024 × 2048 77.8 103.1 19.6M

SFNet(ResNet-18) 1024 × 2048 79.8 33.3 12.9M

SFNet(STDC-1) 1024 × 2048 78.1 97.1 9.1M

SFNet(STDC-2) 1024 × 2048 79.8 79.9 13.1M

SFNet-Lite(ResNet-18) 1024 × 2048 80.1 48.9 12.3M

SFNet-Lite(STDC-1) 1024 × 2048 78.8 119.1 9.7M

SFNet-Lite(STDC-2) 1024 × 2048 79.0 92.3 13.7M

For a fair comparison, the input size is also considered, and all models use single-scale inference. The FPS of our SFNet is evaluated on TensorRT
following Fan et al. (2021)

Note that for fair comparison, in Table 3, following pre-
vious works (Fan et al., 2021; Changqian et al., 2021), we
report the speed using Tensor-RT devices. For the results on
the remaining datasets, we only report GPU average infer-
ence time. TheOriginal SFNet with ResNet-18 achieves 78.9
% mIoU, and we adopt uniform sampling, coarse boosting,
and long-time training, which leads to an extra 0.9 % gain on
the test set. The details can be found in the following sections.

Results on Mapillary Validation Set In Table 4, we report
speed and accuracy results on a more challenging Mapillary
dataset. Since this dataset contains huge resolution images
and direct inference may raise the out-of-memory issue, we
resize the short size of the image to 1536 and crop the image
and ground truth center following Zhu et al. (2019).

As shown in Table 4, our methods also achieve the best
speed and accuracy trade-off for various backbones. Even
though the Deeplabv3+ (Chen et al., 2018) and EMANet

(Li et al., 2019) achieve higher accuracy, their speed cannot
reach the real-time standard. In particular, for the DFNet-
based backbone (Li et al., 2019), our SFNet achieves almost
5–6% mIoU improvements. For SFNet-Lite, our methods
also achieve considerable results while running faster.

Results on IDD Validation Set In Table 5, our methods
achieve the best speed and accuracy trade-off. Compared
with previous work STDCNet, our method achieves bet-
ter accuracy and faster speed, as shown in the last row of
Table 5. For DFNet backbone, our methods also achieve
nearly 12% mIoU relative improvements. Such results indi-
cate that the proposed FAM and GD-FAM accurately align
the low-resolution feature intomore accurate high-resolution
and high-semantic feature maps.

Results on BDDValidation Set In Table 6, we further bench-
mark the representative works on BDD dataset. From that
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Table 4 Comparison on
Mapillary validation set with
state-of-the-art models

Method mIoU (%) #FPS #Params

PSPNet (Zhao et al., 2017) 42.4 4.8 31.1M

Deeplabv3+ (Chen et al., 2018) 46.4 3.2 40.5M

DANet (Jun et al., 2019) 42.9 2.0 48.1M

OCRNet (Yuan et al., 2020) 46.6 3.8 39.0M

EMANet (Li et al., 2019) 47.5 4.2 34.8M

BiSeNet-V1(ResNet-18) (Changqian et al., 2018) 43.2 24.3 12.9M

ICNet (Zhao et al., 2018) 42.8 48.2 26.5M

DF1-Seg (Li et al., 2019) 35.8 125.1 8.6M

DF2-Seg (Li et al., 2019) 40.2 75.2 18.9M

STDC1 (Fan et al., 2021) 41.9 34.5 12.0M

STDC2 (Fan et al., 2021) 43.5 29.0 16.1M

SFNet(DF1) 41.4 102.2 9.0M

SFNet(DF2) 45.6 57.8 19.6M

SFNet(ResNet-18) 46.5 19.8 12.9M

SFNet-Lite(ResNet-18) 46.3 24.5 12.3M

SFNet-Lite(STDC-2) 45.8 35.8 13.7M

All the models are re-trained for a fair comparison and use single-scale inference with the same resolution
input. The non-real-time models in the first sub-table use ResNet-50 as the backbone. The mIoU and FPS are
measured input image size with 1536 × 1536. All the models are tested on a single TITAN-RTX

Table 5 Comparison on IDD
validation set with
state-of-the-art models

Method mIoU (%) #FPS #Params

PSPNet (Zhao et al., 2017) 77.6 5.2 31.1M

Deeplabv3+ (Chen et al., 2018) 78.9 3.5 40.5M

DANet (Jun et al., 2019) 76.6 3.2 48.1M

OCRNet (Yuan et al., 2020) 78.1 4.2 39.0M

EMANet (Li et al., 2019) 77.2 4.4 34.8M

BiSeNet-V1(ResNet-18) (Changqian et al., 2018) 74.4 24.5 12.9M

ICNet (Zhao et al., 2018) 73.8 37.5 26.5M

DF1-Seg (Li et al., 2019) 63.4 79.2 8.55M

DF2-Seg (Li et al., 2019) 67.9 50.8 18.88M

STDC1 (Fan et al., 2021) 75.5 30.8 12.0M

STDC2 (Fan et al., 2021) 76.3 24.8 16.1M

Bi-Align (Yanran et al., 2021) 73.9 30.2 19.2M

SFNet(DF1) 75.8 65.8 9.03M

SFNet(DF2) 76.3 37.4 19.63M

SFNet(ResNet-18) 76.8 20.2 12.87M

SFNet-Lite(ResNet-18) 76.2 26.8 12.3M

SFNet-Lite(STDC-2) 76.8 26.2 13.7M

For a fair comparison, all the models are re-trained and use single scale inference with the same resolution
inputs (1080 × 1920 original size of IDD)

table, Deeplabv3+ (Chen et al., 2018) achieves the top per-
formance but with amuch slower speed. Again, our methods,
including both original SFNet and improved SFNet-Lite
achieve the best speed and accuracy trade-off. For the recent
state-of-the-art method STDCNet (Fan et al., 2021), our
SFNet-Lite achieves 5% mIoU improvement while running
slower. When adopting the ResNet-18 backbone, our SFNet-

Lite achieves 60.6%mIoUwhile running at 44.5 FPSwithout
TensorRT acceleration.

Results on USD Testing Set Finally, we benchmark the
recent works on the merged USD dataset in Table 7. To fit
the GPU memory, we resize both images and ground truth
images to 1024× 2048. From that table, we findDeeplabv3+
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Table 6 Comparison on BDD
validation set with
state-of-the-art models

Method mIoU (%) #FPS #Params

PSPNet (Zhao et al., 2017) 62.3 11.2 31.1M

Deeplabv3+ (Chen et al., 2018) 63.6 7.3 40.5M

DANet (Jun et al., 2019) 62.8 6.6 48.1M

OCRNet (Yuan et al., 2020) 60.1 7.1 39.0M

EMANet (Li et al., 2019) 61.4 9.6 34.8M

BiSeNet-V1(ResNet-18) (Changqian et al., 2018) 53.8 45.1 12.9M

ICNet (Zhao et al., 2018) 52.4 39.5 26.5M

Bi-Align (Yanran et al., 2021) 53.4 42.1 19.2M

DF1-Seg (Li et al., 2019) 42.5 82.3 8.6M

DF2-Seg (Li et al., 2019) 47.8 53.4 18.9M

STDC1 (Fan et al., 2021) 52.1 45.8 12.0M

STDC2 (Fan et al., 2021) 53.8 33.0 16.1M

SFNet(DF1) 55.4 70.3 9.0M

SFNet(DF2) 60.2 47.3 19.6M

SFNet(ResNet-18) 60.6 35.6 12.9M

SFNet-Lite(ResNet-18) 60.6 44.3 12.3M

SFNet-Lite(STDC-2) 59.4 29.8 13.7M

For a fair comparison, all the models are re-trained and use single scale inference with the same resolution
inputs (720 × 1280 original size of BDD)

Table 7 Comparison on UDS
testing set with state-of-the-art
models

Method mIoU (%) #FPS #Params

PSPNet (Zhao et al., 2017) 75.2 5.3 31.1M

Deeplabv3+ (Chen et al., 2018) 78.0 3.7 40.5M

DANet (Jun et al., 2019) 75.8 3.0 48.1M

OCRNet (Yuan et al., 2020) 77.0 4.2 39.0M

EMANet (Li et al., 2019) 76.8 4.4 34.8M

BiSeNet-V1(ResNet-18) (Changqian et al., 2018) 73.8 24.5 12.9M

ICNet (Zhao et al., 2018) 72.9 38.5 26.5M

Bi-Align (Yanran et al., 2021) 73.9 30.1 19.2M

DF1-Seg (Li et al., 2019) 62.6 75.2 8.6M

DF2-Seg (Li et al., 2019) 66.8 45.1 18.9M

STDC1 (Fan et al., 2021) 74.0 30.2 12.0M

STDC2 (Fan et al., 2021) 75.2 24.5 16.1M

SFNet(DF1) 71.6 69.5 9.0M

SFNet(DF2) 75.5 37.5 19.6M

SFNet(ResNet-18) 76.5 19.4 12.9M

SFNet-Lite(ResNet-18) 75.3 24.5 12.3M

SFNet-Lite(STDC-1) 74.8 33.5 13.7M

SFNet-Lite(STDC-2) 75.6 30.2 13.7M

All the models are re-trained for fair comparison and use single scale inference with the same resolution
inputs (1024 × 2048, on both resized images and ground truth)
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Table 8 Ablation studies on
SFNet architecture design
using Cityscapes validation set

(a) Ablation study on baseline model
Method Stride mIoU (%) Δa(%)

FCN 32 71.5 –

Dilated FCN 8 72.6 1.1 ↑
+FPN 32 74.8 3.3 ↑
+FAM 32 77.2 5.7 ↑
+FPN + PPM 32 76.6 5.1 ↑
+FAM + PPM 32 78.3 7.2 ↑
(b) Ablation study on insertion position
Method F3 F4 F5 mIoU(%) Δa(%)

FPN+PPM – – – 76.6 –

� – – 76.9 0.3 ↑
– � – 77.0 0.4 ↑
– – � 77.5 0.9 ↑
– � � 77.8 1.2 ↑
� � � 78.3 1.7 ↑

(c) Ablation study on context module
Method mIoU(%) Δa(%) #GFLOPs

FAM 76.4 – –

+PPM (Zhao et al., 2017) 78.3 1.9↑ 123.5

+NL (Wang et al., 2018) 76.8 0.4↑ 148.0

+ASPP (Chen et al., 2017) 77.6 1.2↑ 138.6

+DenseASPP (Yang et al., 2018) 77.5 1.1↑ 141.5

(Chen et al., 2018) achieves top performance. Several self-
attention-based models (Li et al., 2019; Yuan et al., 2020;
Jun et al., 2019) achieve even worse results than previous
Deeplabv3+ on such domain variant datasets. This shows
that the USD dataset still leaves a huge room to improve.

As shown in Table 7, ourmethods usingDFNet backbones
achieve relatively 10% mIoU improvements over DF-Seg
baselines.When equippedwith the ResNet-18 backbone, our
SFNet achieves 76.5%mIoUwhile running at 20 FPS.When
adopting the STDC-V2 backbone, our SFNet-Lite achieves
the best speed and accuracy trade-off.

4.3 Ablation Studies

Effectiveness of FAM and GD-FAM Table 8(a) reports the
comparison results against baselines on the validation set of
Cityscapes (Cordts et al., 2016), where ResNet-18 (He et
al., 2016) serves as the backbone. Compared with the naive
FCN, dilated FCN improves mIoU by 1.1%. By appending
the FPN decoder to the naive FCN, we get 74.8% mIoU
by an improvement of 3.2%. By replacing bilinear upsam-
pling with the proposed FAM, mIoU is boosted to 77.2%,
which improves the naive FCN and FPN decoder by 5.7%
and 2.4%, respectively. Finally, we append PPM (Pyramid
Pooling Module) (Zhao et al., 2017) to capture global con-

textual information, which achieves the best mIoU of 78.7 %
together with FAM. Meanwhile, FAM is complementary to
PPM by observing FAM improves PPM from 76.6 to 78.7%.
InTable 10(a),we compare the effectiveness ofGD-FAMand
FAM. As shown in that table, our new proposed GD-FAM
has better performance (0.4%) while running faster than the
original FAM under the same settings.

Positions to Insert FAMorGD-FAM We insert FAM to differ-
ent stage positions in theFPNdecoder and report the results in
Table 8(b). From thefirst three rows, FAMimproves all stages
and gets the greatest improvement at the last stage, demon-
strating that misalignment exists in all stages of FPN and is
more severe in coarse layers. This is consistent with the fact
that coarse layers contain stronger semantics but with lower
resolution and can greatly boost segmentation performance
when they are appropriately upsampled to high resolution.
The best result is achieved by adding FAM to all stages in the
last row. For GD-FAM, we aim to align the high-resolution
features and low-resolution directly. We choose to align F3
and the output of PPM by default.

Ablation Study on Network Architecture Design Consid-
ering current state-of-the-art contextual modules are used as
heads on dilated backbone networks (Chen et al., 2017; Yang
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Table 9 Ablation results on
FAM design using Cityscapes
validation set

(a) Ablation study on Upsampling operation in FAM
Method mIoU (%)

bilinear upsampling 78.3

deconvolution 77.9

nearest neighbor 78.2

(b) Ablation study on kernel size k in FAM where 3 FAMs are involved
Method mIoU (%) Gflops

k = 1 77.8 120.4

k = 3 78.3 123.5

k = 5 78.1 131.6

k = 7 78.0 140.5

(c) Ablation with FlowNet-C (Dosovitskiy et al., 2015) in FAM
Method mIoU (%) Δa(%)

FPN +PPM 76.6 -

correlation (Dosovitskiy et al., 2015) 77.2 0.6 ↑
Ours 77.5 0.9 ↑
(d) Comparison with DCN (Dai et al., 2017)
Method F3 F4 F5 mIoU(%) Δa(%)

FPN +PPM – – – 76.6 –

DCN – – � 76.9 0.3 ↑
Ours – – � 77.5 0.9 ↑
DCN � � � 77.2 0.6 ↑
Ours � � � 78.3 1.7 ↑

Table 10 Ablation experiment
results on SFNet-Lite and
GD-FAM design using
Cityscapes validation set

(a) Effectiveness of GD-FAM. FPS is measuerd with 1024 × 2048 input
Method mIoU (%) FPS

FCN 71.5 50.3

+FPN + PPM (baseline) 76.6 40.3

+ FAM + PPM 78.3 19.4

+ one GD-FAM + PPM 78.3 24.5

(b) Ablation study on components in GD-FAM
Method DF Atten G mIoU(%)

FPN+PPM – – – 76.6

� – – 77.8

� � - 78.0

� � � 78.3

(c) Ablations study on Improving Tricks
Method US LT CB mIoU(%)

SFNet-Lite – – – 78.3

� – – 78.6

� � – 79.0

� � � 79.7

DF dual flow Attn attention, G gate, US uniform sampling, LT long training, CB coarse boosting
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Table 11 Generalization on
various backbone

Backbone mIoU(%) Δa(%) #GFLOPs Δb(%)

ResNet-50 (He et al., 2016) 76.8 − 332.6 −
w/ FAM 79.2 2.4 ↑ 337.1 +4.5

ResNet-101 (He et al., 2016) 77.6 − 412.7

w/ FAM 79.8 2.2↑ 417.5 +4.8

w/ GD-FAM 80.2 2.6↑ 415.3 +2.6

ShuffleNetv2 (Ma et al., 2018) 69.8 − 17.8 −
w/ FAM 72.1 2.3 ↑ 18.1 +0.3

DF1 (Li et al., 2019) 72.1 − 18.6 −
w/ FAM 74.3 2.2 ↑ 18.7 +0.1

DF2 (Li et al., 2019) 73.2 − 48.2 −
w/ FAM 75.8 2.6 ↑ 48.5 +0.3

STDC-Net-v1 (Fan et al., 2021) 75.0 − 58.2 −
w/ FAM 76.7 1.7↑ 59.8 +1.6

w/ GD-FAM 76.5 1.5↑ 59.0 +0.8

STDC-Net-v2 (Fan et al., 2021) 75.6 − 85.0 −
w/ FAM 77.4 1.8↑ 86.3 +1.3

w/ GD-FAM 77.5 1.9↑ 86.2 +1.2

For SFNet series, the baseline models are without FAM or GD-FAM. Note GD-FAM is only used once. The
GFlops are calculated with 1024 × 2048 input

et al., 2018), we further try different contextual heads in our
methods where the coarse feature map is used for contextual
modeling. Table 8(c) reports the comparison results, where
PPM (Zhao et al., 2017) delivers the best result, while the
more recently proposed methods such as non-Local-based
heads (Wang et al., 2018) perform worse. Therefore, we
choose PPM as our contextual head due to its better per-
formance with lower computational cost.

Ablation on FAM Design We first explore the effect of
upsampling in FAM in Table 9(a). Replacing the bilinear
upsamplingwith deconvolution and nearest neighbor upsam-
pling achieves 77.9% mIoU and 78.2% mIoU, respectively,
which are similar to the 78.3% mIoU achieved by bilinear
upsampling.Wealso try the various kernel sizes inTable 9(b).
A larger kernel size of 5 × 5 is also tried, which results in
a similar result (78.2%) but introduces more computation
cost. In Table 9(c), replacing FlowNet-S with correlation
in FlowNet-C also leads to slightly worse results (77.2%)
but increases the inference time. The results show that it is
enough to use lightweight FlowNet-S for aligning feature
maps in FPN. In Table 9(d), we compare our results with
DCN (Dai et al., 2017). We apply DCN on the concatenated
feature map of the bilinear upsampled feature map and the
feature map of the next level. We first insert one DCN in
higher layersF5 where our FAM is better than it. After apply-
ing DCN to all layers, the performance gap is much larger.
This indicates that our method can also align low-level edges

for better boundaries and edges in lower layers, which will
be shown in the visualization part.

Ablation GD-FAM Design In Table 10(b), we explore the
effect of each component in GD-FAM. In particular, adding
Dual Flow (DF) design boosts about 1.2% improvement.
Using Attention to generate gates rather than using convo-
lution leads to 0.2% improvement. Finally, using the shared
gate design also improves the strong baseline by 0.3%.

Ablation on Improving Details In Table 10(c), we explore
the training tricks, including Uniform Sampling (US), Long
Training (LT) and Coarse Boosting (CB). Performing US
leads to 0.3% improvements on our SFNet-Lite. Using LT
(1000 epochs training) rather than short training (300 epochs
training) results in another 0.4%mIoU improvement. Finally,
adopting coarse data boosts on several rare classes leads to
another 0.7% improvement.

Generalization on Various Backbones We further carry out
experiments with different backbone networks, including
both deep and light-weight networks, where the FPNdecoder
with PPM head is used as a strong baseline in Table 11.
For heavy networks, we choose ResNet-50 and ResNet-101
(He et al., 2016) to extract representation. For light-weight
networks, ShuffleNetv2 (Ma et al., 2018), DF1/DF2 (Li et
al., 2019) and STDC-Net (Fan et al., 2021) are employed.
FAM significantly achieves better mIoU on all backbones
with slightly extra computational cost. Both GD-FAM and
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FAM improve the results of different backbones significantly
with little extra computation cost.

Aligned Feature Representation In this part, we present
more visualization on aligned feature representation as
shown in Fig. 7. We visualize the upsampled feature in the
final stage of ResNet-18. It shows that compared with DCN
(Dai et al., 2017), our FAM feature is more structural and
has much more precise object boundaries, which is consis-
tent with the results in Table 9(d). That indicates that FAM
is not an attention effect on a feature similar to DCN, but
aligns the feature towards a more precise shape than in red
boxes.

4.4 More Detailed Analysis

Detailed Improvements Table 12 compares the detailed
results of each category on the validation set, where ResNet-
101 is used as backbone, and FPN decoder with PPM head
serves as the baseline. SFNet improves almost all cate-
gories, especially for ’truck’ with more than 19% mIoU
improvement. Adopting GD-FAM leads to more consistent
improvement over FAM on each class.

Visualization of Semantic Flow Fig. 6 visualizes semantic
flow from FAM in different stages. Similar to optical flow,
semantic flow is visualized by color coding and is bilinearly
interpolated to image size for a quick overview. Besides, vec-
tor fields are also visualized for detailed inspection. From
the visualization, we observe that semantic flow tends to
diffuse out from some positions inside objects. These posi-
tions are generally near the object centers and have better
receptive fields to activate top-level features with pure and
strong semantics. Top-level features at these positions are
then propagated to appropriate high-resolution positions fol-
lowing the guidance of semantic flow. In addition, semantic
flows also have coarse-to-fine trends from the top level to
the bottom level. This phenomenon is consistent with the
fact that semantic flows gradually describe offsets between
gradually smaller patterns.

Visual Improvements on Cityscapes Dataset Figure8a visu-
alizes the prediction errors by both methods, where FAM
considerably resolves ambiguities inside large objects (e.g.,
truck) and produces more precise boundaries for small and
thin objects (e.g., poles, edges of wall). Figure8b shows our
model can better handle the small objects with shaper bound-
aries than dilated PSPNet due to the alignment on lower
layers.

VisualizationComparisononMapillaryDataset InFig. 9,we
show the visual comparison results on the Mapillary dataset.
As shown in that figure, compared with previous ICNet and Ta
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Fig. 6 Visualization of the learned semantic flow fields. Column a
lists three exemplary images. Column b–d show the semantic flow of
the three FAMs in ascending order of resolution during the decoding

process, following the same color coding of Fig. 3. Column e is the
arrowhead visualization of flow fields in column d. Column f contains
the segmentation results

Fig. 7 Visualization of the aligned feature. Compared with DCN, our
module outputs more structural feature representation
BiSegNet, our SFNet-Lite using ResNet-18 as backbone has
better segmentation results in cases of more accurate seg-
mentation classification and structural output.

Visual Comparison on Proposed USD Dataset In figure 10,
we present several samples from different datasets. Com-
pared with the original DFNet baseline, our method can
achieve better segmentation results in terms of clear object

boundaries and inner object consistency. We also show the
SFNet-Lite with ResNet-18 backbone in the fourth row and
overlapped images in the last row. The figure shows that our
methods (SFNet with DFV2 backbone and SFNet-Lite with
ResNet-18 backbone) achieve good segmentation quality for
different domains.

Speed Effect on Different Devices In Table 13, we explore
the effect of deployment devices. In particular, compared
with the original SFNet (Li et al., 2020), which uses 1080-TI
as a device, using a more advanced device leads to a much
higher speed. For example, RTX-3090 results almost twice
faster as 1080-TI usingResNet-18 and four times faster using
STDCNet.Moreover, we also find that SFNet with STDCNet
(Fan et al., 2021) backbone is more friendly to TensorRT
deployment.

UDSUsed for Pre-training Wefurther show the effectiveness
of our UDS dataset in table 14. Compared with ImageNet

Fig. 8 aQualitative comparison in terms of errors in predictions, where
correctly predicted pixels are shown as black backgroundwhilewrongly
predicted pixels are colored with their ground truth label color codes. b

Scene parsing results comparison against PSPNet (Zhao et al., 2017),
where the improved regions are marked with red dashed boxes. Our
method performs better on both small scale and large scale objects
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Fig. 9 Qualitative comparison on Mapillary dataset. Top-left: Origin Images. Top-Left: Results of BiSegNet (Changqian et al., 2018). Down-Left:
Results of ICNet (Zhao et al., 2018). Down-Right: Results of our SFNet-Lite. Improvement regions are in yellow boxes. Best view it in color (Color
figure online)

Fig. 10 Visualization results onUDSvalidationdataset includingBDD,
Maillary, IDD and Cityscapes. Our methods achieve the better visual
results in cases of clear object boundary, inner object consistency and

better structural outputs. We adopt singele scale inference and all the
models are trained under the same setting. Best view it on screen and
zoom in
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Table 13 Speed comparison on TensorRT deployment testing with dif-
ferent devices

Network 1080-TI TITAN-RTX RTX-3090

SFNet (resnet-18) 26.8 34.2 50.5

SFNet (stdcv2) 56.2 78.0 202.1

The FPS is measured with 1024 × 2048 input

Table 14 Pretraining effect of UDS dataset

Network ImageNet UDS mIoU

SFNet(resnet-18) � − 73.8

SFNet(stdcv2) � − 72.9

SFNet(resnet-18) − � 76.5

SFNet(stdcv2) − � 75.6

The mIoU is evaluated on Camvid dataset (Brostow et al., 2008)

(Russakovsky et al., 2015), adopting the pre-training with
the UDS dataset can significantly boost SFNet results on
the Camvid dataset (Brostow et al., 2008), which leads to a
significant margin (3–4% mIoU). This implies that the UDS
dataset can be an excellent pre-train source to boost themodel
performance.

4.5 Extension on Efficient Panoptic Segmentation

Experiment Setting In this section, we show the general-
ization ability of our Semantic Flow on more challenging
task Panoptic Segmentation. We choose K-Net (Zhang et al.,
2021) as the prediction head, while our SFNet is the back-
bone and neck for the feature extractor. All the network is
first trained on the COCO dataset and then on the Cityscapes
dataset. For COCO (Lin et al., 2014) dataset pretraining, all
the models are trained following detectron2 settings (Wu et
al., 2019). We adopt the multiscale training by resizing the
input images such that the shortest side is at least 480 and 800
pixels, while the longest is atmost 1333 pixels.We also apply
random crop augmentations during training, where the train-
ing images are cropped with a probability of 0.5 to a random
rectangular patch and then resized again to 800–1333 pixels.
All the models are trained for 36 epochs. For Cityscape fine-
tuning, we resize the images with a scale ranging from 0.5 to
2.0 and randomly crop the whole image during training with
batch size 16. All the results are obtained via single-scale
inference. We also report results using the ResNet50 back-
bone for reference. We report the FPS on V100 devices by
averaging 100 input images. For FPS measurement, we also
include the panoptic post-processing times.

Results on Various Baseline on Cityscapes Panoptic Segmen-
tation. As shown inTable 15, our SFNet backbone improves
the baselinemodels in termsof thePanopticQualitymetric by

around 0.5−1.0%.The results show the generalization ability
of the semantic flow because our aligned feature representa-
tion preserves more fine-grained information. Moreover, we
compare our methods using a stronger ResNet50 backbone.
Compared with K-Net (Zhang et al., 2021), our methods
still achieve 0.5% PQ improvements with 1.2 FPS drop. Our
method with STDCv2 backbone achieves a strong speed and
accuracy trade-off (60.3 PQ with 18.6 FPS).

4.6 More Analysis on SFNet and SFNet-Lite

Experiment Setting In this section, we performmore exten-
sive experiments using SFNets. (1), We first conduct more
experiments with DCN (Dai et al., 2017) using Cityscapes
and UDS by adding one DCN layer and one GD-FAM. (2),
Then, we perform domain generalization experiments using
RobustNet with different SFNet baselines, where we train
the model on the Cityscapes dataset and test the model on
BDD and IDD datasets. (3), Next, we present the results on
ADE20kdatasets usingdifferent baselines, includingSeman-
tic FPN (Kirillov et al., 2019) and SegFormer (Xie et al.,
2021). For the experiments on the ADE20k dataset, we fol-
low the default settings from OCRNet (Yuan et al., 2020),
where the crop size is set to 512 with 160k iterations train-
ing. The GFlops are calculated with 512 × 512 inputs.

More Detailed Comparison with DCN We carry out a more
detailed comparison between DCN and our proposed GD-
FAM. In particular, we replace GD-FAM or FAM with a
simple concatenation followed by a deformable convolu-
tion, where GD-FAM and FAM are inserted in the last stage
to align the last two features for comparison. The DCN
directly replaces FAM or GD-FAM. As shown in Tab 16,
our method achieves better results (1.0−2.0% mIoU gains)
on both Cityscape dataset and UDS dataset, which share the
same conclusion with the findings in Table 9(d).

Domain Generalization Testing Using RobustNet (Choi et
al., 2021).We further prove the domain generalization ability
of SFNet and SFNet-Lite. Our methods are based on previ-
ous work RobustNet (Choi et al., 2021) and Semantic-FPN
(Kirillov et al., 2019). In particular, we follow the original
open-source RobustNet code 1 and settings by the whiten-
ing operation in different backbones to build the baseline.
As shown in Tab .17, our methods achieve consistent 2–3%
mIoU improvements over the RobustNet baselines on both
IDD and BDD datasets.

Experiment Results on ADE20k Dataset In Table 18, we
verify the effectiveness of FAM and GD-FAM on the more

1 https://github.com/shachoi/RobustNet
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Table 15 Experiment results on
the Cityscapes Panoptic
validation set

Method Backbone PQ PQth PQst #FPS

UPSNet (Xiong et al., 2019) ResNet50 59.3 54.6 62.7 7.3

SOGNet (Yang et al., 2020) ResNet50 60.0 56.7 62.5 6.7

Seamless (Porzi et al., 2019) ResNet50 60.2 55.6 63.6 –

Unifying (Li et al., 2020) ResNet50 61.4 54.7 66.3 –

Panoptic-DeepLab (Cheng et al., 2020) ResNet50 59.7 – – 8.2

Panoptic FCN∗ (Li et al., 2021) ResNet50 61.4 54.8 66.6 –

K-Net (Zhang et al., 2021) ResNet50 61.2 52.4 66.8 10.2

STDCv1 + K-Net Head STDCv1 58.0 50.3 62.4 23.3

SF-STDCv1 + K-Net Head STDCv1 59.2 52.9 63.3 20.3

STDCv2 + K-Net Head STDCv2 59.8 53.8 63.8 19.3

SF-STDCv2 + K-Net Head STDCv2 60.3 54.4 64.8 18.6

SF-ResNet50 + K-Net Head ResNet50 61.7 52.6 67.2 9.0

∗indicates using DCN (Dai et al., 2017). All the methods use single-scale inference. We prove the general-
ization ability of semantic flow. The FPS is measured on one V100 card with 1024 × 2048 input

Table 16 More detailed comparison between GF-FAM and DCN

Method Cityscapes UDS #FPS

FCN +FPN + PPM (baseline) 76.6 72.3 40.3

w one DCN 76.9 73.5 22.8

w one FAM 77.5 74.8 23.3

w one GD-FAM 78.5 75.5 24.6

We adopt ResNet18 as backbone

Table 17 Domain generalization experiments using SFNet and SFNet-
Lite using RobustNet (Choi et al., 2021)

Method Backbone BDD IDD #FPS

baseline ResNet18 43.2 46.2 25.8

SFNet ResNet18 45.2 48.1 24.0

SFNet-Lite ResNet18 46.0 48.5 24.8

baseline STDC-2 39.2 41.4 27.5

SFNet-Lite STDC-2 41.8 44.5 26.7

The baseline methods are SFNet series with RobustNet with no FAMs
or GD-FAMs. Our methods also show better results on BDD and IDD
when trained with Cityscapes dataset

Table 18 Effectiveness on ADE20k dataset on Semantic-FPNwith dif-
ferent backbones

Method Backbone mIoU #GFLOP

Semantic-FPN (baseline) ResNet50 37.6 72.8

SFNet ResNet50 39.0 75.2

SFNet-Lite ResNet50 38.8 74.2

Semantic-FPN (baseline) DF2 34.5 35.2

SFNet DF2 36.7 36.2

SFNet-Lite DF2 36.8 35.9

Table 19 Effectiveness on ADE20k dataset on Transformer-based
methods

Method Backbone mIoU #GFLops

SegFormer (baseline) B0 37.4 8.4

SFNet-Lite B0 38.2 9.4

SegFormer (baseline) B1 40.9 16.0

SFNet-Lite B1 42.2 17.6

B0 and B1: backbones in SegFormer (Xie et al., 2021)

challenging dataset ADE20k. For a fair comparison, we re-
implement the baseline in the same codebase and report our
reproduced results for Semantic-FPN.As shown in that table,
wefind about 1.2%−2.2% improvements over different base-
lines. In particular, we find the improvements on the real-time
model are stronger, which means the semantic gaps in small
models are heavier. This finding is similar in the road driving
scene datasets (see Tables 6, 7).

Experiment Results on ADE20k Using Transformer-Based
Model In Table 19, we also report the results using
transformer-based model SegFormer (Xie et al., 2021). We
also find about 0.8−1.3%mIoU improvements over different
backbones. These results indicate that our proposed approach
can also be used in transformer-based segmenter.

5 Conclusion

In this paper, we propose to use the learned Semantic Flow
to alignmulti-level featuremaps generated by aligned feature
pyramids for semantic segmentation. We propose a flow-
alignedmodule to fuse high-level feature maps and low-level
featuremaps.Moreover, to speed up the inference procedure,
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we propose a novel Gated Dual flow alignment module to
align both high and low-resolution feature maps directly. By
discarding atrous convolutions to reduce computation over-
head and employing the flow alignment module to enrich the
semantic representation of low-level features, our network
achieves the best trade-off between semantic segmentation
accuracy and running time efficiency. Experiments on multi-
ple challenging datasets illustrate the efficacy of our method.
Moreover, we merge four challenging driving datasets into
one Unified Driving Segmentation dataset (UDS), which
contains various domains. We benchmark several works on
the merged dataset. Experiment results show that our SFNet
series can achieve the best speed and accuracy trade-off. In
particular, our SFNet improves the original DFNet on the
UDS dataset by a large margin (9.0% mIoU). These results
indicate that our SFNet can be a faster and accurate baseline
for Semantic Segmentation.
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