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Abstract
A good understanding of geometrical concepts as well as a broad familiarity with objects lead to excellent human perception
of moving objects. The human ability to detect and segment moving objects works in the presence of multiple objects,
complex background geometry, motion of the observer and even camouflage. How we perceive moving objects so reliably is
a longstanding research question in computer vision and borrows findings from related areas such as psychology, cognitive
science and physics. One approach to the problem is to teach a deep network to model all of these effects. This is in contrast
with the strategy used by human vision, where cognitive processes and body design are tightly coupled and each is responsible
for certain aspects of correctly identifying moving objects. Similarly, from the computer vision perspective there is evidence
that classical, geometry-based techniques are better suited to the “motion-based” parts of the problem, while deep networks
are more suitable for modeling appearance. In this work, we argue that the coupling of camera rotation and camera translation
can create complex motion fields that are difficult for a deep network to untangle directly. We present a novel probabilistic
model to estimate the camera’s rotation given the motion field. We then rectify the flow field to obtain a rotation-compensated
motion field for subsequent segmentation. This strategy of first estimating camera motion, and then allowing a network to
learn the remaining parts of the problem, yields improved results on the widely used DAVIS benchmark as well as the more
recent motion segmentation data set MoCA (Moving Camouflaged Animals).

Keywords Motion segmentation · Video segmentation · Optical flow · Camera motion estimation

1 Introduction

The human visual system has the ability to detect inde-
pendently moving objects in a large variety of different
environments. While we are moving through the world our
eye captures a large amount of visual information over time.
Often, we are unaware of the remarkable preprocessing
steps that happen almost unnoticed. For example, human eye
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movements induce two major simplifications to incoming
images before visual information is processed by the visual
cortex. These are: (1) stabilizing the image, i.e., reducing
the amount of local change due to motion, and (2) chang-
ing the direction of gaze (Walls, 1962; Longuet-Higgins and
Prazdny, 1980).

Here, we revisit this approach to motion segmentation
and separate the problem into two parts: first, we preprocess
the perceived motion field following well known geometri-
cal concepts. This leads to important simplifications similar
to gaze stabilization. Second, we learn to segment indepen-
dently moving objects from these simplified motion fields
(Fig. 1).

Prior work (Bideau and Learned-Miller, 2016a) provided
a detailed overview and a general definition of the motion
segmentation problem in computer vision. To summarize,
the task of motion segmentation attempts to analyze the per-
ceived motion and to segment a video sequence into static
environment (if any) and independentlymovingobjects. Inter-
preting themotion field accurately, and then drawing the right
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Fig. 1 What is moving? Coupling of camera rotation and camera trans-
lation often create complex motion fields that are difficult for a network
to untangle. Instead we propose a strategy to learn object motion pat-
terns based on rotation compensated flow

conclusions about what is moving in the world and what is
static, is a complex process for synthetic systems. And even
in biological vision systems applied strategies are still only
partially understood.Whilemotion segmentation refers to the
task of segmenting objects based on their exhibited motion
- and in particular their unique distinction from their static
environment, we would like to emphasize the difference to
the more general task of video object segmentation (VOS).
Video object segmentation aims at segmenting a particular
object throughout the video irrespective of its motion (Xu et
al., 2018; Ding et al., 2023). The object to be segmented is
typically the most dominant object or predefined in the first
video frame. Due to the need of modeling spatio-temporal
dependencies for video processing, video object segmen-
tation is often influenced by insights obtained in motion
segmentation.

Unlikemost end-to-end learning-based approaches,where
a model learns all the necessary steps between the input
and the final output, we break down the problem of motion
segmentation into two sub-problems: adjusting the optical
flow to remove the effects of camera rotation (rotation com-
pensation) using classical approaches based on perspective
projection and learning to segment the remaining optical flow
into static background and moving objects. The step of com-
pensating for camera rotation is a challenging one, since the
flow field is only a noisy estimate of themotion field. In cases
of little motion or featureless areas, the observed flow field is
often erroneous and thus the true camera motion and object
motion is hard to estimate accurately. Prior work (Bideau et
al., 2018; Bideau and Learned-Miller, 2016b) has explicitly
addressed such challenges by incorporating a noise model
into the camera motion estimation step. The approach pro-
posed here builds upon the work of Bideau et al. (2018) and
further refines a flow likelihood function that incorporates not
only a model for the flow’s noise, but also a new model for
scene depth. To this end, we present here a novel probabilis-
tic method for estimating camera rotation and derive a new

likelihood function modeling the probability of an observed
optical flow field, given an estimated (ideal) motion field.
A CNN framework is then integrated for learning to seg-
ment moving objects after the motion of the camera has been
determined.

Our contributions include: (i) estimating the camera rota-
tion and translational motion direction in the presence
of moving objects, using a new likelihood maximization
approach, (ii) given the rotation compensated flow, we show
that the task of learning motion patterns is improved, result-
ing in bettermotion segmentation performance shown on two
data sets: the widely used DAVIS benchmark (Perazzi et al.,
2016) and the recently published MoCA (Lamdouar et al.,
2020). The latter focuses on the segmentation of camouflaged
animals that are (close to being) invisible if they are not in
motion.

The remainder of the paper is structured as follows. In
Sect. 2 we review relevant work on motion segmentation
starting from classical geometry-based approaches and con-
cluding with the most recent ones using convolutional neural
networks to segment moving objects from optical flow. In
Sect. 3, we develop an end-to-end approach for motion seg-
mentation. We briefly review the basics about the motion
field and how it is related to camera motion, depth and
object motion (Sect. 3.1). Building upon key concepts of per-
spective projection, the methodological approach is derived
in two sections: estimating the camera rotation to produce
rotation-compensated flow fields (Sect. 3.2) and segmenting
the remaining (noisy) translational flow field into indepen-
dently moving objects and static background (Sect. 3.3). A
multifaceted evaluation of the proposed approach, including
multiple ablation studies has been carried out and is shown
in Sect. 4.

2 RelatedWork

Many works tackling the problem of motion segmentation
focus on binary motion segmentation, where pixels are clas-
sified as either moving or being part of the static background.
In that case no distinction is made between differently mov-
ing objects (Bideau and Learned-Miller, 2016b; Narayana
et al., 2013; Papazoglou and Ferrari, 2013; Faktor and Irani,
2014).Others (Taylor et al., 2015;Keuper et al., 2015; Fragki-
adaki et al., 2012) address multi-label motion segmentation,
where a separate label is given to each independently moving
object. Our work addresses binary motion segmentation, but
we consider both views of the segmentation problem in this
review of related work. We conclude the review of related
work with a discussion of potential application areas: video
object segmentation and the anticipation of object movement
- two prominent lines of current research within the area of
robotics and computer vision.
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Fig. 2 Getting the right spin. We first compensate the observed motion
field for camera rotation (“first step”), and segment the remaining trans-
lational optical flow field using a learning based approach (“second
step”). The observed flow field on the left has complex motion patterns:
the motion directions of foreground and background are pointing in
opposite directions, due to large variance in scene depth, and the com-

bined impact of camera rotation and translation. Estimating the camera
rotation (“the right spin”), and compensating the flow field for this
rotation simplifies the motion field dramatically, in this case yielding
similarmotion directions for foreground and background. This provides
simpler inputs to our learning based motion segmentation framework

2.1 Classical Approaches

2.1.1 Methods Based on Feature Clustering

To capture motion information, typically point trajectories
are either formed by tracked image features or dense optical
flow. Then trajectories sharing similar motion characteris-
tics are grouped into coherent motion clusters describing the
motion of a particular object (Keuper et al., 2015; Brox and
Malik, 2010; Fragkiadaki et al., 2012; Ochs and Brox, 2011;
Keuper, 2017; Yan and Pollefeys, 2006; Shen et al., 2018;
Lezama et al., 2011).

These approaches vary in defining typical motion charac-
teristics for clustering. Yan and Pollefeys (2006) propose to
cluster trajectories based on geometric constraints (trajecto-
ries of the samemotion lie in amanifold) and locality. Keuper
et al. (2015) represent the segmentation problem as a mini-
mum cost multicut graph problem, where edge weights are
computed from motion, position and color cues.

These trajectory based clustering approaches reach their
limit if understanding of the scene structure is necessary to
segment amovingobject correctly. Trajectories perfectly rep-
resent long-term pixel displacements between a sequence of
frames. Pixel displacements however are a function of depth
and motion. Thus trajectory based clustering methods often
form clusters not only for independently moving objects, but
also for objects at different depths. For instance if the camera
is translating and rotating rocks close to the camera produce
a very different flow pattern that the far away scene (see
Fig. 2), thus those two areas would form two separate clusters
although neither the rock nor the far away scene is moving.

Methods based on occlusions (Ogale et al., 2005; Taylor
et al., 2015) are subject to similar depth-related problems,
since occlusions could be caused at depth boundaries as well
as motion boundaries. A distinction is often not made.

2.1.2 Methods Based on Projective Geometry

Euclidean geometry describes well the three-dimensional
world. Under Euclidean transformations (rotation and trans-
lation) certain geometric properties of the world do not
change - lengths, angles between intersecting lines, parallel
lines stay parallel. While euclidean geometry describes the
three-dimensional worldwell, it is insufficient to describe the
imaging process of the camera. Here, lengths and angles are
no longer preserved and parallel lines actually may meet at a
distance. To this end many computer vision methods rely on
projective geometry, an extension of the euclidean geometry
(Torr, 1998; Zamalieva and Yilmaz, 2014; Wang and Adel-
son, 1994; Ke and Kanade, 2002; Jin et al., 2008; Xiao and
Shah, 2005; Vidal and Ma, 2004; Xu et al., 2018). Projec-
tive geometry models a much larger class of transformations
than just rotations and translations. Projective geometry also
includes important transformations such as perspective pro-
jections among many others. This has the advantage of being
able to model the imaging process of the camera, but on the
other hand comes with drawbacks as fewer measures are pre-
served - lengths, angles and parallelism. Preserving fewer
measures allows modeling the imaging process of the cam-
era but simultaneously reducing measures in this case allows
unrealistic deformations such as shearing.

Different from trajectorybased clusteringmethods,motion
segmentation approaches relying on projective geometry
analyze the optical flow between a pair of frames, group-
ing pixels into regions where flow is consistent with motion
models that are explainable by projective geometry (Torr,
1998; Zamalieva and Yilmaz, 2014; Wang and Adelson,
1994; Ke and Kanade, 2002; Jin et al., 2008; Xiao and
Shah, 2005; Xu et al., 2018). Torr (1998) develops a sophisti-
cated probabilistic model of optical flow, building a mixture
model that explains an arbitrary number of rigid components
within the scene. Interestingly, he assigns different types of
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motion models to each object based on model fitting cri-
teria. Zamalieva and Yilmaz (2014) and Xu et al. (2018)
present a combination of methods that rely on both - pro-
jective geometry (homography estimation) and perspective
projection (fundamental matrix estimation). The two meth-
ods have complimentary strengths, and the authors attempt
to select among the best dynamically.

Methods relying on projective geometry perform well in
cases of planar motion (motion obtained by a translating or
rotating camera picturing a planar scene or a very distant
scene, where effects of 3D parallax are negligible), however
similarly to cluster based approaches thesemethods fall short
in case of complex scene geometry.

Horn identified specific drawbacks of using projective
geometry in such estimation problems and has argued that
methods based directly on perspective projection are less
prone to overfitting in the presence of noise (Horn, 1999) as
those come with fewer and physically plausible invariants.

2.1.3 Methods Based on Perspective Projection

Perspective geometry allows us to mathematically explain
and model the process of how the three-dimensional world is
projected on to a two-dimensional image plane. Artists and
scientists like Alberti, Brunelleschi, Dürer and da Vinci stud-
ied effects of perspective projection about 500 years back in
time (Pirenne, 1952). These insights have made a significant
contribution to current successes in computer vision. One of
the key aspects of perspective projection is the observation
that two parallel lines (in the euclidean space) are trans-
formed to two lines that intersect in the vanishing point at
the horizon on the image plane. Perspective projection trans-
formations are one out of many transformations allowed in
projective geometry.

It has been shown that motion segmentation approaches
based on perspective projection (Irani and Anandan, 1998;
Bideau and Learned-Miller, 2016b; Bideau et al., 2018;
Narayana et al., 2013; Vidal et al., 2002; Zhang et al., 2007;
Yang and Ramanan, 2021) are more accurate (in terms of
model agreement to the physical world) than those based on
projective geometry, since the latter omits certain constraints
in modeling image transformations (Horn, 1999; Bideau and
Learned-Miller, 2016b). Having amodel that conforms to the
physical world might be especially critical for tasks where
the focus lies on real world interaction such as in robotics
and autonomous driving scenarios.

2.2 Learningmotion segmentation using
convolutional neural networks

Methods based on supervised learning Several approaches
in computer vision have explored the strength of deep neu-
ral networks to learn motion patterns of moving objects and

to produce binary motion masks distinguishing whether a
pixel belongs to a moving object or not (Tokmakov et al.,
2017a, b; Jain et al., 2017; Cheng et al., 2017; Dave et al.,
2019; Ranjan et al., 2019; Vertens et al., 2017; Mahadevan et
al., 2020; Lamdouar et al., 2020; Cheng et al., 2017). Most
approaches propose a two-stream architecture to separately
processmotion and appearance (Tokmakov et al., 2017b; Jain
et al., 2017; Dave et al., 2019).
Theses approaches learn motion patterns given the optical
flow, the raw video frames or optical flow together video
frames. Rather than following the true physics of image
formation, convolutional neural networks are able to learn
high level motion patterns of background motion and object
motion. This ability has the clear advantage of not being
dependent upon technical camera parameters such as the
focal length or image distortions due to various lens char-
acteristics or constraints induced by technical parts of the
camera (mechanical or electronic).

2.2.1 Methods Based on Self-supervised Learning

General concerns of deep-learning based approaches and in
particular supervised approaches are overfitting to a partic-
ular type of object category that is likely to move (Dave
et al., 2019) and the lack of large amounts of training
data. To overcome the problem of limited training data, two
straight forward approaches are either using synthetic train-
ing data (Tokmakov et al., 2017a, b) or relying on noisy
estimates of the motion field (Jain et al., 2017) using other
algorithms (Sun et al., 2018; Ilg et al., 2017; Sun et al.,
2010). However, both paths are still in need of large amounts
of training data (although no additional manual annotations
are required in these cases), this rises the need for self-
supervised approaches (Yang et al., 2021; Lu et al., 2019;
Yang et al., 2019; Lai et al., 2020; Gordon et al., 2019;
Bideau et al., 2018). Incorporating knowledge about the
real world physics into the training procedure of a neural
network is an alternative to various kinds of data augmenta-
tion approaches that is subject of current research (Tung et
al., 2019; Yang and Ramanan, 2021). Some of those ideas
have been already successfully applied in context of self-
supervised learning (Gordon et al., 2019;Bideau et al., 2018).

In this work, we propose a novel approach to the motion
segmentation problem that specifically combines aspects of
perspective projection and learns general object motion pat-
terns.

2.3 Application Areas for Motion Segmentation

Motion segmentation relies on low-level visual properties
such as optical flow and thus is object agnostic. This key
property has not only been discovered for semi-supervised
video object segmentation (Luiten et al., 2019), it has also
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Fig. 3 Overview of our approach. Given the optical flow b the camera
rotation is estimated (Sect. 3.2.4). The flow vr due to camera rotation
is defined by the motion parameters (A, B,C). c is subtracted from the
optical flow o to produce a translational flow ot . The flow angle θot and
magnitudes |ot | are shown in e

enabled a new line of research dealing with object segmenta-
tion by anticipatingmotion (Choudhury et al., 2022).Here, an
image segmentation network is supervised by a simple pre-
text task of predicting image regions that are likely to move
leading to an unsupervised approach for video and image
segmentation by anticipating motion. Today, understanding
the movement of objects has significantly influenced several
lines of research areas - video object segmentation (VOS)
and the anticipation of object movement may be the most
prominent areas. Latter shows high potential for key research
questions for robotics - manipulation and robot-environment
interaction, where a prior guess about object movement is
essential (Eisner et al., 2022; Xu et al., 2022).

3 Learning Object Motion from
Rotation-Compensated Flow

Like many previous works, we define a moving object as
a collection of matter that independently moves as a whole
in the 3D world. An overview of our approach for motion
segmentation is shown in Fig. 3. Given an estimate of the
motion field (optical flow) each frame is segmented into
static environment and independently moving objects. To
achieve this we present an approach where we first estimate
the camera rotation and then use this knowledge to form a
rotation-compensated flow field. A network is trained that
takes rotation-compensated flow fields as input and outputs
motion segmentation masks. To this end, we combine our
novel geometry-based method for estimating camera rota-
tion, and a CNN framework for learning to segment moving
objects.

In the following we will revise relevant background infor-
mation about the formation of a motion field, that occurs on
the camera sensor as the camera moves (Sect. 3.1). Build-
ing on this, we propose a novel approach to estimate camera

rotation in complex environments, considering scenedepth as
well as independentlymoving objects (Sect. 3.2). In Sect. 3.3,
we propose an approach similar to Bideau et al. (2018) that
learns to segment the rotation compensated motion field into
static background and independently moving objects.

3.1 TheMotion Field: A Geometrical Analysis

The motion field captures pixel displacements between two
consecutive frames. Displacements arise typically due to one
of the following factors: (1) amoving camera, (2) one ormore
objects moving in the 3D world. These pixel displacements
depend not only on the speed of objects or the camera, but
also the scene geometry.

As an example to illustrate the different factors that influ-
ence the formation of the motion field, let’s consider the
“goat” sequence from the DAVIS data set (Fig. 2). Based
on the original flow field it is hard to estimate which pixels
belong to the moving object and which belong to static back-
ground. The direction of the flow in the background region
differs significantly from the flow describing the motion of
the rocks in the foreground region (motion direction is color
encoded). However, neither the background nor the rocks
are moving differently in the 3D world. To detect objects
that are actually moving independently in 3D it is necessary
to decompose the observed motion field. We formalize these
observations and review the geometrical construction of the
motion field.

3.1.1 Motion Field

Let [U , V ,W ] be the parameters describing the camera
translation and [A, B,C] the parameters describing camera
rotation1 along the x, y and z axes respectively. Let f be
the camera’s focal length and Z the relative scene depth at a
pixel location (x, y). In this setting, the motion vector v due
to camera motion is given by:

v = vr + vt =
(
ur
vr

)
+

(
ut
vt

)
, (1)

=
( A

f xy − B f − B
f x

2 + Cy

A f + A
f y

2 − B
f xy − Cx

)
+

(− f U+xW
Z

− f V+yW
Z

)
, (2)

where vr and vt represent motion field vectors corresponding
to camera rotation and translation respectively. Equation (2).2

1 The rotation parameters are often referred to as pitch, yaw and roll.
2 In fact, this equation is an approximation, and only holds if the rotation
angles are small (Longuet-Higgins and Prazdny, 1980) To obtain the
exact rotational flow field one has to transform the 2D image points to
3D using perspective projection equations, rotate the points according
to the camera’s rotation in 3D, backproject them onto the 2D image
plane, and then measure the displacement.
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Fig. 4 Translational motion field vector. Left: motion field vector vt at
pixel position (x, y). Right: color coding of the angle field θ(x, y) at
each pixel location for the case of camera translation along the optical
axis, i.e. [U , V ,W ] = [0, 0, 1]

highlights an important properly, namely that the flow due
to camera rotation is only determined by the camera rotation
parameters and the camera’s focal length. The flow due to
camera rotation is independent of the scene depth. One can
subtract this rotational motion component at each pixel to
obtain a rotation-compensated flow field.

3.1.2 Rotation-Compensated Motion Field

As shown in the flow Eq. (2), the rotation-compensated flow
field vt is determined by the translational camera motion
[U , V ,W ], and the scene depth Z . It comprises all the
relevant information about the scene geometry, unlike the
rotational component vr , which is independent of the scene
geometry. The magnitude of the rotation-compensated flow
is inversely related to scene depth, i.e., regions further away
from the camera have small translational flow magnitude,
and those closer to the camera have larger magnitudes. The
direction of vt (flow angle) however does not depend upon
the scene depth:

θ =
{
arccos (xW − f U ), if (yW − f V ) > 0,

2π − arccos (xW − f U ), otherwise.
(3)

Figure4 pictures the computation of the flow angle θ at
pixel locations (x, y), leading to an angle field as shown
on the right. Where as Fig. 4 pictures the angle field of pure
camera translation, Fig. 2 shows an angle field of a scenewith
camera translation and object motion. Here, independently
moving objects, can be observed as discontinuities in angle.
The angle of the rotation-compensated flow alone is inde-
pendent of the scene geometry, thus independently moving
objects stand out due to their different direction.

3.2 The Right Spin: Camera Motion Estimation

To rectify the observed optical flow field for camera rota-
tion, we require an accurate estimate for rotation. How can

we obtain a good estimate of the camera rotation and the
translational motion direction that together best explain the
observed motion field? Towards finding an answer to this
question, we derive a novel maximum likelihood approach
that aims at finding the rotation [A, B,C] such that the like-
lihood of the resulting translational flow field is maximized.
To this end, we derive a new flow likelihood function incor-
porating amodel for the optical flow’s noise as well as a prior
distribution over the inverse scene depth.

In the following, we first introduce the new flow like-
lihood (Sect. 3.2.1). We then describe how camera motion
parameters are estimated by maximizing this new likelihood
function.

3.2.1 Likelihood of the Translational Flow

Let ot be the observed translational flow vector, e.g., flow
estimated with (Sun et al., 2018), at the pixel position (x, y).
Let the translational 3D motion direction of the camera
[U , V ,W ] be a unit vector. The three translational camera
parameters [U , V ,W ] and the pixel position (x, y) define
the direction of a motion field vector on the image plane. As
derived in (Bideau et al., 2018), the probability of observing
ot at (x, y) given a motion direction [U , V ,W ] is:

p(ot | U , V ,W , x, y)

=
∫ ∞

0
p(n) p(r | U , V ,W , x, y) dr , (4)

This likelihood function explicitly incorporates a model for
the optical flow’s noise - the distribution over the opti-
cal flow’s noise p(n), and a model for the motion field
magnitude - the distribution over motion field magnitude
p(r | U , V ,W , x, y). The variable r denotes the magni-
tude of a motion field vector and n denotes the optical flow’s
noise.

Modeling the probability distribution over flow magni-
tudes r is challenging, since those depend on the camera’s
translational motion direction [U , V ,W ], the pixel location
as well as the scene depth at that location. Prior work (Bideau
et al., 2018) models the probability distribution over flow
magnitudes by assuming that the motion field magnitude r is
independent of [U , V ,W ]. However this may lead to inaccu-
racies, especially in the case of strong z-motion of the camera
(forward motion). In this case motion field magnitudes close
to the focus of expansion are near zero and themotion vectors
farther away from the focus of expansion show larger mag-
nitudes, thus the motion field magnitude is clearly dependent
upon the camera’s motion direction [U , V ,W ].

A better approach than assuming independence is express-
ing the motion field magnitude as a function of the inverse
scene depth, which is inversely proportional to the motion
field magnitude r . Next, we present a new way of model-
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Fig. 5 Flow likelihood. a–c computation of the probability p(n) at pixel location (x, y). d probability distribution over inverse depth. The flow
likelihood is maximal, when the observed flow vector ot and the motion field vector vt point into the same direction with similar magnitude

ing the distribution over motion field magnitudes without the
need of making independence assumptions.

3.2.2 Distributions Over FlowMagnitudes Expressed as a
Function of Inverse Depth

We express the motion field magnitudes in terms of inverse
depth 1

Z and g(·). The function g(·) comprises all aspects of
the flow magnitude that are not related to depth,

r =
√
u2t + v2t ,

= 1

Z
· g( f , x, y,U , V ,W ). (5)

Given this reformulation of the magnitude r , we can deter-
mine the induced distribution over motion field magnitudes,
given the distribution over inverse depths. We aim to com-
pute p(r | g( f , x, y,U , V ,W )) through p( 1

Z ), which is the
distribution over inverse depth. Using the relation between r
and g(·) from Eq. (5), we can rewrite p(r | g(·)) as follows

p(r | g(·)) = p( 1
Z )

g(·) . (6)

This is effectively just a changeof units. Expressing the distri-
bution over flow magnitudes in terms of the distribution over
inverse depth however brings a significant advantage. This
formulation effectively factors motion direction (U , V ,W ),
focal length f and scene depth into the function g(·), and the
distribution over depth can be modeled without relying on
these dependencies that require making further approxima-
tions.

3.2.3 New Flow Likelihood

Following prior derivation, the flow likelihood function
(Eq.4) can be defined by the distribution over the flow’s noise
p(n) and the distribution over inverse depth, instead of flow

magnitudes:

p(ot | U , V ,W , x, y)

=
∫ ∞

0
p(n)

p
( 1
Z

)
g(·) dZ . (7)

Figure5 pictures the distribution of p(n), with n being the
noise added to the unknown motion field vector vt lead-
ing to the observed flow ot . The probability of the flow
noise p(n) is modeled as a multivariate normal distribution
p(n) ∼ N (μ,�). The inverse depth p( 1

Z ) is modeled as an
exponential distribution p( 1

Z ) ∼ Exp(λ). Details regarding
the parametrization of these two distributions can be found
in Sect. 3.4.

3.2.4 Camera Motion Estimation via Likelihood
Maximization

In Sect. 3.2.1, we have derived a new likelihood function of
an observed optical flow vector o. Our goal is now to find a
camera rotation (A, B,C) and translational camera motion
direction (U , V ,W ), such that the flow likelihood ismaximal
or alternatively the negative log-likelihood isminimal. Recall
ot is the observed translational flow vector after subtracting
the flow vr due to camera rotation:

ot = o − vr (A, B,C). (8)

Given the rotation compensated flow, we minimize the neg-
ative log-likelihood as follows:

A∗, B∗,C∗,U∗, V ∗,W ∗

= argmin
A,B,C,U ,V ,W

∑
− log(p(ot | U , V ,W , x, y)). (9)

Local minima are a concern when solving this optimization
problem, especially in cases of noisy optical flow, inaccurate
estimates of independently moving objects or complex scene
geometry. To reduce this risk, we initialize the optimization
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Fig. 6 Flow, rotation compensated flow and the relative depth estimate.
We show sample videos from the data set Complex Background (video
sequences: traffic, forest) as well as two sample videos from the DAVIS
data set (video sequence: parkour, goat). A comparison of b and d

shows how motion at distant is dominated by camera rotation. After
subtracting of the camera’s rotation the remaining flow magnitude in
these areas is very small (light color). If the flowmagnitude is small the
motion direction is noisy. This can be seen in (e)

using three different starting points: (1) camera rotation and
translation estimate of the previous frame, (2) camera rotation
estimate weighted by depth estimate of the previous frame
and the translation estimate of the previous frame, and (3)
camera rotation estimate weighted by depth estimate of the
previous frame and the translation estimate of the previous
frame in the opposite direction. The first initialization is a
good assumption if the camera motion is approximately con-
stant. Initialization (2) and (3) incorporate depth information.
The apparent motion of areas far away is mainly influenced
by the camera’s rotation and not the camera’s translation (see
Fig. 6), thus knowing the depth helps to correctly disentangle
flow due to camera rotation and flow due to translation.

During the optimization each pixel is weighted using
learned, soft object motion masks of the previous frame, that
evolve over time - thus the influence ofmoving objects is sup-
pressed due to a lowweight. The following Section describes
howobjectmotionmasks are learnedwhile pertaining impor-
tant geometric information.

3.3 Object Motion Segmentation

We build our segmentation framework on an effective model
for motion segmentation, that learns object motion patterns
from optical flow and segments a flow field into static back-
ground and moving objects (Tokmakov et al., 2017a). Yet,
this model does not incorporate any geometrical concepts.
As discussed earlier optical flow fields couple information
about scene geometry as well as camera motion, making
the judgment whether an object is moving challenging. By
introducing a simple pre-processing step we show, that the
complexity of optical flow patterns is dramatically reduced.
Different from prior work, our network processes rotation
compensated flow fields (angle + magnitude) to segment
independentlymoving objects. Learning objectmotion based
on pre-processed flow fields appears to be an easier task
to learn. While our network architecture is similar to (Tok-
makov et al., 2017a), we propose important modifications to
the training procedure in the following.
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3.3.1 Incorporating Geometric Information into Training

The network follows the classical U-Net architecture and is
trained on estimated translational flow fields. During train-
ing, we first estimate optical flow on the FlyingThings3D
data set (Mayer et al., 2016) using the flow estimation algo-
rithm by Sun et al. (2018). The ground truth camera rotation
is provided and subtracted from the estimated flow to obtain
a rotation-compensated flow field. This flow field is input to
our network. The input has a size of h × w × 3. The third
dimension denotes the flow expressed in terms of angle (rep-
resented as a unit vector) and magnitude. A representation
of the flow angle as unit vector instead of angles in degree
avoids segmentation discontinuities at zero degree (or 2π
respectively). The normalized flow field and the flow’s mag-
nitude are concatenated and form the input to our network.
An interesting question for training a network with rotation-
compensated optical flow is, whether it is worthwhile to
incorporate the magnitude into the training procedure. On
the one hand the flow magnitude can be a good indicator
about the reliability of the flow angle (Bideau and Learned-
Miller, 2016b), while on the other hand variation in larger
magnitudes can be either due to variances in the scene
depth or fast moving objects - thus including the magni-
tude might add rather misleading information. We take a
closer look into this question as part of our ablation study in
Sect. 4.2.

3.4 Implementation Details

Tofind the camera rotation and translationalmotion direction
that best explains the observed optical flow field, we derived
a new flow likelihood function (Sect. 3.2). Details regarding
parametrization are provided in the following.

The probability of the flow noise p(n) is modeled as a
multivariate normal distribution p(n) ∼ N (μ,�) and the
inverse depth p( 1

Z ) as an exponential distribution p( 1
Z ) ∼

Exp(λ). The noise covariance � is assumed to be spheri-
cal and is measured using the ground truth flow of Sintel
(Butler et al., 2012) and the corresponding noisy estimate
Sun et al. (2018). We obtain � = 16.5 · 10−5 I , where I is
the identity matrix. λ is the rate parameter of the exponen-
tial distribution modeling the inverse depth, and is estimated
using ground truth depths from Sintel. We measured λ =
0.64. The distribution over inverse depth can be seen in
Fig. 5d.

For computational efficiency the integral in Eq. (7) is
approximated using a discrete sum over motion field magni-
tudes r . Flow likelihood values are pre-computed and stored
in a lookup table for efficiency (see Fig. 7).

Fig. 7 Lookup table picturing flow likelihood values. Our new flow
likelihood addresses the challenge of estimating the camera’s motion
in the presence of noisy optical flow. The color red indicates high like-
lihood values, dark blue indicates low likelihood values. The lower the
angle difference �θ between the vectors ot and vt , the higher the like-
lihood. Note that for very small flow magnitudes m the flow likelihood
is almost the same regardless �θ . This is an important consequence of
our model, indicating the unreliability of the flow direction in case of
near zero magnitudes

4 Experiments

We begin with a brief description of data sets used for train-
ing and evaluation of our motion segmentation network. In
Section 4.1, we evaluate our here presented motion segmen-
tation approach on thewidely usedDAVISdata set (Perazzi et
al., 2016) and MoCA (Lamdouar et al., 2020). Ground truth
camera motion is not provided for these data sets, thus syn-
thetic data - such as the FlyingThings3D data set (Mayer et
al., 2016) and Sintel (Butler et al., 2012; Wulff et al., 2012) -
are used for ablation studies. These studies in particular focus
on the analysis of different variants of our core network and
the quality as well as the effect of rotation estimation via
likelihood maximization.

DAVIS2016 (Densely Annotated VIdeo Segmentation)
contains 50 video sequences in total with moving objects
in various environments. A 30/20 training/validation split
is provided. Our model is evaluated on the validation set.
Ground truth segmentations of the most prominent moving
object are provided for each frame. DAVIS has been widely
used for general video segmentation as well as motion seg-
mentation.

MoCA (Moving camouflaged animals) comprises a set
of 141 videos depicting 67 different animals. The data set is
split into three motion types describing the animals motion -
locomotion, static and deformation. Following the procedure
of (Lamdouar et al., 2021; Yang et al., 2019) we evaluate
on the locomotion split, which forms the largest part of the
dataset with 88 video sequences in total. Annotations are
provided in form of bounding boxes. An evaluation script is
provided by the authors of MoCA.

FT3D (FlyingThings3D) is a large optical flow data set,
providing ground truth optical flow, RGB images, camera
motion and depth. It is a synthetic data set showing random
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Table 1 Motion segmentation: Comparison to approaches solely rely-
ing motion cues on DAVIS2016 (train-val)

LMP TMM Ours Ours*

Supervised ✓ ✗ ✓ ✓

J Mean ↑ 58.4 40.1 59.7 62.5

Recall ↑ 67.3 34.3 69.6 73.8

Decay ↓ 5.6 15.2 4.3 3.8

F Mean ↑ 58.4 39.6 59.5 61.1

Recall ↑ 66.0 15.4 66.4 69.9

Decay ↓ 7.9 12.7 5.4 5.6

T Mean ↓ 87.8 51.3 74.5 83.4

Ours refers to the variant of our model using only motion cues and
no appearance terms and Ours* denotes a motion-only upper bound,
which uses ground truth segmentation for camera motion estimation.
Best viewed in color (1st-best, 2nd-best)

objects like chairs, tables, etc., flying in a 3D world along
random trajectories. FT3D is split into test and training set.

Sintel is the de facto benchmark for optical flow algo-
rithms, containing 23 video sequences with 20 to 50 frames
each. These short video sequences are taken from an ani-
mated movie. Synthetic videos are available with ground
truth optical flow, depth, camera motion and material seg-
mentation.

4.1 Results

Our main framework consists of two steps (1) compen-
sating the observed optical flow for camera rotation, and (2)
segmenting the resulting optical flow in to static background
and independently moving objects. Experiments presented
here are based on the DAVIS data set and the MoCA data
set, that each raise a slightly different aspect onto the motion
segmentation problem. Details are described in the follow-
ing.

DAVIS: Optical flow only We compare our motion seg-
mentation network with other methods that use optical flow
as the only cue for segmentation. Table 1 shows these results
on DAVIS. LMP (Tokmakov et al., 2017a) is a learning
based approach trained on ground truth optical flow of Fly-
ingThings3D. This approach relies on a simliar network
architecture, but does not incorporate an explicit model for
modeling geometrical concepts, e.g. the scene geometry and
camera motion. TMM (Bideau and Learned-Miller, 2016b),
on the contrary, compensates flow for camera rotation and
attempts to segment a video by assigning translationalmotion
models to different image regions in a probabilistic fashion.
The exclusive usage of translational motion models how-
ever quickly leads to oversegmentations and fails to capture
more complex motion patterns. While combining geomet-
rical concepts such as perspective projection together with

learned motion patterns, our approach improves over both
these motion segmentation methods. The segmentation per-
formance is measured using the J -Mean score. We achieve
an J -Mean score of 59.7. The next best performing method
is LMP resulting in anJ -Mean score of 58.4.We compute an
upper bound for our method (Ours* in Table 1) by masking
out independently moving objects, with ground truth seg-
ments, for our camera motion estimation procedure. This
masking procedure eliminates errors of our camera motion
estimation due to ‘outliers’ in optical flow, such as moving
objects.

MoCA
Data sets like MoCA focus in particular on the seg-

mentation of objects that can only be robustly recognized
based on their unique motion. Where as most data sets for
moving object segmentation combine several cues (motion
and appearance) that are helpful for recognizing moving
objects, this data set highlights the relevance of motion.
Thus MoCA allows to evaluate the strengths of motion mod-
els in isolation. It is not surprising that appearance cues
are rather weak in cases of camouflage, therefore meth-
ods based on RGB frames only (e.g. COSNet by Lu et al.
(2019)) show a weak performance in these settings (see
Table 2). Similarly MATNet, which is typically jointly used
with CRF post-processing, enhancing the segmentation qual-
ity of video frames along their corresponding RGB images,
shows a significant performance loss. Our model captur-
ing motion patterns in a temporal consistent manner over
multiple frames (Ours-Temp) outperforms all supervised
approaches onMoCAwith respect toJ -Mean accuracy. The
performance of MATNet (with multi-frame input) is compa-
rable to ours if used without CRF post-processing.

Our approach taking a single optical flow frame (com-
pensated for camera rotation) as input, performs comparable
to other supervised approaches. A simple post-processing
step - convolution with a 3D Gaussian filter and frame-wise
application of a dense CRF, eliminates temporal instabilities
(Ours+Temp in Table 2). Among all methods SegI (Lam-
douar et al., 2021) shows best results on MoCA; on DAVIS
their performance falls short due to their lack of a strong
appearance model. SegI combines multiple ConvNets where
each of them encode a flow frame together with a transformer
network without taking RGB frames into consideration. The
model is trained on synthetically generated data, and thus can
be considered as unsupervised. In contrast, our approach was
trained using rotation compensated flow frames estimated
from the synthetic dataset FlyingThings3D.

DAVIS: Optical flow + Appearance Our main contribu-
tion lies in a novel approach for learning to segment moving
objects based on optical flow only. We incorporate appear-
ance information similar to LVO (Tokmakov et al., 2017a)
and compare to segmentation approaches that consider both
- appearance as well as motion information (Table 3). Within
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Table 2 Motion segmentation: Comparison to state-of-the-art motion segmentation methods on MoCA

SegI MG CIS ARP COD COSNet MATNet MATNet Ours Ours+Temp
w/o crf

Supervised ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

RGB ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Flow ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Multi-frame ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓

J Mean ↑ 68.6 63.4 49.4 61.2 44.9 50.7 64.7 54.9 58.3 65.8

Success Rate τ = 0.5 77.2 74.2 55.6 67.6 41.4 58.8 72.3 59.8 64.5 72.7

τ = 0.6 71.7 65.4 46.3 60.6 33.0 53.4 67.1 55.3 58.0 65.2

τ = 0.7 62.3 52.4 32.9 51.3 23.5 45.7 59.8 48.5 49.8 53.8

τ = 0.8 46.4 35.1 17.6 37.6 14.0 33.7 46.4 39.0 36.2 38.9

τ = 0.9 25.5 14.7 3.0 20.0 5.9 16.7 22.1 21.6 16.6 17.3

SRmean 56.6 48.4 31.1 47.4 23.6 41.7 53.5 44.8 45.0 49.6

Methods we compare against from left to right: (Lamdouar et al., 2021; Yang et al., 2021, 2019; Koh and Kim, 2017; Lamdouar et al., 2020; Lu
et al., 2019; Zhou et al., 2020). Bold indicates best among all methods, while 1st-best and 2nd-best represent the best and second best within the
supervised methods. Best viewed in color

Table 3 Motion segmentation: Comparison to state-of-the-art motion segmentation methods on DAVIS2016

SFL COSNet MATNet LMP+App FSEG LVO Ours+App CIS ARP SegI

Supervised ✤ ✤ ✤ ✓ ✓ ✓ ✓ ✗ ✗ ✗

RGB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Flow ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multi-frame ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

J Mean ↑ 67.4 80.5 82.4 70.0 70.7 72.2 73.5 71.5 76.2 67.8

Recall ↑ 81.4 94.0 94.5 85.0 83.5 82.4 85.5 86.5 91.1 -

Decay ↓ 6.2 0.0 5.5 1.3 1.5 0.1 1.2 9.5 7.0 -

F Mean ↑ 66.7 79.4 80.7 65.9 65.3 67.5 68.9 70.5 70.6 -

Recall ↑ 77.1 90.4 90.2 79.2 73.8 75.4 79.6 83.5 83.5 -

Decay ↓ 5.1 0.0 4.5 2.5 1.8 2.7 1.4 7.0 7.9 -

We group approaches according their training strategy: supervised and trained on the DAVIS training split (✤), supervised and trained on other
segmentation data sets (✓) and unsupervised methods (✗). Methods we compare against from left to right: (Cheng et al., 2017; Lu et al., 2019;
Zhou et al., 2020; Tokmakov et al., 2017a; Jain et al., 2017; Tokmakov et al., 2017b; Yang et al., 2019; Koh and Kim, 2017; Lamdouar et al., 2021;
Yang et al., 2021). Bold indicates best among all methods, while 1st-best and 2nd-best represent the best and second best within the supervised
methods. Best viewed in color

the group of supervised approaches our approach shows the
best performance in terms of mean/recallJ andF . Where as
ours and LVO integrate appearance cues in a similar manner,
these approaches differ in the way that object motion cues
are learned. LVO learns object motion patterns directly from
optical flow,whereaswefirst disentangle camera rotation and
translation before segmenting independently objects. Abla-
tion studies analyze the usefulness of this disentanglement in
further detail.Within the unsupervised approachesARP (Koh
and Kim, 2017), which is a non learning based approach,
reaches highest performance. Due to multiple iterations over
the entire video this approach is computationally expensive
asmentionedbyYanget al. (2021).AmongallmethodsMAT-
Net reaches highest accuracy in terms of meanJ andF . One

reason might lie in their training strategy, which makes use
of the DAVIS training set (indicated with ✤).

A qualitative comparison with the best performing meth-
ods is shown in Fig. 8. Our results based on optical flow only
and based on optical flow in combination with appearance
are shown in the last two rows of this figure. These two rows
in particular highlight the complementarity of motion and
appearance cues. We miss the hiker’s foot when relying on
motion alone (Ours), since it is not moving. However, while
integrating motion with appearance, we segment the entire
object accurately.ARP, the strongestmethod amongunsuper-
vised approaches, relies on segmenting the primary object(s)
in a video and comes with a noticeable bias towards the
object’s appearance. In many cases such a strong appearance
model is advantageous. However, it can lead to erroneous
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Fig. 8 Qualitative segmentation results. Qualitative segmentation results on the DAVIS data set, showing a comparison with three other best
performing methods. Ours-final denotes our complete method and Ours the variant based on motion cues alone

segmentations in other cases. For example, it only segments
a part of the car in Fig. 8, 2nd column from the right. The car
moves from the darker (shadow) area to the brighter (sunny)
region and is only partially segmented because only a por-
tion of the object matches the primary object’s appearance.
Our method that extracts geometrical information from opti-
cal flow and integrates learned objectness cues is capable of
overcoming these types of failure cases relying on appear-
ance.

4.2 Ablation Study

Network variants - Effectiveness of rotation compensation
We trained four variants of our motion segmentation net-
work, with: (1) ground truth optical flow, (2) the ground
truth flow after removing ground truth camera rotation, i.e.,
with rotation compensated-flow fields, (3) estimated opti-
cal flow field using PWC-Net (Sun et al., 2018), and (4)
estimated ground truth flow compensated with ground truth
camera rotation, i.e., estimated rotation compensated-flow
field. Table 4 shows the analysis with these four variants.
Training and testing with ground truth optical flow (original:
gt flow or compensated: gt t-flow) leads to significantly better
than estimation results than using estimated optical flow. Seg-
mentation accuracy is about 20% higher on the FT3D test set
for ground truth, compared to estimated optical flow. Train-
ingwith rotation-compensated optical flowconsistently leads
to improved quality of the final segmentation, e.g., 90.68%
vs. 93.23%, which supports the idea behind our method.
While results on ground truth flow confirm the conceptual
idea of facilitating the input flow field, experiments based

Table 4 Ablation study: Network variants - effectiveness of rotation
compensation

Trained with.. Tested with.. Angle+magnitude

gt flow gt flow 90.68

gt t-flow gt t-flow 93.23

PWC flow PWC flow 77.18

PWC t-flow PWC t-flow 78.69

We trained four networks using flow angle and magnitude with: the
provided ground truth optical flow of FT3D (Mayer et al., 2016) (gt
flow), ground truth optical flow after subtracting ground truth camera
rotation (gt t-flow), estimated optical flowusing (Sun et al., 2018) (PWC
flow), and estimated optical flow after subtracting ground truth camera
rotation (PWC t-flow). Segmentation accuracy ismeasured on the FT3D
test set with intersection over union (IoU) scores

on estimated optical flow (e.g. PWC flow) show realistically
achievable results in case of noisy optical flow.We conclude,
learning can be significantly simplified, if we are able to effi-
ciently incorporate knowledge about physical concepts into
the process of moving object segmentation. The benefit of
incorporating knowledge about physical concepts in partic-
ular matters in case of complex scene geometry, where a
coupling of camera rotation and translation leads to complex
flow fields. A visual comparison in terms of segmentation
quality between using the original flow as input instead of
the rotation-compensated flow is shown in Fig. 9.

Training on flow angle only versus angle+magnitudeAs
discussed in Sect. 3.1, rotation-compensated flow comprises
all the information about independent object motion and
the scene structure (depth). In this context, two interesting
questions to tackle are: how well can one extract informa-
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Fig. 9 Ablation study: Comparison of motion segmentation results
based on the original and the rotation-compensated flow field. Top row:
motion segmentation with the original flow field that includes camera
rotation, translation and object motion. Bottom row: motion segmenta-
tion based on rotation-compensated flow field. Note that the angle field
(middle) of the rotation-compensated flow is entirely depth indepen-
dent. The angle field is fully determined by the translational camera
motion and object motion. In this example one can observe a clear z-
motion of the camera, which is shown by the rainbow pattern. The angle
field of the original flow containing both camera rotation and transla-
tion is depth dependent (top row, middle image). This angle field clearly
shows discontinuities in angle at the wall, which is due to significant
changes in depth and not because of independent object motion

Table 5 Ablation study: Training with flow angle vs flow angle and
magnitude

Trained with.. Tested with.. Angle Angle+magn

gt t-flow gt t-flow 77.47 93.23

gt t-flow PWC t-flow 24.06 24.44

PWC t-flow PWC t-flow 77.79 78.69

We trained four variants of our segmentation network with: (1) angle
of the rotation-compensated flow of FT3D, (2) angle and magnitude of
the rotation-compensated flow of FT3D (angle+magn), (3) angle of the
estimated rotation-compensated flow, and (4) angle and magnitude of
the estimated rotation-compensated flow. We show consistently better
performance by including magnitude. The performance is the worst
when the network is trained on the angle of the rotation-compensated
ground truth flow. Here, the noise in angle leads to a very significant
drop on estimated optical flow data. Segmentation accuracy ismeasured
on the FT3D test set with intersection over union (IoU)

tion about independent object motion from the angle alone,
and does including the flow magnitude (training the network
on the full optical flow) improve motion segmentation?. We
show this analysis in Table 5, with further variants of our
network. Using angle and magnitude together (angle+magn
in the table) leads to the best performance. However, note
that we achieve reasonable segmentation quality even when
using the flow angle alone. The network trained on ground
truth optical flow adapts very poorly to estimated optical
flow, with the segmentation accuracy dropping from 93.23%
to 24.44% for the angle+magn variant.

Rotation estimation via likelihood maximization
We show results on the Sintel data set (Table 6), and com-

pare our new likelihood optimization procedure with Bideau
and Learned-Miller (2016b). The ground truth optical flow

Table 6 Ablation study: Camera rotation estimation. Avg. yaw/
pitch/roll error in degrees between two consecutive frames

TMM Ours

gt-flow 0.08 / 0.22 / 0.02 0.02 / 0.02 / 0.01

PWC-flow 0.13 / 0.34 / 0.04 0.04 / 0.09 / 0.02

gt-flow, PWC-flow: To evaluate rotation estimation we use ground-truth
segmentation masks to weight the optim. loss. Thus, errors due to seg-
mentation are not propagated throughout the video

and focal length is provided, so an accurate estimate of the
camera’s rotation is possible. Our camera rotation estimation
based on maximizing the flow likelihood shows consistently
better results on the Sintel data set. More importantly, the
performance gap gets significant when using estimated flow
as input for camera motion estimation. Since our proposed
optimization approach incorporates an explicit noise model
together with a strategy for robust initialization of our likeli-
hood optimization procedure, it is significantly more robust
to noisyflowdata. Figure 10pictures the influenceof the three
starting points for our optimization procedure as described
in Sect. 3.2. While the commonly best initialization for the
camera motion estimate - the camera motion estimate of the
previous frame - is best in most cases (see Fig. 10), it does
not capture specifically difficult cases leading to an overall
degraded performance. Starting only from a single initializa-
tion point drastically restricts the search the the best solution
and even excludes options at greater distance, that still may
be practically feasible. More distant solutions may arise due
to sudden changes of the camera’s motion direction or due
to the ambiguity of camera rotation and translation in case
of unknown depth. These two cases are precisely covered
by the two additional camera motion initialization avoid-
ing common challenges of local minima. We firstly consider
motion direction in opposite direction to the past motion
and incorporate information about the scene depth informa-
tion in our joint estimation of camera motion and motion
segmentation.

5 Summary

In this work, we present a new approach that combines fun-
damental geometrical concepts and a learned understanding
of moving objects. To this end new flow likelihood function
is proposed to obtain a robust estimate of the camera motion.
Knowing the camera motion removes complexity of esti-
mated flow fields. It is shown, that rotation compensated flow
fields containing only camera translation and object motion
are more suitable to learn object motion patterns. This obser-
vation is supported by experiments on ideal flow data from
a synthetic optical flow data set FlyingThings3D, as well as
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Fig. 10 Ablation study: Initialization of the optimization procedure
over camera rotations. Avg. yaw/pitch/roll error in degrees between
two consecutive frames. The influence of our three different starting
points of our optimization procedure are evaluated: (I) camera rotation
and translation estimate of previous frame, (II) camera rotation estimate
weighted by estimated depth of the previous frame and translation esti-
mate of previous frame and (III) camera rotation estimate weighted by
estimated depth of the previous frame and the translation estimate of the
previous frame in opposite direction. Please note the different scales of

the error-axis showing the rotation error in degree. The bar plot pictures
the discrete distribution over our three initialization points. Initializa-
tion (I) mostly leads to the minimum loss and thus is the choice in the
majority of frames. Left to right: The average yaw/pitch/roll error in
degree is shown for different initializations setups. We first initialize
the optimization procedure with a single starting point - namely (I). We
successively add starting points (II) and (III) and analyze the resulting
error. While the average error decreases, also the amount of outliers is
drastically reduced

on real world motion segmentation data sets such as DAVIS
and MoCA.
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