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Abstract
In this survey, we present a systematic review of 3D hand pose estimation from the perspective of efficient annotation and
learning. 3D hand pose estimation has been an important research area owing to its potential to enable various applications,
such as video understanding, AR/VR, and robotics. However, the performance of models is tied to the quality and quantity
of annotated 3D hand poses. Under the status quo, acquiring such annotated 3D hand poses is challenging, e.g., due to
the difficulty of 3D annotation and the presence of occlusion. To reveal this problem, we review the pros and cons of
existing annotation methods classified as manual, synthetic-model-based, hand-sensor-based, and computational approaches.
Additionally, we examine methods for learning 3D hand poses when annotated data are scarce, including self-supervised
pretraining, semi-supervised learning, and domain adaptation. Based on the study of efficient annotation and learning, we
further discuss limitations and possible future directions in this field.

Keywords Hand pose estimation · Efficient annotation · Learning with limited labels

1 Introduction

The acquisition of 3D hand pose annotations1 has presented
a significant challenge in the study of 3D hand pose estima-
tion. Thismakes it difficult to construct large training datasets
and develop models for various target applications, such as
hand-object interaction analysis (Boukhayma et al., 2019;
Hampali et al., 2020), pose-based action recognition (Iqbal
et al., 2017; Tekin et al., 2019; Sener et al., 2022), augmented
and virtual reality (Liang et al., 2015; Han et al., 2022; Wu
et al., 2020), and robot learning from human demonstration
(Ciocarlie & Allen, 2009; Handa et al., 2020; Qin et al.,

1 We denote 3D pose as the 3D keypoint coordinates of hand joints,
P3D ∈ R

J×3 where J is the number of joints.
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2022;Mandikal &Grauman, 2021). In these application sce-
narios, we must consider methods for annotating hand data,
and select an appropriate learning method according to the
amount and quality of the annotations. However, there is cur-
rently no established methodology that can give annotations
efficiently and learn even from imperfect annotations. This
motivates us to reviewmethods for building training datasets
and developing models in the presence of these challenges
in the annotation process.

During the annotations, we encounter several obstacles
including the difficulty of 3D measurement, occlusion, and
dataset bias. As for the first obstacle, annotating 3D points
from a single RGB image is an ill-posed problem. While
annotation methods using hand markers, depth sensors, or
multi-view cameras can provide 3D positional labels, these
setups require a controlled environment, which limits avail-
able scenarios. As for the second obstacle, occlusion hinders
annotators from accurately localizing the positions of hand
joints. As for the third obstacle, annotated data are biased to
a specific condition constrained by the annotation method.
For instance, annotation methods based on hand markers or
multi-view setups are usually installed in laboratory settings,
resulting in a bias toward a limited variety of backgrounds
and interacting objects.
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Fig. 1 Our survey on 3D hand pose estimation is organized from two
aspects: (i) obtaining 3D hand pose annotation and (ii) learning even
with a limited amount of annotated data. These two issues will be con-
sidered in the scenarios of practical applications where we work on
dataset construction and model development with limited resources.
The figure is adapted from Zimmermann and Brox (2017)

Given such challenges in annotation,we conduct a system-
atic review of the literature on 3D hand pose estimation from
two distinct perspectives: efficient annotation and efficient
learning (see Fig. 1). The former view highlights how exist-
ingmethods assign reasonable annotations in a cost-effective
way, covering a range of topics: the availability and quality
of annotations and the limitations when deploying the anno-
tation methods. The latter view focuses on how models can
be developed in scenarios where annotation setups cannot be
implemented or available annotations are insufficient.

In contrast to existing surveys on network architecture and
modeling (Chatzis et al., 2020; Doosti, 2019; Le & Nguyen,
2020; Lepetit, 2020; Liu et al., 2021), our survey delves into
another fundamental direction that arises from the annota-
tion issues, namely, dataset construction with cost-effective
annotation andmodel developmentwith limited resources. In
particular, our survey includes benchmarks, datasets, image
capture setups, automatic annotation, learning with limited
labels, and transfer learning. Finally, we discuss potential
future directions of this field beyond the current state of the
art.

For the study of annotation, we categorize existing meth-
ods into manual (Chao et al., 2021; Mueller et al., 2017;
Sridhar et al., 2016), synthetic-model-based (Chen et al.,
2021; Hasson et al., 2019; Mueller et al., 2017, 2018;
Zimmermann & Brox, 2017), hand-marker-based (Garcia-
Hernando et al., 2018; Taheri et al., 2020; Yuan et al., 2017),
and computational approaches (Hampali et al., 2020; Kulon
et al., 2020;Kwonet al., 2021;Moonet al., 2020; Simonet al.,
2017; Zimmermann et al., 2019). While manual annotation
requires querying human annotators, hand markers automate
the annotation process by tracking sensors attached to a
hand. Synthetic methods utilize computer graphics engines
to render plausible hand images with precise keypoint coor-
dinates. Computational methods assign labels by fitting a
hand template model to the observed data or using multi-

view geometry. We find these annotation methods have their
own constraints, such as the necessity of human effort, the
sim-to-real gap, the changes in hand appearance, and the lim-
ited portability of the camera setups. Thus, these annotation
methods may not always be adopted for every application.

Due to the problems and constraints of each annotation
method, we need to consider how to develop models even
when we do not have enough annotations. Therefore, learn-
ing with a small amount of labels is another important topic.
For learning from limited annotated data, leveraging a large
pool of unlabeled hand images as well as labeled images is
a primary interest, e.g., in self-supervised pretraining, semi-
supervised learning, and domain adaptation. Self-supervised
pretraining encourages the hand pose estimator to learn from
unlabeled hand images, so it enables building a strong fea-
ture extractor before performing supervised learning. While
semi-supervised learning trains the estimator with labeled
and unlabeled hand images collected from the same environ-
ment, domain adaptation further solves the so-called problem
of domain gap between the two image sets, e.g., the differ-
ence between synthetic data and real data.

The rest of this survey is organized as follows. In
Sect. 2, we introduce the formulation and modeling of 3D
hand pose estimation. In Sect. 3, we present open chal-
lenges in the construction of hand pose datasets involving
depth measurement, occlusion, and dataset bias. In Sect. 4,
we cover existing methods of 3D hand pose annotation,
namelymanual, synthetic-model-based, hand-marker-based,
and computational approaches. In Sect. 5, we provide learn-
ingmethods from a limited amount of annotated data, namely
self-supervised pretraining, semi-supervised learning, and
domain adaptation. In Sect. 6, we finally show promising
future directions of 3D hand pose estimation.

2 Overview of 3D Hand Pose Estimation

Task setting. As shown in Fig. 2, 3D hand pose estimation
is typically formulated as the estimation from a monocular
RGB/depth image (Erol et al., 2007; Supancic et al., 2018;
Yuan et al., 2018). The output is parameterized by the hand
joint positions with 14, 16, or 21 keypoints, which are intro-
duced inTompson et al. (2014), Tang et al. (2014), andQian et
al. (2014), respectively. The dense representation of 21 hand
joints2 has been popularly used as it contains more precise
information about hand structure. For a single RGB image
in which depth and scale are ambiguous, the 3D coordinates
of the hand joint relative to the hand root are estimated from
a scale-normalized hand image (Cai et al., 2018; Ge et al.,
2019; Zimmermann & Brox, 2017). Recent works addition-
ally estimate hand shape by regressing 3D hand pose and

2 Five end keypoints are fingertips, not strictly called joints.
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Fig. 2 Formulation and modeling of single-view 3D hand pose estima-
tion. For input, we use either RGB or depth images cropped to the hand
region. The model learns to produce a 3D hand pose defined by 3D
coordinates. Some works additionally estimate hand shape using a 3D

hand templatemodel. Formodeling, there are threemajor designs;A 2D
heatmap regression and depth regression,B extended three-dimensional
heatmap regression called 2.5D heatmaps, and C direct regression of
3D coordinates

shape parameters together (Boukhayma et al., 2019; Ge et
al., 2019; Mueller et al., 2019; Zhou et al., 2016). In eval-
uation, produced prediction is compared with ground truth,
e.g., in the space of world or image coordinates. These two
metrics are often used:mean per joint position error (MPJPE)
in millimeters, and area under curve of percentage of correct
keypoints (PCK-AUC).
Modeling. Classic methods estimate a hand pose by find-
ing the closest sample from a large set of hand poses, e.g.,
synthetic hand pose sets. Some works formulate the task as
nearest neighbor search (Rogez et al., 2015; Romero et al.,
2010) while others solve pose classification given predefined
hand pose classes and a SVM classifier (Rogez et al., 2014,
2015; Sridhar et al., 2013).

Recent studies have adopted an end-to-end training man-
nerwheremodels learn the correspondence between the input
image and its label of the 3Dhand pose. Standard single-view
methods fromanRGB image (Cai et al., 2018;Ge et al., 2019;
Zimmermann & Brox, 2017) consist of (A) the estimation of
2D hand poses by heatmap regression and depth regression
for each 2D keypoint (see Fig. 2). The 2D keypoints are
learned by optimizing heatmaps centered on each 2D hand
joint position. An additional regression network predicts the
depth distance of detected 2D hand keypoints. Other works
use (B) extended 2.5D heatmap regression with a depth-wise
heatmap in addition to the 2D heatmaps (Iqbal et al., 2018;
Moon et al., 2020), so it does not require a depth regression
branch. Depth-based hand pose estimation also utilizes such
heatmap regression (Huang et al., 2020; Ren et al., 2019;
Xiong et al., 2019). Instead of the heatmap training, other
methods learn to (C) directly regress keypoint coordinates
(Santavas et al., 2021; Spurr et al., 2018).

For the architecture of the backbone network, CNNs [e.g.,
ResNet (He et al., 2016)] are a basic choice while recent
Transformer-based methods have been proposed (Hampali
et al., 2022; Huang et al., 2020). To generate feasible hand
poses, regularization is a key trick in correcting predicted
3D hand poses. Based on the anatomical study of hands, bio-
mechanical constraints are imposed to limit predicted bone
lengths and joint angles (Spurr et al., 2020; Chen et al., 2021;
Liu et al., 2021).

3 Challenges in Dataset Construction

Task formulation and algorithms for estimating 3D hand
poses are outlined in Sect. 2. During training, it is neces-
sary to build a large amount of training data with diverse
hand poses, viewpoints, and backgrounds. However, obtain-
ing such massive hand data with accurate annotations has
been challenging for the following reasons.
Difficulty of 3D annotation. Annotating the 3D position of
hand joints from a single RGB image is inherently impos-
sible without any prior information or additional sensors
due to an ill-posed condition. To assign accurate hand pose
labels, hand-marker-based annotation using magnetic sen-
sors (Garcia-Hernando et al., 2018;Wetzler et al., 2015;Yuan
et al., 2017), motion capture systems (Miyata et al., 2004;
Schröder et al., 2015; Taheri et al., 2020), or hand gloves
(Bianchi et al., 2013; Glauser et al., 2019; Wang & Popovic,
2009) has been studied. These sensors can provide 6-DoF
information (i.e., location and orientation) of attached mark-
ers and enable us to calculate the coordinates of full hand
joints from the tracked markers. However, their setups are

123



3196 International Journal of Computer Vision (2023) 131:3193–3206

Fig. 3 Difficulty of hand pose annotation in a singleRGB image (Simon
et al., 2017). Occlusion of hand joints is caused by a articulation, b
viewpoint bias, and c grasping objects

expensive and need good calibration, which constrains avail-
able scenarios.

On the contrary, depth sensors (e.g., RealSense) or multi-
view camera studios (Chao et al., 2021; Hampali et al., 2020;
Moon et al., 2020; Simon et al., 2017; Zimmermann et al.,
2019) make it possible to obtain depth information near hand
regions.Given2Dkeypoints for an image, these setups enable
annotation of 3D hand poses bymeasuring the depth distance
at each 2D keypoint. However, these annotation methods do
not always produce satisfactory 3D annotations, e.g., due
to an occlusion problem (detailed in the next section). In
addition, depth images are significantly affected by the sen-
sor noise, such as unknown depth values in some regions
and ghost shadows around object boundaries (Xu & Cheng,
2013). Due to the limited depth distance that depth cam-
eras can capture, the depth measurement becomes inaccurate
when the hands are far from the sensor.
Occlusion. Hand images often contain complex occlusions
that distract human annotators from localizing hand key-
points. Examples of possible occlusions are shown in Fig. 3.
In figure (a), articulation causes a self-occlusion that makes
some hand joints (e.g., fingertips) invisible due to the overlap
with the other parts of the hand. In figure (b), such self-
occlusion depends on a specific camera viewpoint. In figure
(c), hand-held objects induce occlusion that hides the hand
joints by the object during the interaction.

Toaddress this issue, hand-marker-based tracking (Garcia-
Hernando et al., 2018; Taheri et al., 2020;Wetzler et al., 2015;
Yuan et al., 2017) and multi-view camera studios (Chao et
al., 2021; Hampali et al., 2020; Moon et al., 2020; Simon et
al., 2017; Zimmermann et al., 2019) have been studied. The
hand markers offer 6-DoF information during these occlu-
sions, so the hand-maker-based annotation is robust to the
occlusion. For multi-camera settings, the effect of occlusion
can be reduced when many cameras are densely arranged.
Dataset bias. While hands are a common entity in various
image capture settings, the category of objects, includ-
ing hand-held objects (i.e., foregrounds) and backgrounds,
is potentially diverse. In order to improve the generaliza-
tion ability of hand pose estimators, hand images must be
annotated under various imaging conditions (e.g., lighting,
viewpoints, hand poses, and backgrounds). However, it is
challenging to create such large and diverse datasets nowa-

Fig. 4 Example ofmajor data collection setups. The synthetic image on
the left (ObMan (Hasson et al., 2019)) can be generated inexpensively,
but they exhibit unrealistic hand texture.Thehandmarkers on themiddle
(FPHA (Garcia-Hernando et al., 2018)) enable automatic tracking of
hand joints, although the markers distort the appearance of hands. The
in-lab setup on the right (DexYCB (Chao et al., 2021)) uses a black
background to make it easier to recognize hands and objects, but it
limits data variation in environments

days due to the aforementioned problems. Rather, existing
hand pose datasets exhibit a bias to a particular imaging con-
dition constrained by the annotation method.

As shown in Fig. 4, generating data using synthetic mod-
els (Chen et al., 2021; Hasson et al., 2019; Mueller et al.,
2017, 2018; Zimmermann & Brox, 2017) is cost-effective,
but it creates unrealistic hand texture (Ohkawa et al.,
2021). Although the hand-marker-based annotation (Garcia-
Hernando et al., 2018; Taheri et al., 2020;Wetzler et al., 2015;
Yuan et al., 2017) can automatically track the hand joints
from the information of hand sensors, the sensors distort
the hand appearance and hinder the natural hand movement.
In-lab data acquired by multi-camera setups (Chao et al.,
2021; Hampali et al., 2020; Moon et al., 2020; Simon et al.,
2017; Zimmermann et al., 2019) make the annotation eas-
ier because they can reduce the occlusion effect. However,
the variations in environments (e.g., backgrounds and inter-
acting objects) are limited because the setups are not easily
portable.

4 AnnotationMethods

Given the above challenges concerning the construction of
hand pose datasets, we review existing 3D hand pose datasets
in terms of annotation design. As shown in Table 1, we cat-
egorize the annotation methods as manual, synthetic-model-
based, hand-marker-based, and computational approaches.
We then study the pros and cons of each annotation method
in Table 2.

4.1 Manual Annotation

MSRA (Qian et al., 2014), Dexter+Object (Sridhar et al.,
2016), and EgoDexter (Mueller et al., 2017) manually anno-
tate 2D hand keypoints on the depth images and determine
the depth distance from the depth value of the images on the
2D point. This method enables assigning reasonable annota-
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Table 2 Pros and cons of each
annotation approach

Annotation Pros Cons

Manual Reasonable accuracy Labor intensive

Hard to address occlusion

Synthetic Large scale Sim-to-real gap

High diveristy Hard to simulate motion

Low cost

Hand marker Robust to occlusion Requires special sensors

Low annotation cost Changes visual modality

Prevents natural motion

Computational Natural motion Lacks diversity

Low annotation cost Hard to evaluate quality

Needs multi-camera setups

tions of 3D coordinates (i.e., 2D position and depth) when
hand joints are fully visible.

However, it is not extensively available according to the
number of frames due to the high annotation cost. In addition,
since it is not robust for occluded keypoints, this approach
only allows fingertip annotation, instead of full hand joints.
For these limitations, these datasets provide a small amount
of data (≈ 3K images) used for evaluation only. Addition-
ally, these single-view datasets can produce view-dependent
annotation errors because a single-depth camera captures the
distance to the hand skin surface, not the true joint position.
To reduce such unavoidable errors, subsequent annotation
methods based on multi-camera setups provide further accu-
rate annotations (see Sect. 4.4).

4.2 Synthetic-Model-Based Annotation

To acquire large-scale hand images and labels, synthetic
methods based on synthetic hand and full-body models
(Loper et al. 2015; Rogez et al. 2014; Romero et al. 2017;
Šarić 2011) have been proposed. SynthHands (Mueller et
al., 2017) and RHD (Zimmermann & Brox, 2017) render
synthetic hand images with randomized real backgrounds
from either a first- or third-person view. MVHM (Chen et
al., 2021) generates multi-view synthetic hand data rendered
from eight viewpoints. These datasets have succeeded in
providing accurate hand keypoint labels on a large scale.
Although they can generate various background patterns
inexpensively, the lighting and texture of hands are not well
simulated, and the simulation of hand-object interaction is
not considered in the data generation process.

To handle these issues, GANerated (Mueller et al., 2018)
utilizes GAN-based image translation to stylize synthetic
handsmore realistically. Furthermore, ObMan (Hasson et al.,
2019) simulates the hand-object interaction in data genera-
tion using a hand grasp simulator (Graspit (Miller & Allen,
2005)) with known 3D object models (ShapeNet (Chang

et al., 2015)). Ohkawa et al. proposed foreground-aware
image stylization to convert the simulation texture in the
ObMan data to amore realistic one while separating the hand
regions and backgrounds (Ohkawa et al., 2021). Corona et
al. attempted to synthesize more natural hand grasps with
affordance classification and the refinement of fingertip loca-
tions (Corona et al., 2020). However, the ObMan data only
provide static hand images with hand-held objects, not hand
motion. The hand motion simulation while approaching the
object remains an open problem.

4.3 Hand-Marker-Based Annotation

As shown in Fig. 5, hand-marker-based annotation automat-
ically tracks attached hand markers and then calculates the
coordinates of hand joints. Initially, Wetzler et al. attached
magnetic sensors to fingertips that provide 6-DoF infor-
mation of the markers (Wetzler et al., 2015). While this
scheme can annotate fingertips only, recent datasets, Big-
Hand2.2M (Yuan et al., 2017) and FPHA (Garcia-Hernando
et al., 2018), use these sensors to offer the annotation of the
full 21 hand joints. Figure6 shows how to compute the joint
positions given six magnetic sensors. It uses inverse kine-
matics to infer all 21 hand joints, which fits a hand skeleton

Fig. 5 Illustration of a hand marker setup (Yuan et al., 2017)
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Fig. 6 Calculation of joint positions from tracked markers (Yuan et al.,
2017). Si denotes the position of the markers, and W , Mi , Pi , Di , and
Ti are the positions of hand joints listed from the wrist to the fingertips

with the constraints of the maker positions and user-specific
bone length manually measured beforehand.

However, these sensors obstruct natural hand movement
and distort the appearance of the hand. Due to the changes in
hand appearance, these datasets have been proposed for the
benchmark of depth-based estimation, not the RGB-based
task. On the contrary, GRAB (Taheri et al., 2020) is built
with a motion capture system for human hands and body, but
it does not possess visual modality, e.g., RGB images.

4.4 Computational Annotation

Computational annotation is categorized into two major
approaches: hand model fitting and triangulation. Unlike
hand-marker-based annotation, these methods can capture
natural hand motion without attaching hand markers.
Model fitting (depth). Early works of computational anno-
tation utilize model fitting on depth images (Supancic et al.,
2018; Yuan et al., 2018). Since a depth image provides 3D
structural information, their works fit a 3D hand model, from
which joint positions can be obtained, to the depth image.
ICVL (Tang et al., 2014) fits a convex rigid body model by
solving a linear complementary problem with physical con-
straints (Melax et al., 2013). NYU (Tompson et al., 2014)
uses a hand model defined by spheres and cylinders and
formulates the model fitting as a kind of particle swarm opti-
mization (Oikonomidis et al., 2011, 2012). The use of other
cues for the model fitting is also studied (Ballan et al., 2012;
Lu et al., 2003), such as edges, optical flow, shading, and
collisions. Sharp et al. paint hands to obtain hand part labels
by color segmentation on RGB images and the proxy cue of
hand parts further helps the depth-based model fitting (Sharp
et al., 2015).

Using these depth datasets, several more accurate label-
ing methods have been proposed. Rogez et al. gave manual
annotation to a few joints and searched the closest 3D pose
from a pool of synthetic hand pose data (Rogez et al., 2014).

Fig. 7 Illustration of a multi-camera setup (Zimmermann et al., 2019)

Fig. 8 Illustration of a many-camera setup (Wuu et al., 2022). This
setup has about 100 synchronized cameras and is used to create the
InterHands2.6M dataset (Moon et al., 2020)

Oberweger et al. considered model fitting with temporal
coherence (Oberweger et al., 2016). This method selects ref-
erence frames from a depth video and asks annotators for
manual labeling. Model fitting is done separately for anno-
tated reference frames and unlabeled non-reference frames.
Finally, all sequential poses are optimized to satisfy temporal
smoothness.
Triangulation (RGB). For the annotation of RGB images, a
multi-camera studio is often used to compute 3D points by
multi-view geometry, i.e., triangulation (see Fig. 7). Panop-
tic Studio (Simon et al., 2017) and InterHand2.6M (Moon
et al., 2020) triangulate a 3D hand pose from multiple
2D hand keypoints provided by an open source library,
OpenPose (Hidalgo et al., 2018), or human annotators. The
generated 3D hand pose is reprojected onto the image planes
of other cameras to annotate hand images with novel view-
points. Thismulti-view annotation scheme is beneficial when
many cameras are installed (see Fig. 8). For instance, the
InterHand2.6M manually annotates keypoints from 6 views
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Fig. 9 Synchronized multi-camera setup with first-person and third-
person cameras (Kwon et al., 2021)

and reprojects the triangulated points to the othermany views
(100+). This setup can produce over 100 training images
for every single annotation. The InterHand2.6M has million-
scale training data.

This point-level triangulation method works quite well
when many cameras (30+) are arranged (Moon et al.,
2020; Simon et al., 2017). However, the AssemblyHands
setup (Ohkawa et al., 2023) has only eight static cameras,
and then the predicted 2D keypoints to be triangulated tend
to be suboptimal due to hand-object occlusion during the
assembly task. To improve the accuracy of triangulation in
such sparse camera settings, Ohkawa et al. adopt multi-view
aggregation of encoded features by the 2D keypoint detector
and compute 3D coordinates from constructed 3D volumet-
ric features (Bartol et al., 2022; Iskakov et al., 2019; Ohkawa
et al., 2023; Zimmermann et al., 2019). This feature-level
triangulation provides better accuracy than the point-level
method, achieving an average keypoint error of 4.20 mm,
which is 85% lower than the error of the original annotations
in Assembly101 (Sener et al., 2022).
Model fitting (RGB). Model fitting is also used in RGB-
based pose annotation. FreiHAND (Zimmermann et al.,
2019, 2021) utilizes a 3D hand template (MANO (Romero
et al., 2017)) fitting to multi-view hand images with sparse
2D keypoint annotation. The dataset increases the variation
of training images by randomly synthesizing the back-
ground and using captured real hands as the foreground.
YouTube3DHands (Kulon et al., 2020) uses the MANO
model fitting to estimated 2D hand poses in YouTube videos.
HO-3D (Hampali et al., 2020), DexYCB (Chao et al., 2021),
and H2O (Kwon et al., 2021) jointly annotate 3D hand and
object poses to facilitate a better understanding of hand-
object interaction. Using estimated or manually annotated
2D keypoints, their datasets fit the MANO model and 3D
object models to the hand images with objects.

While most methods capture hands from static third-
person cameras, H2O and AssemblyHands install first-
person cameras that are synchronizedwith static third-person
cameras (see Fig. 9). With camera calibration and head-
mounted camera tracking, such camera systems can offer
3D hand pose annotations for first-person images by pro-

jecting annotated keypoints from third-person cameras onto
first-person image planes. This reduces the cost of annotating
first-person images, which is considered expensive because
the image distribution changes drastically over time and the
hands are sometimes out of view.

These computational methods can generate labels with
little humaneffort, although the camera system itself is costly.
However, assessing the quality of the labels is still difficult. In
fact, the annotationquality depends on the number of cameras
and their arrangement, the accuracy of hand detection and
the estimation of 2D hand poses, and the performance of
triangulation and fitting algorithms.

5 Learning with Limited Labels

As explained in Sect. 4, existing annotation methods have
certain pros and cons. Since perfect annotation in terms of
amount and quality cannot be assumed, training 3D hand
pose estimators with limited annotated data is another impor-
tant study.Accordingly,we introduce learningmethods using
unlabeled data in this section, namely self-supervised pre-
training, semi-supervised learning, and domain adaptation.

5.1 Self-Supervised Pretraining and Learning

Self-supervised pretraining aims to utilizemassive unlabeled
hand images and build an improved encoder network before
supervised learningwith labeled images.As shown inFig. 10,
recent works (Spurr et al., 2021; Zimmermann et al., 2021)
first pretrain an encoder network that extracts image features
by using contrastive learning [e.g., MoCo (He et al., 2020)
andSimCLR(Chen et al., 2020)] and thenfine-tune thewhole
network in a supervised manner. The core idea of contrastive
learning is to push a pair of similar instances closer together
in an embedding space while unrelated instances are pushed
apart. This approach focuses on how to define the similarity

Fig. 10 Self-supervised pretraining of 3D hand pose estimation (Zim-
mermann et al., 2021). The pretraining phase (step 1) aims to construct
an improved encoder network by using many unlabeled data before
supervised learning (step 2). The work uses MoCo (He et al., 2020) as
a method of self-supervised learning
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of hand images and how to design embedding techniques.
Spurr et al. proposed to geometrically align two features
generated from differently augmented instances (Spurr et
al., 2021). Zimmermann et al. found that multi-view images
representing the same hand pose can be effective pair super-
vision (Zimmermann et al., 2021).

Otherworks utilize the scheme of self-supervised learning
that solves an auxiliary task, instead of the target task of hand
pose estimation. Given the prediction on an unlabeled depth
image, (Oberweger et al., 2015; Wan et al., 2019) render a
synthetic depth image and penalize thematching between the
input image and the one generated from the prediction. This
auxiliary loss by image synthesis is informative even when
annotations are scarce.

5.2 Semi-Supervised Learning

As shown in Fig. 11, semi-supervised learning is used to
learn from small labeled data and large unlabeled data simul-
taneously. Liu et al. proposed a pseudo-labeling method
that learns unlabeled instances with pseudo-ground-truth
given from the model’s prediction (Liu et al., 2021). This
pseudo-label training is applied only when its prediction sat-
isfies spatial and temporal constraints. The spatial constraints
check the correspondence of a 2D hand pose and the 2D pose
projected from 3D hand pose prediction. In addition, they
include a constraint based on bio-mechanical feasibility, such
as bone lengths and joint angles. The temporal constraints
indicate the smoothness of hand pose and mesh predictions
over time.

Yang et al. proposed the combination of pseudo-labeling
and consistency training (Yang et al., 2021). In pseudo-
labeling, the generated pseudo-labels are corrected by fitting
the hand template model. In addition, the work enforces
consistency losses between the predictions of differently aug-
mented instances and between the modalities of 2D hand
poses and hand masks.

Spurr et al. applied adversarial training to a sequence of
predicted hand poses (Spurr et al., 2021). The encoder net-
work is expected to be improved by fooling a discriminator
that distinguishes between plausible and invalid hand poses.

Fig. 11 Semi-supervised learning of 3D hand pose estimation (Liu et
al., 2021). The model is trained jointly on annotated data and unlabeled
data with pseudo-labels

5.3 Domain Adaptation

Domain adaptation aims to improve model performance on
target data by learning from labeled source data and target
data with limited labels. This study has addressed two types
of underlying domain gaps: between different datasets and
between different modalities.

The former problem between different datasets is a com-
mon domain adaptation problem where the source and target
data are sampled from two datasets with different image
statistics, e.g., sim-to-real adaptation (Jiang et al., 2021; Tang
et al., 2013) (see Fig. 12). The model has access to readily
available synthetic images with labels and target real images
without labels. The latter problem between different modal-
ities is characterized as modality transfer where the source
and target data represent the same scene, but their modalities
are different, e.g., depth vs. RGB (see Fig. 13). This aims to
utilize information-rich source data, e.g., depth images con-
tain 3D structural information, for inferring easily available
target data (e.g., RGB images).

To reduce the gap between the two datasets, two major
approaches have been proposed: generative methods and
adversarial methods. In generative methods, Qi et al. pro-
posed an image translation method to alter the synthetic
textures to realistic ones and train a model on generated real-
like synthetic data (Qi et al., 2020).

Adversarial methods enforce matching two domains’ fea-
tures so that the feature extractor can encode features even
from the target domain. However, in addition to the domain
gap in an input space (e.g., the difference in backgrounds),
the gap in a label space also exists in this task, which is

Fig. 12 Poor generalization to an unknown domain (Jiang et al., 2021).
Themodels trained on synthetic images (source) exhibit a limited capac-
ity for inferring poses on real images (target)

Fig. 13 Example of modality transfer. During training, RGB and depth
images are accessible and RGB images are given in the test phase. The
training aims to utilize the support of depth information to improve
RGB-based hand pose estimation
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not assumed in typical adversarial methods (Ganin & Lem-
pitsky, 2015; Tzeng et al., 2017). Zhang et al. developed a
feature matching method based on Wasserstein distance and
proposed adaptive weighting to enable matching only for
features related to hand characteristics, except for label infor-
mation (Zhang et al., 2020). Jiang et al. utilized an adversarial
regressor and optimized the domain disparity by a minimax
game (Jiang et al., 2021). Such minimax of disparity is effec-
tive in domain adaptation of regression tasks, including hand
pose estimation.

As for the modality transfer problem, Yuan et al. and
Rad et al. attempted to use depth images as the auxiliary
information during training and test the model on RGB
images (Rad et al., 2018; Yuan et al., 2019). They observed
that learned features from depth images could support RGB-
based hand pose estimation. Park et al. transferred the
knowledge from depth images to infrared (IR) images that
have less motion blur (Park et al., 2020). Their training is
facilitated bymatching two features frompaired images, e.g.,
(RGB, depth) and (depth, IR). Baek et al. newly defined the
domain of hand-only images where a hand-held object is
removed. The work translates hand-object images to hand-
only images by using GAN and mesh renderer (Baek et al.,
2020). Given a hand-object image with an unknown object,
thismethod can generate hand-only images, fromwhich hand
pose estimation is more tractable.

6 Future Directions

6.1 Flexible Camera Systems

We believe that hand image capture will feature more flex-
ible camera systems, such as using first-person cameras. To
reduce the occlusion effect without the need for hand mark-
ers, recently published hand datasets have been acquired
by multi-camera setups, e.g., DexYCB (Chao et al., 2021),
InterHand2.6M (Moon et al., 2020), and FreiHAND (Zim-
mermann et al., 2019). These setups are static and not suitable
for capturing dynamic user behavior. To address this, a first-
person camera attached to the user’s head or body is useful
because it mostly captures close-up hands evenwhen the user
moves around. However, as shown in Table 1, existing first-
person benchmarks have a very limited variety due to heavy
occlusion, motion blur, and a narrow field-of-view.

One promising direction is a joint camera setup with
first-person and third-person cameras, such as H2O (Kwon
et al., 2021) and AssemblyHands (Ohkawa et al., 2023).
This results in flexibly capturing the user’s hands from the
first-person camera while taking the benefits of multiple
third-person cameras (e.g., mitigating the occlusion effect).
However, the first-person camerawearer doesn’t always have
to be alone. Image capture with multiple first-person camera

wearers in a static camera setup will advance the analysis of
multi-person cooperation and interaction, e.g., game playing
and construction with multiple people.

6.2 Various Types of Activities

We believe that increasing the type of activities is an impor-
tant direction for generalizing models to various situations
with hand-object interaction. A major limitation of existing
hand datasets is the narrow variation of users’ performing
tasks and grasping objects. To avoid object occlusion, some
works did not capture hand-object interaction (Moon et al.,
2020; Yuan et al., 2017; Zimmermann & Brox, 2017). Oth-
ers (Chao et al., 2021; Hasson et al., 2019; Hampali et al.,
2020) used pre-registered 3Dobjectmodels (e.g., YCB (Çalli
et al., 2015)) to simplify in-hand object pose estimation. User
action is also very simple in these benchmarks, such as pick
and place.

From an affordance perspective (Hassanin et al., 2021),
diversifying the object category will result in increasing
hand pose variation. Potential future works will capture goal-
oriented and procedural activities that naturally occur in our
daily life (Damen et al., 2021; Grauman et al., 2022; Sener
et al., 2022), such as cooking, art and craft, and assembly.

To enable this, we need to develop portable camera
systems and robust annotation methods for complex back-
grounds and unknown objects. In addition, occurring hand
poses are constrained to the context of the activity. Thus,
pose estimators conditioned by actions, objects, or textual
descriptions of the scene will improve estimation in various
activities.

6.3 Towards Minimal Human Effort

Sections 4 and 5 separately explain efficient annotation and
learning.Tominimize the effort of human intervention, utiliz-
ing findings from both annotation and learning perspectives
is one of the promising directions. Feng et al. exploited active
learning that optimizes which unlabeled instance should be
annotated and semi-supervised learning that jointly utilizes
labeled data and large unlabeled data (Feng et al., 2021).
However, this method is constrained to triangulation-based
3D pose estimation. As we mentioned in Sect. 4.4, another
major computational annotation ismodel fitting; thus, we still
need to consider such a collaborative approach in the anno-
tation based on model fitting.

Zimmermann et al. also proposed a framework of human-
in-loop annotation that inspects the annotation quality man-
ually while updating annotation networks on the inspected
annotations (Zimmermann & Brox, 2017). However, this
human check will be a bottleneck in large dataset construc-
tion. The evaluation of annotation quality on the fly is a
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necessary technique to scale up the combination of anno-
tation and learning.

6.4 Generalization and Adaptation

Increasing the generalization ability across different datasets
or adapting models to a specific domain is a remaining issue.
The bias of existing training datasets hinders the estima-
tors from inferring test images captured under very different
imaging conditions. In fact, as reported in Han et al. (2020);
Zimmermann et al. (2019), models trained on existing hand
pose datasets poorly generalize to other datasets. For real-
world applications (e.g., AR), it is crucial to transfer models
from indoor hand datasets to outdoor videos because com-
monmulti-camera setups are not available outdoors (Ohkawa
et al., 2022). Thus, aggregatingmultiple annotated yet biased
datasets for generalization and robustly adapting to very dif-
ferent environments are important future tasks.

7 Summary

Wepresented the survey of 3D hand pose estimation from the
standpoint of efficient annotation and learning. We provided
a comprehensive overview of this task and modeling, and
open challenges during dataset construction.We investigated
annotationmethods categorized asmanual, synthetic-model-
based, hand-marker-based, and computational approaches,
and examined their respective strengths and weaknesses. In
addition, we studied learning methods that can be applied
even when annotations are scarce, namely self-supervised
pretraining, semi-supervised learning, and domain adapta-
tion. Finally, we discussed potential future advancements in
3D hand pose estimation, including next-generation camera
setups, increased object and action variation, jointly opti-
mized annotation and learning techniques, and generalization
and adaptation.

Acknowledgements This work was supported by JST ACT-X Grant
Number JPMJAX2007, JSPS KAKENHI Grant Number JP22KJ0999,
and JST AIP Acceleration Research Grant Number JPMJCR20U1,
Japan.

Funding Open access funding provided by The University of Tokyo.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Baek, S., Kim, K. I., & Kim T.-K. (2020). Weakly-supervised domain
adaptation via GAN and mesh model for estimating 3d hand poses
interacting objects. InProceedings of the IEEE/CVF conference on
computer vision and pattern recognition (CVPR) (pp. 6120–6130).

Ballan, L., Taneja, A., Gall, J., Gool, L. V., & Pollefeys, M. (2012).
Motion capture of hands in action using discriminative salient
points. In Proceedings of the European conference on computer
vision (ECCV) (Vol. 7577, pp. 640–653).
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