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Abstract
Predicting future actions is an essential feature of intelligent systems and embodied AI. However, compared to the traditional
recognition tasks, the uncertainty of the future and the reasoning ability requirement make prediction tasks very challenging
and far beyond solved. In this field, previous methods usually care more about the model architecture design but little
attention has been put on how to train models with a proper learning policy. To this end, in this work, we propose a simple
but effective training strategy, Dynamic Context Removal (DCR), which dynamically schedules the visibility of context in
different training stages. It follows the human-like curriculum learning process, i.e., gradually removing the event context to
increase the prediction difficulty till satisfying the final prediction target. Besides, we explore how to train robust models that
give consistent predictions at different levels of observable context. Our learning scheme is plug-and-play and easy to integrate
widely-used reasoning models including Transformer and LSTM, with advantages in both effectiveness and efficiency. We
study two action prediction problems, i.e., VideoAction Anticipation and Early Action Recognition. In extensive experiments,
our method achieves state-of-the-art results on several widely-used benchmarks.

Keywords Dynamic Context Removal · Video Action Anticipation · Early Action Recognition · Robustness

1 Introduction

A comprehensive understanding of action sequences, e.g.,
open the can before pouring water out, is a
basic ability of humans. We usually know how to take mul-
tiple action steps to achieve a final target and are easy to
reason out the next action based on the past context. It puts
new requirements on embodied AI as advanced intelligence
should possess the ability to understand the action order and
predict the next one. Thus, action prediction matters. It also
serves as a support for many applications like autonomous
driving (Alvarez et al., 2020;Rasouli et al., 2019) and human-
robot interaction (Koppula & Saxena , 2015; Ryoo et al.,
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2015), where the predictions on pedestrians and users are
essential.

With the rapid evolution of deep learning techniques, the
comprehensive understanding and analysis of human action
videos attract attention in edging research. In the traditional
recognition field, modern video models (Carreira & Zisser-
man , 2017; Fan et al., 2021; Feichtenhofer et al., 2019; Lin
et al., 2019; Simonyan and Zisserman , 2014; Tran et al.,
2018, 2019; Wang et al., 2016, 2018) leverage spatiotempo-
ralmodeling to learn both spatial patterns and temporal logics
and achieve significant progresses in many video recognition
problems (Damen et al., 2021; Goyal et al., 2017; Kay et al.,
2017). Besides, there is also a growing interest in action pre-
diction problems (Damen et al., 2018, 2021; Kuehne et al.,
2014; Li et al., 2018; Stein & McKenna , 2013). Similarly,
they both expect systems to discriminate the existing actions
in videos. Differently, the observed video segment given for
systems shifts in action prediction problems, while action
recognition systems have all the contents of actions from
videos.

However, due to the temporal misalignment between
visual observation and target action semantics, action pre-
diction problems are much more challenging than action
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recognition. It can hardly be treated as a simple classifica-
tion like video recognition for some reasons. First, the spatial
configuration which deep neural networks learn in prediction
problems is biased towards the supervision of future action
labels, leading to the inaccurate representation of the current
visual observation. Second, the observation has a gap with
the full action event, which challenges the high-level reason-
ing ability of models especially in the long-term dense action
prediction setting (Ke et al., 2019; Sener et al., 2020).

Past works on action prediction usually propose elegant
model architecture designs (Dessalene et al., 2021; Furnari
& Farinella , 2020; Gao et al., 2017; Girdhar & Grauman ,
2021; Gu et al., 2021; Sener et al., 2020; Wu et al., 2021),
including LSTM variants and Transformer variants to learn
temporal action logic frompast contents and reason the future
action. Though such methods achieve improvements, they
still face performance bottlenecks on challenging bench-
marks (Damen et al., 2018, 2021; Kuehne et al., 2014; Li
et al., 2018; Stein & McKenna , 2013). In this work, apart
from the design, we try to explore an effective and universal
strategy for training predictive models, which is generally
overlooked before. Existing works may directly map visual
observation into the action label space (Girdhar & Grauman
, 2021; Wu et al., 2021) or apply simple multitasking (using
different anticipation times) progress in training (Furnari
& Farinella , 2020). Instead, we propose Dynamic Context
Removal (DCR). Predicting future action based on different
anticipation times or observation rates can be seen as mul-
titasking. DCR follows the curriculum learning (Bengio et
al., 2009) insight to train easy tasks first and then hard ones.
It employs sufficient auxiliary context at first then removes
redundant context for better adaptation to the difficult eval-
uation settings. Figure 1 gives an intuitive example. DCR
achieves a finer controlled learning procedure to tell what to
learn in different training phases, greatly differing from naive
multitasking and making more sense.

In this work, we study two problems: Video Action
Anticipation and Early Action Recognition, which are most
practical in action prediction. Video Action Anticipation is
to predict the action label in the future but the observable
contents have a gap (anticipation time τa) before the action
occurs. τa is usually a fixed parameter on standard bench-
marks (Damen et al., 2018, 2021). For this single-task, DCR
interpolates the intermediate training difficulties to offer a
smooth curriculum learning path. Early Action Recognition
is to predict the action label when the action goes on but does
not end, within the limited partial observation of the segment.
It usually has multiple tasks in testing, i.e., evaluating model
performance at different observation rates. We propose an
advanced version of DCR on multiple tasks, which provides
a more detailed consideration on balancing different tasks
and keeping consistent predictions.Wemake amore detailed

Fig. 1 Revisiting learning curriculums in the classical Sudoku game,
a kid starts with an easy Sudoku game of more observation (hints) and
then gets taught a harder level of less observable numbers. This reveals
the curriculum learning process of how humans learn to reason in the
physical world. In this work, we are inspired by learning Sudoku and
build action anticipation models with similar curriculum designs. We
leverage extra auxiliary frames in training but dynamically schedule
their visibility to gradually strengthen the reasoning ability of models

analysis of model performances when removing observable
context and new metrics are set up.

Our training strategy DCR is plug-and-play and can boost
multiple temporal predictive architectures. Considering the
high potential of Transformer (Vaswani et al., 2017) in recent
years, we take it by default. It starts with the order-aware pre-
training phase, specific to Transformer, where we leverage
the permutation-invariant property of attention mechanism
and apply frame order as a self-supervised signal to do the
pre-training. Next, we conduct the action prediction train-
ing. Our systems leverage mask modeling to reconstruct
masked frame representations and dynamically schedule
the visibility of auxiliary context. For single-task Video
Action Anticipation and multi-task Early Action Recogni-
tion, our implementations are slightly different to facilitate
two tasks respectively. This learning paradigm conforms to
how humans learn, i.e., the curriculum learning insight. We
also validate DCR on LSTM (Hochreiter & Schmidhuber ,
1997) to prove its generalizable effect.

We conduct experiments and analyses on fourwidely-used
Video Action Anticipation benchmarks: EPIC-KITCHENS-
100 (Damen et al., 2021), EPIC-KITCHENS-55 (Damen et
al., 2018), EGTEAGAZE+ (Li et al., 2018), 50-Salads (Stein
& McKenna , 2013) and two Early Action Recognition
benchmarks: EPIC-KITCHENS-55 (Damen et al., 2018),
EGTEAGAZE+ (Li et al., 2018). Our training strategy turns
out to be effective and achieves state-of-the-art results on all
benchmarks, even using small-size parameter-efficient mod-
els.Moreover, we believe the proposed dynamic and adaptive
learning paradigm can pave the way for more complex and
challenging temporal prediction problems.
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Overall, our contribution includes: (1) We propose a sim-
ple but effective learning strategy, DCR, which advances the
effectiveness and efficiency of practical temporal modeling
architectures including Transformer and LSTM on action
prediction tasks. (2)We propose the order-aware pre-training
for Transformer to carry out unsupervised pre-training using
frame sequential order as self-supervision. (3) We introduce
the perspective of consistent prediction at different observa-
tion rates in Early Action Recognition, where new metrics
and training techniques are proposed. (4) We achieve the
state-of-the-art on several widely-used Video Action Antic-
ipation and Early Action Recognition benchmarks.

Note that, a prior version of DCR is published in CVPR
2022 (Xu et al., 2022), which only contains content about
Video Action Anticipation. In this new version, we adapt
DCR to Early Action Recognition and study prediction
robustness in multiple tasks. To this end, we make new con-
tributions to propose a novel method, evaluation metrics and
achieve SOTA performances.

2 RelatedWork

Video Action Anticipation is to predict the future action label
by observing a video clip with time τa before it occurs. It is
required both in third-person (Kuehne et al., 2014; Stein &
McKenna , 2013) and egocentric (Damen et al., 2018, 2021;
Ke et al., 2019; Li et al., 2018; Liu et al., 2020) scenarios.
It supports a wide range of applications including intelligent
robots (Koppula & Saxena , 2015; Ryoo et al., 2015) and
wearable devices. It used to have different formulations such
as dense action anticipation, but we consider predicting the
next action in this work. Previous methods proposed various
neural architectures including LSTM variants (Farha et al.,
2018; Furnari & Farinella , 2020; Furnari et al., 2018; Gao
et al., 2017; Jain et al., 2016; Wu et al., 2021) and atten-
tion variants (Girdhar & Grauman , 2021; Gu et al., 2021;
Sener et al., 2020). In the early work, Vondrick et al. (2016)
propose an unsupervised representation learning paradigm
to connect the feature of the present and future for action
anticipation problems. Li et al. (2018) jointly model action
anticipation with human gaze in egocentric videos. Later,
Furnari and Farinella (2020) propose a classic RULSTM
architecture with modularity attention which achieves strong
results. Sener et al. (2020) attempt to anticipate action with
different aggregations on the past. Some other works utilized
extra knowledge like next active object (Furnari et al., 2017)
and hand motion (Dessalene et al., 2021) to anticipation
action. AVT (Girdhar & Grauman , 2021) leverages a causal
Transformer tomodel action anticipation in the seq2seqman-
ner.
Early Action Recognition is to recognize actions from an
incomplete observation of the whole action segment as early

as possible (Ryoo , 2011). It is similar to the action antic-
ipation problem as they both expect models to reason out
the unobserved state of action frames. Thus, some clas-
sic networks (Dessalene et al., 2021; Furnari & Farinella ,
2020; Sener et al., 2020) on action anticipation can easily
migrate to Early Action Recognition well. But differently,
Early Action Recognition usually requires model perfor-
mance under different levels of observation ratios,which is an
explicit form of multitasking compared to the τa-fixed action
anticipation problem. Hu et al. (2019) introduce an early
prediction framework based on soft regression paradigm.
Wang et al. (2019) propose a teacher-student distillation
framework as a progressive learning paradigm in this field.
Pang et al. (2019) apply a unified encoder-decoder frame-
work to jointly model the bi-directional video dynamics.
IGFormer (Pang et al., 2022) proposes Interaction Graph
Transformer for skeleton-based early recognition. A recent
work ERA (Foo et al., 2022) replaces 3D Conv by expert
retrieval and assembly for prediction. In this work, we study
the previously ignored robustness property of models at dif-
ferent observation ratios, i.e., making consistent predictions
among high and low observable context ratios. We validate
the effects of DCR techniques under new metrics.
Video SequentialOrderModeling has been exploited inmany
works. Srivastava et al. (2015) propose unsupervised learn-
ing techniques to learn generalized representation in video
sequences. Zhou and Berg (2015) explore two simple tasks
of pairwise ordering and future prediction in egocentric
videos. Kong et al. (2017) model sequential context relation
to advance the recognition performance on part video obser-
vations. Misral et al. (2016) propose a new perspective of
video sequence as to verify whether the order is correct in
learning. In our work, we leverage the permutation invariant
property of self-attention mechanism and utilize sequential
order as an extra signal to perform self-supervised learning.
Vision Transformer gains much popularity recently, with a
trend to exceed the classic convolution architecture in many
visual tasks. Transformer (Vaswani et al., 2017) family orig-
inally raises in the language community, then permeates into
the vision domain (Dosovitskiy et al., 2021) including video
related tasks (Arnab et al., 2021; Fan et al., 2021; Wang et
al., 2018). It can be inserted as attention blocks (Wang et al.,
2018; Wu et al., 2019) into traditional video models as well
as construct pure attention-based video recognition architec-
ture (Arnab et al., 2021; Fan et al., 2021). In the field of Video
ActionAnticipation,Transformer architecture canbedirectly
used in temporal reasoning via causal attention (Girdhar &
Grauman , 2021).
Curriculum Learning is proposed by Bengio et al. (2009). It
is motivated by the learning procedure of humans, from easy
to hard. It can be implemented via the schedule of category
loss weights (Kumar et al., 2010), data sampling (Li et al.,
2017), or other difficulty measurement (Zhang et al., 2020).
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This simple principle works well in many fields including
language understanding (Bengio et al., 2009), transfer learn-
ing (Weinshall et al., 2018) and more (Kumar et al., 2010; Li
et al., 2017; Zhang et al., 2020)). For the language reasoning
task, previouswork (Cirik et al., 2016) also validates its effec-
tiveness when doing baby-step short-term reasoning first. In
our work, the richness of auxiliary context determines the
easiness of tasks. We schedule the context removal to obey
the easy-to-hard principle of curriculum learning.

3 Approach

We introduce our method in this section. First, the detailed
formulations of two video action prediction problems are
introduced in Sect. 3.1. Then, an overview of our system
is described in Sect. 3.2, which can integrate any temporal
predictive architectures. For the Transformer, we propose an
additional order-aware pre-training (Sect. 3.3) to learn tem-
poral dynamics in the full contextmode, which is not used for
LSTM. Next, we train prediction models for Video Action
Anticipation andEarlyActionRecognition in thepartial con-
text mode. For the single-task Video Action Anticipation in
Sect. 3.4, we apply a random context interpolation strategy.
The auxiliary context in the anticipation time is randomly
selected to help the prediction, but probability decreases in
training with a decreasing task easiness. We set two objec-
tives including prediction loss and reconstruction loss. For
the multi-task Early Action Recognition in Sect. 3.5, we
propose a finer-grained task selection method on improv-
ing the prediction ability within the limited observation. An
additional consistency constraint is used to alleviate the per-
formance drop when the observable context is removed.

3.1 Problem Formulation

We briefly introduce the settings of two video action pre-
diction problems, i.e., Video Action Anticipation and Early
Action Recognition, which are illustrated in Fig. 2. In our
data processing scheme, we adopt different colors for differ-
ent temporal segments to indicate their roles. Blue ones are
the consistent video observation. Red ones are the main field
with dynamic visibility. Yellow ones are used for prediction
purposes. We use mask models to reconstruct yellow frame
representations based on blue and part of red frames.

Video Action Anticipation is to predict the future action
label before it occurs. There is a time gap between the obser-
vation and the action segment. It is called anticipation time,
expressed as τa . The anticipation time is usually fixed as τa
= 1s on standard benchmarks and leaderboards (Damen et
al., 2018, 2021; Girdhar & Grauman , 2021; Li et al., 2018;
Sener et al., 2020). Thus, we only care about 1-second antici-
pation performance. We call this as single-task in evaluation.

Fig. 2 The general setting of the two video action prediction problems.
Blue, red and yellow frames indicate different fields in data processing
(Color figure online)

Another important parameter is τo, which denotes the length
of the observable clip. Usually, τo is not restricted and any
possible choices are permitted. We sample frames at 4 fps
following (Furnari & Farinella , 2020). There are 4τo/4/4
frames assigned with blue/red/yellow (Fig. 2) respectively.

Early Action Recognition requires an early prediction of
the action label from partial observation. The first s (obser-
vation rate) action clip is observable for action reasoning
models, while the remaining is not. We sample 40 frames
from each action clip, where the first s% are the early obser-
vation in blue and the last (100 − s)% in red are not visible
in test time. Following previous work (Furnari & Farinella
, 2020), we care about model performances with different
levels of observation rates, i.e., s% = 12.5%, 25%, 37.5%,
50%, 62.5%, 75%, 87.5%, 100%. Since the multitasking
nature of Early Action Recognition, it differs from the τa-
fixed anticipation problem. It hasmultiple tasks in evaluation.
In our work, the robustness of models at the decreasing of
observation rates is explored. Notably, to achieve the predic-
tion purpose, an additional learnable [CLS] token in yellow
(Fig. 2) is used for classification.

3.2 Overview

We present an overview of the system we build in Fig. 3.
Assume we sample K frames for our model, then we start
from K pre-extracted frame representations as (x1, x2, . . . ,
xK ), in the reverse chronological order. Each frame xi is
assigned with a binary mask βi ∈ {0, 1}, determining its
visibility. The mask is dynamically scheduled in different
phases of training (Sects. 3.4 and 3.5), but we strictly mask
out auxiliary frames in the test time tomeet the testing setting.
Our systemaims to reconstructmasked frame representations
based on the remaining context, especially the yellow frames
for label prediction purposes.

Specifically, we project frame feature xi (1 ≤ i ≤ K ) into
a latent space, where a reasoningmodelR performs to reason
out the masked frames based on visible information. Then, a
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Fig. 3 An overview of our system, which aims to use observable
contents to reconstruct masked frame representations. The temporal
reasoning model in the system can have choices including Transformer
and LSTM. Frames in blue/red/yellow are used for constant observa-
tion, dynamic visibility, and action classification. The core motivation

of DCR is to schedule the frame visibility in a curriculum learning man-
ner, with more auxiliary frames at first but dynamically removed as the
training goes on. To achieve this, we apply dynamic masks at different
training times, i.e., more observations when training begins but fewer
observations later (Color figure online)

linear decoder maps frames back to the original dimension.
For our goal of the reconstructions from the reasoningmodel,
we denote them as (z1, z2, . . . , zK ) respectively. It is formu-
lated as (z1, z2, . . . , zK ) = R(x1, β1, x2, β2, . . . , xK , βK ).
The reconstructions of yellow frames in Fig. 2 are used
for predicting the label. In Video Action Anticipation, the
last 4 frames zi (1 ≤ i ≤ 4) are in the action occur-
rence and they will be sent to the classifier to give pre-
dictions. But in Early Action Recognition, we employ an
extra learnable [CLS] token to make the role. For EPIC-
KITCHENS series (Damen et al., 2018, 2021) which also
require marginalized verb/noun class prediction on their test
server, we use verb/noun/action three classifiers on the top
but only apply single action classifier for other datasets. In
the test time, predictions on these yellow frames are averaged
to make a consensus (Wang et al., 2016) as the final result.

Noticeably, our training strategy is flexible and can be used
for widely-used reasoning models, including Transformer
(Vaswani et al., 2017), LSTM (Hochreiter & Schmidhuber ,
1997) etc. In this paper, considering the exceeding potential
of Transformer in recent works, we use it for most experi-
ments by default to compare against prior arts but also show
our superiority in LSTM based results. A small difference
between Transformer and LSTM is about tackling masked
frames. Masks are more practical for Transformer based
applications (Devlin et al., 2019), so we directly assign zero
values for the input. But for the recurrent LSTM structure, it
is more sensitive about the latest observation and zero val-

ues lead to the smooth prediction, thus we copy the masked
frames using the latest visible (not masked) one, similar to
the unrolling mechanism (Furnari & Farinella , 2020).

3.3 Order-Aware Pre-training

As explained above, we use Transformer as the default archi-
tecture. To fully exploit its potential, we propose a novel
order-aware pre-training to learn the temporal logic in the full
context mode. An ideal video reasoningmodel should be able
to automatically understand the sequential order of action
steps as well as visual frames. Thus, we leverage a sorting
task in the pre-training phase to model the video dynamics,
which greatly boosts predictive tasks in the next stage.

In this stage, we notice that Transformer is a permuta-
tion invariant architecture without explicit positional encod-
ing (Vaswani et al., 2017). Thus, we use temporal positions
as signals to supervise the training and expect models to
automatically recognize the order of input sequence, which
implies the understanding of temporal logic among context.

We propose our self-supervised pre-training technique
calledorder-awarepre-training.All frames except the[CLS]
token illustrated in Fig. 2 are used in training. In another
word, the mask βi (1 ≤ i ≤ K ) consistently equals 1.
Without explicit integration of positional encoding, they are
directly sent into the Transformer after the linear encoder.
Then we compute the cosine similarity between i-th Trans-
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former output tokens and the j-th positional encoding as s̃i, j ,
which is followed by Softmax to probability space as p̃i, j .

A pre-defined similarity label is required to supervise the
training. The most naive choice is to use a diagonal matrix
as similarity to treat it as a separate classification problem.
However, time series is continuous, and it would be much
better to assign soft labels. To this end, we follow (Hayat
et al., 2019) to define similarity with Gaussian affinity. The
similarity si, j of positional encoding at time i and the frame
feature at time j is measured as

si, j = exp

(

− (i − j)2

σ 2

)

, (1)

where σ is the bandwidth of Gaussian and we set σ = 5 in
our experiments. Then the similarity is used to supervise the
pre-training. We minimize the cross entropy loss L in Eq. 2
with the Gaussian soft labels:

L =
K

∑

i=1

K
∑

j=1

−si, j log( p̃i, j ). (2)

The order-aware pre-training not only learns the video
dynamics in the context but also provides a refinement of
the positional encoding. It is an aggregated context agnostic
representation of the whole dataset and is more suitable for
the masked frames in the following training phase. Gener-
ally, the technique is motivated by the permutation-invariant
property of self-attention and utilizes sequence permutation
as self-supervised signals. We believe it can advance a wider
range of Transformer based sequence modeling tasks, just
like the success of masked language model (Devlin et al.,
2019).

3.4 A Training Route for Single-Task Prediction

For the single-task Video Action Anticipation problem, we
use interpolation context to connect anticipation on τa = 1s
and τa = 0s and gradually increase training task difficulty
by context removal. Apparently, smaller τa means an eas-
ier task. Therefore, we set an easy curriculum (τa = 0s) at
the beginning of the training, where all auxiliary frames in
the anticipation time are observable. As the training goes
on, auxiliary frames are randomly removed, controlled by
a decreasing easiness factor. It interpolates a novel training
route to adapt models to the more difficult τa = 1s anticipa-
tion task.

3.4.1 Random Context Masking

Since the goal of our system is to reconstruct masked future
frames based on the visible context, we use partial context in
training and dynamically schedule the context visibility. In

Fig. 4 Theorder-aware pre-training for the permutation-invariant atten-
tion. We remove the positional encoding on the input side but force the
model to automatically understand the order of video sequences. It is
trained by connecting the frame with its corresponding position to meet
the pre-defined similarity

training epoch e, we formulate an easiness factor Te ∈ [0, 1],
determining the easiness of curriculum in training.As it starts
with an easy curriculum, we have T1 = T2 = 1 initialliy.
Then, as the training goes on, we decrease the easiness Te
of the curriculum for our system and present a more difficult
prediction task gradually.

Te indicates the probability of employing additional auxil-
iary frames to assist prediction. In this phase, we consistently
mask out yellow frames during action occurrence, as βi =
0(i ≤ 4). Notably, the numerical setting is attributed to the
frame sampling scheme in Sect. 3.1, i.e., 4τo/4/4 frames are
in blue/red/yellow (defined in Sect. 3.1 and Fig. 2) respec-
tively for Video Action Anticipation. Yellow frames are not
directly sent for model input but serve as the supervision
of the feature reconstructions. We find the direct utilization
of action frames harms classifier performance and reasoning
ability in our experiments. On the contrary, past observa-
tion, i.e., blue frames in Fig. 2, are always visible at any
time, as βi = 1(i ≥ 9). The red frames in the median field
are the main ones for designing different curriculums, i.e.,
dynamic visibility in the training. They assist past obser-
vation to reconstruct the anticipated future frames but are
dynamically removed and determined by the decreasing Te.
For 5 ≤ i ≤ 8, we uniformly sample variable ρi in [0,1],
as ρi ∈ U (0, 1). The frame xi is visible only when ρi
is smaller than the easiness factor Te. It also means these
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frames have a probability Te to be visible. It is formulated as
βi = 1[Te > ρi ](5 ≤ i ≤ 8), where 1[∗] indicates the truth
of statement and returns binary value. Generally, we obtain
β series in Eq. 3:

βi =

⎧

⎪

⎨

⎪

⎩

1 i ≥ 9 (blue frames),

1[Te > ρi ] 5 ≤ i ≤ 8 (red frames),

0 i ≤ 4 (yellow frames).

(3)

Empirically, we design a fine-grained local curriculum
scheduling method in this work. Though a global schedule of
Te like linear or exponential may also work well in some sce-
narios (Sect. 4.6), we find it is sensitive to hyper-parameters
tuning and not very convenient. To this end, we empirically
apply a more specific easiness schedule. In each iteration,
mask {β1, β2, . . . , βK } is generated for a video clip. Assume
k(k ≥ 5) is smallest for βk = 1 then x1, . . . , xk−1 are what
we need to anticipate. We use the error of the 1-second future
to measure the quality of the reconstruction:

Q = ‖xk−4 − zk−4‖2,
s.t . k = argmin[βk = 1]. (4)

A memory bank is used to store the reconstruction quality
for each case. It serves as a criterion to define the easiness in
the next epoch. We have T1 = T2 = 1 at the start, but simply
schedule easiness Te using the decline of Q in Eq. 5, with
extra boundaries γmin = 0.95, γmax = 1 on the decreasing
factor. Trunc(·) is the truncation function. In this case, the
rapid decline of Q represents a well-learned state of models,
thus we decrease easiness faster. The boundaries are used to
stabilize easiness scheduling and guarantee the diversity of
curriculums in different training stages:

Te
Te−1

= Trunc

(

Qe−1

Qe−2
, γmin, γmax

)

. (5)

3.4.2 Learning Objective

We use two objectives to supervise the training process. One
is about the predictive result of the next action class Lcls ,
while the other is the reconstruction loss of masked frames
Lrec.

Prediction loss is used to supervise the prediction of yel-
low frames in the action segment.We adopt the cross entropy
loss. We apply random label smoothing (Szegedy et al.,
2016) for the loss. Though Camporese et al. (2021) study
different label smoothing designs in anticipation, we find
simple random smoothing already works well in the pre-
dictive tasks. This is mainly attributed to the advantages of
random label smoothingonmaintaining theuncertainty of the
future and suppressing overfitting. As for zi , action classifier
gives prediction p1i , p

2
i , . . . , p

C
i , where C is the number of

categories. Then, the action prediction loss L A
cls can be for-

mulated in Eq. 6, where y is the ground truth label, wy is the
class loss weight from class distribution and ε is the factor
of label smoothing:

L A
cls =

4
∑

i=1

−(1 − ε)wy log(p
y
i ) −

C
∑

c=1

ε

C
log(pci ). (6)

For datasets that require marginalized verb/noun predictions
additionally, we compute verb/noun prediction loss similarly
as LV

cls , L
N
cls . The prediction loss is made as Lcls = LV

cls +
LN
cls + L A

cls . For datasets only with an action classifier on the
top, we have Lcls = L A

cls .
Reconstruction loss is to teach our model to reason out

the masked frames based on the remaining context, just like
the role of masked language prediction (Devlin et al., 2019).
We expect the output representation of our reasoning model
close to the original frame. Thus we simply use mean square
error following (Girdhar & Grauman , 2021) in Eq. 7 as
feature-level supervision:

Lrec =
K

∑

i=1

(1 − βi ) ∗ ‖zi − xi‖2. (7)

Considering different scales and roles of two losses, we
apply a weighted summation to obtain the total loss Ltotal :

Ltotal = λcls Lcls + λrecLrec. (8)

where λ∗ are different weights for different loss items.

3.5 Towards Robust Multi-task Prediction

In the above Video Action Anticipation problem, we show
interpolating extra context and gradually removing them in
training helps the prediction. But we may wonder how our
models preserve the predictive ability when frames are grad-
ually removed. We explore this problem in Early Action
Recognition, with our intention to keep trained models more
robust on multiple tasks, i.e., giving robust predictions at
different levels of observation rates. Figure 5 (a) gives an
example. Our method and the baseline have similar perfor-
mances given the full observation, but our method suffers
less from the removed context and keeps robust within the
limited observation.

3.5.1 Sampling Multiple Tasks

We set Early Action Recognition problem at different obser-
vation rates, i.e., from 12.5% to 100% in steps of 12.5%, as
s1%, s2%, . . . , s8% respectively. Following the curriculum
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Fig. 5 a Comparison between the model we trained with the baseline
on EGTEAGAZE+. DCR is more robust against the missing context as
two methods have similar performance given full observation but our
model suffers less at lowobservation rates.bThe pipeline of our training
procedure in Early Action Recognition problem. We acquire a distri-

bution prior from the memory bank and sample two tasks of different
difficulties. They are trained with the consistent prediction constraint
to increase model robustness on different tasks. Predictions are used to
update the sampling prior to make training curriculums shift from easy
to hard gradually

learning insight, it should start with the easier task of more
observation but adapt to the harder task gradually.

Our training pipeline is illustrated in Fig. 5 (b). For each
action clip, we store a weight vector wk(k = 1, 2, . . . , 8) in
the memory bank, where wk is the corresponding weight
for sampling training task sk%. In each iteration, we use
normalized wk/

∑

l wl as the probabilistic distribution and
sample two training tasks su% and sv%. Let 1 ≤ u < v ≤ 8,
which means sv% has more visible context as the easy task
and su is harder. For observation rates su%, sv%,we generate
their corresponding frame masks βu, βv . They are separately
sent to our reasoning system to give the predicted results in
two branches.

Initially, we have wk = 1(k = 1, 2, . . . , 8). This implies
all tasks are uniformly sampled in the early stage of training,
regardless of the observation rate. However, the weight vec-
tor for sampling is dynamically scheduled in different stages
of training. It is mainly controlled by the prediction error. In
epoch e, given two sampled tasks su%, sv% and their corre-
sponding βu, βv , our reasoning system outputs the predicted
probabilities pyu , pv

j for the ground truth action class y while

their errors are 1 − pyu , 1 − pyv respectively. Notably, we
use the 1-second future reconstruction as a measurement of
reasoning ability in Sect. 3.4.1. But we cannot find a uni-
fied feature-level measurement in Early Action Recognition
since the reconstruction may not be applied in some extreme
cases like s8 = 100%. To this end, We use the predictive
error in Eq. 9 to represent the reasoning ability of our model
on a specific task:

Erru =1 − pyu ,

Errv =1 − pyv .
(9)

For each task sk and its weight wk used in sampling,
we hold its updating strategy in the momentum manner in

Eq. 10. If sk is sampled in epoch e − 1, then the next wk is
weighted by its old value and the predictive error Errk , with
respect to η, an updating parameter fixed as η = 0.8 in our
implementation. wk equals 1 initially, but will converge to
the predicting ability of models on task sk in the end. Thus,
harder tasks at less observation rates have larger predictive
errors are assigned a larger probability in the sampling pro-
cedure. The system gradually leans to the harder tasks in
training, which follows our motivation.

(wk)e =
{

η(wk)e−1 + (1 − η)(Errk)e−1 k ∈ {u, v},
(wk)e−1 otherwise.

(10)

3.5.2 Consistent Prediction Constraint

We add an extra learning objective Lcon on the consistent
predictions between two tasks. Let 1 ≤ u < v ≤ 8. We
intend amodel to give robust predictions thoughmore frames
aremasked for su , close predicted results to the easier task sv .
Thus, we propose the consistent prediction constraint in the
knowledge distillation manner. It uses the prediction from
sv to supervise the learning of su . We formulate the action
consistency loss in Eq. 11:

L A
con =

C
∑

c=1

−pcv log(p
c
u). (11)

Notably, the gradient from pcv is stopped and only the
harder task is trained. Similar to Lcls , we make Lcon =
LV
con + LN

con + L A
con for EPIC-KITCHENS series while

Lcon = L A
con for others.

We add the supplement Lcon constraint and then the total
loss is formulated in Eq. 12, where λ∗ weights different loss
items:
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Ltotal = λcls Lcls + λrecLrec + λcon Lcon . (12)

4 Experiments

4.1 Datasets andMetrics

EPIC-KITCHENS-100 (EK100) (Damen et al., 2021) is cur-
rently the largest dataset to support action predictive tasks.
It has 700 long videos of 100h about egocentric cooking
activities. Each action class in EK100 consists of a verb and
a noun. Totally, there are 97 verbs and 300 nouns, lead-
ing to 4053 action compositions. There are 89,977 action
segments whose labels are aggregated from unique narra-
tions. The dataset splits into train/validation/test sets with a
ratio of 75:10:15. The train and validation sets are publicly
released but the test set is only able to be queried on the
online server. The main metric for evaluation is recall@5, a
class-aware metric to avoid the long-tail bias of action distri-
bution. Besides, the authors also provide a tail action subset
and an unseen participants subset to highlight the general-
ization performance of models.
EPIC-KITCHENS-55 (EK55) (Damen et al., 2018) is an ear-
lier version of EK100. As a subset, it contains 432 videos in
55h. There are 39,596 action segments, each assigned with
a verb and noun class. It includes 125 verbs and 352 nouns
in total. We follow the split of (Damen et al., 2018; Furnari
& Farinella , 2020). The metric for evaluation is Top-1/5
accuracy.
EGTEAGAZE+ (EG+) (Li et al., 2018) is another egocentric
dataset for the joint modeling of action and gaze.We only use
its action learning part. It contains 19 verbs, 51 nouns, and
106 action compositions. There are 10,325 segments in 86
videos annotated with action labels. We report Top-5 accu-
racy and class-mean recall@5 over 3 standard official splits
provided by the authors.
50-Salads (50S) (Stein & McKenna , 2013) is a widely used
third-person video dataset about salad preparation. It’s a rel-
atively smaller dataset than the previous ones as it only has
nearly 0.9K action segments. And differently, its action class
can’t be marginalized into verb and noun. We follow (Farha
et al., 2018; Girdhar & Grauman , 2021; Sener et al., 2020)
to use the 17-class coarse version of action annotation labels.
We report Top-1 accuracy over 5 standard official splits pro-
vided by the authors.

In Video Action Anticipation experiments, we follow pre-
vious works (Damen et al., 2018, 2021; Furnari & Farinella
, 2020; Girdhar & Grauman , 2021) to set τa = 1s in all
datasets. This setting is also shared for all baselines in a fair
comparison. In Early Action Recognition, we evaluate mod-
els at different observation rates, i.e., from 12.5% to 100%
in steps of 12.5%. Each observation rate si corresponds to a
Top-1 accuracy score ai (i = 1, 2, . . . , 8). We use three more

metrics to give a unified evaluation, i.e., Avg, Std, APD.
The first two are the mathematical calculation of the aver-
age value and the standard deviation of sequence {ai‖8i=1}.
APD is short for average performance drop, formulated as
∑8

i=1

(

max
1≤ j≤8

a j − ai
)

/8. Avg evaluates the general predic-

tion performance while the others evaluate the robustness of
model predictions at different observation levels, the lower
the better.

4.2 Baselines

We compare DCR to several competitive approaches includ-
ing FN (De Geest and Tuytelaars , 2018), vanilla LSTM
(Hochreiter & Schmidhuber , 1997), RL (Ma et al., 2016),
EL (Jain et al., 2016), DMR (Vondrick et al., 2016), ATSN
(Damen et al., 2018), MCE (Furnari et al., 2018), FHOI (Liu
et al., 2020), RULSTM (Furnari & Farinella , 2020), Action-
Banks (Sener et al., 2020), ImagineRNN (Wu et al., 2021),
Ego-OMG (Dessalene et al., 2021), TransAction (Gu et al.,
2021), AVT (Girdhar & Grauman , 2021). Please refer to
supplementary information for more details about baselines.

4.3 Implementation Details

BackboneWe adopt different types of features (RGB appear-
ance, Optical Flow and Object distribution) from differ-
ent backbones, including ViT (Dosovitskiy et al., 2021),
TSN (Wang et al., 2016), TSM (Lin et al., 2019) and
irCSN-152 (Tran et al., 2019). More details can be found
in supplementary information.
Observation In Video Action Anticipation, we set observa-
tion time τo =10s for EPIC-KITCHENS (Damen et al., 2021,
2018) series and 50S (Stein &McKenna , 2013), but τo = 5s
for EG+ (Li et al., 2018). Longer observation requirement is
mainly because of the larger data scale for EPIC-KITCHENS
and longer action duration on average for 50S.
Head Network Due to the high potential of Transformer
in recent works, We use a 6-layer, 16-head Transformer
encoder model (Vaswani et al., 2017) on 1024 dimensions
optimized by AdamW (Loshchilov & Hutter , 2019) as the
default reasoning architecture. In addition, our training strat-
egy also boosts LSTM. We also conduct experiments using
1-layer, 1024-dimensional LSTM (Hochreiter & Schmidhu-
ber , 1997) optimized by SGD. They are both trained from
scratch.. For more hyper-parameter settings like learning rate
schedule, batch size, and loss weight, please refer to supple-
mentary information.

4.4 Results of Video Action Anticipation

First, we report single model performances as well as their
trainable parameters on EPIC-KITCHENS series in Tables 1
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Table 1 Single branch anticipation results on EK100 validation set

Method Backbone Verb Noun Action # Params

RGB

RULSTM TSN 27.5 29.0 13.3 19.7M

AVT TSN 27.2 30.7 13.6 303.9M

AVT irCSN-152 25.5 28.1 12.8 409.6M

AVT ViT* 28.7 32.3 14.9 383.8M

DCR (LSTM) TSN 27.9 28.0 14.5 14.1M

DCR (LSTM) TSM 28.4 28.5 15.2 20.2M

DCR TSN 31.0 31.1 14.6 78.2M

DCR TSM 32.6 32.7 16.1 84.3M

Flow

RULSTM TSN 19.1 16.7 7.2 19.7M

AVT TSN 20.9 16.9 6.6 303.9M

DCR (LSTM) TSN 21.6 15.3 7.8 14.1M

DCR TSN 25.9 17.6 8.4 78.2M

Obj

RULSTM FRCNN 17.9 23.3 7.8 14.5M

AVT FRCNN 18.0 24.3 8.7 298.8M

DCR (LSTM) FRCNN 16.1 19.6 7.5 10.1M

DCR FRCNN 22.2 24.2 9.7 74.2M

The backbone marked with * denotes end-to-end training
Numbers in bold are to highlight best performances under their settings

and 2 for a fair comparison. The baseline parameters are
recorded from their public checkpoints. Our models have
approximate parameters (numerical counts in Tables 1 and
2) except different dimensions of input spaces.

OnEK100validation set inTable 1, using themostwidely-
usedRGB-TSNbackbone (in italic), our LSTMversionDCR
is slightly lighter than classic RULSTM while the Trans-
former version is nearly a quarter of AVT because of the half
network width. However, our models consistently perform
better, especially for the default Transformer model, which
has 3.8%/1.0% performance gains over AVT on verb/action
respectively. Additionally, a more effective TSM backbone
directly helpsDCR tooutperform the end-to-end trainedAVT
by a 1.2% margin at a lower expense. We scatter the perfor-
mance and parameter size of RGB-input models in Fig. 6.
Apparently, our models are in the upper left corner, indicat-
ing advantages in both effectiveness and efficiency. Besides,
on flow and obj modality, our DCR also outperforms previ-
ous works. Especially for the flow, we have 5.0% and 1.2%
performance gains on verb and action respectively.

Next, for results on EK55 validation set in Table 2, our
DCR with RGB-TSN backbone also exceeds all baselines
(italic) in a fair comparison. To our surprise, previousmethod
applies a 12-layer deep Transformer on irCSN-152 backbone
to achieve the best single model performance, but our light
model easily outperforms it with a 2.3% gain on Top-5 score
(in underline). The stronger TSM backbone further improves

Fig. 6 Score versus Size

Table 2 Single branch anticipation results on EK55 validation set

Method Backbone Top-1 Top-5 # Params

RGB

RULSTM TSN 13.1 30.8 18.5M

ActionBanks TSN 12.7 28.6 112.9M

AVT TSN 13.1 28.1 302.6M

AVT ViT* 12.5 30.1 382.8M

AVT irCSN-152 14.4 31.7 603.2M

DCR TSN 13.6 30.8 78.2M

DCR irCSN-152 15.1 34.0 82.0M

DCR TSM 16.1 33.1 82.0M

Flow

RULSTM TSN 8.7 21.4 18.5M

ActionBanks TSN 8.4 19.8 112.9M

DCR TSN 8.9 22.7 78.2M

Obj

RULSTM FRCNN 10.0 29.8 13.2M

ActionBanks FRCNN 10.2 29.1 52.5M

DCR FRCNN 11.5 30.5 74.2M

The backbone marked with * denotes end-to-end training
Numbers in bold are to highlight best performances under their settings

Top-1 action score by 1.7% over AVT. Besides, our method
also achieves competitive results on flow and obj modalities,
with 1.3% and 0.7% gains over prior arts respectively.

Since our training strategy focuses on the head reasoning
network, apples-to-apples comparisons fairly verify the con-
tribution of DCR in training effective anticipation models at
a lower expense. It clearly paves the way for further research.

We also make model ensembles to give more accurate
predictions on these benchmarks and compare to state-of-
the-art methods. Despite previous work may use modality
attention (Furnari & Farinella , 2020) or apply an extra
Transformer to aggregate multi-modal tokens (Gu et al.,
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Table 3 Anticipation result ensemble on EK100

Method Validation Test

Overall Unseen Tail Overall Unseen Tail

RULTSM 14.0 14.1 11.1 11.2 9.7 7.9

ActionBanks 14.7 14.5 11.8 12.6 10.5 8.9

TransAction 16.6 13.8 15.5 13.4 10.1 11.9

AVT 15.9 11.9 14.1 16.7 12.9 13.8

DCR 18.3 14.7 15.8 17.3 14.1 14.3

Numbers in bold are to highlight best performances under their settings

2021), we simply use late-fusion results and DCR still shows
superiority. Details about late fusion are in supplementary
information.

We report results on EPIC-KITCHENS series in Tables 3
and 4. On the validation sets, we follow AVT to use rgb+obj
fusion and it outperforms baselines, i.e., 1.7% performance
gain on the whole EK100 and 3.6% Top-5 action accuracy
gain on EK55. The competitions on the online testing leader-
board are more challenging. We make an ensemble using
models trained with train+val data. Ourmethod outperforms
previous works on most branches. In Table 3, we achieve
0.7% improvement on EK100 overall and 1.2% improve-
ment on its unseen subset. In Table 4, on Top-5 accuracy,
we achieve 2.0% improvement on EK55 S1 and 0.5% on
EK55 S2.We do not perform the prior art only on EK55 Top-
1 accuracy, this is mainly because the competitive baseline
Ego-OMG (Dessalene et al., 2021) adds delicate annotations
of hand segmentation and active objects to learn interme-
diate knowledge representation, which helps anticipation in
unseen environments.

In Table 5, we report results on EGTEA GAZE+, another
popular egocentric anticipation benchmark. We use TSN
feature onRGBandOptical Flowmodalities followingRUL-
STM to conduct this experiment. The final result is the late
fusion of two branches. Surprisingly, DCR has 1.5% and
2.5%performance gains over all baselines on Top-5 accuracy

Table 5 Anticipation results on EG+

Method Top-5 c.m. Recall@5

DMR 55.7 38.1

ATSN 40.5 31.6

MCE 56.3 43.8

TCN 58.5 47.1

ED 60.2 54.6

RL 62.7 52.2

EL 63.8 55.1

RULSTM 66.4 58.6

DCR 67.9 61.1

Numbers in bold are to highlight best performances under their settings

andRecall@5 respectively, establishing the new state-of-the-
art.

In Table 6, we report results on 50-Salads, a 3-rd view
video benchmark. Using the ViT backbone same as AVT,
DCR achieves a 3.1% performance gain on Top-1 accuracy
score. It shows DCR is a general training scheme not limited
to egocentric action anticipation, but also advances anticipa-
tion performance in third-person videos.

4.5 Results of Early Action Recognition

We conduct experiments on Early Action Recognition prob-
lem on EK55 and EG+ validation sets. Results are reported in
Tables 7 and 8, including Top-1 accuracy at different obser-
vation rates and Avg/Std/APD score described in Sect. 4.1.

On EK55, we use TSN backbones to encode RGB and
Optical Flow feature of frames, and FRCNN to encode OBJ
feature, same to the setting used in RULSTM (Furnari &
Farinella , 2020). For the separated model on each modal-
ity, both the LSTM and default Transformer version of DCR
perform better than the competitive RULSTM baseline. For

Table 4 Anticipation result
ensemble on EK55

Method Validation Test Seen (S1) Test Unseen (S2)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ATSN – 16.3 6.0 28.2 2.3 9.4

ED – 25.8 8.1 18.2 2.4 6.6

MCE – 26.1 10.8 25.3 5.6 15.7

RULTSM 15.3 35.3 14.4 33.7 8.2 21.1

FHOI 10.4 25.5 15.4 34.3 8.6 22.9

ImagineRNN – 35.6 14.7 35.0 9.3 22.2

ActionBanks 15.1 35.6 16.7 36.1 10.0 23.4

Ego-OMG 19.2 – 16.0 34.5 11.8 23.8

AVT 16.6 37.6 16.8 36.5 10.4 24.3

DCR 19.2 41.2 17.7 38.5 10.9 24.8

Numbers in bold are to highlight best performances under their settings
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Table 6 Anticipation results on
50S

Method Top-1

DMR 6.2

RNN 30.1

CNN 29.8

ActionBanks 40.7

AVT 48.0

DCR 51.1

Numbers in bold are to highlight
best performances under their
settings

example, usingRGB feature andLSTMstructure,DCR train-
ing strategy leads to 0.9% average accuracy gain, especially

1.2% gain at the lowest 12.5% observation rate. Our LSTM
model is more robust than classic RULSTM as it has better
performance measured by Std and APD. The more power-
ful Transformer model makes a further improvement, with
1.7% average accuracy gain and 0.39%/0.99% decreases on
Std/APD over RULSTM. The results on the FLOW modal
are similar. LSTM version DCR outperforms RULSTMwith
a 0.7%gain onAvg and 0.46%/0.37%decreases on Std/APD.
The Transformer model in DCR training scheme does bet-
ter, with 1.4% gain on Avg and 0.62%/0.61% decreases on
Std/APD. On OBJ modal, LSTM version DCR also outper-
forms RULSTM. But we observe an interesting phenomenon
between LSTM and Transformer. Though the powerful
Transformer model achieves better accuracy average, its pre-
diction ability seems to be not stable in this modality. LSTM

Table 7 Results of Early Action
Recognition on
EPIC-KITCHENS-55

Method Top-1 action accuracy at different observation rates Avg Std ↓ APD ↓
12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

RGB

RULSTM 20.1 23.0 24.4 25.5 26.7 27.5 27.8 28.3 25.4 2.63 2.89

DCR(LSTM) 21.3 24.4 25.4 26.6 27.5 27.8 28.5 28.7 26.3 2.34 2.44

DCR 22.2 25.3 26.0 27.6 28.5 28.9 28.9 29.0 27.1 2.24 1.90

FLOW

RULSTM 10.5 13.5 15.9 18.6 20.1 21.4 21.6 21.9 17.9 3.96 3.96

DCR(LSTM) 12.1 14.7 16.7 19.2 20.4 21.5 22.1 22.2 18.6 3.50 3.59

DCR 13.0 15.8 17.4 19.8 21.1 22.3 22.7 22.5 19.3 3.34 3.35

OBJ

RULSTM 12.9 12.9 13.6 14.1 14.9 15.2 15.8 16.1 14.4 1.17 1.66

DCR(LSTM) 14.2 15.4 16.0 16.6 17.0 17.4 17.5 17.6 16.5 1.11 1.09

DCR 13.5 15.1 16.4 17.3 18.3 18.3 18.7 19.1 17.1 1.83 2.01

FUSION

FN 19.6 23.9 25.7 26.9 27.5 28.3 28.2 28.4 26.1 2.84 2.34

RL 22.5 25.0 27.2 28.6 29.6 30.1 30.5 30.5 28.0 2.73 2.50

EL 19.7 23.3 26.0 27.5 29.1 29.9 30.9 31.4 27.2 3.79 4.17

LSTM 22.1 25.7 27.8 28.9 29.8 31.1 31.2 30.9 28.4 2.98 2.76

RULSTM 24.5 27.6 29.4 30.9 32.2 33.1 33.6 34.1 30.7 3.12 3.43

Ego-Omg 26.0 28.3 – 31.1 – 31.2 – – – – –

DCR 26.1 29.6 30.8 32.5 33.4 33.7 34.1 34.1 31.8 2.66 2.36

Numbers in bold are to highlight best performances under their settings

Table 8 Results of Early Action
Recognition on EGTEA GAZE+

Method Top-1 action accuracy at different observation rates Avg Std ↓ APD ↓
12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

FN 44.0 50.3 53.3 55.1 56.6 57.3 57.9 57.7 54.0 4.50 3.88

RL 45.4 51.0 54.2 56.6 58.1 58.9 59.3 59.5 55.4 4.66 4.12

EL 40.3 48.1 51.8 54.7 56.9 58.5 59.6 60.2 55.7 6.38 6.44

LSTM 50.2 53.8 55.7 57.2 58.0 58.8 59.1 59.3 56.5 2.96 2.79

RULSTM 45.9 51.8 54.4 57.1 58.2 59.3 60.1 60.2 55.9 4.66 4.33

DCR 51.5 54.8 57.2 58.5 59.4 60.0 60.3 60.2 57.7 2.93 2.57

Numbers in bold are to highlight best performances under their settings
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model does better at low-level observation rates and on the
measurements of model robustness.

Same to the anticipation experiments, we also make
model ensemble via late fusion. Our training scheme per-
forms state-of-the-art methods at all levels of observation
rates and achieves 1.1% average performance gain. Besides,
our training strategy shows superiority in model robustness.
Compared toRULSTM,DCRhas the same recognition accu-
racy at full observation but 1.6% better at 12.5% observation
rate. The performance drop is 8% forDCR,much better com-
pared to 9.6% for RULSTM. DCR achieves 0.46%/1.07%
decreases on Std/APD measurements, compared to RUL-
STM. DCR performs best on all metrics except APD. This
is mainly because baseline FN generally shows poor ability
in Early Action Recognition especially the accuracy at full
observation.

Early Action Recognition results on EGTEA GAZE+
show in Table 8. We fuse the predicted results of RGB and
FLOW input models to give final predictions. DCR also has
approaching performance at full observation rates but does
better at low-level observation, e.g. 5.6% performance gain
over RULSTM at 12.5% observation rate. Generally, DCR
achieves 1.2% average accuracy gain over the prior state-of-
the-art methods and also turns out to be best on all robustness
measurements.

4.6 Ablation Study

We conduct ablation studies to verify the effects of our
method.

InVideoActionAnticipation problem, we do experiments
on EK100 andEG+validation setswithRGB inputs. Tables 9
and 10 report results on Transformer and LSTM respectively.
(1) First, we compare a classification baseline by removing
every anticipation optimization. Each branch suffers a large
performance drop, indicating basic classification technique

Table 9 Ablation study of anticipation on Transformer

EK100 EG+

TSM TSN TSN

DCR 16.1 14.6 64.5

classification 13.7 12.7 58.5

w.o. pre-training 15.5 14.3 62.1

Te = 1 6.5 4.5 40.1

Te = 0 15.2 13.8 62.9

linear Te 15.0 13.9 64.0

exponential Te 15.6 14.2 64.2

w.o. Lrec 13.5 12.6 56.0

w.o. label smooth 14.8 13.3 62.3

Numbers in bold are to highlight best performances under their settings

Table 10 Ablation study of anticipation on LSTM

EK100

TSM TSN

DCR(LSTM) 15.2 14.5

classification 14.0 13.5

Te = 1 14.1 13.1

Te = 0 14.6 13.9

linear Te 15.0 14.2

exponential Te 15.2 14.4

w.o. Lrec 14.5 13.8

w.o. label smooth 14.0 13.3

Numbers in bold are to highlight best performances under their settings

is not suitable for direct anticipation. (2) Second, we analyze
Transformer models without order-aware pre-train. Their
performances degrade, especially a 2.4% drop on EG+. (3)
Third, we analyze different training routes on easiness sched-
ules. If we always train under Te=1, it turns out that training
and testing tasks have a large gap and models can’t transfer
well, especially for Transformer. If we always train without
using future context as Te=0, then the model gets trapped
in a local optimum and performs not very well. We con-
sider different global schedules of Te, like linearly decreasing
from 1 to 0 or exponentially multiplying γ = 0.95 after
each epoch. Though these methods may keep competitive
in some scenarios, they are empirically worse than our pro-
posed training route. (4) Last, we validate the effects of loss
components. Our model turns out to have the largest perfor-
mance drop without Lrec, even worse than the classification.
This is because different context complicates classification
without feature-level supervision. Moreover, without label
smoothing, we observe a quick loss decrease in training and
worse performance due to overfitting.

In Early Action Recognition problem, we do experiments
onEK55 validation set withRGB inputs. Results are reported
in Table 11. (1) First, we remove order-aware pre-training
for Transformers. Model performance degrades especially at
low-level observation, e.g., 1.0% drop at 25% observation.
(2) Second, we consider different schemes in sampling mul-
tiple training tasks. An alternative is to use vanilla uniform
distribution in sampling. But without balancing different
training difficulties of tasks, model performances hardly live
up to the standard DCR, especially on Std and APD mea-
surements. We also try to directly apply single-task training
route inEarlyActionRecognition. Though itmay get stuck in
certain tasks of more observations and perform better on eas-
ier tasks, its overall performance hardly reaches expectations.
BothTransformer andLSTMmodels have large performance
drops at 12.5%observation rates and turnout to be less robust.
(3) Last, we validate the effects of loss components. Remov-
ing Lrec leads to 0.8% and 1.3% average accuracy drops for
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Table 11 Ablation study of Early Action Recognition on EK55 with RGB-TSN backbone

Method Top-1 action accuracy at different observation rates Avg Std ↓ APD ↓
12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

DCR 22.2 25.3 26.0 27.6 28.5 28.9 28.9 29.0 27.1 2.24 1.90

w.o. pre-training 21.9 24.3 25.8 27.5 28.3 28.9 28.8 28.6 26.8 2.38 2.13

uniform sampling 21.8 24.7 26.0 27.2 28.4 28.6 28.9 29.0 26.8 2.38 2.17

single task route 19.4 23.6 25.3 27.4 28.3 28.9 29.7 29.9 26.5 3.38 3.35

w.o. Lrec 21.6 24.7 25.4 26.7 27.2 27.8 28.2 28.5 26.3 2.12 2.22

w.o. Lcon 21.4 25.1 26.0 27.5 28.1 28.7 29.0 28.5 26.8 2.40 2.19

w.o. label smooth 20.9 24.0 25.6 26.5 27.8 28.2 28.5 28.3 26.2 2.47 2.26

DCR (LSTM) 21.3 24.4 25.4 26.6 27.5 27.8 28.5 28.7 26.3 2.34 2.44

uniform sampling 20.4 22.9 24.2 25.5 26.5 27.3 28.2 28.2 25.4 2.58 2.80

single task route 17.3 21.6 24.4 25.2 26.5 27.3 27.8 27.2 24.7 3.35 3.12

w.o. Lrec 19.7 22.7 24.1 25.2 26.0 27.1 27.6 27.7 25.0 2.58 2.72

w.o. Lcon 20.5 23.2 25.2 26.5 27.5 27.8 28.2 28.6 25.9 2.64 2.68

w.o. label smooth 21.2 23.9 25.2 26.3 27.4 27.8 28.5 28.5 26.1 2.40 2.44

Numbers in bold are to highlight best performances under their settings

Fig. 7 Effect of order-aware pre-training. We sample 1000 segments
from EK100 validation set and color the order-aware tokens from pre-
training models according to their temporal positions. The models have
learned temporal dynamics (Color figure online)

Fig. 8 Qualitative cases of frame reconstruction. Blue dots are visible
frames. Crosses are the reconstructed future representation,much closer
to the exact frames (yellow and red dots) (Color figure online)

Transformer and LSTM. Though the average accuracy drop
for removing Lcon is marginal 0.3%, Lcon affects more at
low observation rate (e.g., 0.8% at 12.5% observation) and
benefits robustness metrics (Std, APD).

4.7 Qualitative Results

Wegivequalitative results to better characterize the reasoning
ability of our method.

First, we show what the model learns in the order-aware
pre-training phase. We sample 1000 segments from EK100
validation set and extract output tokens from pre-trained
order-aware Transformer. In Fig. 7, we use t-SNE (Van der
Maaten & Hinton , 2008) to embed them into a 2D space and
color frames according to their temporal positions. It shows
our pre-trained models have learned video dynamics in the
latent manifold, with a more comprehensive understanding
of temporal logic in videos.

Next, we show qualitative cases of frame reconstruction.
All frames and the model reconstruction are embedded via
t-SNE and scattered in Fig. 8. Blue ones are observed in
the anticipation task, while the yellow and red ones are
future frames. The reconstructed frames marked as crosses
are closer to the cluster of future frames.

5 Conclusion

In this paper,wepropose a novel strategyDCRonhow to train
models to tackle video action predictive problems including
Video Action Anticipation and Early Action Recognition.
We design an effective curriculum training route for the
single-task Video Action Anticipation. Besides, we observe
the multi-tasking nature of Early Action Recognition and
propose new techniques on task sampling and learning con-
straints. Our training strategy follows the intuitive learning
process of humans and flexibly advances widely-used rea-
soning models in effectiveness and efficiency. In extensive
experiments, we establish new state-of-the-art results on sev-
eral widely usedVideoActionAnticipation and Early Action
Recognition benchmarks.
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However, there are also some limitations and potential
negative impacts on our work. Our work is empirically vali-
dated but more theories need to be done in future works. We
trainmodels onhuman-annotateddatasets,whichmay import
bias from human-defined labels. A possible further solution
for debiasing is to utilize unsupervised learning techniques
on a larger scale of data. On the usage of our method, action
prediction techniques are generally harmless except for some
malicious use for bad-intended prediction. We encourage a
proper use of technology that benefits mankind. 1
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