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Abstract
Recent studies have shown promising results on joint learning of local feature detectors and descriptors. To address the lack
of ground-truth keypoint supervision, previous methods mainly inject appropriate knowledge about keypoint attributes into
the network to facilitate model learning. In this paper, inspired by traditional corner detectors, we develop an end-to-end deep
network, named Deep Corner, which adds a local similarity-based keypoint measure into a plain convolutional network. Deep
Corner enables finding reliable keypoints and thus benefits the learning of the distinctive descriptors. Moreover, to improve
keypoint localization, we first study previous multi-level keypoint detection strategies and then develop a multi-level U-Net
architecture, where the similarity of features at multiple levels can be exploited effectively. Finally, to improve the invariance
of descriptors, we propose a feature self-transformation operation, which transforms the learned features adaptively according
to the specific local information. The experimental results on several tasks and comprehensive ablation studies demonstrate
the effectiveness of our method and the involved components.
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1 Introduction

Local feature detection and description are essential stages
for various applications, such as structure-from-motion (Heinly
et al., 2015), image retrieval (Sivic & Zisserman, 2003), and
visual localization (Svärm et al., 2017; Li et al., 2012). Due to
the crucial role in computer vision, these two problems have
been studied extensively over several decades. A classical
approach to local features is first obtaining the location of
keypoints using hand-crafted detectors (Lowe, 2004; Harris
et al., 1988; Mikolajczyk & Schmid, 2004; Bay et al., 2006;
DeTone et al., 2018), and then extracting the representations
for each point using hand-crafted descriptors (Lowe, 2004;
Mikolajczyk & Schmid, 2005), a.k.a, detect-then-describe.
In recent years, the success of Deep Convolutional Neu-
ral Networks (DCNNs) in various computer vision tasks
has promoted the research on deep learning-based detec-
tor (Barroso-Laguna et al., 2019; Savinov et al., 2017; Verdie
et al., 2015; Zhang et al., 2017) and descriptor (Simo-Serra
et al., 2015; Ebel et al., 2019a; Tyszkiewicz et al., 2020;
Tian et al., 2017, 2020b; Yi et al., 2016a; Mishkin et al.,
2018; Yi et al., 2016b; Wang et al., 2020; Tian et al., 2019;
Luo et al., 2018; Ebel et al., 2019b). However, these meth-
ods still follow the detect-then-describe pipeline. Recently,
joint learning of detector and descriptors, a.k.a, describe-
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Fig. 1 Illustration of different keypoint detection measures. Bottom:
traditional methods (Harris et al., 1988; Moravec, 1977), based on the
pixel intensity variation within a shifted window; Up: ours, based on
the similarity of deep features

and-detect, has received more and more attention (Luo et al.,
2020; Dusmanu et al., 2019; Revaud et al., 2019) due to its
simplicity in the pipeline.

Unlike high-level computer vision tasks, such as object
detection (Girshick et al., 2014) and semantic segmenta-
tion (Long et al., 2015), it is hard to manually label the
ground truth location of keypoints, which is semantically
ill-defined (DeTone et al., 2018). A feasible way to learn the
keypoints is using an available detector to extract potential
keypoints as the pseudo-label and then training the key-
point detection model in a supervised manner. For example,
TILDE (Verdie et al., 2015) exploits SIFT to detect the
keypoints at multiple scales and selects positive and nega-
tive samples according to the repeatability. In comparison,
SuperPoint (DeTone et al., 2018) firstly trains a detector on
a synthetic dataset consisting of simple geometric shapes
with no ambiguity in the keypoint locations, such as vertices
of triangles. Then, the pre-trained detector is applied to the
real image many times by sampling random homographies
to generate pseudo-labels which are used to further adapt the
detector to real data. To generate reliable pseudo keypoints,
the detector is generally required to process each training
image many times, such as 100 homographies in SuperPoint.

Another solution is learning the detector and descriptor
directly from the training real images without an additional
pseudo keypoints extraction process (Dusmanu et al., 2019;
Luo et al., 2020; Tyszkiewicz et al., 2020; Revaud et al.,
2019). For example, D2Net (Dusmanu et al., 2019) and
ASLFeat (Luo et al., 2020) develop a joint optimization
approach for detector and descriptor learning, which enables
the locally distinctive pixels to get higher detection score, i.e.,
be potential keypoint. In comparison, DISK (Tyszkiewicz
et al., 2020) defines the matching score as a reward and
exploits policy gradient method to optimize the keypoint
score. For this kind of solution, since there is no ground truth
keypoint as the supervision for model learning, it is impor-
tant to define a training objective which can implicitly guide

the network to maximize the detection score of the potential
keypoints. To achieve this, D2Net (Dusmanu et al., 2019)
directly derives the keypoints from the deep featuremaps that
are considered as the detection response map in traditional
approaches (Lowe, 2004). FollowingD2Net (Dusmanu et al.,
2019), ASLFeat (Luo et al., 2020) proposes the peakiness
measure at multiple scales, which benefits the accurate local-
ization of keypoints. R2D2 (Revaud et al., 2019) proposes
to jointly learn a reliability map by maximizing the local
peakiness and a repeatability map bymodeling the descriptor
matching precision. These methods mainly study the charac-
teristics of keypoints and devise a keypoint detection score
formulation that can guide the network to learn the detec-
tor. In fact, traditional hand-crafted detectors have made
great efforts to define the keypoint score, which enables us
to explore whether we can combine the efficient traditional
detectors with deep neural networks in this paper.

Specifically, we investigate insights from the traditional
corner detectors, especially those based on either gradi-
ent (Harris et al., 1988; Shi et al., 1994; Moravec, 1977)
or intensity (Trajković & Hedley, 1998). For instance, the
seminal Moravec’s corner detector (Moravec, 1977) defines
a corner to be a point with low self-similarity, i.e., how simi-
lar a patch centered on the pixel is to nearby and overlapping
patches, as shown in Fig. 1. The similarity is calculated as the
sum of squared differences (SSD) between the correspond-
ing pixels of two patches. Finally, the cornerness measure
is defined as the smallest SSD between the patch and its
neighbours in horizontal, vertical, and diagonal directions.
Inspired by the classical corner detectors, we propose a new
deep learning-based approach for joint detector and descrip-
tor learning. In DCNNs, each point located in the learned
deep feature maps corresponds to a patch in the original
image. Therefore, we can consider the similarity between
spatially nearby feature vectors as the similarity between cor-
responding patches in the original image, as shown in Fig. 1.
Based on this connection, we introduce a similarity-based
keypoint measure, which evaluates the similarity between
each pixel and its neighbours on the CNN feature maps. Our
approach can be viewed as a corner detector that utilizes deep
neural networks to compute the cornerness measure and thus
we term our approach as Deep Corner.

Here, we first show the superiority of our Deep Corner
through a simple experiment. We train two models with the
same structure on GL3D dataset (Shen et al., 2018) using
our similarity-based measure (S.M.) and CNN feature-based
peakiness measure (F.M.) (Revaud et al., 2019; Luo et al.,
2020), respectively. We report the %Rep and %MMA (higher
better) on HPatches (Balntas et al., 2017) at different train-
ing stages in Fig. 2. We can find that our method performs
better, even in the initialization state. Moreover, we also try
to use our learned keypoint measure to guide the detector
learning of F.M. using knowledge distillation (Hinton et al.,
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Fig. 2 Repeatability (%Rep) and Mean Matching Accuracy (%MMA)
on HPatches (Balntas et al., 2017) at different training stages

2015; Gou et al., 2020), which is referred to as F.M./S. With
the supervision, F.M./S can improve the performance at the
beginning stage, but the overall performancedoes not change.
The results indicate that our similarity-basedmeasure, which
is derived from the traditional corner detector, is more effec-
tive than the keypoint detectormeasure solely basedonCNNs
to find the potential keypoints.

Apart from the new similarity-based measure, we fur-
ther improve the keypoint localization accuracy and the
distinctiveness of descriptors by incorporating a multi-level
structure and a feature self-transformation layer. Specifically,
since the keypoint localization is a pixel-level task, it would
be helpful to calculate the keypoint measure in the feature
maps with the original resolution. To achieve this, we design
amulti-level architecture based onU-Net (Ronneberger et al.,
2015), namedMU-Net, which deploys the U-Net structure at
multiple levels. The developed MU-Net is able to associate
the high-level information with the local structure informa-
tion and also preserve the local details through up-sampling
feature maps at different scales to the original resolution.
Moreover, in the typical CNN framework, all weights and
biases are shared across all spatial locations, which might be
not effective in learning invariant features robust to complex
changes within image pairs. To make the network more flex-
ible to model robust representations efficiently, we propose
a feature self-transformation operation, which transfers the
learned features into a new space by learning a scale fac-
tor and an offset factor adaptively according to the encoded
content in each location. In addition, the feature maps usu-
ally contain specific information in each channel, and it is
likely that the similarity between some channels is more
related to the cornerness. Therefore, we further study to
extend the similarity-based measure in Deep Corner to a
multi-group version, where the feature maps are split into
multiple groups and we compute the keypoint measure for
each group. We conduct a series of experiments and ablation
studies to analyze our method quantitatively and qualita-

tively. The experimental results on several benchmarks can
demonstrate the effectiveness of our method.

2 RelatedWork

Detect-then-describe is a classical pipeline for local features,
where the keypoints are firstly extracted by the detec-
tors (Lowe, 2004; Zhang et al., 2023; Barroso-Laguna et al.,
2019; Savinov et al., 2017; Verdie et al., 2015; Zhang et al.,
2017; Harris et al., 1988; Richardson & Olson, 2013; Tian
et al., 2020a; Mikolajczyk & Schmid, 2004; Zhao et al.,
2022b; Bay et al., 2006) and then represented into a feature
vector using the descriptors (Simo-Serra et al., 2015; Tian
et al., 2017, 2020b; Lowe, 2004; Mikolajczyk & Schmid,
2005; Yi et al., 2016a; Mishkin et al., 2018; Yi et al., 2016b;
Keller et al., 2018; Balntas et al., 2016; Wang et al., 2020;
Tian et al., 2019; Luo et al., 2018; Ono et al., 2018; Ebel
et al., 2019b; Mishchuk et al., 2017; Wang et al., 2022a).
The detection and description are usually two independent
processes. In the following,we review related previousworks
for detector and descriptor separately.

Both detectors and descriptors can be hand-crafted or
learning-based. In recent years, with the advent of DCNNs,
noticeable progress has been achieved in the learning-based
solution, especially for the descriptors. A key object of deep
descriptor models is learning shape-invariant features, which
are insensitive to scale or view changes. One way to achieve
this is exploiting data augmentation techniques, e.g., affine
transformations including rotation and scaling, on the image
patches (Luo et al., 2019; Tian et al., 2017; Luo et al., 2018;
He et al., 2018; Tian et al., 2019). Additionally, there are
some methods (Potje et al., 2021; Yi et al., 2016c, a) directly
modeling the shape-aware parameters. For example, Yi et al.
(2016c), Yi et al. (2016a) attempt to learn a canonical orienta-
tion for each feature point byminimizing the feature distance
between positive patches (Yi et al., 2016c) or through the
Spatial Transformer (Jaderberg et al., 2015) operation (Yi
et al., 2016a). To improve existing descriptors, including
both hand-crafted and learning-based, Wang et al. (2022d)
develop a lightweight neural network with two stages, i.e.,
self-boosting and cross-boosting, which achieve the descrip-
tor enhancement by exploiting geometric properties of the
keypoints and mining the possible correlation between dif-
ferent keypoints, respectively. To address the limitation that
more invariance might make descriptors less informative,
Pautrat et al. (2020) and Li et al. (2022a) study the invariance
selection for adapting the local feature descriptors to adverse
changes in images. The former achieves this by developing
a meta descriptor approach to automatically select the best
invariance from learned several local descriptors with mul-
tiple variance properties; while the latter adopts a similar
strategy but exploits a parallel self-attention module to get
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the meta descriptors. To alleviate the requirement for per-
pixel correspondence-level supervision, Revaud et al. (2022)
devise an unsupervised learning strategy for local descrip-
tors through explicitly integrating two matching priors (i.e.,
local consistency and uniqueness of the matching) in the
loss objective. Recent years have witnessed that the features
extracted in the original image can be exploited to recover
the image appearance (Weinzaepfel et al., 2011; Mai et al.,
2018), which might cause privacy disclosure. To protect sen-
sitive information, privacy-preserving local descriptors have
been also studied recently (Dusmanu et al., 2021; Ng et al.,
2022).

DCNNs based detector learning focuses on the repeata-
bility. For example, Verdie et al. (2015) propose to learn
an efficient piece-wise linear regressor robust to drastic
illumination changes as the keypoint detector, whileBarroso-
Laguna et al. (2019) study the hand-crafted and learned
features together in a shallowmulti-scale network and extract
keypoints at different scales. Aiming at detecting rotation-
invariant keypoints against geometric variations, (Lee et al.,
2022) develop a self-supervised equivariant learning strategy
based on group-equivariant convolutional neural networks
with a proposed dense orientation alignment loss. To achieve
the spatial distribution uniformity of keypoints and then
improve the high-level matching tasks, Yan et al. (2022)
devise an objective function integrating uniformity and
repeatability. Due to the non-differentiable property, an alter-
nate optimization algorithm is further developed to optimize
the objective efficiently. In addition, a straightforward and
interesting way to take advantage of the capability of deep
learning for keypoint detection is applying the traditional cor-
ner detection strategy (Harris et al., 1988) directly on the deep
features extracted from a pre-trained deep model. For exam-
ple, D2D (Tian et al., 2020a) introduces two terms, named
absolute saliency measure and relative saliency measure,
to find keypoints from a pre-trained descriptor without any
additional training. D2D only focuses on the keypoint detec-
tion and does not learn the detector and descriptor jointly,
which might be not able to mine the capacity of deep neu-
ral networks effectively. In comparison, we investigate the
traditional detector strategy in a describe-and-detect frame-
work by designing suitable measures and operations for both
detector and descriptor learning.
Describe-and-detect (Luo et al., 2020;Barroso-Laguna et al.,
2020; Dusmanu et al., 2019; Christiansen et al., 2019; Zhang
et al., 2020; DeTone et al., 2018; Revaud et al., 2019; Liu
et al., 2021; Bhowmik et al., 2020; Shen et al., 2019; Suwan-
wimolkul et al., 2021; Zhao et al., 2022a; Tyszkiewicz et al.,
2020; Wang et al., 2022c; Santellani et al., 2022; Yang et al.,
2022; Siqueira et al., 2022; Sun et al., 2022b) aims to extract
the keypoints and corresponding descriptors in a single stage.
Dusmanu et al. (2019) propose the first solution, i.e., D2Net.
D2Net couples the feature detectorwith the feature descriptor

tightly, where the detection map and the descriptors are from
the same deep featuremaps. They use theVGG16 (Simonyan
& Zisserman, 2015) pre-trained on ImageNet (Krizhevsky
et al., 2012) to initialize the backbone network. However,
D2Net is prone to low accuracy of keypoint localization.
To address this issue, Luo et al. (2020) propose a simple
multi-level keypoint detection maps fusion strategy. Addi-
tionally, they exploit the deformable convolution (Zhu et al.,
2019) to extract geometric-invariant features. In compari-
son, Revaud et al. (2019) propose to estimate a reliability
map as well as a repeatability map for learning repeatable
and reliable matches. To address the problem of ambiguity
in the ground truth, DeTone et al. (2018) propose to train the
network with two branches, one for detector and the other
for the descriptor, on synthetic data with the pseudo-ground
truth using self-training. ASLFeat achieves state-of-the-art
scores on multiple tasks among these methods. To make the
model perform better on the downstream task, like matching,
Tyszkiewicz et al. (2020) exploit a different learning strat-
egy by optimizing the matching reward in a reinforcement
learning framework. Instead of using a series of convolu-
tional operations as previous methods did,Wang et al. (2021)
exploit the Transformer structure (Vaswani et al., 2017) to
capture the long-range dependencies and then improve the
feature representation. Similarly, in Wang et al. (2022b), the
transformer is also exploited to capture wider spatial context
to construct robust local descriptors. To fully exploit both
low-level and high-level features, Sun et al. (2022b) develop
an adaptive multi-level feature fusion structure for descriptor
learning. Considering that it might be challenging to jointly
train the detector and descriptor in the describe-and-detect
pipeline, Li et al. (2022b) propose to decouple the detection
stage from the description step and first learn the description
network which is then frozen when the detection network
is training. In this paper, we follow the training scheme in
D2Net and ASLFeat, while aiming at studying the learning
of detectors and descriptors through taking advantage of the
similarity between neighboured points.

3 Deep Corner

In this section, we introduce our approach in detail, including
the similarity based measure for keypoint detection, feature
self-transformation for descriptor learning. Before present-
ing our method, we first briefly review two previous works,
i.e., D2Net (Dusmanu et al., 2019) and ASLFeat (Luo et al.,
2020), which are closely related to our work.

3.1 Revisiting D2Net and ASLFeat

Let I ∈ R
H×W and X = F(I ) ∈ R

C×H ′×W ′
denote the input

image and deep representation acquired from the network F ,
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Fig. 3 Architecture of Deep Corner. The notations are identical to the text. Conv_km_sn represents the convolution with m × m kernel and stride
of n × n. Zoom in for best view

where H (H ′) and W (W ′) represent the height and width of
I (X ), respectively, andC represents the number of channels.
Based on the representation X , D2Net (Dusmanu et al., 2019)
gives the following definition of a keypoint:

(i, j) is a keypoint ⇐⇒Xc
i j is a local max. in Xc,

with c = argmax
t=1,2,...,C

Xt
i j .

(1)

According to the definition, D2Net and ASLFeat design
different formulations to calculate the keypoint measure. In
addition, in contrast to D2Net, which only considers the last
feature maps for the computation of keypoint measure map,
ASLFeat exploits the feature maps at multiple scales, and
fuses the measures via the summation operation.

To train the network, a set of image pairs and the cor-
respondences between them are required. Considering an
image pair (I , I ′) and the correspondence set O between
them, we denote the keypoint measure by so and s′

o, the
descriptor (feature vector) by xo and x′

o for each correspon-
dence o ∈ O. Then, the loss function in D2Net and ASLFeat
is written as:

L(I , I ′) = 1

|O|
∑

o∈O

sos′
o∑

q∈O sqs′
q
M(xo, x′

o), (2)

whereM(x, x′)denotes the ranking loss for descriptor learn-
ing. In ASLFeat, the hardest-contrastive form (Choy et al.,
2019) is exploited to implement M(x, x′) as follows:

M(xo, x′
o) = [d(xo, x′

o) − m p]+
+ [mn − min(min

l �=o
d(xo, x′

l), min
l �=o

d(xl , x′
o))]+,

(3)

where d(x, x′) denotes the Euclidean distance, and m p and
mn represent the predefined margins. In the following, we
introduce our method with the notations defined above.

3.2 Keypoint Detection

Similarity-based keypoint measure. Traditional works on
corner detection select the points with distinctive proper-
ties (Harris et al., 1988; Shi et al., 1994). Our Deep Corner,
inspired by Moravec’s corner detector (Moravec, 1977),
defines a corner to be a point with low self-similarity. The
self-similarity is defined as the similarity between the patch
centered on the pixel and the nearby overlapping patches.Our
method is based on the same principle but our approach dif-
fers fromMoravec’s corner detector in two aspects. First, we
consider the self-similarity property on the learned deep fea-
ture maps instead of the raw pixels. As a location in the deep
featuremaps corresponds to a patch in the original image, the
similarity between deep feature vectors corresponds to the
measuring similarity of corresponding patches using CNN
features, which contain richer structural information than the
raw pixels. Second, based on self-similarity, we propose a
new distinctiveness measure function that is differentiable
and thus enables end-to-end learning of the network param-
eters.

Specifically, we expect the network to be able to detect the
point which is distinctive in the local patches and at the same
time the distinctiveness of which is also a local maximum.
The former condition guarantees the local uniqueness of the
keypoints. However, for a region with complicated textures,
it is easy to find a point that differs from its neighbours.
Therefore, the network might detect the keypoints with low
repeatability. To alleviate this issue, we introduce the second
requirement, which further constrains the local structure of
the keypoints. As a result, we provide the following definition
for the detector:

(i, j) is a keypoint ⇐⇒(1) S(Xi j , Xi j ) is the only max.

in {S(Xi j , X pq)}(p,q)∈N (i, j),

and (2) Di j is a local max. in D.

(4)
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Here, S(x1, x2) = 1
exp(||x1−x2||2) represents the similarity

between two feature vectors x1 and x2, D denotes the local
distinctiveness map, and N (i, j) represents the neighbours
of point (i, j). As S(Xi j , Xi j ) is always equal to 1, we thus
define the distinctiveness as the average distance between the
pixel (i, j) and its neighbors instead of S(Xi j , Xi j ) itself. In
detail, we calculate the distinctiveness Di j measuring the
difference between the point (i, j) and its neighbours as fol-
lows:

Di j = S(Xi j , Xi j ) − 1

|N̄ (i, j)||
∑

(p,q)∈N̄ (i, j)

S(Xi j , X pq),

= 1 − 1

|N̄ (i, j)|
∑

(p,q)∈N̄ (i, j)

S(Xi j , X pq),

(5)

where N̄ (i, j) = {(p, q)|(p, q) ∈ N (i, j), (p, q) �=
(i, j)}, i.e., N̄ (i, j) does not contain the point (i, j) itself.

Based on the local distinctiveness map D, we calculate
the measures for the two conditions in Eq. 4, which can be
optimized in a deep neural network. Specifically, for each
location (i, j), to achieve the first condition in Eq. 4, we
define a measure: αi j = Di j .

For the second condition, we calculate a measure reflect-
ing the local maximum property of the distinctiveness of the
keypoint, written as:

βi j = σ

⎛

⎝Di j − 1

|N̄ (i, j)|
∑

(p,q)∈N̄ (i, j)

Dpq

⎞

⎠ , (6)

where σ is a non-linear activation function to enforce all
measures to be positive. In our experiments, we select the
Sof t Plus function as the activation. The final measure si j

of point (i, j) is obtained by:

si j = αi jβi j . (7)

Multi-level detection. To improve the keypoint localiza-
tion accuracy, ASLFeat (Luo et al., 2020) resorts to the
feature maps at multiple levels, which have different reso-
lutions/scales. Specifically, it first gets the measure maps at
different scales. Then, it up-samples the maps with low reso-
lution to the original resolution, and a summation operation is
exploited to fuse thesemaps.However, the fine information is
lost at the low-resolutionmaps, and as a result, it is difficult to
directly compute the keypoint detection measure from those
feature maps. More specifically, the location in the map with
low resolution corresponds to a large region in the original
image, and the adjacent points are distant from each other in
the original image. Therefore, the relationship (local maxi-
mum or dis-similarity) between the adjacent points cannot
measure the distinctiveness well. To address this issue, we

choose to firstly up-sample the feature maps to have the same
spatial resolution as the featuremaps at the first level (original
resolution), and then calculate the keypoint measure on all
up-sampled feature maps. As a result, the multi-level infor-
mation can be exploited without the negative impact caused
by the low resolution. Despite the subtle difference, the per-
formance gain brought by our multi-level is significant, as
shown in the experimental results.

To achieve this, we propose a multi-level U-Net struc-
ture (MU-Net), in which low-resolution feature maps at
each level are up-sampled progressively within a U-Net
architecture (Lin et al., 2017), as shown in Fig. 3. In our
experiments, we consider three levels, i.e., X1 ∈ R

C1×H×W ,

X2 ∈ R
C2× H

2 × W
2 , and X3 ∈ R

C3× H
4 × W

4 , where C∗ denotes
the number of channels. We up-sample X2 and X3 into the
same spatial resolution as X1 and change the number of
feature channels by using the deconvolution operation, and
denote the up-sampled features by X1↑ ∈ R

C1×H×W and
X1↑↑ ∈ R

C1×H×W , respectively. Then, we calculate the key-
point measure map according to Eqs. 5–7 from X1, X1↑

and
X1↑↑

, and combine the measures together through the sum-
mation operation.
Multi-group detection. The deep features tend to encode
specific information/concept (Yang et al., 2020) in different
channels. Therefore, it is likely that the similarity between
some channels is more related to the cornerness, while others
are not very related, such as those encoding the brightness. In
other words, it is sufficient to consider the similarity in those
channels. Motivated by this, we split the feature maps X into
G groups along the channel dimension, each group contain-
ing C

G channels. Then we compute the keypoint measure for
each group, which is represented as sg , and take the maxi-
mum as the final measure. Therefore, Eq. 7 can be extended
to:

si j = max
g=1,2,...,G

sg
i j

= max
g=1,2,...,G

α
g
i jβ

g
i j ,

(8)

where ∗g
i j denotes the measure value of point (i, j) at the gth

group. We apply Eq. 8 into X1, X1↑
and X1↑↑

, respectively.
We visualize themeasuremaps at different groups for a better
understanding in the ablations.

3.3 Descriptor Learning

Our work is not only aimed at finding keypoints, but also
extracting descriptors for each keypoint. In the standardCNN
framework, the learned weights and biases are shared across
all spatial locations. Since the images to be matched usually
contain contents with different conditions, it is challenging
to model representations robust to the complex changes. To
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Fig. 4 Experimental results on HPatches (Balntas et al., 2017).We pro-
vide the MMA at different error thresholds on the whole dataset, the
Illumination set and the Viewpoint set, respectively. We also show the
number of features (# Features) and matches (# Matches), and the ratio

of #Matches to # Features. The suffix (*k) of themethod name indicates
the number of detected features. Zoom in for best view (Color figure
online)

provide a remedy, we propose the feature self-transformation
operation, which transfers the feature representation from the
original space into a new space adaptively according to the
encoded local information. In detail, a scale factor and an
offset factor are first learned adaptively from the featuremaps
to be transformed. Since the scale factor and offset factor
varies from location to location, then the feature extractor
has a larger capacity to learn more robust invariant features
in a flexible way when we apply the learned scale and offset
factors on the corresponding feature maps. For the learned
features X , the self-transformation operation is defined as
follows:

X̂ = X · Fφ(X) + Fψ(X), (9)

where Fφ and Fψ denote two convolutional operations with
ReLU activation, respectively, X̂ represents the new feature
maps, and · denotes the element-wise multiplication. Equa-
tion9 represents that a scale factor Fφ(X) and an offset factor
Fψ(X) are firstly learned adaptively from the feature itself,
which are then used to transform the feature into a new space.

To better transform the features, we exploit the self-
transformation in multiple layers. Since here we aim to
improve the descriptor, the self-transformation is adopted

in the three layers before the learned descriptor, as shown in
Fig. 3.Moreover, in our experiments, we find that the detector
information is also beneficial to improve the distinctiveness
of the descriptor, as the detector can also provide some details
for the local information. In detail, as shown in Fig. 3, we
exploit the feature self-transformation, which follows the
convolutional layer, at the last level. We first encode X1, X1↑

and X1↑↑
into a new representation Xnew by exploiting the

concatenation operation and two convolutional operations.
Then, for the feature maps X to be transferred, the feature
self-transformation in Eq. 9 can be re-written as:

X̂ = X · Fφ([Xnew||X ]) + Fψ([Xnew||X ]), (10)

where [·||·] denotes the concatenation operation. In our
experiments,wewill show the capability of the proposed self-
transformation for improving the invariance of the descriptor.

3.4 Implementation

Architecture. The architecture is shown in Fig. 3. The back-
bone network is similar to that used in L2Net (Tian et al.,
2017), ASLFeat (Luo et al., 2020), and R2D2 (Revaud et al.,
2019). In detail, the backbone consists of three levels. There
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are 2, 2, and 5 convolutional layers at the first, second, and
third levels, respectively. The feature maps X1 and X2 are
the output of the second convolutional layer at the first and
second levels, respectively. Since we want to exploit the up-
sampled featuremaps to guide the feature self-transformation
in the last convolutional layers, we thus use the output of the
second convolution at the third level as X3 instead of the
last one, as shown in Fig. 3. For the outputs of the second
to the fourth convolutional layers at the last level, we apply
the proposed feature self-transformation operation. N̄ (i, j)
in Eq. 5 contains 24 neighbours sampled uniformly from
a 9 × 9 region centered on pixel (i, j) (excluding itself).
N̄ (i, j) in Eq. 6 contains 8 neighbours sampled uniformly
from a 7×7 region centered on pixel (i, j) (excluding itself),
as ASLFeat does. In addition, we set the number of groups
to 4. We implement our method using PyTorch.

Training details. Similar to Luo et al. (2020) and Luo
et al. (2018), we train our network on around 800k image
pairs from GL3D (Shen et al., 2018) and (Radenović et al.,
2016) containing the ground truth cameras and depths. We
train the network from scratch with the batch size of 2 and
use the SGD optimizer with the momentum of 0.9. We first
train the main network without the feature transformation
for 400k iterations with the initial learning rate of 0.1. Then
we train the whole network initialized with the pre-trained
weights for another 200k iterations with the initial learning
rate of 0.01. The training loss is the same as that used in
ASLFeat (Luo et al., 2020), i.e., Eqs. 2 and 3, where m p and
mn are set to 0.2 and 1.0, respectively.

Inference. Following previous works (Dusmanu et al.,
2019; Luo et al., 2020), we first exploit a non-maximum
suppression sized 3 to filter the keypoints that are adjacent.
Then, we use the local refinement (Lowe, 2004) to improve
the position of detected key points. Lastly, we extract the
descriptors at the refined locations using the bilinear inter-
polation operation. To address the scale changes, we apply
the multi-scale detection (referred to as ‘MS’ in our exper-
iments) by resizing the image into different resolutions and
then detecting keypoints at each scale during testing, as done
in previous works (Dusmanu et al., 2019; Luo et al., 2020;
Revaud et al., 2019).

4 Experiments

To demonstrate the effectiveness of our method, we provide
quantitative comparisons against previous related methods
on three tasks, including image matching, 3D reconstruc-
tion, and visual localization.We also conduct comprehensive
ablation studies to analyze our method.

4.1 ImageMatching

Datasets. We consider two datasets, i.e., HPatches (Balntas
et al., 2017) and FM-Bench (Bian et al., 2019), for the image
matching task.

In the HPatches dataset, there are 116 available image
sequences, and we select 108 sequences for evaluation, as
done in D2-Net (Dusmanu et al., 2019) and ASLFeat (Luo
et al., 2020). Each sequence consists of 6 images, and there
exists only illumination change in 52 sequences and only
viewpoint change in the other 56 sequences. Following pre-
vious works (Luo et al., 2020; Revaud et al., 2019; Dusmanu
et al., 2019), we use three metrics to evaluate our method,
including (1) Repeatability (%Rep): the ratio of the number
of possible matches found in the two images to the minimum
number of detected keypoints in the shared view; (2) Match-
ing Score (%M.S.): the ratio of the number of correct matches
found in the image pair and theminimum number of detected
keypoints in the shared view; (3) Mean Matching Accuracy
(%MMA): the ratio of the number of correct matches to the
number of matches found through applying nearest-neighbor
search on the descriptors. The ‘possiblematch’ inRepeatabil-
ity indicates that the point distance is below a given threshold
after the homographywarping. The ‘correctmatch’ inMatch-
ing Score and Mean Matching Accuracy indicates that the
match found through applying a nearest-neighbor search on
the descriptors is a ‘possible match’.

FM-Bench dataset contains images from four different
datasets, including TUM dataset (Sturm et al., 2012), KITTI
dataset (Geiger et al., 2012), Tanks and Temples dataset
(T&T) (Knapitsch et al., 2017), and Community Photo
Collection (CPC) (Wilson & Snavely, 2014). For evalu-
ation, we first estimate the fundamental matrix through
keypoints and descriptors extraction, matching by the plain
nearest-neighbor search, bad matches rejection (e.g., Lowe’s
ratio test (Lowe, 2004)), and geometric verification (e.g.,
RANSAC (Fischler & Bolles, 1981)) successively. To mea-
sure the estimation accuracy, we compute the Normalized
symmetric geometry distance (SGD) (Zhang, 1998) error and
classify the estimates with the error below a certain thresh-
old as accurate, as done in FM-Bench. Following (Bian et al.,
2019; Luo et al., 2020), we use the %Recall, which indicates
the ratio of accurate estimates to all estimates, for the over-
all performance evaluation. In addition, %Inlier/%Inlier-m
is also used to show the matching performance after/before
RANSAC, while the correspondence number after/before
RANSAC (%Corr/%Corr-m) is also reported for analysis
on the results rather than performance comparison.

Comparisons on HPatches. We report the results of pre-
vious approaches which follow the detect-then-describe or
describe-and-detect pipeline. For the former pipeline, we
consider (1) Hessian Affine keypoint detector (Mikolajczyk
& Schmid, 2004) + RootSIFT descriptor (Arandjelović &
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Table 1 Results on
FM-Bench (Bian et al., 2019)
for pair-wise image matching

Methods %Recall ↑ %Inlier ↑ %Inlier-m ↑ #Corrs(-m)

TUM

SIFT (Lowe, 2004) 57.40 75.33 59.21 65 (316)

SIFT+HN++ (Mishchuk et al., 2017) 58.90 75.74 62.07 67 (315)

HAN (Mishkin et al., 2018) + HN++ 51.70 75.70 62.06 101 (657)

SIFT + ContextDesc (Luo et al., 2019) 59.70 75.53 62.61 69 (325)

LF-Net (MS) (Ono et al., 2018) 53.00 70.97 56.25 143 (851)

D2-Net (MS) (Dusmanu et al., 2019) 34.50 67.61 49.01 74 (1279)

SuperPoint (DeTone et al., 2018) 45.80 72.79 64.06 39 (200)

R2D2 (MS) (Revaud et al., 2019) 57.70 73.70 61.53 260 (1912)

ASLFeat (Luo et al., 2020) 60.20 76.34 69.09 148 (739)

ASLFeat (MS) (Luo et al., 2020) 59.90 76.72 69.50 258 (1332)

FRLNet (Sun et al., 2022b) 61.90 77.45 70.43 260 (1485)

Ours 64.10 76.27 69.26 295 (1662)

Ours (MS) 67.60 76.73 70.51 581 (3137)

KITTI

SIFT (Lowe, 2004) 91.70 98.20 87.40 154 (525)

SIFT+HN++ (Mishchuk et al., 2017) 92.00 98.21 91.25 159 (535)

HAN (Mishkin et al., 2018) + HN++ 90.40 98.09 90.64 233 (1182)

SIFT + ContextDesc (Luo et al., 2019) 92.20 98.23 91.92 160 (541)

LF-Net (MS) (Ono et al., 2018) 80.40 95.38 84.66 202 (1045)

D2-Net (MS) (Dusmanu et al., 2019) 71.40 94.26 73.25 103 (1832)

SuperPoint (DeTone et al., 2018) 86.10 98.11 91.52 73 (392)

R2D2 (MS) (Revaud et al., 2019) 78.80 97.53 86.49 278 (1804)

ASLFeat (Luo et al., 2020) 92.20 98.69 96.25 444 (1457)

ASLFeat (MS) (Luo et al., 2020) 92.20 98.76 96.16 630 (2222)

FRLNet (Sun et al., 2022b) 92.60 99.13 96.69 642 (2370)

Ours 91.90 98.71 96.99 872 (3012)

Ours (MS) 92.00 98.71 96.76 1268 (4756)

T&T

SIFT (Lowe, 2004) 70.00 75.20 53.25 85 (795)

SIFT + HN++ (Mishchuk et al., 2017) 79.90 81.05 63.61 96 (814)

HAN (Mishkin et al., 2018) + HN++ 82.50 84.71 70.29 97 (920)

SIFT + ContextDesc (Luo et al., 2019) 81.60 83.32 69.92 94 (728)

LF-Net (MS) (Ono et al., 2018) 57.40 66.62 60.57 54 (362)

D2-Net (MS) (Dusmanu et al., 2019) 68.40 71.79 55.51 78 (2603)

SuperPoint (DeTone et al., 2018) 81.80 83.87 70.89 52 (535)

R2D2 (MS) (Revaud et al., 2019) 73.00 80.81 65.31 84 (1462)

ASLFeat (Luo et al., 2020) 89.90 85.33 79.08 295 (2066)

ASLFeat (MS) (Luo et al., 2020) 88.70 85.68 79.74 327 (2465)

FRLNet (Sun et al., 2022b) 91.00 86.72 82.03 346 (2501)

Ours 88.90 85.39 79.39 340 (2073)

Ours (MS) 89.00 84.96 79.56 335 (1970)

CPC

SIFT (Lowe, 2004) 29.20 67.14 48.07 60 (415)

SIFT + HN++ (Mishchuk et al., 2017) 40.30 76.73 62.30 69 (400)

HAN (Mishkin et al., 2018) + HN++ 47.40 82.58 72.22 65 (405)

SIFT + ContextDesc (Luo et al., 2019) 41.80 84.01 72.21 61 (306)

LF-Net (MS) (Ono et al., 2018) 19.40 44.27 44.35 50 (114)
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Fig. 5 Comparisons between ours and ASLFeat on IMC benchmark validation set. Our method outperforms ASLFeat w.r.t. almost each ratio test
threshold and inlier threshold. Up: Results under different inlier thresholds; Bottom: Results under different ratio test thresholds (Color figure
online)
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Table 1 continued Methods %Recall ↑ %Inlier ↑ %Inlier-m ↑ #Corrs(-m)

D2-Net (MS) (Dusmanu et al., 2019) 31.30 56.57 49.85 84 (1435)

SuperPoint (DeTone et al., 2018) 40.50 75.28 64.68 31 (225)

R2D2 (MS) (Revaud et al., 2019) 43.00 82.40 67.28 91 (954)

ASLFeat (Luo et al., 2020) 51.50 87.98 82.24 165 (989)

ASLFeat (MS) (Luo et al., 2020) 54.40 89.33 82.76 185 (1159)

FRLNet (Sun et al., 2022b) 54.07 90.12 86.09 215 (1379)

Ours 57.60 88.93 83.92 228 (1257)

Ours (MS) 59.00 89.81 85.28 221 (1237)

The highest score is given in Bold
Our methods outperform most of the existing methods on TUM (Sturm et al., 2012) and CPC (Wilson
& Snavely, 2014) while yielding close performance to ASLFeat on T&T (Knapitsch et al., 2017) and
KITTI (Geiger et al., 2012). ↑ indicates higher better

Table 2 Results on ETH benchmark (Schonberger et al., 2017) for 3D reconstruction

Methods #Reg. #Sparse %Track Reproj. #Dense
image ↑ poi. (K) len. ↑ err. (px) ↓ poi. (M)

Madrid metropolis (1344 images)

RootSIFT (Arandjelović & Zisserman, 2012; Lowe, 2004) 500 116 6.32 0.60 1.82

GeoDesc (Luo et al., 2018) 495 144 5.97 0.65 1.56

SuperPoint (DeTone et al., 2018) 438 29 9.03 1.02 1.55

D2-Net (MS) (Dusmanu et al., 2019) 495 144 6.39 1.35 1.46

ASLFeat (Luo et al., 2020) 613 96 8.76 0.90 2.00

ASLFeat (MS) (Luo et al., 2020) 649 129 9.56 0.95 1.92

CAPS (Wang et al., 2020) 851 242 6.16 1.03 –

CoAM (Wiles et al., 2021) 702 256 6.09 1.30 –

UP-Net (Yang et al., 2022) 649 153 9.50 0.97 2.02

PoSFeat (Li et al., 2022b) 419 72 9.18 0.86 –

Zisserman, 2012; Lowe, 2004), referred to as Hes.Aff.+
RootSIFT; (2) a learned shape estimator (HesAffNet (Mishkin
et al., 2018)) and descriptor (HardNet++ (Mishchuk et al.,
2017)), referred to as HAN+HN++; (3) ContextDesc (Luo
et al., 2019) with SIFT detector (Lowe, 2004), referred to as
SIFT+ContextDesc; (4) LF-Net (Ono et al., 2018), an end-
to-end trainable network. For the latter pipeline, we consider
D2-Net (Dusmanu et al., 2019), SuperPoint (DeTone et al.,
2018), R2D2 (Revaud et al., 2019), DELF (Noh et al., 2017),
ASLFeat (Luo et al., 2020), DISK (Tyszkiewicz et al., 2020),
ALIKE (Zhao et al., 2022a), and PoSFeat (Li et al., 2022b).
Note that, PoSFeat decouples the detector and descriptor by
training them in two stages, while others train them together.
As shown in Fig. 4, our method with/without multi-scale
detection (Ours/Ours MS) yields higher performance than
most of the previous methods. Moreover, our methods gain
the highest scores on the subset with viewpoint change, espe-
cially for matching thresholds below 5 pixels. We can find
DELF (Noh et al., 2017) outperforms all the other methods
on the subset with illumination change for matching thresh-
olds below 4 pixels. It is because DELF uses a fixed grid of

keypoints without further position refinements. This design
performs well when there is only illumination change, but it
is not robust to viewpoint change, which is universal in real
applications. By training the detector and descriptor in two
stages, PoSFeat achieves the highest performance.

Comparisons on FM-Bench. As shown in Table 1,1 our
method outperforms most of the existing approaches, espe-
cially those also following the describe-and-detect pipeline.
In comparison with ASLFeat, ours yields close or higher
scores.

4.2 3D Reconstruction

We conduct experiments on two datasets, i.e., ETH bench-
mark (Schonberger et al., 2017) and IMC benchmark (Jin
et al., 2021), to evaluate our method for the 3D reconstruc-
tion task.

1 The results are obtained using the code https://github.com/lzx551402/
FM-Bench with the default setting.
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Table 2 continued

Methods #Reg. #Sparse %Track Reproj. #Dense
image ↑ poi. (K) len. ↑ err. (px) ↓ poi. (M)

SCFeat (Sun et al., 2022a) 399 30 10.02 0.84 –

RAP+HardNet (Yan et al., 2022) 434 – 9.06 0.84 1.56

FMT (Jung et al., 2023) 766 142 8.13 1.19 –

Ours 649 149 9.37 0.82 1.99

Ours (MS) 653 160 10.56 0.78 1.94

Gendarmenmarket (1463 images)

RootSIFT (Arandjelović & Zisserman, 2012; Lowe, 2004) 1035 338 5.52 0.69 4.23

GeoDesc (Luo et al., 2018) 1004 441 5.14 0.73 3.88

SuperPoint (DeTone et al., 2018) 967 93 7.22 1.03 3.81

D2-Net (MS) (Dusmanu et al., 2019) 965 310 5.55 1.28 3.15

ASLFeat (Luo et al., 2020) 1040 221 8.72 1.00 4.01

ASLFeat (MS) (Luo et al., 2020) 1061 320 8.98 1.05 4.00

CAPS (Wang et al., 2020) 1179 627 5.31 1.00 –

CoAM (Wiles et al., 2021) 1072 570 6.60 1.34 –

UP-Net (Yang et al., 2022) 1075 330 8.87 1.11 3.98

PoSFeat (Li et al., 2022b) 956 240 8.40 0.92 –

SCFeat (Sun et al., 2022a) 917 108 9.78 0.94 –

RAP+HardNet (Yan et al., 2022) 999 – 7.80 0.88 4.13

FMT (Jung et al., 2023) 1316 516 6.81 1.19 –

Ours 1052 374 9.25 0.87 4.10

Ours (MS) 1073 374 10.06 0.84 3.84

Tower of London (1576 images)

RootSIFT (Arandjelović & Zisserman, 2012; Lowe, 2004) 804 239 7.76 0.61 3.05

GeoDesc (Luo et al., 2018) 776 341 6.71 0.63 2.73

SuperPoint (DeTone et al., 2018) 681 52 8.67 0.96 2.77

D2-Net (MS) (Dusmanu et al., 2019) 708 287 5.20 1.34 2.86

ASLFeat (Luo et al., 2020) 821 222 12.52 0.92 3.06

ASLFeat (MS) (Luo et al., 2020) 846 252 13.16 0.95 3.08

CAPS (Wang et al., 2020) 1104 452 5.81 0.98 –

CoAM (Wiles et al., 2021) 804 239 5.82 1.32 –

UP-Net (Yang et al., 2022) 832 245 13.27 0.89 3.15

PoSFeat (Li et al., 2022b) 778 262 11.64 0.90 –

SCFeat (Sun et al., 2022a) 657 108 11.62 0.79 –

RAP+HardNet (Yan et al., 2022) 700 – 10.84 0.82 2.75

FMT (Jung et al., 2023) 1186 315 8.63 1.21 –

Ours 873 290 12.44 0.83 3.19

Ours (MS) 907 272 13.60 0.79 3.20

Bold values indicate the highest performance among the recent approaches
↑ indicates higher better, while ↓ indicates lower better

Evaluation on ETH Benchmark. Following (Luo et al.,
2020; Dusmanu et al., 2019), we conduct the evaluation
on three medium-scale internet-collected datasets from the
ETH benchmark (Schonberger et al., 2017), and make
comparisons against several existing approaches, including
ASLFeat (Luo et al., 2020), D2-Net (Dusmanu et al., 2019),
SuperPoint (DeTone et al., 2018),GeoDesc (Luo et al., 2018),

RootSIFT (Arandjelović & Zisserman, 2012; Lowe, 2004),
CAPS (Wang et al., 2020), CoAM (Wiles et al., 2021),
UP-Net (Yang et al., 2022), PoSFeat (Li et al., 2022b),
SCFeat (Sun et al., 2022a), RAP+HardNet (Yan et al., 2022),
and FMT (Jung et al., 2023).

For evaluation, we first perform exhaustive image match-
ing with both ratio test at 0.8 and mutual check for outlier

123



2920 International Journal of Computer Vision (2023) 131:2908–2932

Ta
bl
e
3

R
es
ul
ts
on

IM
C
be
nc
hm

ar
k
(J
in

et
al
.,
20
21
)
fo
r
3D

re
co
ns
tr
uc
tio

n

M
et
ho
ds

U
p
to

20
48

fe
at
ur
es

pe
r
im

ag
e

U
p
to

80
00

fe
at
ur
es

pe
r
im

ag
e

Ta
sk

1:
St
er
eo

Ta
sk

2:
M
ul
tiv

ie
w

Ta
sk

1:
St
er
eo

Ta
sk

2:
M
ul
tiv

ie
w

N
M

N
I

m
A
A
(1
0◦
)

N
M

N
L

T
L

m
A
A
(1
0◦
)

N
M

N
I

m
A
A
(1
0◦
)

N
M

N
L

T
L

m
A
A
(1
0◦
)

Su
pe
rP
oi
nt

29
2.
8

12
6.
8

0.
29
64

16
9.
3

11
84
.3

4.
34

0.
54
64

–
–

–
–

–
–

–

L
F-
N
et

19
1.
1

10
6.
5

0.
23
44

19
6.
7

13
85
.0

4.
14

0.
51
41

–
–

–
–

–
–

–

D
2-
N
et
(S
S)

50
5.
7

18
8.
4

0.
18
13

51
3.
1

23
57
.9

3.
39

0.
39
43

12
58
.2

48
2.
3

0.
22
28

12
78
.7

58
93
.8

3.
62

0.
45
98

D
2-
N
et
(M

S)
32
7.
8

13
4.
8

0.
13
55

33
7.
6

21
77
.3

3.
01

0.
30
07

10
28
.6

47
0.
6

0.
25
06

10
54
.7

67
59
.3

3.
39

0.
47
51

R
2D

2
27
3.
6

21
3.
9

0.
33
46

28
0.
8

12
28
.4

4.
29

0.
61
49

14
08
.8

84
2.
2

0.
44
37

73
9.
8

44
32
.9

4.
59

0.
68
32

A
SL

Fe
at
(M

S)
–

–
–

–
–

–
–

80
5.
5

39
0.
8

0.
46
10

51
0.
8

38
17
.1

4.
58

0.
68
25

A
L
IK

E
28
9.
4

22
2.
6

0.
49
58

29
8.
3

16
93
.3

5.
02

0.
70
22

44
0.
1

33
8.
3

0.
50
31

45
0.
1

26
55
.5

5.
08

0.
70
71

Po
SF

ea
t

43
0.
2

34
8.
3

0.
46
24

44
2.
6

23
11
.5

5.
11

0.
70
69

10
70
.3

90
4.
1

0.
48
22

11
06
.3

64
74
.5

5.
42

0.
71
92

D
IS
K

51
4.
2

40
4.
2

0.
51
32

52
7.
5

24
28
.0

5.
55

0.
72
71

16
21
.9

12
38
.5

0.
55
85

16
63
.8

74
84
.0

5.
92

0.
75
02

L
oF

T
R
_v
4*

–
–

–
–

–
–

–
–

73
7.
9

0.
60
91

74
1.
4

78
16
.4

4.
53

0.
76
10

SD
S*

–
–

–
–

–
–

–
–

17
07
.2

0.
63
98

17
39
.7

89
24
.4

5.
37

0.
78
56

O
ur
s
(M

S)
25
7.
0

18
7.
1

0.
43
18

26
2.
2

14
74
.6

4.
49

0.
65
06

93
9.
0

69
9.
2

0.
51
54

95
8.
7

51
76
.4

4.
85

0.
71
56

B
ol
d
va
lu
es

in
di
ca
te
th
e
hi
gh

es
tm

A
A
sc
or
e

L
oF

T
R
_v
4*

is
th
e
la
te
st
pe
rf
or
m
an
ce

of
L
oF

T
R
w
hi
le

SD
S*

yi
el
di
ng

th
e
hi
gh
es
t
sc
or
e
in

th
e
be
nc
hm

ar
k
w
eb
si
te

is
a
co
m
bi
na
tio

n
of

Su
pe
rP
oi
nt
,D

IS
K
,a
nd

Su
pe
rG

lu
e.
W
e
pr
ov
id
e
th
es
e
tw
o

m
et
ho
ds

fo
r
re
fe
re
nc
e

123



International Journal of Computer Vision (2023) 131:2908–2932 2921

Table 4 Results on Aachen
Day-Night dataset for visual
localization

Methods #Feats Dim. Percentage of correction

0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

Aachen Day-Night v1.0

R2D2* (Revaud et al., 2019) 5k 128 71.4 88.1 98.3

R2D2* (Revaud et al., 2019) 10k 128 77.2 86.0 99.3

D2-Net (Dusmanu et al., 2019) 5k 512 68.7 87.4 99.0

D2-Net (Dusmanu et al., 2019) 10k 512 73.8 89.5 100.0

ASLFeat (Luo et al., 2020) 5k 128 66.7 82.3 94.9

ASLFeat (Luo et al., 2020) 10k 128 76.5 87.1 99.0

Ours 5k 128 69.7 82.7 94.9

Ours 10k 128 75.5 86.8 99.0

Aachen Day-Night v1.1

R2D2* (Revaud et al., 2019) 5k 128 69.0 85.0 96.0

R2D2* (Revaud et al., 2019) 10k 128 67.3 84.3 97.9

D2-Net (Dusmanu et al., 2019) 5k 512 62.0 83.2 95.8

D2-Net (Dusmanu et al., 2019) 10k 512 66.5 85.0 96.7

ASLFeat (Luo et al., 2020) 5k 128 64.1 79.4 94.4

ASLFeat (Luo et al., 2020) 10k 128 70.0 84.7 96.7

Ours 5k 128 63.4 79.6 94.2

Ours 10k 128 67.5 84.8 96.3

Bold values indicate the best localization score among the compared methods
Note that, R2D2 is trained on this dataset

Table 5 Comparisons with
SOTA methods on Aachen
Day-Night dataset v1.1

Methods Percentage of correction

0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

R2D2 (Revaud et al., 2019) 68.1 83.8 96.9

ASLFeat (Luo et al., 2020) 72.8 87.4 97.4

DISK (Tyszkiewicz et al., 2020) 73.3 86.9 97.9

PoSFeat (Li et al., 2022b) 73.8 87.4 98.4

SS (Sarlin et al., 2020) 73.3 88.0 98.4

SP (Revaud et al., 2022) 74.4 88.0 98.4

LoFTR (Sun et al., 2021) 78.5 90.6 99.0

Ours 71.3 87.4 97.4

Bold values indicate the best localization score among the compared methods
‘SS’ indicates the combination of SuperPoint and SuperGlue, one for detecting and representing and one for
matching; ‘SP’ indicates the combination of SuperPoint and PUMP, one for detecting and one for representing;
LoFTR is an efficient end-to-end matching method

rejection. Following the protocol defined by (Schonberger
et al., 2017), we run SfM (Schonberger & Frahm, 2016) for
sparse reconstruction andMVS (Schönberger et al., 2016) for
dense reconstruction. For the former task, we report the num-
ber of registered images (referred to as #Reg. Images), the
number of sparse points (#Sparse Poi.), themean track length
of the 3D points (Track Len.) and the mean reprojection error
(Reproj. Err.). For the latter task, we report the number of
dense points (#Dense Poi.). Both ASLFeat (Luo et al., 2020)
and ours limit the maximum number of keypoints to 20k.
We report the results obtained using single-scale detection

and multi-scale detection. As shown in Table 2, our method
performs better than most of the other methods. In compar-
ison to ASLFeat (Luo et al., 2020), our model yields lower
reprojection error, which demonstrates the effectiveness of
our method for 3D reconstruction.

Evaluation on IMC. The ImageMatching Challenge 2020
benchmark (IMC) provides a dataset with thousands of
phototourism images of 25 landmarks, which are taken
from diverse viewpoints, with different cameras, in differ-
ent illumination and weather conditions. For evaluation, this
benchmark provides two tasks, i.e., stereo and multiview
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Table 6 Analysis about the main components on HPatches (Balntas
et al., 2017)

Ablation Config %Rep %M.S. %MMA

F.M 63.4 37.2 68.5

Similarity S.M 67.2 39.8 72.5

based S.M. (α) 64.6 37.9 71.5

measure S.M. (β) 65.1 37.0 70.4

F.M. (1st ) 67.8 40.2 73.4

F.M. (3rd ) 32.5 24.9 48.8

S.M. (1st ) 68.5 40.5 74.4

Multi- S.M. (3rd ) 31.5 20.3 41.1

level F.M. (U-Net) 62.6 28.8 72.6

detection S.M. (U-Net) 66.2 38.3 72.2

F.M. (MU-Net) 69.9 37.7 75.2

S.M. (MU-Net) 70.2 38.6 76.4

Feature F.T 70.4 40.4 77.3

F.T. (L2) 70.2 39.4 77.1

transformation F.T. (L1) 70.2 39.1 76.9

Multi- G=1 70.4 40.4 77.3

group G=2 70.4 40.3 77.3

measure G=4 71.0 40.2 77.5

Comp. with ASLFeat 68.1 39.8 72.5

ASLFeat Ours 71.0 40.2 77.5

F.M.: feature-based peakiness measure (Luo et al., 2020); S.M.:
similarity-based measure (Ours); F.T.: feature self-transformation

reconstruction, where the reconstructed poses are compared
to the ground truth. In the stereo task, we first extract local
features across every pair of images and then use RANSAC
to reconstruct the relative pose, while in multiview task, we
use COLMAP (Schonberger & Frahm, 2016) to reconstruct
the pose from small subsets of 5, 10, and 25 images.

Table 8 Comparison with D2D measure

Method %Rep %M.S. %MMA

D2D 60.9 31.5 65.4

Ours 70.2 38.6 76.4

D2D+F.T 62.5 32.4 66.3

Ours+F.T 70.4 40.4 77.3

F.T.: feature self-transformation

According to the benchmark documentation, we con-
sider two categories, a limited budget of 2048 keypoints and
a limited budget of 8000 keypoints. We select the hyper-
parameters on the validation set of three scenes, including
“Reichstag", “SacreCoeur", and “St. Peter’s Square". Specif-
ically, we set the ratio test threshold to 0.95, and use
DEGENSAC (Chum et al., 2005) with an inlier threshold
of 0.75 pixels for the stereo task. With the selected hyper-
parameters, we submit the extracted features from nine test
sets to the website and report the results in Table 3. We com-
pare our method with several previous describe-and-detect
methods, like SuperPoint (DeTone et al., 2018), LF-Net (Ono
et al., 2018), D2-Net (Dusmanu et al., 2019), R2D2 (Revaud
et al., 2019), ASLFeat (Luo et al., 2020), ALIKE (Zhao et al.,
2022a), DISK (Tyszkiewicz et al., 2020), and PoSFeat (Li
et al., 2022b). We also provide the performance of two state-
of-the-art methods, LoFTR (Sun et al., 2021) (an end-to-end
image matching method) and SDS (a combination of Super-
Point (DeTone et al., 2018), DISK (Tyszkiewicz et al., 2020),
and SuperGlue (Sarlin et al., 2020).) The results are reported
in the benchmark website or (Jin et al., 2021). The most
important metric is the mean Average Accuracy (mAA) up
to a 10-degree error threshold. Our method does not per-
form better than recent methods, like DISK and PoSFeat,

Table 7 Performance on
illumination and viewpoint
subsets of HPatches (Balntas
et al., 2017)

Methods Illumination Viewpoint
%Rep %M.S. %MMA %Rep %M.S. %MMA

Without F.T. (3pix) 69.5 41.4 78.2 70.7 36.0 74.6

With F.T. (3pix) 69.6 43.2 78.3 71.1 37.8 76.4

Without F.T. (4pix) 75.9 43.9 83.5 77.3 37.9 79.0

With F.T. (4pix) 76.2 46.2 84.0 77.9 39.9 80.9

Without F.T. (5pix) 80.4 45.1 86.1 81.8 38.8 81.1

With F.T. (5pix) 80.7 47.7 87.1 82.1 40.9 83.2

Without F.T. (6pix) 83.3 45.6 87.3 85.0 39.3 82.3

With F.T. (6pix) 83.6 48.4 88.7 85.3 41.5 84.5

Without F.T. (7pix) 85.7 46.0 88.1 87.5 39.6 82.9

With F.T. (7pix) 86.0 48.9 89.9 87.7 41.9 85.3

Without F.T. (8pix) 87.5 46.1 88.6 89.4 39.8 83.3

With F.T. (8pix) 87.8 49.2 90.5 89.6 42.1 85.7

We set the threshold for ‘possible match’ to 3, 4, 5, 6, 7, and 8 pixels, respectively. F.T. refers to feature
self-transformation
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Fig. 6 Some visualization examples on HPatches. We can find that
when the illumination change is not severe (the first, third, and fourth
examples), two methods perform well, while when there exists severe
illumination change (the second example), both perform worse but the
methodwithout F.T. generates obvious incorrectmatches. For viewpoint

change, in the fifth example, incorrect matches (the poster with "BOX")
are also found in the result of the baseline without F.T. We only show
up to 200 matches. Zoom in for more details (in color) (Color figure
online)

while yielding highest mAA scores among R2D2, D2-Net,
and ASLFeat.

To better compare our methodwith ASLFeat, we also pro-
vide the results under different ratio test thresholds and inlier
thresholds on the IMC validation set. As shown in Fig. 5, we
can find that in both categories (2048 and 8000 features), our

method performs better than ASLFeat almost for each ratio
test threshold and inlier threshold.
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Fig. 7 The learned distinctiveness maps at different levels and groups (Color figure online)

4.3 Visual Localization

Here, we evaluate our method’s performance in the visual
localization task on the Aachen Day-Night dataset v1.0 and
v1.1 (Sattler et al., 2012; Zhang et al., 2021), where the
objects arematching imageswith extremeday-night changes.
We first use the compared methods to generate the localiza-
tion and description of the keypoints respectively, and then
use the code from Sattler et al. (2012) for image registration.
We limit themaximum feature number of allmethods to 5000
and10000, respectively. Through submitting the results to the
benchmark, we can get the percentages of successfully local-
ized night-time images within three given error bounds, i.e.,
(0.25m, 2◦), (0.5m, 5◦), and (5m, 10◦). We make compar-
isons against R2D2 (Revaud et al., 2019), D2-Net (Dusmanu
et al., 2019), and ASLFeat (Luo et al., 2020), whose codes
are publicly available. We repeat the experiments three times
and report the average results. Due to the extreme illumina-
tion changes, it is challenging to match the night images to
the day images, which all methods do not address well. As
shown in Table 4, our method yields comparable scores to
these three previous methods, especially ASLFeat.

In Table 5, we further make comparisons with other state-
of-the-art (SOTA) methods, including DISK (Tyszkiewicz
et al., 2020), PoSFeat (Li et al., 2022b), SuperPoint (DeTone
et al., 2018)+SuperGlue (Sarlin et al., 2020) (SS), Super-
Point+PUMP (Revaud et al., 2022) (SP), and an end-to-end
matching method, LoFTR (Sun et al., 2021). The maximum

number of keypoints is limited to 20000. We can find that
our method achieves close performance to other describe-
and-detect methods, i.e., ASLFeat, DISK, and PoSFeat.

4.4 Ablation Studies

Here, we analyze the main components in our method,
including the similarity-based measure, multi-level U-Net
structure, feature self-transformation, and multi-group key-
point measure, onHPatches dataset (Balntas et al., 2017).We
report the %Rep, %M.S., and %MMA in Table 6. Here, we
select up to 5000 keypoints with the keypoint measure over
0.5 and set the threshold for ‘possible match’ to three pixels.
Similarity-based Measure. First, we train the baseline net-
work (no feature self-transformation and no MU-Net) using
the feature-based measure (abbr. F.M.) in ASLFeat (Luo
et al., 2020) and the proposed similarity-basedmeasure (abbr.
S.M.), respectively. Specifically, as done in (Luo et al., 2020),
we compute the detection map on three feature maps coming
from three levels. As shown in Table 6, S.M. yields higher
scores than F.M. w.r.t. all three metrics, which shows the
superiority of the proposed similarity-based keypoint mea-
sure. We also evaluate the two requirements of the detector,
i.e., local distinctiveness (α) and local maximum of distinc-
tiveness (β). The comparisons between S.M. (α), S.M. (β),
S.M., and F.M. show that any one of the requirements (α and
β) can perform better than feature-based peakiness measure,
and the joint modelling can bring further improvements.
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Fig. 8 Detection results on simple scenes. The first is from skimage 6; The last three come from Shui and Zhang (2013) .7 We limit the maximum
number of keypoitns to 100

Multi-level Detection. We study different multi-level detec-
tion strategies, including U-Net (only up-sampling feature
maps at the last layer), multi-level detection in ASLFeat, and
our MU-Net. Firstly, we provide the performance of single-
level detection by calculating the measures from the first
(i.e., the original resolution) and third level, respectively. As
shown in Table 6, we can find that both F.M. and S.M. per-
forms better at the original scale (marked by 1st ) than the
third level (3rd ) and even better than the multi-level detec-
tion proposed in ASLFeat according to the comparisons of
F.M/S.M. andF.M. (1st )/S.M. (1st ). Itmeans that themeasure
map calculated from the feature maps with low resolution
does not reflect the distinctiveness of keypoints. By intro-
ducing the U-Net structure to up-sample the feature maps
at the third level to the original scale, the performance is

improved greatly, e.g., F.M. (3rd ) v.s. F.M. (U-Net) and S.M.
(3rd ) v.s. S.M. (U-Net), which can also support the analysis.
Therefore, to exploit the multi-level information and avoid
losing detailed information,we introduce amulti-levelU-Net
architecture to better achieve multi-level detection. The per-
formance improvements brought by MU-Net on both F.M.
and S.M. show the effectiveness of the proposed multi-level
detection strategy.
Feature self-transformation. Based on the network with the
multi-level U-Net, i.e., S.M. (MU-Net), we add the proposed
feature self-transformation operation (referred as F.T.), as
shown inFig. 3. The comparison betweenF.T. andS.M. (MU-
Net) demonstrates that the feature transformation is able to
improve the discriminative power of the descriptors. In our
experiments, we deploy the feature transformation in the
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Fig. 9 Detection results on indoor scenes. We limit the maximum number of keypoints to 2000

last three convolution layers. Here, we also try to deploy
the transformation in the last two (marked by L2) and one
(L1), respectively, but observe the performance drops. Nev-
ertheless, all three models, i.e., F.T., F.T. (L2), and F.T. (L1),
perform better than S.M. (MU-Net), which demonstrates
the effectiveness of the proposed feature self-transformation.
Considering that the improvements brought by the trans-
formation might result from the increase of convolutional
parameters, we replace the transformation operation with (1)
two successive convolutions and (2) a residual block with
the same number of parameters as the transformation. We do
not find any meaningful improvements in comparison with
S.M. (MU-Net). For example, with the first replacement, we
only observe a 0.02% improvement (76.43% to 76.45%) for
%M M A, while our F.T. improves S.M. (MU-Net) by 0.9%.

Furthermore, as theHPatches (Balntas et al., 2017) dataset
consists of two subsets, one containing illumination changes
and one containing viewpoint changes, here we provide
the improvements brought by the proposed feature self-
transformation for the two scenarios separately. Table 7
shows that the proposed feature transformation can bring
improvements w.r.t %M M A for both viewpoint change and

illumination change, in comparisonwith the baselinewithout
feature self-transformation. Since most of the illumination
changes in HPatches dataset are not severe, previous meth-
ods yield higher performance on the illumination subset than
the viewpoint subset, as shown inFig. 4.Comparedwith these
methods, our model brings fewer improvements on the illu-
mination subset than the viewpoint subset but still performs
better than previous methods on both subsets.

We also provide some visualization examples in Fig. 6.
We can find that both methods do not perform well when
there exists remarkable illumination change. In addition, in
Table 7, we can observe that the lower %Rep are acquired
on the illumination subset, since the illuminationmightmake
the images low-quality, which is a challenging scenario to be
addressed in the future.
Multi-group Measure. We set the number of groups (G) in
the S.M. (MU-Net) with feature self-transformation to 1 (i.e.,
F.T.), 2, and 4, respectively. As shown in Table 6, we can
find that a slight improvement can be brought by increasing
the number of groups. Here, We also provide a visualization
example to illustrate the learned score maps at different lev-
els and groups. As shown in Fig. 7 where ‘Level 1’, ‘Level
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Fig. 10 Detection results on outdoor scenes. We limit the maximum number of keypoints to 5000. We highlight the main differences with a red
rectangular. Zoom in for best view (Color figure online)

2’, and ‘Level 3’ correspond the X1, X1↑
, and X1↑↑

in Fig. 3,
respectively, we can find that the distinctiveness map varies
from the level and group. For example, at the first level, the
similarity in the first group is more important, while the sim-
ilarity in the last group provides more information for the
detector at the third level.

According to the analysis above, we can conclude that
(1) the proposed keypoint measure and multi-level detection
boost %Rep and %M M A remarkably; (2) the feature self-
transformation mainly improves the discriminative capabil-
ity of the descriptors (%M M A); (3) themulti-groupmeasure
further refines %Rep and %M M A without increasing the
number of learned parameters but slightly. Lastly, we also
make a comparison against ASLFeat (Luo et al., 2020). As
shown in Table 6, our model outperforms ASLFeat w.r.t all
there metrics, especially %Rep and %MMA.

In addition, relying on traditional keypoint detection
strategies, a previous method, D2D (Tian et al., 2020a), also
defines a keypoint measure containing two terms, one for
absolute saliency and the other for relative saliency. How-
ever, it straightforwardly applies the defined measure on the

deep feature maps extracted from a pre-trained descriptor
model without extra training. The reported results in the
paper show that the performance greatly depends on the pre-
trained descriptor models. In contrast, we learn the detector
and descriptor jointly in an end-to-endmanner. Here, we also
use themeasure in D2D to replace our keypoint measure, and
report the results in Table 8. We can find that the D2D mea-
sure which relies on a pre-trained descriptor yields lower
scores than ours.

4.5 Visualization Examples

In this part, we first visualize the keypoints detected by our
method, DISK (Tyszkiewicz et al., 2020), ASLFeat (Luo
et al., 2020), and D2-Net (Dusmanu et al., 2019), respec-
tively. In Fig. 8, we show four samples containing simple
contents. We can find that compared with the other three
methods, ours can find the corner points better. In Figs. 9
and 10, we provide several examples (Bian et al., 2019) with
more complex contents. We can observe that D2-Net gener-
ates worse detection results than others. The regions marked
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Fig. 11 Visualization examples with view changes. Best viewed in
color (Color figure online)

by the red rectangular in Fig. 10 illustrate that our method
can yield more accurate corners than ASLFeat, especially
for the Windows in the first and third examples. We can sur-
prisingly find that DISK is able to detect the points which
are very useful for image matching while ignoring the use-
less. For example, in the first and fourth samples, DISK does
not detect the keypoints in the regions of Pedestrian which
can be considered as needless information for matching the
building, while the other three methods do. We attribute the
advantages to the efficient learning strategy.

We then provide several matching examples with the view
change in Fig. 11 and several examples with both view and
illumination changes in Fig. 12. In each example, we only

Fig. 12 Visualization examples with both view and illumination
changes. Best viewed in color (Color figure online)

visualize up to 200 matches. The images come from Aachen
Day-Night dataset (Sattler et al., 2012). We can find that our
method is capable of addressing the view changes effectively.
However, we can also observe that when there exist serious
illumination changes and the illumination makes the images
low-quality, it is quite challenging for our method to find
enough correct matches.

5 Conclusion and Discussion

This paper aims at learning the local feature detector
and descriptor jointly, following the describe-and-detect
pipeline. To achieve that, we propose a new method called
Deep Corner, which is inspired the the tradition corner detec-
tion methods. Specifically, we first propose the similarity-
based measure for keypoint detection, which is able to select
repeatable keypoints effectively and thus beneficial for the
learning of descriptor. Additionally, to improve the keypoint
localization accuracy, we further design a MU-Net structure
for multi-level detection and extend the proposed measure
into the multi-group version. Finally, we propose a feature
self-transformationoperation to improve the invariance of the
descriptors. Experimental comparisons with previous related
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methods and ablation studies demonstrate the effectiveness
of our method.

Limitation: According to the results in Fig. 4 and Table 4,
the performance advantage over previous works yielded by
our method for illumination change is not as high as for
viewpoint change. In fact, the severe illumination change
is intractable to address, which is also analyzed in previous
sections. For example, the night images have low quality
compared with the day images, and therefore, it is hard to
detect keypoints and extract distinguishable representations.
In the future, maybe we could address this issue by exploit-
ing the image translation techniques and/or improving the
normalization operation.
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Radenović. F., Tolias, G., & Chum, O. (2016). CNN image retrieval
learns from bow: Unsupervised fine-tuning with hard examples.
In European conference on computer vision. Springer (pp. 3–20).

Revaud, J., Leroy, V., Weinzaepfel, P., & Chidlovskii, B. (2022).
Pump:Pyramidal anduniquenessmatchingpriors for unsupervised
learning of local descriptors. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 3926–
3936).

Revaud, J.,Weinzaepfel, P., deSouza,C.R.,&Humenberger,M. (2019).
R2D2:Repeatable and reliable detector anddescriptor. InNeurIPS.

Richardson, A., & Olson, E. (2013). Learning convolutional filters for
interest point detection. In 2013 IEEE international conference on

123

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1506.02025
https://doi.org/10.1007/s11263-020-01385-0
http://arxiv.org/abs/2301.10413
https://doi.org/10.1007/978-3-642-33718-5_2
https://doi.org/10.1007/978-3-642-33718-5_2
https://doi.org/10.1109/ICME51207.2021.9428406
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/978-3-030-01240-3_11
https://doi.org/10.1023/B:VISI.0000027790.02288.f2
https://doi.org/10.1023/B:VISI.0000027790.02288.f2
http://arxiv.org/abs/1705.10872
https://doi.org/10.1007/978-3-030-01240-3_18
https://doi.org/10.1007/978-3-030-01240-3_18
https://doi.org/10.1007/978-3-030-58536-5_42
https://doi.org/10.1007/978-3-030-58536-5_42


International Journal of Computer Vision (2023) 131:2908–2932 2931

robotics and automation (pp. 631–637). https://doi.org/10.1109/
ICRA.2013.6630639.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional
networks for biomedical image segmentation. In International
conference on medical image computing and computer-assisted
intervention. Springer (pp. 234–241).

Santellani, E., Sormann, C., Rossi, M., Kuhn, A., & Fraundorfer, F.
(2022). Md-net: Multi-detector for local feature extraction. In
2022 26th International conference on pattern recognition (ICPR).
IEEE (pp. 3944–3951).

Sarlin, P. E., DeTone, D., Malisiewicz, T., & Rabinovich, A. (2020).
Superglue: Learning featurematchingwith graph neural networks.
In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (pp. 4938–4947).

Sattler, T., Weyand, T., Leibe, B., & Kobbelt, L. (2012). Image retrieval
for image-based localization revisited. In BMVC, vol. 1 (p. 4).

Savinov, N., Seki, A., Ladicky, L., Sattler, T., & Pollefeys, M. (2017).
Quad-networks: Unsupervised learning to rank for interest point
detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 1822–1830).

Schönberger, J. L., Zheng, E., Frahm, J. M., & Pollefeys, M. (2016).
Pixelwise view selection for unstructured multi-view stereo. In
European conference on computer Vision. Springer (pp. 501–518).

Schonberger, J. L.,&Frahm, J.M. (2016). Structure-from-motion revis-
ited. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 4104–4113).

Schonberger, J. L., Hardmeier, H., Sattler, T., & Pollefeys, M. (2017).
Comparative evaluation of hand-crafted and learned local features.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1482–1491).

Shen, T., Luo, Z., Zhou, L., Zhang, R., Zhu, S., Fang, T., & Quan, L.
(2018). Matchable image retrieval by learning from surface recon-
struction. In The Asian conference on computer vision (ACCV).

Shen, X., Wang, C., Li, X., Yu, Z., Li, J., Wen, C., Cheng, M., & He,
Z. (2019). Rf-net: An end-to-end image matching network based
on receptive field. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 8132–8140).

Shi, J., et al. (1994).Good features to track. In1994 Proceedings of IEEE
conference on computer vision and pattern recognition. IEEE (pp.
593–600).

Shui, P. L., & Zhang, W. C. (2013). Corner detection and classifica-
tion using anisotropic directional derivative representations. IEEE
Transactions on Image Processing, 22(8), 3204–3218.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional
networks for large-scale image recognition. In International con-
ference on learning representations.

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., & Moreno-
Noguer, F. (2015). Discriminative learning of deep convolutional
feature point descriptors. InProceedings of the IEEE international
conference on computer vision (pp. 118–126).

Siqueira, H., Ruhkamp, P., Halfaoui, I., Karmann, M., & Urfalioglu, O.
(2022). Looking beyond corners: Contrastive learning of visual
representations for keypoint detection and description extrac-
tion. In 2022 international joint conference on neural networks
(IJCNN). IEEE (pp. 1–8).

Sivic, Z. (2003). Video google: A text retrieval approach to
object matching in videos. In Proceedings ninth IEEE interna-
tional conference on computer vision (pp. 1470–1477) vol. 2
|DOIurl10.1109/ICCV.2003.1238663.

Sturm, J., Engelhard, N., Endres, F., Burgard,W.,&Cremers, D. (2012).
A benchmark for the evaluation of RGB-D slam systems. In 2012
IEEE/RSJ international conference on intelligent robots and sys-
tems. IEEE (pp. 573–580).

Sun, J., Shen, Z.,Wang, Y., Bao, H., &Zhou, X. (2021). Loftr: Detector-
free local feature matching with transformers. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recog-
nition (pp. 8922–8931).

Sun, S., Park, U., Sun, S., & Liu, R. (2022b). Fusion representation
learning for keypoint detection and description. The Visual Com-
puter pp 1–10.

Sun, J., Zhu, J., & Ji, L. (2022a). Shared coupling-bridge
for weakly supervised local feature learning. arXiv preprint
arXiv:2212.07047.

Suwanwimolkul, S., Komorita, S., & Tasaka, K. (2021). Learning of
low-level feature keypoints for accurate and robust detection. In
Proceedings of the IEEE/CVF winter conference on applications
of computer vision (pp. 2262–2271).

Svärm, L., Enqvist, O., Kahl, F., & Oskarsson, M. (2017). City-scale
localization for cameras with known vertical direction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(7),
1455–1461. https://doi.org/10.1109/TPAMI.2016.2598331

Tian, Y., Balntas, V., Ng, T., Barroso-Laguna, A., Demiris, Y., &Miko-
lajczyk, K. (2020a). D2d: Keypoint extraction with describe to
detect approach. In Proceedings of the Asian conference on com-
puter vision.

Tian, Y., Barroso Laguna, A., Ng, T., Balntas, V., & Mikolajczyk, K.
(2020b). Hynet: Learning local descriptor with hybrid similarity
measure and triplet loss. Advances in Neural Information Process-
ing Systems 33.

Tian, Y., Fan, B., & Wu, F. (2017). L2-net: Deep learning of discrimi-
native patch descriptor in euclidean space. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
661–669).

Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., & Balntas, V. (2019).
Sosnet: Second order similarity regularization for local descriptor
learning. InProceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 11016–11025).
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