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Abstract
Terahertz (THz) tomographic imaging has recently attracted significant attention thanks to its non-invasive, non-destructive,
non-ionizing, material-classification, and ultra-fast nature for object exploration and inspection. However, its strong water
absorption nature and low noise tolerance lead to undesired blurs and distortions of reconstructed THz images. The diffraction-
limited THz signals highly constrain the performances of existing restoration methods. To address the problem, we propose a
novelmulti-viewSubspace-Attention-guidedRestorationNetwork (SARNet) that fusesmulti-view andmulti-spectral features
of THz images for effective image restoration and 3D tomographic reconstruction. To this end, SARNet uses multi-scale
branches to extract intra-view spatio-spectral amplitude and phase features and fuse them via shared subspace projection
and self-attention guidance. We then perform inter-view fusion to further improve the restoration of individual views by
leveraging the redundancies between neighboring views. Here, we experimentally construct a THz time-domain spectroscopy
(THz-TDS) system covering a broad frequency range from 0.1 to 4 THz for building up a temporal/spectral/spatial/material
THz database of hidden 3D objects. Complementary to a quantitative evaluation, we demonstrate the effectiveness of our
SARNet model on 3D THz tomographic reconstruction applications.

Keywords Terahertz imaging · Image restoration · Computed tomography · Deep learning · Self-attention

1 Introduction

Ever since the first camera’s invention, imaging under differ-
ent bands of electromagnetic (EM) waves, especially X-ray
andvisible lights, has revolutionized our daily lives (Kamruz-
zamanet al., 2011;Rotermundet al., 1991;Yujiri et al., 2003).
X-ray imaging plays a crucial role inmedical diagnoses, such
as cancer, odontopathy, and COVID-19 symptom (Abbas et
al., 2021; Round et al., 2005; Tuan et al., 2018), based on
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X-ray’s high penetration depth to great varieties of mate-
rials; visible-light imaging has not only changed the way
of recording lives but contributes to the development of
artificial intelligence (AI) applications, such as surveillance
security and surface defect inspection (Xie, 2008). However,
X-ray and visible-light imaging still face tough challenges.
X-ray imaging is ionizing, which is harmful to biological
objects and thus severely limits its application scope (de
Gonzalez and Darby, 2004). On the other hand, although
both non-ionizing and non-destructive, visible-light imaging
cannot retrieve interior information of most objects which
are opaque in visible light due to the highly absorptive and
intense scattering behaviors between light and matter in the
visible light band. To visualize the 3D information of objects
in a remote but accurate manner, terahertz (THz) imaging
has become among the most promising candidates among all
EM wave-based imaging techniques (Abraham et al., 2010;
Calvin et al., 2012).

Table 1 shows the comparison of different types of high-
resolution imaging modalities with a non-contact setting.
As camera and Light Detection and Ranging (LiDAR) are
widely launched for 2D/3D image capturing, due to the
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Table 1 Comparison of features of existing imaging technologies. The
ability to see through objects opaque in visible light enables tomogra-
phy. The X-ray would ionize objects, which means not bio-safe. Some
methods can identify different materials by their spectroscopy, and they

require the penetration of the object. One imagingmethod ismore favor-
able if it can be placed on the table (table-top), thereby excluding those
methods which require bulky instruments and placed in a special room
such as X-ray and Magnetic Resonance Imaging (MRI)

Method See through opaque objects Bio-safe Material identification Table-top system

RGB Camera × � Partiallya �
X-ray � × � �
LiDAR × � Partiallyb �
Ultrasonic � � � �
MRI � � Partiallyc ×
THz Imaging � � � �
aMaterial of object surface (fabric, plastic, wood, paper, leather, metal, and fur) (Kim et al., 2018)
bMaterial of object surface (fabric, brick, pine, wood, and maple leaves) (Nunes-Pereira et al., 2020)
cMaterial with hydrogen atoms (tumor, fat, and water) (Clarke et al., 1995)

intensive scattering and absorption happening nearby object
surfaces, these two imaging methods cannot visualize 3-D
full profiles of most objects. Research groups have suc-
cessfully found other electromagnetic spectrum regimes to
bring information invisible to visible to address this issue.
X-ray imaging is one of the commonly used methods to
precisely visualize the interior of objects (Chapman et al.,
1997; Fitzgerald, 2000; Sakdinawat, A., Attwood, D., 2010;
Cloetens et al., 1996; Peterson et al., 2001). Despite its
invisible-to-visible capability, high-energy X-ray photons
would cause both destructive and ionizing impacts on var-
ious material types preventing further investigations with
other material characterization modalities. Magnetic reso-
nance imaging (MRI) technology has proven to be a bio-safe
way to visualize soft materials with excellent image contrast.
Still, it is bulky and requires sufficient space for operation,
which prevents its practical use in many application scenar-
ios. To be pervasively used like visible light cameras, the
desired tomographic imaging modality must be operated at
a remote distance, non-destructive, bio-safe, compact, and
most importantly, capable of digging out information con-
ventional cameras cannot achieve.

THz radiation, betweenmicrowave and infrared, has often
been regarded as the last frontier of EM wave (Saeedkia,
2013), which provides its unique functionalities among all
EM bands. Along with the rapid development of THz tech-
nology, THz imaging has recently attracted significant atten-
tion due to its non-invasive, non-destructive, non-ionizing,
material-classification, and ultra-fast nature for advanced
material exploration and engineering. As THzwaves can par-
tially penetrate through varieties ofmaterials being opaque in
visible light, they carry hidden material tomographic infor-
mation along the traveling path, making this approach a
desiredway to see through black boxeswithout damaging the
exterior (Mittleman et al., 1999; Jansen et al., 2010; Mittle-
man, 2018). By utilizing light-matter interaction within the
THz band, multifunctional tomographic information from

a great variety of materials can also be retrieved even at
a remote distance. In the past decades, THz time-domain
spectroscopy (THz-TDS) has become one of the most rep-
resentative THz imaging modalities to achieve non-invasive
evaluation because of its unique capability of extracting geo-
metric and multi-functional information of objects. Owing
to its fruitful information in multi-dimensional domains—
space, time, frequency, and phase, THz-TDS imaging has
been already allocated for numerous emerging fields, includ-
ing drug detection (Kawase et al., 2003), industrial inspec-
tion, cultural heritage inspection (Fukunaga, 2016), and
cancer detection (Bowman et al., 2018).

However, the conventionalmethods (e.g.,Time-max (Hung
&Yang, 2019b)) for THz imaging is to analyze the tem-
poral profiles of THz signals measured by a THz-TDS
system within a limited time window. The reconstructed
tomographic image quality is severely constrained by the
diffraction-limited geometry and absorption behavior of
objects in the THz spectral regime, leading to undesired blur-
ring and distortion of reconstructed tomography images. To
address this problem, we utilize useful spectral bands to sup-
plement the conventional method, recording the maximum
amplitude of the time-domain THz signal of each pixel for
recovery of the clear 2D images.

Recently, data-driven methods based on deep learning
models, which do not resort to any explicit transform model
but are learned from representative big data, have been revo-
lutionizing the physics-based paradigm in image restoration.
The data-driven methods can be regardless of physical prop-
erties while maintaining the advantages of the physics-based
methods and achieving state-of-the-art performances.Wecan
also cast THz image analysis as an image-domain learn-
ing problem. Nevertheless, a THz image retrieved from THz
raw time-domain signals does not carry enough restoration
information, thereby limiting the efficacy of the data-driven
methods. Furthermore, we found that directly learning from
the full spectral information to restore THz images leads
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Fig. 1 Flowchart of
physics-guided THz
computational imaging. The
pixel-wise THz raw signals are
measured from the THz imaging
system along with image data.
The multi-domain data are then
processed and fused by a
computational imaging model to
reconstruct the images. The
computational imaging model
can be either physics-based or
data-driven, with or without the
physics guides derived from the
physical properties of THz
signals

to unsatisfactory performance. The main reason is that the
full spectra of THz signals involve diverse characteristics of
materials, noises, and scattered signals, which causes dif-
ficulties in model training. To address the above issues, as
illustrated in Fig. 1, we can leverage additional pixel-wise
spectral information carried in the THz raw signals, such as
the amplitude/phase spectra corresponding to specific phys-
ical characteristics of THz waves passing through materials.
Due to a large number of spectral bands with measured
THz image data, it is desirable to sample a subset of the
most physics-prominent spectral bands to reduce the num-
ber of training parameters. Specifically, The THz beam is
significantly attenuated at water absorption frequencies. As
a result, such physics-guided water-absorption property of
THz beams offers useful clues for inspecting and reconstruct-
ing an object from THz images captured in a see-through
setting (e.g., computed tomographic reconstruction) as will
be elaborated in Sect. 5.2.

Based on the concept revealed in Fig. 1, we here pro-
pose a multi-scale Subspace-Attention guided Restoration
Network (SARNet) that fuses intra-view complementary
spectral features of the THz amplitude and phase to supple-
ment the Time-max image for restoring clear 2D images.
To this end, SARNet learns common representations in
a common latent subspace shared between the amplitude
and phase, and then incorporates a Self-Attention mecha-
nism to learn the wide-range dependency of the spectral
features for guiding the restoration task. To leverage the inter-
view redundancies existing between neighboring views of an
object captured from different angles, on top of SARNet we
also propose a multi-view version image restoration model,
namely SARNetMV, that incorporates inter-view fusion to
further boost restoration performance. Finally, from clear 2D
views restored from the corrupted views of an object, we can
reconstruct high-quality 3D tomography via inverse Radon
transform. Our main contributions are summarized as fol-
lows:

• We are the first research group to merge THz temporal-
spatial-spectral data, data-driven models, and light-

matter interaction properties to the best of our knowledge.
The proposed SARNet achieves excellent performance
in extracting and fusing features from the light-matter
interaction data in THz spectral regime, which inherently
contains fruitful 3D object information and its material
behaviors. Based on the architecture of the proposed
SARNetMV on intra/inter-view feature fusion, it delivers
state-of-the-art performance on THz image restoration.

• Withour newly establishedTHz-TDS tomographydataset—
the world’s first in its kind, we provide comprehen-
sive quantitative/qualitative analyses among SARNetMV

and state-of-the-arts. SARNetMV significantly outper-
forms Time-max (Hung &Yang, 2019b), U-Net (Ron-
neberger et al., 2015), andNBNet (Cheng et al., 2021) by
11.41 dB, 2.79 dB, and 2.23 dB, respectively, in average
PSNR at reasonable computation and memory costs.

• Thiswork shows that computer vision techniques can sig-
nificantly contribute to the THz community and further
open up a new interdisciplinary research field to boost
practical applications, e.g., non-invasive evaluation, gas
tomography, industrial inspection, material exploration,
and biomedical imaging.

2 RelatedWork

2.1 Conventional THz Computational Imaging

In the past decades, many imaging methods have been
developed based on the light-matter interaction in the THz
frequency range. Based on THz absorption imaging modal-
ities, the material refractive index mapping can be profiled
through Fresnel equation (Born &Wolf, 2013), extracted by
the THz power loss while propagating through the tested
object boundary. With THz spectroscopy imaging, both
material information encoded in the wave propagation equa-
tion andobject geometry canbe revealed.Tobemore specific,
the depth map of the measured object can be reconstructed
based on the phase spectrum of the retrieved THz signals
(Hack and Zolliker, 2014); the attenuated power spectrum
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information can further recover the hyperspectral material
fingerprintmapping.These characteristics provide functional
3D imaging capability for object inspection. Additionally,
considering the propagated THz beam behavior of a sig-
nal as the model prior knowledge, such as Rayleigh beam,
has proven to largely improve the imaging quality (Recur et
al., 2012). With the THz time-reversal techniques, the THz
amplitude and/or phase images of a measured object can be
estimated by the spatiotemporal interaction between the input
THz waves and the object. However, the application scopes
of those physics-driven methods are severely limited since
they normally require a sufficient amount of prior knowledge
of a measured object to simplify the guided complex physi-
cal models. To break this limitation, data-driven approaches,
especially deep neural networks, start to arouse intensive
attention due to their excellent learning capability. A data-
driven model based on physical priors can effectively loosen
the requirement of prior knowledge of materials and perform
superior to conventional physics-based methods. Moreover,
data-driven models can learn to adequately fuse the different
information of THz signals, such as amplitude/phase spectra
and the time-resolved THz signals, to achieve superior image
restoration (Su et al., 2022, 2023).

2.2 Physics-Guided Data-Driven THz Imaging

In contrast to those model-based methods, data-driven meth-
ods are mainly based on deep learning models (Zhang et al.,
2017; Mao et al., 2016), which do not resort to any explicit
transformmodel but are learned from representative big data.
We can cast THz image analysis as an image-domain learning
problem. Deep learning has revolutionized the aforemen-
tioned physics-based paradigm in image restoration, for
which the data-driven methods can be regardless of phys-
ical properties while maintaining the advantages of the
physics-based methods and achieving state-of-the-art per-
formances. Nevertheless, a THz image retrieved from THz
raw time-domain signals does not carry enough restoration
information, thereby limiting the efficacy of the data-driven
methods. To address the issue, as illustrated in Fig. 1, we
can leverage additional pixel-wise spectral information car-
ried in the THz raw signals, such as the amplitude/phase
spectra corresponding to specific physical characteristics
of THz waves passing through materials. By contrast, the
physics-based methods are difficult to leverage such pixel-
wise amplitude/phase spectral information. To this end, the
data-driven model proposed in Su et al. (2022) incorpo-
rates additional information from amplitude/phase at water
absorption frequencies, derived from the physical properties
of THz signals, to complement the insufficient information in
time-domain THz images so as to significantly boost restora-
tion performance. In addition, if theTHz imaging systemuses
the THz focal beam, the THz beam diameter along with the

wave propagation direction can be varied. Additionally, the
THz beam diameter can also be changed in different spec-
tral bands due to the diffraction limit. Both changed THz
beam diameters lead to the non-identical point spread func-
tion (PSF) in eachmeasurement point. To solve this problem,
the Filter Adaptive Convolutional Layer (FAC) (Zhou et al.,
2019) can learn different filter kernels corresponding to the
PSF for each pixel from spatial-spectral information and use
those kernels to deliver superior imaging performance.

2.3 Deep Learning-Based Image Restoration

In recent years, deep learning methods were first popularized
in high-level visual tasks, and then gradually penetrated into
many tasks such as image restoration and segmentation. Con-
volutional neural networks (CNNs) have proven to achieve
state-of-the-art performances in fundamental image restora-
tion problems (Mao et al., 2016; Zhang et al., 2017, 2020,
2018; Ronneberger et al., 2015). Several network models
for image restoration were proposed, such as U-Net (Ron-
neberger et al., 2015), hierarchical residual network (Mao et
al., 2016) and residual dense network (Zhang et al., 2020).
Notably, DnCNN (Zhang et al., 2017) uses convolutions, BN,
and ReLU to build 17-layer network for image restoration
which was not only utilized for blind image denoising, but
was also employed for image super-resolution and JPEG
image deblocking. FFDNet (Zhang et al., 2018) employs
noise level maps as inputs and utilizes a single model to
develop variants for solving problems with multiple noise
levels. In Mao et al. (2016) a very deep residual encoding-
decoding (RED) architecture was proposed to solve the
image restoration problem using skip connections. (Zhang
et al., 2020) proposed a residual dense network (RDN),
whichmaximizes the reusability of features by using residual
learning and dense connections. NBNet (Cheng et al., 2021)
employs subspace projection to transform learnable feature
maps into the projection basis, and leverages non-local image
information to restore local image details. Similarly, the
Time-max image obtained from a THz imaging system can
be cast as an image-domain learning problem which was
rarely studied due to the difficulties in THz image data collec-
tion. Research works on image-based THz imaging include
(Popescu and Ellicar, 2010; Popescu et al., 2009;Wong et al.,
2019), and THz tomographic imaging works include (Hung
&Yang, 2019b, a).

Transformer (Vaswani et al., 2017), a kind of self-attention
mechanism for machine learning, was first proposed to
largely boost the research in natural language processing.
Recently, it has gainedwide popularity in the computer vision
community, such as image classification (Dosovitskiy et al.,
2020; Wu et al., 2020), object detection (Carion et al., 2020;
Liu et al., 2018), segmentation (Wu et al., 2020), which learns
to focus on essential image regions by exploring the long-
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range dependencies among different regions. Transformer
has also been introduced for image restoration (Chen et al.,
2021;Cao et al., 2021;Wang et al., 2022) due to its impressive
performance. In Chen et al. (2021), a standard Transformer-
based backbone model IPT was proposed to address various
restoration problems, which relies on a large number of
parameters (over 115.5M parameters), large-scale training
datasets, and multi-task learning for achieving high restora-
tion performances. Additionally, VSR-Transformer (Cao et
al., 2021) first utilizes a CNN to extract visual features
and then adopts a self-attention model to fuse features for
video super-resolutionAlthough transformer-based attention
mechanisms have proven effective in boosting the perfor-
mance of image restoration tasks, the performance gains of
transformers come at the cost of significantly larger amounts
of training data and computation.

2.4 Tomographic Reconstruction

Computed tomographic (CT) imaging methods started from
X-ray imaging, and many methods of THz imaging are sim-
ilar to those of X-ray imaging. One of the first works to
treat X-ray CT as an image-domain learning problem was
Kang et al. (2017), which adopts CNN to refine tomographic
images. In Jin et al. (2017), U-Net was used to refine image
restoration with significantly improved performances. Zhu et
al. (2018) further projects sinograms measured directly from
X-ray into higher-dimensional space and uses domain trans-
fer to reconstruct images. The aforementioned works were
specially designed for X-ray imaging.

Hyperspectral imaging (Schultz et al., 2001; Ozdemir
and Polat, 2020; Geladi et al., 2004) constitutes image
modalities other than THz imaging. Different from THz
imaging, Hyperspectral imaging collects continuous spectral
band information of the target sample. Typically, the fre-
quency bands fall in the visible and infrared spectrum; hence,
most hyperspectral imaging modalities can only observe
the surface characteristics of targeted objects. Furthermore,
although existing deep-based hyperspectral imaging works
can learn spatio-spectral information from a considerable
amount of spectral cube data, they mainly rely on the full
spectral information to restore hyperspectral images. This
would usually lead to unsatisfactory performance for THz
imaging since the full spectral bands of THz signals involve
diverse characteristics of materials, noises, and scattered sig-
nals, which causes difficulties in model training.

3 Physics-Guided THz Imaging

Based on the dependency between the amplitude of a tempo-
ral signal and THz electric field, in conventional THz imag-
ing, the maximum peak of the signal (Time-max (Hung

&Yang, 2019b)) is extracted as the feature for a voxel.
The reconstructed image based on Time-max features can
deliver a great signal-to-noise ratio and a clear object con-
tour. However, the conventional THz imaging based on
Time-max features suffers from several drawbacks, such
as the undesired contour in the boundary region, the hollow
in the body region, and the blurs in high spatial-frequency
regions. To break this limitation, we utilize the spectral
information of THz temporal signals to supplement the con-
ventional method based on Time-max features since the
voxel of the material behaviors is encoded in both the phase
and amplitude of different frequency components, according
to the Fresnel equation (Dorney et al., 2001).

More specifically, considering an incident THz wave pen-
etrates through a single-material object with thickness d,
the detected THz signal Sd( f ) at frequency f is deter-
mined by the material complex refractive index ño( f ) =
no( f ) − jκo( f ) and the thickness d in (1).

Sd( f ) = Sref( f ) · t(ño, f ) · exp
[
κo( f )2π f d

c

]
·

exp

[− jno( f )2π f d

c

]

= Sref( f ) · t(ño, f ) · (Ia( f ))
d · (Ip( f ))

d ,

(1)

where Sref( f ) and t(ño, f ) are respectively the THz input
signal and the Fresnel loss of THz waves (e.g., amplitude
attenuation and phase change) due to the air-object inter-
face at frequency f . Here, the Fresnel loss resulting from
the presence of a single material can be further simplified

as a constant. Meanwhile, Ia( f ) = exp
[

κo( f )2π f
c

]
and

Ip( f ) = exp
[− jno( f )2π f

c

]
can be acquired in a data-driven

manner using information regarding the object thickness
(i.e., ground-truth) and the detected THz signal. Specifi-
cally, although the complex refractive index is not provided
explicitly, the network can still learn to map noisy input
amplitude/phase images to their corresponding ground-truth
images.

To provide a more detailed explanation of THz imaging,
Fig. 2 shows the flowchart of estimating amplitude and phase
information of Sd( f ) from the raw data directly measured
by the THz-TDS system. This figure illustrates time-domain
THz signals measured in air, the body, and the leg of a 3-
D printed deer, respectively. While the THz beam passes
through the object, the attenuated THz time-domain signal
encodes the thickness and material information of the THz-
illuminated region. By processing the peak amplitudes of
THz signals (i.e., Time-max), the 3-D profile of the printed
deer can be further reconstructed. Although this conventional
way is well-fitted for visualizing 3-D objects, the inherent
diffraction behavior and strong water absorption nature of
THz wave induce various kinds of noise sources as well as
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Fig. 2 Raw data of measured THz images. This figure illustrates the
time domain datameasured in air and the body and leg of our 3-Dprinted
deer. The red points illustrate the frequency bands with strong water
absorption. The right figures illustrate the reconstructed image using

the max value of the time domain (upper right), and the reconstructed
image using different water absorption frequencies (lower right) (Color
figure online)

the loss of material information, as characterized by param-
eters such as t(ño, f ), Ia( f ), and Ip( f ) in (1). This leads
to the undesirable blurring, distorted, speckled phenomenon
of functional THz images. Existing works have tackled this
issue to restore clear images via estimating point spread
functions (Popescu and Ellicar, 2010; Popescu et al., 2009),
image enhancement (Wong et al., 2019), machine learning
(Ljubenovic et al., 2020; Wong et al., 2019), and more.
Their performance is, however, still severely constrained by
diffraction-limited THz beam. To break the limitations, the
motivation of our work is to reconstruct deep-subwavelength
tomographic images by using a deep-learning-based image
restoration method and spatio-spectral information of the
hidden objects.

3.1 Water Absorption Profile-Guided THz Imaging

As shown in Fig. 2, each 2-D THz image is composed of
an array of time-domain signals, from which the Fourier
transform operation can be utilized to extract voxel-wise
multi-spectral features. Due to a large number of spectral
bandswithmeasured THz image data, it is required to sample
a small subset of prominent spectral bands to reduce the train-
ing burden. Because the THz wave is significantly attenuated
at water absorption frequencies, selecting THz bands based
on water absorption lines can better delineate an object and
characterize its thickness profile. The spectral information,
including both amplitude and phase at the selected frequen-
cies, is extracted and then employed to restore clear 2D
images. The different features in THz images at THz water-
absorption frequencies (the 12 selected frequencies in this

work: 0.380, 0.448, 0.557, 0.621, 0.916, 0.970, 0.988, 1.097,
1.113, 1.163, 1.208, and 1.229 THz) as shown in Fig. 3. It
shows multiple 2D THz images of the same object at the
selected frequencies, showing very different contrasts and
spatial resolutions as these hyperspectral THz image sets
have different physical characteristics through the interac-
tion of THz waves with objects.

The lower-frequency phase images offer relatively accu-
rate depth information due to their higher SNR level, whereas
the higher-frequency phase images offer finer contours and
edges because of the shrinking diffraction-limited wave-
length sizes (from left to right in Fig. 3). The phase also
contains, however, a great variety of information on light-
matter interaction that could cause learning difficulty for
the image restoration task. To address this issue, we uti-
lize the amplitude spectrum as complementary information.
Although the attenuated amplitude spectrum cannot reflect
comparable depth accuracy levels as the phase spectrum, the
amplitude spectrum still presents superior SNR and more
faithful contours such as the location information of a mea-
sured object. Besides, as the complementary information to
phase, the lower-frequency amplitude offers higher contrast,
whereas the higher-frequency amplitude offers a better object
mask.

In summary, the amplitude complements the shortcom-
ings of the phase. The advantages of fusing the two signals
from low-frequency to high-frequency are as follows: Since
the low-frequency THz signal provides precise depth (the
thickness of an object) and fine edge/contour informa-
tion in the phase and amplitude, respectively, they together
better delineate and restore the object. In contrast, the high-
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Fig. 3 Illustration of THz multi-spectral amplitude and phase images measured from Deer

frequency feature maps of amplitude and phase respectively
provide better edges/contours and precise position infor-
mation, thereby constituting a better object mask from the
complementary features. With these multi-spectral proper-
ties of THz images, we can extract rich information from
a wide spectral range in the frequency domain to simulta-
neously restore the 2D THz images without any additional
computational cost or equipment, which is beneficial for the
further development of THz imaging.

4 THz Tomographic Imaging

4.1 Overview

As different EM bands interact with objects differently,
THz waves can partially penetrate through various optically
opaque materials and carry hidden material tomographic
information along the traveling path. This unique feature pro-
vides a newapproach to visualizing the essence of 3Dobjects,
which other imaging modalities cannot achieve. Although
existing deep neural networks can learn spatio-spectral infor-
mation from a considerable amount of spectral cube data,
as mentioned above, directly learning from the full spec-
tral information is not appropriate for learning THz image
restoration models since the full spectral bands of THz sig-
nals involve diverse characteristics of materials, noises, and
scattered signal, which causes difficulties in model training.

To address this problem, our work is based on extract-
ing complementary information from both the amplitude
and phase of a THz signal. In addition, for tomographic
reconstruction, we capture multi-view images of an object
with overlapping contents from different view angles. As
a result, the correspondences existing between neighboring
views offer useful aid in enhancing the restoration quali-
ties of individual corrupted views. In summary, we devise
a novel multi-view Subspace-Attention-guided Restoration
Network (SARNetMV), as shown in Fig. 4, to capture intra-

view complementary spectral characteristics of materials
and inter-view correspondences from neighboring views to
restore corrupted 2D THz images effectively. The key idea
of SARNetMV is to fuse spatio-spectral features with differ-
ent characteristics on a common ground via deriving a shared
latent subspace anddiscovering thewide-range dependencies
between the amplitude and phase images to guide the feature
fusion. To this end, SARNetMV is a two-stage multi-view
version based on single-view SARNet. In the first single-
view stage of SARNetMV, as shown in Fig. 4, all corrupted
views are first restored by SARNet individually. Then, in
the second multi-view stage, we first concatenate and fuse
the feature tensors of three restored neighboring views via
a feature fusion module, and then feed the fused multi-view
feature into the same SARNet to obtain the final restored
view. The design of SARNetMV is detailed in Sect. 4.2.

4.2 Network Architecture

On top of U-Net (Ronneberger et al., 2015), the architec-
ture of SARNet is depicted in Fig. 5. Specifically, SARNet
is composed of an encoder (spectral-fusion module) with 5
branches of different scales (from the finest to the coarsest)
and a decoder (channel-fusionmodule) with 5 corresponding
scale branches. Each scale branch of the encoder involves a
Subspace-Attention-guided Fusion module (SAFM), a con-
volution block (Conv-block), and a down-sampler, except
for the finest-scale branch that does not employ SAFM. To
restore a specific view, the encoder of SARNet takes the fea-
ture tensor of this view’s Time-max image (the first stage)
or a fused image of three restored neighboring views cen-
tered at the current view (the second stage) as the input of
the finest-scale branch. To extract and fuse multi-spectral
features of both amplitude and phase in a multi-scale man-
ner, the encoder also receives to its second to fifth scale
branches 24 images of additional predominant spectral fre-
quencies extracted from the THz signal of the current view,
where each branch takes 6 images of different spectral bands

123



International Journal of Computer Vision (2023) 131:2388–2407 2395

Fig. 4 Illustration of THz 3D tomographic imaging based on SARNet

(i.e., 3 amplitude bands and 3 corresponding phase bands)
to extract learnable features from these spectral bands. To
reduce the number of model parameters, these 24 amplitude
and phase images (from low to high frequencies) are down-
sampled to 4 different spatial scales and fed into the second
to fifth scale branches in a fine-to-coarse manner as illus-
trated in Fig. 5. We then fuse the multi-spectral amplitude
and phase feature maps in each scale via the proposed SAFM
that learns a common latent subspace shared between the
amplitude and phase features to facilitate associating the self-
attention-guided wide-range amplitude-phase dependencies.
Projected into the shared latent subspace, the spectral fea-
tures of amplitude and phase components, along with the
down-sampled features of the upper layer, can then be prop-
erly fused together on common ground in a fine-to-coarse
fashion to derive the final latent code.

The Conv-block(L) contains two stacks of L×L convolu-
tion, batch normalization, and ReLU operations. Because the
properties of the spectral bands of amplitude and phase can
be significantly different, we partly use L = 1 to learn the
best linear combination of multi-spectral features to avoid
noise confusion and reduce the number of model parame-
ters. The up-sampler and down-sampler perform 2× and 1

2×
scaling, respectively. The skip connections (SC) directly pass
the feature maps of different spatial scales from individual
encoder branches to the Channel AttentionModules (CAMs)
of their corresponding branches of the decoder. The details
of SAFM and CAM are elaborated on later.

In the decoder path, each scale branch for channel fusion
involves an up-sampler, a CAM, and a Conv-block. The
Conv-block has the same functional blocks as that in the
encoder. Each decoding branch receives a “shallower-layer”
feature map from the corresponding encoding branch via the
skip-connection shortcut and concatenates the feature map
with the upsampled version of the decoded “deeper-layer”

feature map from its coarser-scale branch. Besides, the con-
catenated feature map is then processed by CAM to capture
the cross-channel interaction to complement the local region
for restoration.

Note, a finer-scale branch of SARNet extracts shallower-
layer features that tend to capture low-level features, such
as colors and edges. To complement the Time-max image
for restoration, we feed additional amplitude and phase
images of low to high spectral bands into the fine- to coarse-
scale branches of SARNet. Since the spectral bands of
THz amplitude and phase offer complementary information,
as mentioned in Sect. 4.1, besides the Time-max image
SARNet also extracts multi-scale features from the ampli-
tude and phase images of 12 selected THz spectral bands,
which are then fused by the proposed SAFM.

4.3 Intra-view Feature Fusion of SARNet

4.3.1 Subspace-Attention-Guided Fusion Module

How to properly fuse the spectral features of THz amplitude
and phase are, however, not trivial, as their characteristics can
be significantly different. To address the problem, inspired
by Cheng et al. (2021) and Zhang et al. (2019), we propose
SAFMshown in Fig. 6 to fusemulti-spectral relevant features
on common ground.

Let XA
in, XP

in ∈ R
H×W×3 denote the spectral bands

of the THz amplitude and phase, respectively. The Conv-
block fC (·) extracts two intermediate feature maps fC (XA

in),
fC (XP

in) ∈ R
H×W×C1 from XA

in and XP
in, respectively. As

a result, we then derive the K shared basis vectors V =
[v1, v2, . . . , vK ] from fC (XA

in) and fC (XP
in), where V ∈

R
N×K , N = HW denotes the dimension of each basis vec-

tor, and K is the rank of the shared subspace. The basis set
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Fig. 5 a Overall network architecture of SARNetMV consisting of five
scale-branches, where the finest-scale scale takes the feature tensor of
one view’s Time-max image (the first stage) or the fused image of
three restored views (the second stage) as input. Additionally, each of
the second to fifth takes 6 images of spectral frequencies (i.e., 3 ampli-

tude bands and 3 phase bands) as inputs. The three gray blocks show
the detailed structures of b Spectral Fusion, c Channel Fusion, and d
Conv-Block. The two black blocks indicate the input and output in the
first and second stages, respectively

Fig. 6 Block diagram of Subspace-Attention-guided Fusion Module
(SAFM). SAFM first projects the different-band amplitude and phase
features into a common latent subspace and then finds the wide-range

dependencies among the projected features via self-attention guidance.
As a result, attention-aware features are fused on common ground
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of the shared common subspace is expressed as

V = fF ( fC (XA
in), fC (XP

in)), (2)

where we first concatenate the two feature maps in the chan-
nel dimension and then feed the concatenated feature into
the fusion block fF (·). The structure of the fusion block is
the same as that of the Conv-block with K output channels
as indicated in the red block in Fig. 6. The weights of the
fusion block are learned in the end-to-end training stage. The
shared latent subspace learning mainly serves two purposes:
(1) learning common latent representations between the THz
amplitude and phase bands, and (2) learning the subspace
projection matrix to project the amplitude and phase features
into the shared subspace such that they can be analyzed on a
commonground. These both help identifywide-range depen-
dencies of amplitude and phase features for feature fusion.

To find wide-range dependencies between the amplitude
and phase features on common ground, we utilize the orthog-
onal projection matrixV in (2) to estimate the self-attentions
in the shared feature subspace as

β j,i = exp(si j )∑N
i=1 exp(si j )

, si j = vTi v j (3)

where β j,i represents the model attention in the i-th location
of the j-th region.

The orthogonal projection matrix P is derived from the
subspace basis V as follows (Meyer, 2000):

P = V(VTV)−1VT (4)

where (VTV)−1 is the normalization term to make the basis
vectors orthogonal to each other during the basis generation
process.

As a result, the output of the self-attention mechanism
becomes

o j =
(

N∑
i=1

β j,i si

)
, si = Concate(PXA

in,PX
P
in) (5)

where the key of si ∈ R
HW×6 is obtained by concatenating

the two feature maps PXA
in and PXP

in projected by orthogo-
nal projection matrix P ∈ R

HW×HW , and XA
in and XP

in are
reshaped to HW × 3. Since the operations are purely linear
with some proper reshaping, they are differentiable.

Finally, we further combine cross-scale features of the
self-attention output by adding the down-sampled feature
map X f from the finer scale as

YSAF
out = fs(o) + X f (6)

where fs is a 1×1 convolution to keep the channel number
consistent with X f .

4.3.2 Channel Attention Module

To fuse multi-scale features from different spectral bands in
the channel dimension, we incorporate the efficient chan-
nel attention mechanism proposed in Qin et al. (2020) in the
decoder path of SARNet as shown inFig. 7. In each decoding
branch, the original U-Net directly concatenates the up-
sampled feature from the coarser scale with the feature from
the corresponding encoding branch via the skip-connection
shortcut, and then fuses the intermediate features from dif-
ferent layers by convolutions. This, however, leads to poor
image restoration performances in local regions such as
incorrect object thickness or details. To address this problem,
we propose a channel attention module (CAM) that adopts
full channel attention in the dimensionality reduction oper-
ation by concatenating two channel attention groups. CAM
first performs global average pooling to extract the global
spatial information in each channel:

Gt = 1

H × W

H∑
i=1

W∑
j=1

Xt (i, j) (7)

where Xt (i, j) denotes the t-th channel of Xt at position
(i, j) obtained by concatenating the up-sampled feature map
Xc of the coarser-scale and the skip-connection feature map
Xs . The shape of G is from C × H × W to C × 1 × 1.

We directly feed the result through two stacks of 1 × 1
convolutions, sigmoid, and ReLU activation function as:

w = σ (Conv1×1 (δ (Conv1×1(G)))) , (8)

where Conv1×1(·) denotes a 1× 1 convolution, σ is the sig-
moid function, and δ is the ReLU function. In order to better
restore a local region, we divide the weights w of different
channels into two groupsw = [w1,w2] corresponding to two
different sets of input feature maps, respectively. Finally, we
element-wise multiply the input Xc and Xs of the weights w
and add these two group features.

4.4 Inter-view Feature Fusion of SARNetMV

After restoring individual views of an object with SARNet,
we then perform multi-view feature fusion between neigh-
boring views to further boost restoration performance. As
shown in Fig. 8, besides intra-view multi-spectral features,
the inter-view redundancies between neighboring views can
also provide informative clues for restoring corrupted views.
To leverage the inter-view information, as shown in Fig. 5, for
the t-th corrupted view, we fuse its post-restoration feature
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Fig. 7 Block diagram of
Channel Attention Module
(CAM)

Fig. 8 Illustration of inter-view
redundancies between
neighboring views, where the
redundancies existing in the two
neighboring views offer useful
clues for restoring the center
view

tensor with those of its two closest views (i.e., the (t − 1)-
th and (t + 1)-th views with a sampling step-size of 6◦), all
restored by the same SARNet model. To achieve inter-view
feature fusion,wefirst concatenate theSARNet-restored fea-
ture tensors of three neighboring views centered at the t-th
view, X(t−1)

in , X(t)
in , and X(t+1)

in , as follows:

X̂(t)
conc = Concate(X(t−1)

SAF ,X(t)
SAF,X

(t+1)
SAF ), (9)

where Concate(·) denotes the concatenation operation and

X(t)
SAF = SARNet

(
Conv3×3(X

(t)
in ),W(X(t)

in )
)

, (10)

whereSARNet(·) denotes the restorationmodel, Conv3×3(·)
denotes a 3× 3 convolution, andW(X(t)

in ) denoted the set of

24 amplitude and phase spectral bands ofX(t)
in selected based

on physics guidance.
The concatenated three-view feature tensor is then fused

via the feature fusion block involving a CAM and a Cov-
Block as follows:

X(t)
MVF = Conv3×3

(
CAM

(
X̂(t)
conc

))
, (11)

whereX(t)
MVF denotes the multi-view fused version of the t-th

view, andCAM(·) is the channel attentionmodulementioned
above.

Finally, as illustrated in Fig. we feed the fused three-view
feature tensor Xt

MVF into the finest-scale branch of SARNet
along with the 24 amplitude and phase bands (i.e., the water
absorption profile) associated with Xt

in to obtain the final
restoration result Xt

rec as

X(t)
rec = SARNet

(
X(t)
MVF,W(X(t)

in )
)

. (12)

4.5 Loss Function for THz Image Restoration

To effectively train SARNet, we employ the following mean
squared error (MSE) loss function to measure the dissimilar-
ity between the restored imageXrec and its ground-truthXGT:

LMSE(XGT,Xrec) = 1

HW

H∑
i=1

W∑
j=1

(XGT(i, j) − Xrec(i, j))
2,

(13)

where H and W are the height and width of the image.

4.6 3D Tomographic Reconstruction

The 3D tomography of an object is reconstructed from the
60 2-D restored views of the object scanned from different
angles. To reconstruct a 3-D tomography from the 60 2-D
views, we directly utilize the inverse Radon transform to
obtain the 3-D tomography, using methods like filtered back-
projection (FPB) (Kak, 2001) or the simultaneous algebraic
reconstruction technique (SART) (Recur et al., 2011).

5 Experimental Results

We conduct experiments to evaluate the effectiveness of
SARNet against existing state-of-the-art restoration meth-
ods.We first present our THz-TDS system andmeasurement.
Then, the details of the THz dataset and experiment settings.
Finally, we evaluate the performances of SARNet and the
competing methods on THz image restoration and tomo-
graphic reconstruction.

5.1 Proposed ASOPS THz-TDS System

Our in-house THz measurement system is an asynchronous
optical sampling THz time-domain spectroscopy system
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(ASOPS THz-TDS), which is composed of two asyn-
chronous femtosecond lasers whose central wavelength are
located at 1560 nm with tens of mW level, a pair of THz
photoconductive antenna (THz PCA) source and detector, a
linear and rotation motorized stage, four plane-convex THz
lens with 50mm focal length, a transimpedance amplifier
(TIA), and a unit of data acquisition (DAQ) and process-
ing (Janke et al., 2005). The repetition rates of the two
asynchronous femtosecond lasers are 100MHz and 100MHz
+ 200Hz, respectively. The sampling rate of DAQ is 20MHz.
With the configuration above, our ASOPS THz-TDS sys-
tem delivers 0.1 ps temporal resolution and a THz frequency
bandwidth of 5 THz. Additionally, our ASOPS THz-TDS
system provides THz pulse signals with 41.7 dB dynamic
range from 0.3 THz to 3 THz and 516 femtoseconds at
full width at half maximum (FWHM). However, under the
configuration above, the number of sampling points for a
trace is approximately 100 K, consuming an extremely large
transmission bandwidth. To address this limitation, only the
100-ps segment of the THz pulse signal is extracted. With
the extracted segment of 100 ps, the frequency resolution is
10 GHz. Additionally, considering the minimum THz beam
diameter of about 1.25 mm and the diffraction limitation,
our THz system can provide spatial resolution in the scale of
sub-millimeters.

5.2 Properties of THzMeasurements

To retrieve the temporal-spatial-spectral information of each
object voxel, our THz imaging experiment setup is based
on a THz-TDS system as shown in Fig. 9. To demonstrate
the THz penetrating capability, the measured object is first
covered by a paper shield, which is highly transparent to
THz but opaque in visible light. The covered object (e.g.,
a 3D printed deer covered by a paper shield) is placed on
the rotation stage in the THz path between the THz source
and detector of the THz-TDS system and is scanned by a
raster scanning approach in 60 projection angles, as shown
in Fig. 10.

Fig. 10 The THz image formation system based on the raster scanning
approach

During measuring, the THz-TDS system profiles each
voxel’s THz temporal signal with 0.1 ps temporal resolution,
whose amplitude corresponds to the strength of the THz elec-
tric field. With this scanning approach, a cube object of size
2cm× 2cm× 2cm consumes about 1 minute for scanning a
projected 2D image; thus, the cubewill take about an hour for
the 60 projection angles. Additionally, due to the limitation
of the linear motorized stage, our measuring system can sup-
port an object size of about 6cm at maximum. With our THz
imaging experiment setup, the THz beam diameter varies
with the THz propagation direction. As a consequence, the
point-spread function of our systemwill vary with the geom-
etry and location of the object. Therefore, the 2D projected
images of the thickness-varying object could suffer from dif-
ferent levels of blurring effects in different pixels.

5.3 THz-TDS Image Dataset

As shown in Fig. 9, we prepare the sample objects by a
Printech 3D printer, and use the material of high impact
polystyrene (HIPS) for 3D-printing the objects.

TheHIPSmaterial is chosen since it can be used to quickly
fabricate target objects by cost-efficient 3D printers, which
can help evaluate a wide range of object geometries. Addi-

Fig. 9 Illustration of THz data
collection with our in-house
THz-TDS tomographic imaging
system
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Fig. 11 Illustration of the ground-truths and photos of the seven 3D-printed HIPS objects used in our experiments. The left image of each object
illustrates the ground-truth of one projection view and the right shows the photo of the HIPS object

tionally, the low absorption nature of HIPS in the THz range
can prevent severe SNR degradation of detected THz signals
while scanning objects. We then use our in-house ASOPS
THz-TDS system (Janke et al., 2005) presented in Sect. 5.1 to
measure the sample objects. Each sample object is placed on
a motorized stage between the source and the receiver. With
the help of themotorized stage, raster scans are performed on
each object in multiple view angles. In the scanning phase,
we scan the objects covering a rotational range of 180 degrees
(step-size: 6 degrees between two neighboring views), a hor-
izontal range of 72mm (step-size: 0.25mm), and a variable
vertical range corresponding to the object height (step-size:
0.25mm). In this way, we obtain 30 projections of each
object, which are then augmented to 60 projections by hor-
izontal flipping. The ground-truths of individual projections
are obtained by taking the Radon transform of the 3D digi-
tal models defining the 3D object profiles for 3D printing in
every view-angle. In addition to generating from digital mod-
els, the ground-truths can also be generated through precise
3D scanners.

We usemarkers to indicate the center of rotation so that we
can align the ground-truths with the measured THz data. In
this paper, totally seven sample objects are printed,measured,
and aligned for evaluation.

5.4 Data Processing and Augmentation

In our experiments, we train the proposed multi-view
SARNetMV model using the 2D THz images collected from
our THz imaging system shown in Fig. 3. Figure 11 illus-
trates the photos of seven example objects along with their
2D ground-truths at certain projection angles. Each object
consists of 60 projections and there are 420 2D THz images
in total. In order to thoroughly evaluate the capacity of
SARNetMV, we adopt the leave-one-out strategy: using the
data of 6 objects (i.e., 360 training images) as the training
set, and that of the remaining object as the testing set. Due
to the limited space, we only present part of the results in
this section, and the complete results in the supplementary

material and our project site.1 The THz-TDS image dataset
can be found in the dataset site.2 We will release our source
code after the paper is accepted.

We also perform typical data augmentations to enrich the
training set, including random rotating and flipping. Finally,
the images are randomly cropped to 128 × 128 patches.

5.5 Experiment Settings

We initialize SARNetMV following the initialization method
in He et al. (2015), and train it using the Adam optimizer
with β1 = 0.9 and β2 = 0.999. We set the initial learning
rate to 10−4 and then decay the learning rate by 0.1 every
300 epochs. SARNet converges after 1, 000 epochs. For a
fair comparison with the competing methods, we adopt their
publicly released codes. All experiments were performed in
a Python environment and Pytorch package running on a PC
with Intel Core i7-10700 CPU 2.9 GHz and an Nvidia Titan
2080 Ti GPU.

5.6 Quantitative and Qualitative Evaluations

To the best of our knowledge, there is no method specially
designed for restoringTHz images besidesTime-max (Hung
&Yang, 2019b).Thus,wecompareourSARNet andSARNetMV

models against several representative CNN-based image
restoration models, including DnCNN (Zhang et al., 2017),
RED (Mao et al., 2016), NBNet (Cheng et al., 2021), and
U-Net (Ronneberger et al., 2015). We use the time-max
images as the inputs and their corresponding round-truths as
the target outputs to train these CNN-based image restoration
models. Note that, these CNN-based restoration models do
not utilize the prominent spectral information based on water
absorption lines for restoring the THz time-max images.
For quantitative quality assessment, we adopt two quality
metrics for assessing the visual qualities of 2D view restora-

1 Project site: https://github.com/wtnthu/THz_Tomography.
2 Dataset site: https://github.com/wtnthu/THz_Data.
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Table 2 Quantitative
comparison of PSNR between
restored 2D views and their
ground-truth with different
methods on Deer, DNA, Box,
Eevee, Polarbear, Robot, and
Skull. (↑: higher is better)

PSNR (dB) ↑
Method Deer DNA Box Eevee Polarbear Robot Skull

Time-max 12.42 12.07 11.97 11.20 11.21 11.37 10.69

DnCNN-S (Zhang et al., 2017) 19.94 23.95 19.13 19.69 19.44 19.72 17.33

RED (Mao et al., 2016) 19.30 24.17 20.18 19.97 19.17 19.76 16.28

NBNet (Cheng et al., 2021) 20.24 25.10 20.21 19.84 20.12 20.01 19.69

U-Net (Ronneberger et al., 2015) 19.84 24.15 19.77 19.95 19.09 18.80 17.49

SARNet (Ours) 22.98 26.05 22.67 20.87 21.42 22.66 22.48

SARNetMV (Ours) 23.17 26.19 23.23 20.97 21.55 22.68 23.05

Table 3 Quantitative
comparison of MSE between the
cross-sections of a reconstructed
3D tomography and the
corresponding ground-truths
with different methods on Deer,
DNA, Box, Eevee, Polarbear,
Robot, and Skull. (↓: lower is
better)

MSE ↓
Method Deer DNA Box Eevee Polarbear Robot Skull

Time-max 0.301 0.026 0.178 0.169 0.084 0.203 0.225

DnCNN-S (Zhang et al., 2017) 0.153 0.162 0.309 0.149 0.056 0.223 0.293

RED (Mao et al., 2016) 0.139 0.238 0.300 0.179 0.070 0.215 0.324

NBNet (Cheng et al., 2021) 0.240 0.184 0.305 0.134 0.088 0.128 0.138

U-Net (Ronneberger et al., 2015) 0.227 0.166 0.266 0.157 0.077 0.093 0.319

SARNet (Ours) 0.107 0.015 0.041 0.122 0.050 0.065 0.052

SARNetMV (Ours) 0.091 0.013 0.030 0.105 0.038 0.059 0.049

tion and3D tomographic reconstruction, respectively. and the
reconstruction quality. The first metric is the Peak Signal-to-
Noise Ratio (PSNR) for measuring the discrepancy between
restored 2D views and their ground-truth as shown in Table2.
The second is the Mean-Square Error (MSE) between the
cross-sections of a reconstructed 3D tomography and the
corresponding ground-truths for assessing the 3D reconstruc-
tion accuracy as compared in Table3. To further evaluate the
3D reconstruction accuracy of various models, as shown in
Table4, we also compare the average Intersection over Union
(IoU), F-Score, and Chamfer distance performances by con-
verting reconstructed 3D volumes into point-clouds (Xie et
al., 2020).

Table2 shows that our SARNet and SARNetMV both sig-
nificantly outperform the competingmethods on all the seven
sample objects in PSNR. Specifically, SARNetMV outper-
forms Time-max (Hung &Yang, 2019b), U-Net (Ron-
neberger et al., 2015), and NBNet (Cheng et al., 2021)
by 11.41 dB, 2.79 dB, and 2.23 dB, respectively, in aver-
age PSNR. In particular, even based on a simpler backbone
U-Net, thanks to the good exploration of physics guidance,
our proposed models significantly outperform the state-of-
the-art restoration model NBNet especially on challenging
objects like Box and Skull. With the aid of inter-view
redundancies, multi-view SARNetMV stably outperforms
single-view SARNet and achieves notable 0.56 dB and 0.57
dB PSNR gains on Box and Skull. Similarly, in terms of
3D reconstruction accuracy, Table3 demonstrates that our

models both stably achieve significantly lower average MSE
of tomographic reconstruction than the competing methods
on all seven objects. As for 3D shape reconstruction accu-
racy, Table 4 demonstrates that our models stably achieve
significantly higher performances, in terms of average IoU,
F-Score, and Chamfer distance of tomographic reconstruc-
tion, than the competing methods for all the seven objects.

For qualitative evaluation, Fig. 12 illustrates a few restored
views for the seven sample objects, demonstrating that
SARNetMV can restore objects withmuch finer and smoother
details (e.g., the antler and legs of Deer, the base pairs and
shapes of DNA double-helix, the depth and shape of Box,
the body and gun of Robot, and the correct depth and of
Skull), the faithful thickness of material (e.g., the body and
legs of Deer, and the correct edge thickness of Box), and
fewer artifacts (e.g., holes and broken parts).

Our THz tomographic imaging system aims to reconstruct
clear and faithful 3D object shapes. In our system, the tomog-
raphy of an object is reconstructed from 60 views of 2D
THz images of the object, each being restored by various
image restoration models, via the inverse Radon transform.
The paper shield region is cropped out to mitigate the eval-
uation bias caused by the simple geometry of the covered
paper shield. Figure 13 illustrates the 3D reconstructions of
the seven sample objects, showing that Time-max, U-Net
tend to lose important object details such as holes in the deer’s
body with Time-max and the severely distorted antlers
and legs with the three methods. In contrast, our method
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Table 4 Quantitative
comparison of average IoU,
F-Score, and Chamfer distance
between the 3D volume of a
reconstructed 3D tomography
and the corresponding
ground-truths with different
methods on Deer, DNA, Box,
Eevee, Polarbear, Robot, and
Skull. (↑: higher is better and ↓:
lower is better)

IoU ↑
Method Deer DNA Box Eevee Polarbear Robot Skull

Time-max 0.247 0.427 0.106 0.323 0.482 0.041 0.385

DnCNN-S (Zhang et al., 2017) 0.179 0.136 0.096 0.509 0.353 0.260 0.158

RED (Mao et al., 2016) 0.386 0.323 0.257 0.359 0.433 0.142 0.175

NBNet (Cheng et al., 2021) 0.255 0.163 0.414 0.633 0.526 0.170 0.419

U-Net (Ronneberger et al., 2015) 0.400 0.427 0.117 0.423 0.539 0.290 0.286

SARNet (Ours) 0.502 0.515 0.418 0.702 0.550 0.434 0.407

SARNetMV (Ours) 0.538 0.567 0.424 0.719 0.662 0.500 0.526

F-Score ↑
Method Deer DNA Box Eevee Polarbear Robot Skull

Time-max 0.366 0.424 0.364 0.300 0.208 0.298 0.303

DnCNN-S (Zhang et al., 2017) 0.379 0.367 0.353 0.409 0.321 0.381 0.336

RED (Mao et al., 2016) 0.368 0.606 0.541 0.338 0.343 0.357 0.347

NBNet (Cheng et al., 2021) 0.476 0.278 0.506 0.346 0.268 0.314 0.381

U-Net (Ronneberger et al., 2015) 0.403 0.471 0.243 0.378 0.282 0.292 0.306

SARNet (Ours) 0.593 0.704 0.502 0.330 0.370 0.363 0.506

SARNetMV (Ours) 0.605 0.715 0.574 0.410 0.391 0.400 0.613

Chamfer distance ↓
Method Deer DNA Box Eevee Polarbear Robot Skull

Time-max 0.016 0.012 0.019 0.022 0.091 0.023 0.022

DnCNN-S (Zhang et al., 2017) 0.020 0.014 0.027 0.018 0.022 0.018 0.022

RED (Mao et al., 2016) 0.018 0.009 0.013 0.018 0.021 0.018 0.021

NBNet (Cheng et al., 2021) 0.016 0.020 0.013 0.020 0.025 0.021 0.021

U-Net (Ronneberger et al., 2015) 0.018 0.012 0.031 0.018 0.022 0.024 0.020

SARNet (Ours) 0.011 0.008 0.021 0.024 0.018 0.018 0.012

SARNetMV (Ours) 0.011 0.008 0.011 0.016 0.016 0.018 0.010

reconstructs much clearer and more faithful 3D images with
finer details, achieving by far the best 3D THz tomography
reconstruction quality in the literature. Complete 3D recon-
struction results are provided in the supplementary material.

Both the above quantitative and qualitative evaluations
confirm a significant performance leap with SARNetMV

over the competing methods. Compared with our single-
view restoration model (SARNet), the multi-view model
SARNetMV can restore finer local details such as the thick-
ness of clear antlers, thinner edge of the box, and the gun in
robot’s hand. This also means that the inter-view redundan-
cies between neighboring views are helpful in restoring local
details, especially since our main task is to do 3D tomogra-
phy. The correct thickness of the 2D imagewill directly affect
the 3D tomography.

5.7 Ablation Studies

To verify the effectiveness of multi-spectral feature fusion,
weevaluate the restorationperformanceswith ourSARNetMV

under different settings in Table5. The compared meth-
ods include (1) U-Net using a single channel of data
(Time-max) without using features ofmulti-spectral bands;
(2)U-Net+Amp w/o SAFM employingmulti-band ampli-
tude feature (without the SAFM mechanism) in each of
the four spatial-scale branches, except for the finest scale
(that accepts the Time-max image as the input), where
12 spectral bands of amplitude (3 bands/scale) are fed into
the four spatial-scale branches with the assignment of the
highest-frequency band to the coarsest scale, and vice versa;
(3) U-Net+Phase w/o SAFM employing multi-spectral
phase features with the same spectral arrangements as (2),
andwithout the SAFMmechanism; (4)U-Net+Amp with
SAFMutilizing subspace-attention-guidedmulti-spectral ampli-
tude features with the same spectral arrangements as spec-
ified in (2); (5) U-Net+Phase with SAFM utilizing
subspace-attention-guidedmulti-spectral phase featureswith
the same spectral arrangements as in (2); (6) SARNet w/o
SAFM concatenating multi-spectral amplitude and phase fea-
tures (without SAFM) in each of the four spatial-scale
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Fig. 12 Qualitative comparison of THz image restoration results for
Deer, DNA, Box, Eevee, Polarbear, Robot, and Skull from left to
right: a Time-max, b DnCNN-S (Zhang et al., 2017), c RED (Mao et

al., 2016), d NBNet (Cheng et al., 2021), e U-Netbase (Ronneberger
et al., 2015), f SARNet, g SARNetMV, and h the ground-truth

branches, except for the finest scale (that accepts the Time-
max image as the input), where totally 24 additional spectral
bands of amplitude and phase (3 amplitude plus 3 phase
bands for each scale) are fed into the four branches;(7)
SARNet w/o Proj using SAFM to fuse intra-view multi-
spectral amplitude and phase features without the aid of
subspace projection; (8) SARNetMV w/o SAFM employing
multi-view fusion and multi-spectral amplitude and phase
features with the same spectral arrangements as (6) but
without subspace-attention guidance; (9) SARNet utiliz-
ing intra-view multi-spectral amplitude and phase features
with subspace-attention guidance, but without utilizing the
inter-view redundancies; (10) SARNetMV utilizing full set of
intra-view and inter-view features.

The results clearly demonstrate that the proposed SAFM
can well fuse the spectral features of both amplitude and
phase with different characteristics for THz image restora-
tion. Specifically, employing additional multi-spectral fea-
tures of either amplitude or phase as the input of the
multi-scale branches in the network (i.e.,U-Net+Amp w/o
SAFM or U-Net+Phase w/o SAFM) can achieve per-
formance improvement over U-Net. Combining both the
amplitude and phase featureswithout the proposed subspace-
attention-guided fusion (i.e., SARNet w/o SAFM) does
not outperform U-Net+Amp w/o SAFM and usually leads

to worse performances. The main reason is that the charac-
teristics of the amplitude and phase features are too different
to be fused to extract useful features with direct fusion meth-
ods. This motivates our subspace-attention-guided fusion
scheme, which learns to effectively identify and fuse impor-
tant and complementary features on common ground. The
individual impacts of the subspace projection-guided fusion
and the attention-guided fusion can be assessed by checking
the performance differences among SARNet, SARNet w/o
Proj, andSARNetw/oSAFM. Furthermore, themulti-view
basedSARNetMV can further improve performance by utiliz-
ing additional inter-view redundancies, especially on objects
withmore details such asDeer,Box, and Skull. These results
show that the proposed modules all stably achieve perfor-
mance gains individually and collectively.

5.8 Model Complexity

Table6 compares the model complexities of the six methods.
Whencompared to the state-of-the-artmethodNBNet (Cheng
et al., 2021), and U-Net, our SARNet requires a much
fewer number of parameters andGFLOPs. The run-timewith
SARNet is also less than NBNet, but more than U-Net
though. In contrast to SARNet, SARNetMV achieves the best
visual performance while introducing additional computa-
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Fig. 13 Illustration of 3D tomographic reconstruction results on Box,
Deer, Dna, Eevee, Polarbear, Robot, and Skull from left to right:
a Time-max, b DnCNN-S (Zhang et al., 2017), c RED (Mao et al.,

2016), d NBNet (Cheng et al., 2021), e U-Netbase (Ronneberger et
al., 2015), f SARNetMV, and g the ground-truth

tion and storage costs since it involves an additional stage of
SARNet restoration, thereby doubling the computation. All
the above comparisons demonstrate that both SARNet and
SARNetMV are promising solutions, considering their much
better THz image restoration performances and reasonable
computation and memory costs.

5.9 Limitations

SARNET usesmulti-spectral amplitude/phase data to retrieve
geometric information. Depending on the selected THz
frequency bands and their SNR, the diffraction-limited sys-
tem resolution can theoretically push down to 0.1mm. As
water/metal are highly absorptive/reflective materials to the

123



International Journal of Computer Vision (2023) 131:2388–2407 2405

Table 5 Ablation study in terms
of PSNR of THz image
restoration performances on
Deer, DNA, Box, Eevee,
Polarbear, Robot, and Skull
with the different variants based
on different settings. (↑: higher
is better)

PSNR ↑
Method Deer DNA Box Eevee Polarbear Robot Skull

U-Net(Ronneberger et al., 2015) 19.84 24.15 19.77 19.95 19.09 18.80 17.49

U-Net+Amp w/oSAFM 22.05 25.84 20.32 20.21 20.48 20.63 20.70

U-Net+Phase w/oSAFM 21.14 24.98 20.42 20.26 20.15 20.58 21.36

U-Net+Amp w/ SAFM 20.97 26.00 21.83 20.22 20.30 21.11 20.18

U-Net+Phase w/ SAFM 22.66 25.52 21.65 20.63 20.18 21.50 21.42

SARNet w/o SAFM 21.44 25.78 20.00 20.32 20.44 21.12 21.18

SARNet w/o Proj 22.40 25.86 21.43 20.46 20.88 22.34 21.87

SARNetMV w/o SAFM 22.49 25.78 22.10 19.91 20.96 21.75 22.47

SARNet (Ours) 22.98 26.05 22.67 20.87 21.42 22.66 22.48

SARNetMV (Ours) 23.17 26.19 23.23 20.97 21.55 22.68 23.05

Table 6 Comparison of the
model complexity (the numbers
of Parameters, GFLOPs, and
run-time) with different
methods. Run-time are
measured with the Nvidia Titan
2080 Ti

Method Params (M) GFLOPs Run-time (ms)

DnCNN-S (Zhang et al., 2017) 0.55 4.55 6

RED (Mao et al., 2016) 0.66 1.36 4

NBNet(Cheng et al., 2021) 13.31 22.20 25

U-Net (Ronneberger et al., 2015) 9.5 3.88 11

SARNet (Ours) 3.0 1.91 19

SARNetMV (Ours) 3.6 4.47 53

THzwave, our system is not applicable to the aqueous objects
or objects hidden inside metallic packages.

Besides, limited by using a single THz source-detector
pair, our THz-TDS system operates by a raster scanning
approach. Although such a scanning approach makes it still
far from real-time applications and is limited to static scenes,
there are variants of THz-TDS systems that feature much
shorter imaging time. For example, in Li and Jarrahi (2020),
an N -pixel (N = 63) THz detector array is developed to
offer N times faster image acquisition speed by spreading
the THZ light to the detector array.

6 Conclusions and FutureWork

Aiming at making the invisible visible, we proposed a 3-
D THz tomographic imaging system based on multi-view
multi-scale spatio-spectral feature fusion. Considering the
physical characteristics of THzwaves passing through differ-
ent materials, our THz imaging methods learn to extracting
most predominant spectral features in different spatial scales
for restoring corrupted THz images. The extracted multi-
spectral features are then fused on a common ground by the
proposed subspace-attention guided fusion and then used to
restore THz images in a fine-to-coarse manner. As a result,
the 3D tomography of an object can be reconstructed from
the restored 2D THz images by inverse Radon transform for

object inspection and exploration. Besides intra-view fusion,
we have also proposed an inter-view fusion approach to
further improve the restoration/reconstruction performance.
Our experimental results have confirmed a performance leap
from the relevant state-of-the-art techniques in the area. We
believe our findings in thisworkwill shed on light on physics-
guided THz computational imaging with advanced computer
vision techniques.

As the THz computational imaging research in the com-
puter vision community is still in its early stage, there are
several possible directions worth further exploration. From
the THz imaging quality point of view, an end-to-end learn-
ing framework for direct reconstruction of 3D geometry
can avoid the artifacts caused by the typical tomographic
reconstruction by the filtered backprojection of 2D projec-
tion views, thereby enhancing 3D reconstruction quality
further. To this end, it would require to explore a newly
designed learning framework involving networkmodels, loss
functions, and datasets. Moreover, incorporating the THz
beam propagation 3D profile with the deconvolution tech-
niques can further improve THz imaging quality. To extend
the applications of THz imaging, by leveraging the prior
knowledge of light-matter interaction in the THz range, the
extension of THz computational imaging to functional imag-
ing of multi-material objects can also be explored. Last but
not least, integrating a massive THz detector array with the
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THz-TDS system would pave the way to achieve real-time
THz tomographic imaging.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01812-
y.
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