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Abstract
An approach is proposed for recovering affine correspondences (ACs) from orientation- and scale-covariant, e.g., SIFT,
features exploiting pre-estimated epipolar geometry. The method calculates the affine parameters consistent with the epipolar
geometry from the point coordinates and the scales and rotations which the feature detector obtains. The proposed closed-form
solver returns a single solution and is extremely fast, i.e., 0.5µ seconds on average. Possible applications include estimating the
homography from a single upgraded correspondence and, also, estimating the surface normal for each correspondence found
in a pre-calibrated image pair (e.g., stereo rig). As the second contribution, we propose a minimal solver that estimates the
relative pose of a vehicle-mounted camera from a single SIFT correspondence with the corresponding surface normal obtained
from, e.g., upgraded ACs. The proposed algorithms are tested both on synthetic data and on a number of publicly available
real-world datasets. Using the upgraded features and the proposed solvers leads to a significant speed-up in the homography,
multi-homography and relative pose estimation problems with better or comparable accuracy to the state-of-the-art methods.

Keywords Covariant features · Affine correspondence · Relative pose · Homography · Epipolar geometry

1 Introduction

This paper addresses the problem of recovering fully affine-
covariant features (Mikolajczyk et al. 2005) fromorientation-
and scale-covariant ones obtained by, for instance, SIFT
(Lowe 1999) or SURF (Bay et al. 2006) detectors. This
objective is achieved by exploiting the geometric constraints
implied by the epipolar geometry of a pre-calibrated image
pair. The proposed algorithm requires the epipolar geometry,
i.e., either a fundamental F or an essential E matrix, and an
orientation and scale-covariant feature as input. It returns the
affine correspondence consistent with the epipolar geometry.
Moreover, we propose a new solver that estimates the rela-
tive planar motion of a new image, given the calibrated pair,
from a single SIFT correspondence and the corresponding
normal.

Nowadays, a number of algorithms exist for estimating or
approximating geometric models, e.g., homographies, using
affine-covariant features. A technique, proposed by Perdoch
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et al. (2006), approximates the epipolar geometry from one
or two affine correspondences by converting them to point
pairs. Bentolila and Francos (2014) proposed a solution for
estimating the fundamentalmatrix using three affine features.
Raposo and Barreto (2016b, a) and Barath and Hajder (2018)
showed that two correspondences are enough for estimating
the relative pose of perspective cameras. Moreover, two fea-
ture pairs are enough for solving the semi-calibrated case,
i.e., when the objective is to find the essential matrix and a
common unknown focal length (Barath et al. 2017). Guan
et al. (2021) proposed ways of estimating the generalized
pose from affine correspondences. Also, homographies can
be estimated from two affine correspondences as shown by
Koser (2009), and, in the case of known epipolar geome-
try, from a single correspondence (Barath and Hajder 2017).
There is a one-to-one relationship between local affine trans-
formations and surface normals (Koser 2009; Barath et al.
2015a). Pritts et al. (2018) showed that the lens distortion
parameters can be retrieved using affine features. Eichhardt
andBarath (2020) demonstrated that a single correspondence
equipped with monocular depth predictions is enough for
estimating the two-view relative pose. The ways of using
such solvers in practice are discussed in Barath et al. (2020)
in depth.
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Affine correspondences encode higher-order information
about underlying the scene geometry. This is the reason
why the previously mentioned algorithms solve geometric
estimation problems (e.g., homogaphies and epipolar geom-
etry) exploiting only a few correspondences—significantly
fewer than what their point-based counterparts require. This,
however, implies the major drawback of such techniques.
Detectors for obtaining accurate affine correspondences, for
example, Affine-SIFT (Morel and Yu 2009), Hessian-Affine
or Harris-Affine (Mikolajczyk et al. 2005), MODS (Mishkin
et al. 2015), HesAffNet (Mishkin et al. 2018), are slow com-
pared to other widely used detectors. Thus, they are not
applicable in time-sensitive applications, where real-time or
close to real-time performance is required. In this paper, the
objective is to bridge this problem by upgrading partially
affine covariant features (e.g., SIFT providing the orienta-
tion and scale) to fully covariant ones exploiting the epipolar
geometry.

In practice, all local features can be made orientation
and scale covariant. Traditionally, feature detection involves
three main steps: (scale-covariant) keypoint detection, ori-
entation estimation, and descriptor extraction. Under such
paradigm, keypoint detection is typically performed on the
scale pyramid with help of a handcrafted response function,
such as Hessian (Beaudet 1978; Mikolajczyk et al. 2005),
Haris (Harris and Stephens 1988; Mikolajczyk et al. 2005),
Difference of Gaussians (DoG, Morel and Yu (2009)), or
learned ones like FAST (Rosten and Drummond 2006) or
Key.Net (Barroso-Laguna et al. 2019). Keypoint detection
gives a triplet (x, y, scale) which defines a square or cir-
cular patch. Then the patch orientation is estimated with
help of handcrafted—dominant gradient orientation (Morel
and Yu 2009), center of the mass (Rublee et al. 2011)—or
learned methods providing both the feature scale and orien-
tation (Yi et al. 2016; Mishkin et al. 2018; Lee et al. 2021).
Finally, the patch is geometrically rectified and fed into a
local patch descriptor, such as SIFT (Mishchuk et al. 2017),
SOSNet (Tian et al. 2019), or other ones. Even though we
mostly focus on SIFT features in this paper, where the orien-
tation and scale is available without additional computations,
the proposed algorithm can be applied to any features with
orientations and scales estimated by one of the previously
mentioned algorithms.

Exploiting feature orientation and scale for geometric
model estimation is a known approach. In Mills (2018),
the feature orientations are involved directly in the essential
matrix estimation. In Barath (2017), the fundamental matrix
is assumed to be a priori known and an algorithm is proposed
for approximating a homography exploiting the rotations
and scales of two SIFT correspondences. The approxima-
tive nature comes from the assumption that the scales along
the axes are equal to the SIFT scale and the shear is zero. In
general, these assumptions do not hold. Themethod ofBarath

(2018a) approximates the fundamental matrix by enforcing
the geometric constraints of affine correspondences on the
epipolar lines. Nevertheless, due to using the same affine
model as inBarath (2017), the estimated epipolar geometry is
solely an approximation. InBarath (2018b), a two-stepproce-
dure is proposed for estimating the epipolar geometry. First, a
homography is obtained from three oriented features. Finally,
the fundamentalmatrix is retrieved from the homography and
two additional matches. Even though this technique con-
siders the scales and shear unknowns, thus estimating the
epipolar geometry instead of approximating it, the proposed
decomposition of the affine matrix is not justified theoreti-
cally. Therefore, the geometric interpretation of the feature
rotations is not provably valid. Barath (2018c) proposes a
way of recovering full affine correspondences from the fea-
ture rotation, scale, and the fundamental matrix. Applying
this method, a homography is estimated from a single corre-
spondence in the case of known epipolar geometry. In Barath
and Kukelova (2019), the authors propose a method to esti-
mate the homography from two SIFT correspondences and
provide a theoretically justifiable affine decomposition and
general constraints on the homography.

Even though a number of solvers exist exploiting directly
the orientation and scale from partially affine covariant fea-
tures, many problems that are solvable from affine features
remain unsolved from partially affine covariant ones. Such
problems include, e.g., single-match homography, surface
normal and relative pose estimation. Instead of proposing
new solvers for such problems, we focus on upgrading fea-
tures to be fully affine covariant so that they can be used
within any existing affine-based solvers in a light-weight
manner—due to not requiring an expensive image-based
affine shape extraction procedure.

The contributions of the paper are: (i) we propose
a technique for estimating affine correspondences from
orientation- and scale-covariant features in the case of known
epipolar geometry. The method is fast, i.e., < 0.5µs, and
leads to a single solution. (ii) We propose a new solver
that estimates the relative pose of a camera w.r.t. a pre-
calibrated image pair from a single SIFT correspondence. It
exploits affine correspondences and surface normals recov-
ered by the proposed method between the pre-calibrated
image pair. The solver assumes the cameras to move on
a plane, e.g., by being rigidly mounted to a moving vehi-
cle. Benefiting from the low number of correspondences
required, robust homography and relative pose estimation,
by e.g., GC-RANSAC (Barath and Matas 2018), is signif-
icantly faster than when using the traditional solvers while
leading to more accurate results. Moreover, using the pro-
posed technique for multi-homography estimation leads to
an order-of-magnitude speed-up.
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A preliminary version of the covariant feature upgrade
algorithm was published in Barath (2018c). This paper
extends and improves it by:

1. Using a theoretically justifiable affine decomposition
model that connects the projection functions to the SIFT
orientations and scales.

2. Simplifying the feature upgrade method so it returns only
a single unique solution compared to the polynomial that
returned up to two real solutions in Barath (2018c).

3. Proposing a new solver that exploits the upgraded features
to estimate the relative pose of vehicle-mounted cameras
from a single correspondence. Single-point solvers are
highly relevant in practical applications due to reducing
the robust estimation to a simple exhaustive search that has
linear complexity in the number of input correspondences.

4. Providing a number of new experiments on homography,
multi-homography, and relative pose estimation.

2 Theoretical Background

Affine correspondence (p1,p2,A) is a triplet, where p1 =
[u1 v1 1]T and p2 = [u2 v2 1]T are a corresponding
homogeneous point pair in two images and A is a 2 × 2
linear transformation which is called local affine transfor-
mation. Its elements in a row-major order are: a1, a2, a3,
and a4. To define A, we use the definition provided in Mol-
nar and Chetverikov (2014) as it is given as the first-order
Taylor-approximation of the 3D → 2D projection functions.
For perspective cameras, the formula for A is the first-order
approximation of the related homography matrix as:

a1 = ∂u2
∂u1

= h1−h7u2
s , a2 = ∂u2

∂v1
= h2−h8u2

s ,

a3 = ∂v2
∂u1

= h4−h7v2
s , a4 = ∂v2

∂v1
= h5−h8v2

s ,
(1)

where ui and vi are the directions in the i th image (i ∈
{1, 2}) and s = u1h7 + v1h8 + h9 is the projective depth.
The elements of homography H in a row-major order are
written as h1, h2,..., h9.

The relationship of an affine correspondence and a homog-
raphy is described by six linear equations. Since an affine
correspondence involves a point pair, the well-known equa-
tions (from Hp1 ∼ p2) relating the point coordinates hold
(Hartley and Zisserman 2003). They are written as follows:

u1h1 + v1h2 + h3 − u1u2h7 − v1u2h8 − u2h9 = 0,
u1h4 + v1h5 + h6 − u1v2h7 − v1v2h8 − v2h9 = 0. (2)

After re-arranging Eq. (1), four additional linear constraints
are obtained from A which are the following.

h1 − (u2 + a1u1) h7 − a1v1h8 − a1h9 = 0,

h2 − (u2 + a2v1) h8 − a2u1h7 − a2h9 = 0,

h4 − (v2 + a3u1) h7 − a3v1h8 − a3h9 = 0,

h5 − (v2 + a4v1) h8 − a4u1h7 − a4h9 = 0. (3)

Consequently, an affine correspondence provides six linear
equations, in total, for the elements of the related homogra-
phy matrix.

Fundamental matrix F relating the rigid background of
two images is a 3 × 3 transformation matrix ensuring the
so-called epipolar constraint pT2Fp1 = 0. Since its scale is
arbitrary and det(F) = 0, matrix F has seven degrees-of-
freedom (DoF).

The relationship of the epipolar geometry (either a fun-
damental or essential matrix) and affine correspondences are
described in Barath et al. (2017) through the effect of A on
the corresponding epipolar lines. Suppose that fundamen-
tal matrix F, point pair p, p′, and the related affinity A are
given. It can be proven that A transforms v to v′, where v
and v′ are the directions of the epipolar lines (v, v′ ∈ R

2 s.t.
||v||2 = ∣

∣
∣
∣v′∣∣∣∣

2 = 1) in the first and second images (Ben-
tolila and Francos 2014), respectively. It can be seen that
transforming the infinitesimally close vicinity of p to that of
p′,A has tomap the lines going through the points. Therefore,
constraint Av ‖ v′ holds.

As it is well-known from computer graphics (Turkowski
1990), formula Av ‖ v′ can be reformulated as follows:

A−Tn = βn′, (4)

where n and n′ are the normals of the epipolar lines (n,n′ ∈
R
2 s.t. n⊥v, n′⊥v′). Scalar β denotes the scale between the

transformed and the original vectors if ||n||2 = ∣
∣
∣
∣n′∣∣∣∣

2 = 1.
The normals are calculated as the first two coordinates of
epipolar lines

l = FTp′ = [a b c]T , l′ = Fp = [

a′ b′ c′]T . (5)

Since the common scale of normals n = l[1:2] = [a b]T and

n′ = l′[1:2] = [

a′ b′]T comes from the fundamental matrix,
Eq. (4) is modified as follows:

A−Tn = −n′. (6)

Formulas (5) and (6) yield two equations which are linear in
the parameters of the fundamental matrix as:

(u′ + a1u) f1 + a1v f2 + a1 f3 + (v′ + a3u) f4+
a3v f5 + a3 f6 + f7 = 0,

(7)

a2u f1 + (u′ + a2v) f2 + a2 f3 + a4u f4+
(v′ + a4v) f5 + a4 f6 + f8 = 0.

(8)
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Fig. 1 Visualization of the orientation- and scale-covariant features.
Point P and the surrounding patch projected into cameras C1 and C2.
A window showing the projected points p1 = [u1 v1 1]T and p2 =
[u2 v2 1]T are cut out and enlarged. The rotation of the feature in the
i th image is αi and the size is qi (i ∈ {1, 2}). The scaling from the 1st
to the 2nd image is calculated as q = q2/q1

whereai is the i th element ofA in row-major order, i ∈ [1, 4].
Points (u1, v1) and (u2, v2) are the points in, respectively, the
first and second images.

To summarize this section, the linear part of a local affine
transformation gives two linear equations for epipolar geom-
etry estimation. A point correspondence yields a third one
through the well-known epipolar constraint. Therefore, an
affine correspondence leads to three linear constraints. As the
fundamental matrix has seven Degrees-of-Freedom (DoF),
three affine correspondences are enough for estimating F
(Barath et al. 2020). Essential matrix E has five DoF and,
thus, two affine correspondences are enough for the estima-
tion (Barath and Hajder 2018).

3 Upgrade SIFT Features

In this section, we show how can affine correspondences be
recovered from rotation- and scale-covariant features in the
case of known epipolar geometry. Even though we will use
SIFT as an alias for this kind of features, the derived formulas
hold for every scale- and orientation-covariant ones. First, the
affine transformation model is described in order to interpret
the SIFT angles and scales. This model is substituted into
the relationship of affine transformations and fundamental
matrices. Finally, the obtained system is solved in closed-
form to recover the unknown affine parameters.

3.1 Interpretation of SIFT Features

Reflecting the fact that we are given a scale qi ∈ R
+ and rota-

tion αi ∈ [0, 2π) independently in each image (i ∈ {1, 2};

see Fig. 1), the objective is to define affine correspondenceA
as a function of them. Such an interpretation was proposed
in Barath and Kukelova (2019). However, the constraints
in Barath and Kukelova (2019) have unnecessarily many
unknowns, thus, complicating the estimation.

To understand the orientation and scale part of SIFT fea-
tures, we exploit the definition of affine correspondences
proposed in Barath et al. (2015a). In Barath et al. (2015a), A
is defined as themultiplication of the Jacobians of the projec-
tion functions w.r.t. the image directions in the two images
as follows:

A = J2J
−1
1 , (9)

where J1 and J2 are the Jacobians of the 3D→ 2D projection
functions. Proof is in Appendix 1. For the i th Jacobian, we
use the following decomposition:

Ji = RiUi =
[

cos(αi ) − sin(αi )

sin(αi ) cos(αi )

] [

qu,i wi
0 qv,i

]

, (10)

where angleαi is the rotation in the i th image,qu,i andqv,i are
the scales along axes u and v, andwi is the shear (i ∈ {1, 2}).
Plugging Eq. (10) into Eq. (9) leads to

A = R2U2(R1U1)
−1 = R2U2U

−1
1 RT

1 ,

where U1 and U2 contain the unknown scales and shears in
the two images. Since we are not interested in determining
them separately, we can replace U2U

−1
1 by a single upper-

triangular matrix U = U2U
−1
1 simplifying the formula to

A = R2URT
1

=
[

cos(α2) − sin(α2)

sin(α2) cos(α2)

] [

qu w

0 qv

] [

cos(α1) sin(α1)

− sin(α1) cos(α1)

]

.

Angles α1 and α2 are known from the SIFT features. Let us
use notation ci = cos(αi ) and si = sin(αi ). The equations
after the matrix multiplication become

A =
[

a1 a2
a3 a4

]

=
[

c2(c1qu − s1w) + s2s1qv c2(s1qu + c1w) − s2c1qv

s2(c1qu − s1w) − c2s1qv s2(s1qu + c1w) + c2c1qv

]

.

After simplifying the equations, we get the following linear
system

a1 = c2c1qu − c2s1w + s2s1qv,

a2 = c2s1qu + c2c1w − s2c1qv,

a3 = s2c1qu − s2s1w − c2s1qv,

a4 = s2s1qu + s2c1w + c2c1qv,

(11)
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Fig. 2 The geometric interpretation of the relationship of a local affine
transformations and the epipolar geometry (Eq. (6); proposed in Barath
et al. (2017)). Given the projection pi of P in the i th camera Ci , i ∈
{1, 2}. The normal n1 of epipolar line l1 is mapped by affinityA ∈ R

2×2

into the normal n2 of epipolar line l2

where the unknowns are the affine parameters a1, a2, a3, a4,
scales qu , qv and shear w.

In addition to the previously described constraints, we are
given an extra one from the SIFT scale. It can be easily seen
that the uniform scales of the SIFT features are proportional
to the area of the underlying image region and, therefore, the
scale change provides constraint

det A = det
(

R2URT
1

)

= detU = quqv = q22
q21

, (12)

where q1 and q2 are the SIFT scales in the two images.

3.2 Epipolarly Consistent Affine Correspondences

Estimating the epipolar geometry as a preliminary step,
either a fundamental or an essential matrix, is often done
in computer vision applications. Also, when having a mov-
ing camera rig or a pre-built 3D map of the environment, we
often are given both the intrinsic and extrinsic calibrations
prior to the estimation. In the rest of this section, we con-
sider fundamentalmatrixF to be known in order to exploit the
relationship of epipolar geometry and affine correspondences
proposed in Barath et al. (2017). Note that the formulas hold
for essential matrix E as well.

For a local affine transformation A that is consistent with
F, formula Eq. (6) holds, where n1 and n2 are the normals of
the epipolar lines, respectively, in the first and second images
relating the regions around to the observed point locations
(see Fig. 2). These normals are calculated as follows: n1 =
(FTp2)(1:2) and n2 = (Fp1)(1:2), where lower index (1 : 2)
selects the first two elements of the input vector (Figs. 3, 4).
This relationship is formalized in Eqs. (7), (8). Assuming
that F and point coordinates (u1, v1), (u2, v2) are known and
the only unknowns are the affine parameters, Eqs. (7), (8) are

reformulated as follows:

(u1 f1 + v1 f2 + f3)a1
+(u1 f4 + v1 f5 + f6)a3 = −u2 f1 − v2 f4 − f7,

(u1 f1 + v1 f2 + f3)a2
+(u1 f4 + v1 f5 + f6)a4 = −u2 f2 − v2 f5 − f8.

(13)

These equations are linear in the affine components. Let us
replace the constant parameters by new variables and, thus,
introduce the following notation:

B = u1 f1 + v1 f2 + f3,

C = u1 f4 + v1 f5 + f6,

D = −u2 f1 − v2 f4 − f7,

E = −u2 f2 − v2 f5 − f8.

Therefore, Eqs. (13) become

Ba1 + Ca3 = D, Ba2 + Ca4 = E . (14)

By substituting Eqs. (11) into Eqs. (14), the following for-
mulas are obtained:

B(c2c1qu − c2s1w + s2s1qv)

+C(s2c1qu − s2s1w − c2s1qv) = D,

B(c2s1qu + c2c1w − s2c1qv)

+C(s2s1qu + s2c1w + c2c1qv) = E .

(15)

Since the rotations and, therefore, their sinuses (s1, s2) and
cosines (c1, c2), are considered to be known, Eqs. (15) are
re-arranged as follows:

(Bc2c1 + Cs2c1)qu + (Bs2s1 − Cc2s1)qv

+(−Bc2s1 − Cs2s1)w = D,

(Bc2s1 + Cs2s1)qu + (Cc2c1 − Bs2c1)qv +
(Bc2c1 + Cs2c1)w = E .

(16)

Let us introduce new variables encapsulating the constants
as follows:

G = Bc2c1 + Cs2c1, H = Bs2s1 − Cc2s1,

I = −Bc2s1 − Cs2s1, J = Bc2s1 + Cs2s1,

K = Cc2c1 − Bs2c1.

Eqs. (16) then become

Gqu + Hqv + Iw = D,

Jqu + Kqv + Gw = E .
(17)

From the first equation, we express w as follows:

w = D

I
− G

I
qu − H

I
qv. (18)
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Fig. 3 Example image pairs and inliers of homographies estimated by the proposed 1SIFT solver from theKITTI dataset. Outliers are not visualized.
Only 100 randomly selected inliers are drawn (Color figure online)

Fig. 4 Multi-homography fitting examples on the AdelaideRMF
dataset using the proposed 1SIFT solver (top row) and the 4PC
method (bottom) inside sequential GC-RANSAC.Themisclassification

error (ME) and run-time is written under the images. The point-to-
homography assignment is denoted by color (red is outlier). Only the
first image of the image pair is shown (Color figure online)

Let us notice that qu and qv are dependent due to Eq. (12) as
qu = q22/(q

2
1qv). By substituting this formula and Eq. (18)

into the second equation of Eq. (17), the following quadratic
polynomial equation is given:

(

K − GH

I

)

q2v +
(
GD

I
− E

)

qv + J
q22
q21

− G2q22
I q21

= 0.

Let us notice that the coefficient ofq2v is always zero due to the
trigonometric identities in expression K−GH/I . Therefore,

the final formula for calculating qv is simplified to

qv = G2q22 − I Jq22
GDq21 − E Iq21

.

All the other parameters can be straightforwardly calculated
via qu = q22/q

2
1qv and Eq. 18. Consequently, each SIFT

correspondence can be upgraded to a fully affine covari-
ant correspondence. Therefore, we recovered the local affine
transformation from an orientation- and scale-covariant cor-
respondence in the case of known epipolar geometry.
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4 Planar Movement from a Single SIFT
Feature with Normal

Assume that we are given a set of affine correspondences,
e.g., recovered as proposed in the previous section, between
a calibrated image pair and we aim at estimating the rel-
ative pose between the pair (I1, I2) and a new calibrated
image I3. Due to the stereo pair being calibrated, we can
estimate the surface normal n ∈ R

3 from each affine corre-
spondence independently as proposed in Barath et al. (2019).
Let us form SIFT correspondences (p1,p3, α1, α3, q1, q3,n)

between the first image of the pair and the new one, where
p1,p3 ∈ R

3 are the points in their homogeneous form,
α1, α3 ∈ R are the feature orientations and q1, q3 ∈ R are
the sizes. The homography relating the features in the two
images with normal n is

H = R − tnT

d
, (19)

where R ∈ SO(3) is the relative rotation of the cameras, t ∈
R
3 is the relative translation, and d ∈ R is the plane intercept.

Translation t is defined up-to-scale due to the perspective
ambiguity (Hartley and Zisserman 2003). It is usual to let
the translation absorb d such that we are given equation

H = R − tnT, (20)

where, thus, the length of t has to be estimated.
Assuming that our cameras aremounted to amoving vehi-

cle (i.e., planar movement), the expression can be further
simplified. In this case, the rotation acts around the vertical
axis and ty = 0. The homography induced by normal n and
a camera moving on a plane is as follows:

Hy = Ry − t′nT

=
⎡

⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤

⎦ −
⎡

⎣

nx tx nytx nztx
0 0 0

nx tz nytz nztz

⎤

⎦

=
⎡

⎣

cos θ − nx tx −nytx sin θ − nztx
0 1 0

− sin θ − nx tz −nytz cos θ − nztz

⎤

⎦ ,

Let us replace cos θ by α and sin θ by β and introduce con-
straint α2 + β2 = 1. The homography parameters become

h1 = α − nx tx , h2 = −nytx , h3 = β − nztx ,
h4 = 0, h5 = 1, h6 = 0,
h7 = −β − nx tz, h8 = −nytz, h9 = α − nztz .

(21)

where the unknowns, in our case, are α, β, tx , and tz .
To estimate the homography, we are given the well-known

two equations from Eq. (2) and two equations from Barath

andKukelova (2019) describing the relationship of SIFT fea-
tures and homographies as follows:

h8u2s1s2 + h7u2s2c1 − h8v2s1c2 − h7v2c1c2 +
−h2s1s2 − h1s2c1 + h5s1c2 + h4c1c2 = 0,

h27u
2
1q2 + 2h7h8u1v1q2 + h28v

2
1q2 + h5h7u2q1 +

−h4h8u2q1 − h2h7v2q1 + h1h8v2q1 + 2h7h9u1q2 +
2h8h9v1q2 + h2h4q1 − h1h5q1 + h29q2 = 0,

where the first equation is linear and the second one is
quadratic in the homography parameters. Therefore, each
SIFT correspondence leads to a quadratic and three linear
equations.

We can use the three linear equations to solve for the
unknown homography. Let us first plug Eq. (21) into the
three linear equations as follows:

(u1 − u2)α − (v1ny + u1nx + nz)tx
+(1 + u1u2)β + (u1u2nx + v1u2ny + u2nz)tz = 0,
−v2α + u1v2β + (u1v2nx + v1v2ny + v2nz)tz = −v1,

−s2c1α + (v2c1c2 − u2s2c1)β + (nxv2c1c2
+nyv2s1c2 − nyu2s1s2 − nxu2s2c1)tz
+(nys1s2 − nx s2c1)tx = −s1c2.

This is an under-determined inhomogeneous linear system
of form Ax = b, where A ∈ R

3×4, x = [α, β, tx , tz]T, and
b = [0,−v1,−s1c2]T. To solve it, we calculate the null-
space of matrix C = [A| − b], add another unknown s ∈ R

to x as [xT, s]T, and introduce constraint s = 1. In this case,
we are given five unknowns (i.e., α, β, tx , ty , s) and three
constraints in matrix C ∈ R

3×5. Therefore, its right null-
space will be two-dimensional. We can obtain it as the two
eigenvectors corresponding to the two zero eigenvalues of
matrix CTC. The solution vector x is calculated as

x = λ1a + λ2b,

where λ1, λ2 ∈ R are unknown scalars, a,b ∈ R
5 are the

null-vectors, and the elements of x are the solutions for the
unknowns. Using constraint s = λ1a5 + λ2b5 = 1, we can
express λ1 as a function of λ2 as:

λ1 = 1 − λ2b5
a5

. (22)

We can now use constraints α2 +β2 = 1, where α = λ1a1+
λ2b1 and β = λ1a2 +λ2b2. After plugging it in Eq. (22) and
reformulating the expression, we get

((

b1 − a1b5
a5

)2
+

(

b2 − a2b5
a5

)2
)

λ22 + 2

(
a1
a5

(

b1 − b5a1
a5

)

+a2
a5

(

b2 − b5a2
a5

) )

λ2 + a21 + a22
a25

− 1 = 0,
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which is a quadratic polynomial in λ2 with at most two real
solutions. Parameter λ1 has to be calculated for both solu-
tions by substituting λ2 into Eq. 22. Finally, the unknown
parameters (i.e., the camera rotation around the vertical axis
and the translation) are obtained as λ1a+λ2b. Both obtained
solutions are equally valid and, thus, should be tested inside
RANSAC. In summary, we can estimate the pose parameters
from a single covariant feature correspondence (e.g., SIFT
or ORB) when the camera undergo planar motion and we are
given the surface normal. We call this solver 1SIFT + n in
the rest of the paper.

Note that we did not use the quadratic constraint from
Barath and Kukelova (2019) that could straightforwardly
help in solving a more general problem, e.g., the ty �= 0
case when the vertical axes of the cameras are aligned by
IMU readings.

5 Experimental Results

In this section, we compare the proposed algorithms both on
synthetic and real-world data. The affine upgrade is shown
to improve homography and multi-homography estimation
on widely-used datasets. Moreover, the normal-based pose
solver is shown to accelerate the pose estimation significantly
while improving the accuracy too both with SIFT and Super-
Point (DeTone et al. 2018) features.

5.1 Affine Upgrade

For testing the accuracy of the affine correspondences
obtained by the proposed method, we created a synthetic
scene consisting of two cameras represented by their 3 × 4
projection matrices P1 and P2. They were located in ran-
dom surface points of a 10-radius center-aligned sphere. A
plane with random normal was generated in the origin and
ten random points, lying on the plane, were projected into
both cameras.

To get the ground truth affine transformations, we first
calculated homography H by projecting four random points
from the plane to the cameras and applying the normalized
direct linear transformation (Hartley and Zisserman 2003).
The local affine transformation regarding each correspon-
dence was computed from the ground truth homography as
its first-order Taylor-approximation by Eq. (1). Note that H
could have been calculated directly from the plane parame-
ters as well. However, using four points promised an indirect
but geometrically interpretable way of noising the affine
parameters: by adding zero-meanGaussian-noise to the coor-
dinates of the four projected points which impliedH. Finally,
after having the full affine correspondence, A was decom-
posed to Rα , Rβ and U by SVD decomposition to simulate
the SIFT output. Since the decomposition is ambiguous, due

to the two angles, β was set to a random value between 0
and 2π . Zero-mean Gaussian noise was added to the point
coordinates and the affine transformations were noised in the
previously described way.

The error of an estimated affinity is calculated as
∣
∣
∣
∣I − Â−1

∣
∣
∣
∣

AF, where Â is the estimated affine matrix, A is the ground
truth one and norm ||. ||F is the Frobenious-norm.

Figure 5a reports the numerical stability of the proposed
method in the noise-free case. The frequencies (vertical axis),
i.e., the number of occurrences in 100000 runs, are plotted as
the function of the log10 average error (horizontal) computed
from the estimated and ground truth affine transformations.
It can be seen that the solver is numerically stable—all values
are smaller than 10−6.

Figure 5b reports the error of the estimated affinities
plotted as the function of the noise σ added to the point
coordinates. The affine transformations were estimated by
the proposed method (red curve) and approximated as A ≈
RβDR−α (green),whereRθ is the 2D rotationmatrix rotating
by θ degrees and D = diag(q, q). As expected, approximat-
ing the affine frame by setting the shear to zero and assuming
uniform scaling is inaccurate. Due to this rough approxima-
tion, the error is not zero even in the noise-free case. The
proposed method leads to perfect results in the noise-free
case and the error behaves reasonably as the noise increases.

5.2 Homography Estimation with Upgraded
Features

In Barath and Hajder (2017), a method, called HAF, was
published for estimating the homography from a single
affine correspondence. The method requires the fundamental
matrix and an affine correspondence to be known between
the two images. These requirements fit well to the proposed
algorithm, where we need to know the epipolar geometry
and we return an affine correspondence for each SIFT-based
one. This allows to estimate a homography for each corre-
spondence even without without spending time on extracting
fully affine covariant features.

Assuming that the underlying 3D point P lies on a con-
tinuous surface, HAF estimates homography H which the
tangent plane of the surface at point P induces. The solu-
tion is obtained by first exploiting the fundamental matrix
and reducing the number of unknowns inH to four. Then the
relationshipwritten inEq. (1) is used to express the remaining
homography parameters by the affine correspondences. The
obtained inhomogeneous linear system consists of six equa-
tions for four unknowns. The problem to solve is Cx = b,
where x = [h7, h8, h9]T is the vector of unknowns, i.e., the
last row of H, vector b = [ f4, f5, − f1, − f2, −u1 f4 −
v1 f5 − f6, u1 f1 + v1 f2 − f3] is the inhomogeneous part
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Fig. 5 a Stability study. The frequencies (100000 runs; vertical axis) of
log10 errors (horizontal) in the estimated affine transformations by the
proposed method. b Affine error. The average errors in the affine trans-
formationmatrices estimated by the proposed algorithm (red curve) and
the A ≈ RβD(q)Rα approximation (green) are plotted as a function of
the image noise (in pixels; horizontal axis) added to the point coordi-

nates. The error is calculated as ||I−Â−1A||F, where Â is the estimated
and A is the ground truth matrix. c Homography error. The average re-
projection errors (in pixels) in the homographies estimated by the HAF
algorithm from Barath and Hajder (2017) applied to the ground truth
affinematrices (blue curve), the ones upgraded by the proposedmethods
(red), and to the approximated ones (green) (Color figure online)

and C is the coefficient matrix as follows:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1u1 + u2 − e′
u a1v1 a1

a2u1 a2v1 + u2 − e′
u a2

a3u1 + v2 − e′
v a3v1 a3

a4u1 a4v1 + v2 − e′
v a4

u1e′
u − u1u2 v1e′

u − v1u2 e′
u − u2

u1e′
v − u1v2 v1e′

v − v1v2 e′
v − v2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where e′
u and e′

v are the coordinates of the epipole in the
second image. The optimal solution in the least squares sense
is x = C†b, where C† = (CTC)−1CT is the Moore-Penrose
pseudo-inverse of C.

According to the experiments inBarath andHajder (2017),
the method is often superior to the widely used solvers and
makes the robust estimation significantly faster due to the
low number of points needed. However, its drawback is the
necessity of the affine features which are time consuming
to obtain in real-world scenarios. By applying the algorithm
proposed in this paper, it is possible to use the HAF method
with SIFT features as input. Due to having real-time SIFT
implementations, e.g., Sinha et al. (2006) and Acharya et
al. (2018), the method is easy to be used in time-sensitive
applications. In this section, we test the HAF method getting
its input from the proposed algorithm both in our synthesized
environment and on publicly available real-world datasets.
Synthetic experiments

For testing the accuracy of homography estimation, we
used the same synthetic scene as for the previous experi-
ments. For Fig. 5c, we calculated the essential matrix from
the noisy point correspondences. Then, the homographies
were estimated by HAF from affine correspondences recov-
ered or approximated from the two rotations and the scale
(similarly as in the previous section). Also, we ran HAF on

the ground truth affine transformations with noisy essential
matrix as an upper bound on what can be achieved by using
perfect affine features.

To measure the accuracy of H, ten random points were
projected into the cameras from the 3D plane inducing H
and the average re-projection error was calculated (vertical
axis; average of 1000 runs) and plotted as a function of the
noise σ (horizontal axis). As expected, approximating the
affine frame by setting the shear to zero and assuming uni-
form scaling along the axes leads to inaccurate homographies
in Fig. 5c (green curve). Due to the approximation, the error
is not zero even in the noise-free case. This is understandable
since the applied HAF homography estimator uses a single
affine correspondence. If this one AC comes from a rough
approximation, the estimated homography will also be inac-
curate. The proposed method leads to perfect results in the
noise-free case and the error behaves reasonably as the noise
increases (Fig. 6).
Real-world experiments

In order to test the proposed method on real-world data,
we used the KITTI1 and Malaga2 datasets (see Figs. 3 and 7
for example image pairs). The KITTI odometry benchmark
consists of 22 stereo sequences. Only 11 sequences (00–10)
are provided with ground truth trajectories for training. We
therefore used these 11 sequences to evaluate the compared
solvers. The Malaga dataset was gathered entirely in urban
scenarios with a car equipped with several sensors, including
a high-resolution camera and five laser scanners.We used the
15 video sequences taken by the camera and every 10th image

1 http://www.cvlibs.net/datasets/kitti/
2 www.mrpt.org/MalagaUrbanDataset

123

http://www.cvlibs.net/datasets/kitti/
www.mrpt.org/MalagaUrbanDataset


International Journal of Computer Vision (2023) 131:2316–2332 2325

Fig. 6 Relative pose error of the proposed 1SIFT + n, 2PC (Choi and
Kim2018), and 5PC (Stewenius et al. 2008) solvers plotted as a function
of the image noise (top; in pixels) and planar noise (bottom; in degrees)
(Color figure online)

from each sequence. In total, 23190 image pairs were used
from the two datasets.

As a robust estimator, we chose Graph-Cut RANSAC
(Barath and Matas 2018) with PROSAC (Chum and Matas
2005) sampling and inlier-outlier threshold set to 2 pixels.
For the other parameters, we used the setting proposed by
the authors.

We compare the proposed affine upgrade and HAF solver
(1SIFT)with the normalizedDLTalgorithm (4PC), the three-
point algorithm using the fundamental matrix (3PC, Barath
and Hajder (2017)), the solver estimating the homography
from three ORB features (3ORB, Barath (2018b)) and the
2SIFT solver (Barath and Kukelova 2019). We use the 4PC
solver inside GC-RANSAC for non-minimal model estima-
tion as suggested in Barath et al. (2020).

Given an image pair, the procedure to evaluate the estima-
tors is as follows:

1. A fundamental matrix is estimated by GC-RANSAC
using the seven-point algorithm as a minimal method, the
normalized eight-point algorithm for least-squares fitting,
the Sampson-distance as residual function, and a thresh-
old set to 0.75 pixels. This threshold leads to accurate
epipolar geometry on most of the tested scenes.

2. The homography is estimated by each tested solver using
a 2 pixel threshold that was determined by tuning on the
first sequence of KITTI to minimize the average error
(tested thresholds: 0.5, 1, 2, and 3 pixels).

3. The homography is decomposed to rotation and trans-
lation. The angular rotation and translation errors are
calculate w.r.t. the ground truth pose.

Table 1 reports the average and standard deviation of the
rotation, translation (both in degrees), position (in meters)
errors and, also, the run-time (in milliseconds). Even though
none of the algorithms estimate the absolute scale, we cal-

Fig. 7 Example image pairs and inliers of homographies estimated by the proposed 1SIFT solver from the Malaga dataset. Outliers are not
visualized. Only 100 randomly selected inliers are drawn (Color figure online)
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Fig. 8 The average rotation, translation (both in degrees), and position
errors (in meters), the inlier and iteration numbers, and the run-time (in
seconds) are shown on each scene of theMalaga dataset. GC-RANSAC
(Barath and Matas 2018) is combined with different minimal solvers,
i.e., normalized DLT (4PC), normalized DLT with known F (3PC),

the 3ORB solver from Barath (2018b), the 2SIFT solver from Barath
and Kukelova (2019), and the proposed one (1SIFT). The non-minimal
solver is always the 4PC method. The average and std. over all scenes
are shown in Table 1 (Color figure online)

Table 1 The average and
standard deviation of the
rotation, translation (both in
degrees), position errors and the
run-time (in milliseconds) on
datasets KITTI (position in
meters) and Malaga (in
centimeters)

Rotation (◦) Translation (◦) Position Time (ms)
AVG STD AVG STD AVG STD AVG STD

KITTI (15564)

4PC 1.24 1.65 5.85 8.06 1.34 0.88 80.14 50.99

3PC 1.24 1.65 5.85 8.46 1.35 0.77 51.68 50.99

3ORB 1.26 1.65 6.25 8.85 1.36 0.87 112.37 115.66

2SIFT 1.25 1.65 6.72 8.87 1.51 0.83 82.80 42.66

1SIFT 1.23 1.65 5.44 8.05 1.26 0.87 48.14 44.41

Malaga (9049)

4PC 1.49 2.10 13.06 11.72 3.76 2.67 181.58 135.25

3PC 1.49 2.22 12.79 11.34 3.77 2.68 84.65 81.23

3ORB 1.50 2.11 13.61 11.91 3.87 2.64 127.04 144.30

2SIFT 1.50 2.09 13.31 11.70 3.82 2.67 84.49 54.50

1SIFT 1.54 2.19 11.57 10.70 3.98 2.79 35.18 30.20

The number of image pairs are written in brackets. GC-RANSAC (Barath and Matas 2018) is combined with
different minimal solvers, i.e., normalizedDLT (4PC), normalizedDLTwith knownF (3PC), the 3ORB solver
from Barath (2018b), the 2SIFT solver from Barath and Kukelova (2019), and the proposed one (1SIFT). The
non-minimal solver is always the 4PC method
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Fig. 9 The average rotation, translation (both in degrees), and position
errors (in meters), the inlier and iteration numbers, and the run-time (in
seconds) are shown on each scene of the KITTI dataset. GC-RANSAC
(Barath and Matas 2018) is combined with different minimal solvers,
i.e., normalized DLT (4PC), normalized DLT with known F (3PC),

the 3ORB solver from Barath (2018b), the 2SIFT solver from Barath
and Kukelova (2019), and the proposed one (1SIFT). The non-minimal
solver is always the 4PC method. The average and std. over all scenes
are shown in Table 1 (Color figure online)

culated the position error by using the ground truth scale
with the estimated rotations and translations. The number
of image pairs in each dataset is written in brackets. On the
KITTI dataset, the proposed 1SIFT solver leads to the most
accurate results while being, also, the fastest. On the Malaga
dataset, it leads to the best translations while being the fastest
and having comparable rotation and position estimates as
other methods.

The rotation, translation and position errors, the inlier and
iteration numbers, and the processing time on each scene
of the tested datasets are shown in Figs. 8 and 9. The pro-
posed 1SIFT solver has better or comparable accuracy to the
most accurate methods. It is also the fastest on all but two
sequences, i.e., the 3rd and 7th ones from the KITTI dataset,
where it is the second fastest by a small margin.

5.3 Multi-homography Estimation with Upgraded
Features

In this section, we apply the proposed solver to multi-
homography estimation. For such problems, the outlier ratio
tends to be extremely high for each homography to be found.
Besides the mismatched points, the inliers of other homogra-

phies act as outliers when finding a particular one. Therefore,
the size of the minimal sample required for the estimation is
extremely important to reduce the combinatorics of the prob-
lem and allow finding the homographies efficiently.

To test the proposed solver, we downloaded the Adelai-
deRMF homography dataset from Wong et al. (2011). It
consists of image pairs of resolution from 455 × 341 to
2592× 1944 and manually annotated (assigned to a homog-
raphy or to the outlier class) correspondences. Since the
reference point sets do not contain rotations and scales, we
detected and matched points applying the SIFT detector. We
then found the closest match (in terms of average Euclidean
distance) to each of the provided correspondences to find a
ground truth set of matches. We removed a correspondence
if the closest match from the manual annotation was more
than 1 px far to remove gross outliers. We chose 1 px since
it returns finds a pair for most of the ground truth matches
while removing the outliers.

We run sequential GC-RANSACwhich, in each iteration,
finds the best homography and removes its inliers. We stop
the estimation if the best homographyhas fewer than 8 inliers.
We combineGC-RANSACwith the sameminimal solvers as
in the previous sections. The error of a method is measured
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Table 2 Multi-homography estimation on the 18 pairs ofAdelaideRMF
dataset by sequential GC-RANSAC combined with minimal methods.
Average and std.misclassification error (ME; percentages) and run-time
(milliseconds) are reported. The tests are repeated 3 times in each scene

ME (%) Time (ms)
AVG STD AVG STD

4PC 16.9 13.6 16.0 12.4

3PC 12.9 11.5 74.2 70.9

3ORB 26.7 14.6 26.7 14.6

2SIFT 17.8 13.9 19.1 21.4

1SIFT 13.3 10.4 2.7 5.6

Table 3 The rotation and translation errors (in degrees) and the run-time
on 15564 image pairs from the KITTI dataset combining GC-RANSAC
with different minimal solvers (1st column)

Rotation (◦) Translation (◦) Time (ms)
AVG MED AVG MED AVG MED

(Ik , Ik+1)

7PC 1.2 0.5 2.0 1.2 139.3 121.3

5PC 1.2 0.5 2.0 1.2 112.8 112.0

3PC Wall 1.2 0.5 2.0 1.2 119.2 106.3

2PC Ground 1.2 0.5 2.0 1.2 92.1 82.1

2PC Planar 1.2 0.5 2.0 1.2 100.0 81.4

1SIFT + n 1.2 0.5 2.1 1.2 62.9 56.2

(Ik , Ik+3)

7PC 7.3 1.8 9.0 1.5 126.3 124.2

5PC 4.3 1.4 4.3 1.3 365.2 417.4

3PC Wall 4.1 1.4 3.8 1.3 198.0 122.6

2PC Ground 4.1 1.4 3.9 1.3 52.7 37.7

2PC Planar 4.3 1.4 4.2 1.3 60.1 37.4

1SIFT + n 3.9 1.4 3.4 1.3 16.1 14.7

In the top part, the image pairs are (Ik , Ik+1) at frame k. In the bottom
one, the image pairs are (Ik , Ik+3). The corresponding CDFs are shown
in Fig. 10

by the misclassification errors as follows:

ME = # misclassified points

# points
.

Table 2 reports the average and std. of the misclassifi-
cation error (in percentages) and run-time (in milliseconds)
over 3 repetitions over all scenes. Using the proposed algo-
rithm leads to the seconds most accurate results on average,
with being only marginally, by 0.4%, less accurate than the
best one. The proposed solver leads to the fastest model
estimation (with 2.7 ms average time) and it is almost an
order-of-magnitude faster than the second fastest method.

Example images are shown in Fig. 4. Themisclassification
error (ME) and run-time is written under the images. The
point-to-homography assignment is denoted by color (red is

outlier). Only the first image of the image pair is shown. The
proposed method leads to better or similar accuracy than the
widely used 4PC solver while being significantly faster.

5.4 Planar Relative Pose Solver

Synthetic experiments
We compare the proposed 1SIFT + n solver to the 2PC

(Choi and Kim, 2018) and 5PC (Stewenius et al., 2008)
solvers in the same synthetic environment as what we used
in the homography experiments. Figure6a plots the rotation
and translation errors as a function of the image noise. Since
the normal are estimated from the noisy local affine transfor-
mations, they are also contaminated by noise. In this case,
the cameras follow a perfect planar motion. The proposed
solver is less accurate than the 2PC solver but more accurate
than the 5PC in this case.

The errors w.r.t. the noise in the planarity assumption are
plotted in Fig. 6b. We use a fixed 0.5 px image noise. To
corrupt the planarity assumption, we rotated both the camera
rotations and translations by a random rotation matrix with
noise std. σ in degrees. The errors of both the 2PC and pro-
posed 1SIFT + n solvers increase together with the planar
noise. They both are more accurate than the 5PC method.
Real-world experiments

In this section, we demonstrate that the proposed SIFT-to-
ACupgradeprovides a light-weightway to equip the tentative
correspondences with higher-order information about the
underlying scene geometry. To do so, we assume that we
are given a camera rig coming from, e.g., an actual rig or a
pre-built map of the environment. For the sake of simplicity,
we now assume that the rig consists of two cameras, I 1 and
I 2, with pre-estimated relative rotation Rrig ∈ SO(3) and
translation trig ∈ R

3. The method can be straightforwardly
extended to more cameras by selecting one as the center.
The goal is to estimate the relative pose (R1

i j , t
1
i j ) of subse-

quent frames of the rig, denoted by the upper indices i and j
(i < j), assuming that the rig is centered on the first camera.

The first step is to detect andmatch SIFT correspondences
both in I 1i and I 2i in the i th frame. Next, we apply the pro-
posed SIFT-to-AC upgrade by using the known pose Rrig

and trig. Consequently, we obtain a set of affine correspon-
dences for free in a light-weight manner, without an actual
affine shape detector running, by using the known pose from
the rig and the SIFT matches. Then, each of these ACs, the
rotation Rrig and translation trig are fed into the optimal sur-
face normal estimator proposed by Barath et al. (2015b) such
that it estimates normal n for each correspondence in the
coordinate system of I 1i . Finally, correspondences are found
between images I 1i and I 1j of the consecutive frames. We can
now assign the estimated normals to the found correspon-
dences and use them to estimate the relative pose between
the frames of the rig using the proposed 1SIFT + n solver.
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Fig. 10 The cumulative distribution functions of the rotation and trans-
lation errors (both in degrees), and the run-times (in seconds) of the
proposed 1SIFT+n solver, 2PC fromChoi andKim (2018), 2PCground
and 3PC vertical plane solvers from Saurer et al. (2016), 5PC method
from Stewenius et al. (2008) and 7PC solver from Hartley and Zisser-

man (2003) on the KITTI dataset. The tested minimal solvers were used
in GC-RANSAC. The non-minimal solver is the 5PC algorithm. The
pose is optimized by a final BA minimizing the pose error. Being accu-
rate or fast is interpreted as a curve close to the top-left corner (Color
figure online)

In this section, we test the previously described algorithm
on theKITTI datasets,wherewe are given amoving stereo rig
with known calibration. To obtain normals in the i-th frame,
we first match SIFT features between the calibrated pair.
We then use the method proposed in Sect. 3 to upgrade the
features. From each estimated affine correspondence, we cal-
culate the surface normal by the method proposed in Barath
et al. (2015b). We then form SIFT matches between the first
image of the rig in the i-th frame and the first image in the
j-th frame. We now have surface normals for those corre-
spondences, formed between frames t and t + 1, where the
keypoint in the t-th frame was also matched to the second
image of the rig. For all other matches, we assume that the
normal is [0, 1, 0]T, i.e., the point lies on a plane parallel to
the ground plane.

We compare the proposed solver with the 2PC method
from Choi and Kim (2018), the 2PC ground and 3PC vertical
plane solvers from Saurer et al. (2016), the 5PCmethod from
Stewenius et al. (2008) and the well-known 7PC solver from
Hartley and Zisserman (2003) applied to estimate the rela-
tive pose between the first images of consecutive frames. All
methods were used inside GC-RANSAC as minimal solver.

The non-minimal solver is the 5PC algorithm. Finally, the
pose is optimized by bundle adjustment (BA) minimizing
the pose error.

The cumulative distribution functions (CDFs) of the
rotation and translation errors (both in degrees) and the pro-
cessing time (in seconds) are shown in Fig. 10. We tested
the methods both on image pairs (Ik , Ik+1) and (Ik , Ik+3),
where k is the frame index. In the (Ik , Ik+1) case, all tested
solvers lead to similar accuracy both in terms of rotation and
translation. The only difference is in the run-time, where the
proposed method is significantly faster than the other com-
petitors. In the (Ik , Ik+3) case, the accuracy drops slightly
and the differences of the methods start becoming visible.
The proposed solver leads to lower errors than the other
ones. The processing time of almost all methods drops signif-
icantly compared to the (Ik , Ik+1) case due to the increased
outlier ratio. The proposed one and the 2PC solvers, how-
ever, become faster due to the reduced number of point
correspondences—they are not as sensitive to the outlier ratio
as the other methods. The proposed 1SIFT + n solver is the
fastest.
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Table 4 The rotation and translation errors (in degrees) and the run-
time on 15564 image pairs from the KITTI dataset combining GC-
RANSAC with different minimal solvers (1st column) on SuperPoint
features (DeTone et al. 2018) with feature scales and rotations estimated
by Lee et al. (2021)

Rotation (◦) Translation (◦) Time (ms)
(Ik , Ik+3) AVG MED AVG MED AVG MED

7PC 4.2 1.5 3.3 1.1 586.5 594.2

5PC 3.8 1.4 2.2 1.0 800.9 818.8

3PC Wall 4.0 1.5 2.5 1.0 296.9 173.7

2PC Ground 3.8 1.5 2.9 1.0 56.1 41.6

2PC Planar 4.0 1.5 3.2 1.0 69.0 41.8

1SIFT + n 3.8 1.4 2.3 1.0 48.3 44.3

The corresponding average and median values are shown
in Table 3. In all cases, the proposed 1SIFT + n solver is the
fastest. In the (Ik , Ik+3) case, it is also more accurate than
the other algorithms.

To demonstrate that the proposed method is not limited to
SIFT features, we applied SuperPoint (DeTone et al. 2018)
followed by the scale and orientation extraction algorithm
from Lee et al. (2021) to the images of the KITTI dataset.
The results are reported in Table 4. The proposed 1SIFT +
n solver leads to similar results as the 5PC algorithm, thus
being amongst the most accurate methods, while being 20
times faster than 5PC.

6 Conclusion

An approach is proposed for recovering affine correspon-
dences fromorientation- and scale-covariant features obtained
by, for instance, SIFT or SURF detectors. The method
estimates the affine correspondence by enforcing the geo-
metric constraintswhich the pre-estimated epipolar geometry
implies. The solution is obtained in closed-form. Thus, the
estimation is extremely fast, i.e., 0.5µs, and leads to a single
solution. Moreover, we propose a solver that estimates the
planar motion from a single SIFT correspondence and the
corresponding surface normal.

It is demonstrated both on synthetic and publicly available
real-world datasets (containing approximately 25000 image
pairs) that the proposed algorithm makes correspondence-
wise homography estimation possible, thus, significantly
speeding up the robust single and multi-homography estima-
tion procedure. The proposed 1SIFT + n solver is designed
for cases where the normal can be obtained prior to the esti-
mation, e.g. in themulti-camera configuration orwhenwe are

given a known 3D map of the environment and the objective
is to add a new image to the reconstruction.
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A Proof the Affine Decomposition

We prove that decomposition A = J2J
−1
1 , where Ji is

the Jacobian of the projection function w.r.t. the directions
in the i th image, is geometrically valid. Suppose that a

three-dimensional point P = [

x y z
]T

lying on a contin-
uous surface S is given. Its projection in the i th image is

pi = [

ui vi
]T
. The projected coordinates, ui and vi , are

determined by the projection functions 5u, 5v : R3 → R as
follows:

ui = �i
u(x, y, z), vi = �i

v(x, y, z),

where the coordinates of the surface point are written in para-
metric form as

x = X (u, v), y = Y(u, v), z = Z(u, v).

It is well-known in differential geometry (Kreyszig 1968)
that the basis of the tangent plane at point P is written by
the partial derivatives of S w.r.t. the spatial coordinates. The
surface normal n is expressed by the cross product of the
tangent vectors su and sv where

su =
[

∂X (u,v)
∂u

∂Y(u,v)
∂u

∂Z(u,v)
∂u

]T
,

and sv is calculated similarly. Finally, n = su × sv . Locally,
around point P, the surface can be approximated by the tan-
gent plane, therefore, the neighboring points in the i th image
are written as the first-order Taylor-series as follows:

pi ≈ �

[

	x (x, y, z)
	y(x, y, z)

]

+
[

∂	i
x (x,y,z)
∂u

∂	i
x (x,y,z)
∂v

∂	i
y (x,y,z)
∂u

∂	i
y (x,y,z)
∂v

][


u

v

]

,
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where [
v,
u]T is the translation on surface S, and
x ,
y
are the coordinates of the implied translation added to pi . It
can be seen that transformation Ji mapping the infinitely
close vicinity around point pi in the i th image is given as

Ji =
[

∂	i
x (x,y,z)
∂u

∂	i
x (x,y,z)
∂v

∂	i
y(x,y,z)
∂u

∂	i
y(x,y,z)
∂v

]

,

thus

[


x 
y
]T ≈ Ji

[


u 
v
]T

.

The partial derivatives are reformulated using the chain rule.
As an example, the first element it is as

∂	i
x (x, y, z)

∂u
= ∂	i

x (x, y, z)

∂x

x

∂u

+∂	i
x (x, y, z)

∂x

y

∂u
+ ∂	i

x (x, y, z)

∂x

z

∂u
= ∇(�i

x )
Tsu,

where ∇�i
x is the gradient vector of �x w.r.t. coordinates x ,

y and z. Similarly,

∂	i
x

∂v
= ∇(�i

x )
Tsv,

∂	i
y

∂u
= ∇(�i

y)
Tsu,

∂	i
y

∂v
= ∇(�i

y)
Tsv.

Therefore, Ji can be written as

Ji =
[∇(�i

x )
T

∇(�i
y)

T

]
[

su sv
]

.

Local affine transformation A transforming the infinitely
close vicinity of point p1 in the first image to that of p2
in the second one is as follows:

[


x2

y2

]

= J2J
−1
1

[


x1

y1

]

= A
[


x1

y1

]

.
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