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Abstract
Training deep networks for semantic segmentation requires large amounts of labeled training data, which presents a major
challenge in practice, as labeling segmentation masks is a highly labor-intensive process. To address this issue, we present a
framework for semi-supervised and domain-adaptive semantic segmentation, which is enhanced by self-supervisedmonocular
depth estimation (SDE) trained only on unlabeled image sequences. In particular, we utilize SDE as an auxiliary task com-
prehensively across the entire learning framework: First, we automatically select the most useful samples to be annotated for
semantic segmentation based on the correlation of sample diversity and difficulty between SDE and semantic segmentation.
Second, we implement a strong data augmentation by mixing images and labels using the geometry of the scene. Third, we
transfer knowledge from features learned during SDE to semantic segmentation by means of transfer and multi-task learning.
And fourth, we exploit additional labeled synthetic data with Cross-Domain DepthMix and Matching Geometry Sampling
to align synthetic and real data. We validate the proposed model on the Cityscapes dataset, where all four contributions
demonstrate significant performance gains, and achieve state-of-the-art results for semi-supervised semantic segmentation as
well as for semi-supervised domain adaptation. In particular, with only 1/30 of the Cityscapes labels, our method achieves
92% of the fully-supervised baseline performance and even 97% when exploiting additional data from GTA. The source code
is available at https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth.

Keywords Semantic segmentation · Self-supervised depth estimation · Semi-supervised learning · Domain adaptation

1 Introduction

Convolutional Neural Networks (CNNs) (LeCun et al., 1998)
have achieved state-of-the-art results for various computer

Communicated by Karteek Alahari.

B Lukas Hoyer
lhoyer@vision.ee.ethz.ch

Dengxin Dai
ddai@mpi-inf.mpg.de

Qin Wang
qwang@ethz.ch

Yuhua Chen
yuhua.chen@vision.ee.ethz.ch

Luc Van Gool
vangool@vision.ee.ethz.ch

1 ETH Zurich, Zurich, Switzerland

2 MPI for Informatics, Saarbrücken, Germany

3 KU Leuven, Leuven, Belgium

vision tasks including semantic segmentation (Long et al.,
2015; Chen et al., 2017). However, training CNNs typically
requires large-scale annotated datasets, due to millions of
learnable parameters involved. Collecting such training data
relies primarily on manual annotation. For semantic seg-
mentation, the process can be particularly costly, due to the
required dense annotations. For example, annotating a sin-
gle image of the Cityscapes dataset took on average 1.5h
(Cordts et al., 2016). For the training set, this sums up to 4460
working hours only for the annotation. For more challenging
environmental conditions such as fog, snow, or nighttime,
the annotation can be even more expensive. For instance, the
annotation of one image of the ACDC dataset (Sakaridis et
al., 2021) took 3.3h on average.

Recently, self-supervised learning (Doersch et al., 2015;
Gidaris et al., 2018;He et al., 2020) has shown to be a promis-
ing replacement for manually labeled data. It aims to learn
representations from the structure of unlabeled data, instead
of relying on a supervised loss, which requiresmanual labels.
In particular, the principle has successfully been applied in
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Fig. 1 Our method utilizes self-supervised depth estimation (SDE) in
order to improve the holistic learning process of semantic segmenta-
tion. In comparison to the standard learning pipeline (a), we learn SDE
from unlabeled image sequences and use it to improve the data selec-

tion, data augmentation, and training process (b). Further, we extend
our framework to semi-supervised domain adaptation (SSDA), where
SDE is used to align domains by Matching Geometry Sampling and
Cross-Domain DepthMix (c)

depth estimation for stereo pairs (Godard et al., 2017) or
image sequences (Zhou et al., 2017). Additionally, seman-
tic segmentation is known to be tightly coupled with depth.
For example, sky is always far away, traffic lights are usu-
ally closer than their surrounding, and depth discontinuities
often coincide with semantic segmentation borders. Several
works (Vandenhende et al., 2021; Xu et al., 2018; Liu et al.,
2019; Chen et al., 2019b) have reported that jointly learning
segmentation and supervised depth estimation can benefit
the performance of both tasks. Motivated by these obser-
vations, we investigate the question: How can we leverage
self-supervised depth estimation to improve semantic seg-
mentation?

In this work, we propose to use self-supervised monoc-
ular depth estimation (SDE) (Godard et al., 2017; Zhou et
al., 2017; Godard et al., 2019) to improve the performance
of semantic segmentation and to reduce the number of nec-
essary annotations. For this purpose, we consider the holistic
learning process covering data selection for annotation, data
augmentation, domain adaptation, and multi-task learning.
For each step,we showhowSDEcan effectively be utilized to

improve the semantic segmentation performance. In contrast
to most previous works, which only exploit supervised depth
information during the multi-task learning (Vandenhende et
al., 2021), we resort to self-supervised depth estimation as
an auxiliary task comprehensively across the entire learning
pipeline and show that it is critical to effectively improve the
segmentation performance.

We apply our framework to the semi-supervised learning
(SSL) and the semi-supervised domain adaptation (SSDA)
setting. In SSL, only a part of the underlying dataset is labeled
for semantic segmentation, while in SSDA additional labeled
data from another (often synthetic) domain is provided. Fig-
ure1 compares the standard learning pipeline (Fig. 1a) with
our SDE-enhanced framework for SSL (Fig. 1b) and our
method for SSDA (Fig. 1c).

In our SSL framework (see Fig. 1b), we utilize SDE
learned on unlabeled image sequences, to improve the learn-
ing pipeline at three places.

First, we propose an automatic data selection for annota-
tion, which selects themost useful samples to be annotated in
order tomaximize the gain. The selection is iteratively driven
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by two criteria: diversity and uncertainty. Both of them are
conducted by a novel use of SDE as a proxy task in this con-
text. While our method follows the active learning cycle (i.e.
model training → query selection → annotation → model
training) (Settles, 2009), it does not require a human in the
loop to provide semantic segmentation labels as the human is
replaced by a proxy-task SDE oracle. This greatly improves
flexibility, scalability, and efficiency, especially considering
using crowdsourcing platforms for annotation.

Second, we propose a strong data augmentation strat-
egy, DepthMix, which blends images as well as their labels
according to the geometry of the scenes obtained from SDE.
In comparison to previous methods (Yun et al., 2019; Ols-
son et al., 2021), DepthMix explicitly respects the geometric
structure of the scenes and generates realistic occlusions as
the distance of objects to the camera is considered.

And third,wedeploySDEas an auxiliary task for semantic
image segmentation under a transfer learning and multi-task
learning framework and show that it noticeably improves
the performance of semantic segmentation, especially when
semantic supervision is limited. Previous works focus on
improving SDE instead of semantic segmentation (Chen et
al., 2019c; Guizilini et al., 2020b) or only consider the spe-
cial cases of full supervision (Klingner et al., 2020b) and
pretraining (Jiang et al., 2018).

Furthermore, we extend the contributions from SSL to
SSDA in order to take advantage of additional synthetic
(source) training data (see Fig. 1c). As synthetic data can
often be annotated automatically for semantic segmentation,
it is a valuable source of supervision and can further reduce
the annotation effort for the real (target) data. We demon-
strate that the previous contributions are effective for SSDA
as well. In order to better bridge the domain gap between
source data and target data, we combine the previous Target-
Domain DepthMix (i.e. the single-domain DepthMix of our
SSL method applied to the target domain) with an addi-
tional Cross-Domain DepthMix, which mixes samples from
the source domain and the target domain. In that way, our
framework is able to align the distribution of labeled source
data with labeled target data (Cross-Domain DepthMix)
and unlabeled target data with labeled target data (Target-
Domain DepthMix). As the geometric distribution of the
source domain is not aligned with the target domain and the
Cross-Domain DepthMix can suffer from blending samples
with different geometric distributions, we further introduce a
Matching Geometry Sampling based on SDE to better align
the camera pose and scene geometry of the source samples
with the target domain.

The main advantage of our method is that we can learn
from a large base of easily accessible unlabeled image
sequences and use the learned knowledge from SDE to
improve semantic segmentation performance over the entire
training process. This largely alleviates the need for expen-

sive semantic segmentation annotations. In our experimental
evaluation on Cityscapes (Cordts et al., 2016), we demon-
strate significant performance gains of all four components
and improve the previous state of the art for SSL as well
as for SSDA by a considerable margin. Importantly, our
contributions are complementary and yield even higher
improvements when they are combined in a unified frame-
work. Specifically, in an SSL setting, our method achieves
92% of the fully-supervised model performance with only
1/30 available labels and even slightly outperforms the fully-
supervised model with only 1/8 labels. In the SSDA setting
with additional supervision from the synthetic GTA5 dataset
(Richter et al., 2016), our method achieves even 97% of the
fully-supervised model performance with only 1/30 of the
target labels.

Our contributions summarize as follows:

(1) We propose a novel automatic data selection for anno-
tation based on SDE to improve the flexibility of active
learning for semantic segmentation. It replaces the human
annotator with an SDE oracle and lifts the requirement
of having a human in the loop of active learning.

(2) We propose DepthMix, a strong data augmentation strat-
egy based on self-supervised depth estimation, which
respects the geometry of the scene.

(3) We utilize SDE as an auxiliary task to exploit depth
features learned on unlabeled image sequences to signif-
icantly improve the performance of semantic segmenta-
tion by transfer and multi-task learning. In combination
with (1) and (2), we achieve state-of-the-art results for
semi-supervised semantic segmentation on Cityscapes.

(4) We propose a novel semi-supervised domain adaptation
method, which combines Target-Domain DepthMix with
Cross-Domain DepthMix. Further, Matching Geometry
Sampling aligns the camera pose and scene geometry
during the mixing process towards the target domain. We
show that our method achieves state-of-the-art results for
SSDA on GTA5→Cityscapes and Synthia→Cityscapes.

This work is an extension of our IEEE Conference on
ComputerVision and PatternRecognition 2021 paper (Hoyer
et al., 2021), which focuses on the contributions (1–3). This
article further introduces SSDA utilizing SDE both using the
previous contributions for SSL as well as the newly pro-
posed combined Cross-Domain/Target-Domain DepthMix
and the Matching Geometry Sampling. Also, we extend the
ablation studies, detail the analysis (e.g. by class-wise per-
formance insights and by a class frequency analysis of the
data selection), and improve the presentation of the unified
SDE-enhanced learning framework.
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2 RelatedWork

2.1 Self-supervised Depth Estimation (SDE)

Self-supervised depth estimation (SDE) aims to learn depth
estimation from the geometric relations of stereo image pairs
(Garg et al., 2016; Godard et al., 2017) or monocular videos
(Zhou et al., 2017).Due to the better availability of videos,we
use the latter approach, where a neural network estimates the
depth and the cameramotion of two subsequent images and a
photometric loss is computed after a differentiable warping.
If the camera intrinsics are not known, their estimation can be
incorporated into the learning process as well (Gordon et al.,
2019). Follow-up works propose improvements of the loss
function (Godard et al., 2019; Gonzalez Bello & Kim, 2020;
Shu et al., 2020), network architecture (Wang et al., 2019;
Guizilini et al., 2020a), and training scheme (Pilzer et al.,
2018, 2019; Casser et al., 2019). To handle dynamic objects,
several works (Yin & Shi, 2018; Chen et al., 2019c; Ranjan
et al., 2019) extend the projection model and combine depth
estimation with optical flow estimation.

2.2 Active Learning

Active learning methods iteratively select the most informa-
tive samples to be annotated. Two main directions for the
selection heuristic can be differentiated. On the one side,
uncertainty-based approaches select samples with a high
uncertainty estimated based on, e.g., entropy (Hwa, 2004;
Settles & Craven, 2008) or ensemble disagreement (Seung et
al., 1992; McCallumzy & Nigamy, 1998). However, this can
be prone to querying outliers. On the other side, diversity-
based approaches select samples, which most increase the
diversity of the labeled set (Sener & Savarese, 2018; Sinha
et al., 2019). For segmentation, active learning is typically
based on uncertainty measures such as MC dropout (Gal
& Ghahramani, 2016; Yang et al., 2017; Mackowiak et al.,
2018), entropy (Kasarla et al., 2019; Xie et al., 2020), or
multi-view consistency (Siddiqui et al., 2020). In contrast to
these works, we perform automatic data selection for anno-
tation by replacing the human with an SDE model as oracle.
Therefore, we do not require human-in-the-loop annotation
during the active learning cycle. Previous works performing
data selection without a human in the loop are restricted to
shallow models (Yu et al., 2006; Nie et al., 2013; Li et al.,
2018), classification with low-dimensional inputs (Li et al.,
2020a), or do not perform an iterative data selection (Zheng
et al., 2019) to dynamically adapt to the uncertainty of the
model trained on the currently labeled set.

2.3 Semi-supervised Semantic Segmentation

Semi-supervised semantic segmentation makes use of addi-
tional unlabeled data during training. An early line of work
(Souly et al., 2017; Hung et al., 2018; Mittal et al., 2019)
applies generative adversarial networks (Goodfellow et al.,
2014) in order to include the unlabeled data into the train-
ing.

Another increasingly popular direction is self-training
with pseudo-labels (Lee, 2013), which alternates between
prediction of pseudo-labels for unlabeled data and model
retraining on the (pseudo-)labeled data. To construct the
pseudo-labels, a popular approach is themean teacher frame-
work (Tarvainen & Valpola, 2017). It constructs the teacher
network for pseudo-label generation from the exponential
moving average of the weights of the student network.
In order to avoid lazily mimicking the teacher’s predic-
tions and resisting updates, ATSO (Huo et al., 2021) splits
the dataset into two parts, trains a model on each, and
uses the model trained on one dataset to label the other.
Similarly, CPS (Chen et al., 2021b) utilizes two networks
with different initialization to generate the pseudo-labels
for each other. Further extensions for self-training include
training an additional error correction network (Mendel et
al., 2020) and dynamically weighing pseudo-labels accord-
ing to the agreement between two models (Feng et al.,
2020b).

Self-training is often combined with consistency training,
where perturbations are applied to unlabeled images or their
intermediate features and a loss term enforces consistency
of the predictions. For instance, Ouali et al. (2020) study
perturbation of encoder features, Lai et al. (2021) enforce
consistency of overlapping regions of two crops of the same
image with different context, and Sohn et al. (2020) train
the model on strongly augmented images while the pseudo-
labels were generated only with weak augmentation. This
general framework is extended by several strong augmenta-
tion strategies designed for semantic segmentation. CutMix
(Yun et al., 2019; French et al., 2020) mixes crops from
images and their pseudo-labels to generate additional train-
ing data, ClassMix (Olsson et al., 2021) uses class segments
of pseudo-labels to build the mix mask, and Dvornik et al.
(2019) paste instance crops into matching context regions of
other images. Our proposed DepthMix module is inspired by
thesemethods but it further respects the geometry of the scene
when mixing samples in order to produce realistic occlu-
sions.
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2.4 Multi-task Learning of Semantic Segmentation
and Self-supervised Depth Estimation

Jointly learning semantic segmentation and SDEwas studied
in previous works with the goal of improving depth esti-
mation. Several works (Ramirez et al., 2018; Jiao et al.,
2018; Yang et al., 2018; Chen et al., 2019a; Klingner et
al., 2020b) learn both tasks jointly with a single network.
Another line of work (Casser et al., 2019; Guizilini et al.,
2020b; Jiang et al., 2019) distills knowledge from a teacher
semantic segmentation network to guide SDE.To further pro-
mote coherence between semantic segmentation and SDE,
Ramirez et al. (2018) and Chen et al. (2019a) propose a loss
term to encourage spatial proximity between depth disconti-
nuities and segmentation contours. As moving objects break
the static world assumption of the SDE warping process,
Casser et al. (2019) and Klingner et al. (2020b) incorporate
dynamic object segmentations into the SDE loss calculation.

In contrast to these works, we do not aim to improve
SDE but rather semi-supervised semantic segmentation. The
closest to our approach are Jiang et al. (2018), Novosel
et al. (2019), and Klingner et al. (2020b). Jiang et al.
(2018) utilize relative depth computed from optical flow
to replace ImageNet pretraining for semantic segmentation.
In contrast, we additionally study multi-task learning of
SDE and semantic segmentation and show that combining
SDE with ImageNet features can further boost performance.
Novosel et al. (2019) and Klingner et al. (2020b) improve
the semantic segmentation performance by jointly learning
with SDE. However, they focus on the fully-supervised set-
ting, while our work explicitly addresses the challenges of
semi-supervised semantic segmentation by using the depth
estimates to generate additional training data and an auto-
matic data selectionmechanismbasedonSDE.Anotherwork
(Klingner et al., 2020a) supports the usefulness of SDE by
improving the robustness of semantic segmentation.

2.5 Domain Adaptive Semantic Image Segmentation

A special kind of semi-supervised semantic segmentation
is domain adaptation, where the unlabeled and labeled data
originate from different domains. Different domains can be,
for instance, real and synthetic data (Hoffman et al., 2016)
or data captured under different conditions such as day-
time/nighttime (Dai&VanGool, 2018) orweather (Sakaridis
et al., 2018). Further, it can be distinguished between unsu-
pervised domain adaptation (UDA), if no labeled target data
is available, and semi-supervised domain adaptation (SSDA),
if a small number of annotations is available for the target
domain.

For semantic segmentation, the better-studied scenario is
UDA. In order to overcome the domain shift from the source
to the target domain, adversarial training can be applied to

the input (Hoffman et al., 2018), feature (Tsai et al., 2018),
and output space (Tsai et al., 2018; Vu et al., 2019a). Also,
non-adversarial input style transfer methods can be utilized
(Yang & Soatto, 2020; Kim & Byun, 2020). An increas-
ingly popular approach for UDA is self-training (Chapelle
et al., 2009), where high-confidence predictions of a trained
model are used to generate pseudo-labels for unlabeled data
to iteratively improve the model (Zou et al., 2018; Wei et al.,
2018). DACS (Tranheden et al., 2021) shows that ClassMix
(Olsson et al., 2021) can also be applied to images from dif-
ferent domains. In contrast to DACS, our method uses the
proposed DepthMix strategy, which respects the geometry
of the scene during mixing to avoid geometric artifacts, and
it combines Cross-Domain DepthMix with Target-Domain
DepthMix for effective SSDA. Furthermore, we propose
Matching Geometry Sampling to align the scene geome-
try and camera perspective for Cross-Domain DepthMix. A
similar approach has been developed by Li et al. (2020b)
by sampling images from the source domain with a simi-
lar semantic layout as the target domain. However, they do
not perform data mixing, do not consider the geometry of
the scene, and rely on the generalization from the seman-
tic segmentation network trained on the source domain to
the target domain in order to perform the semantic layout
matching. As we use SDE, which can be trained on both
the source and the target domain, our Matching Geometry
Sampling lifts this assumption. Further self-training exten-
sions include curriculum learning (Dai & Van Gool, 2018;
Zhang et al., 2019; Lian et al., 2019), refining pseudo-labels
using uncertainties (Zheng and Yang, 2021), augmentation
consistency (Araslanov & Roth, 2021), and class prototypes
(Zhang et al., 2021).

In contrast to UDA, semi-supervised domain adaptation
(SSDA), where a few annotations are also available for the
target domain, is less studied. Kalluri et al. (2019) propose
a framework with a domain-shared encoder and a domain-
specific decoder with additional entropy minimization in a
separate embedding space. Wang et al. (2020) extend adver-
sarial domain alignment from UDA (Tsai et al., 2018) and
utilizes the additional target labels by applying feature-level
adversarial domain alignment between labeled source and
labeled target samples. For that, a spatial and a class-wise
discriminator are introduced to mitigate inter-class confu-
sions. To produce a better feature representation,Alonso et al.
(2021) extend self-trainingwith a student-teacher framework
by contrastive learning (Hadsell et al., 2006). Concurrent to
our work, Chen et al. (2021a) propose to train one teacher
model on domain-mixed batches and one teacher model on
CutMix (Yun et al., 2019; French et al., 2020) batches. A stu-
dent model is trained on an ensemble of the two teachers and
iterative pseudo-labeling is applied to the training of teachers
and students. In contrast to these works, our method requires
neither sensitive adversarial training nor costly ensemble
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training. Also, instead of CutMix, we resort to our DepthMix
algorithm, which produces geometrically valid synthesized
samples. Further, we propose a combined Cross-Domain and
Target-Domain DepthMix as well as a Matching Geometry
Sampling, which leads to more effective SSDA.

2.6 Auxiliary Depth Estimation for Domain
Adaptation

For UDA, depth estimates can be another valuable source
of supervision to align the domains. For that purpose, SPI-
GAN (Lee et al., 2018) and DADA (Vu et al., 2019b) extend
domain adversarial learning with privileged depth informa-
tion from the source domain. GIO-Ada (Chen et al., 2019b)
additionally uses the depth information for input style trans-
fer. By providing depth information from the target domain
as well, ATDT (Ramirez et al., 2019) learns a bottleneck fea-
ture domain transfer network with depth supervision on both
domains, which generalizes to semantic segmentation. In
contrast to our work, these approaches require depth ground
truth, which can be difficult to acquire.

Concurrently to this work, SDE has been studied as an
auxiliary task for unsupervised domain adaptation. Guizilini
et al. (2021) utilize multi-task learning of semantic segmen-
tation and SDE to learn a more domain-invariant representa-
tion. Instead of applying the view synthesis loss from SDE
directly, Wang et al. (2021) use depth pseudo-labels from an
SDE teacher network to learn depth estimation and semantic
segmentation in amulti-tasking framework. To better transfer
knowledge between both domains and tasks, the correlation
of depth and semantic segmentation features is explicitly
transferred from the source to the target domain and the
depth adaptation difficulty is transferred to semantic seg-
mentation to weigh the trust in the semantic segmentation
pseudo-labels. Using (self-supervised) depth estimation for
semi-supervised domain adaptation, however, has not been
studied so far.

3 Methods

In this chapter, we present our four approaches to improve the
performance of semantic segmentation with self-supervised
depth estimation (SDE). They focus on four different aspects
of the trainingprocess, covering data selection for annotation,
data augmentation, multi-task learning, and domain adapta-
tion. Given N images and M image sequences from the same
domain, our first method, automatic data selection for anno-
tation, uses SDE learned on the M (unlabeled) sequences to
select NA images out of the N images for human annota-
tion (see Sect. 3.2. Our second approach, termed DepthMix,
leverages the learned SDE to create geometrically-sound
‘virtual’ training samples from pairs of labeled images and

their annotations (see Sect. 3.4). Our third method learns
semantic segmentation with SDE as an auxiliary task under a
multi-tasking framework (see Sect. 3.3). The learning is rein-
forced by a multi-task pretraining process combining SDE
with image classification. And fourth, we extend our method
to semi-supervised domain adaptation (SSDA) in order to uti-
lize additional synthetic data, which has a low labeling effort
(see Sect. 3.5). To address the domain gap,we propose a com-
binedCross-Domain and Target-Domain DepthMix strategy,
which is enhanced byMatching Geometry Sampling.

3.1 Self-supervised Depth Estimation (SDE)

For self-supervised depth estimation (SDE), we follow the
method of Godard et al. (2019), which we briefly introduce
in the following. We first train a depth estimation network
to predict the depth of a target image and a pose estimation
network to estimate the camera motion from the target image
and the source image. Depth and pose are used to produce a
differentiable warping to transform the source image into the
target image. The photometric error between the target image
and multiple warped source frames is combined by a pixel-
wiseminimum.Besides, stationary pixels aremasked out and
an edge-aware depth smoothness term is applied resulting in
the final SDE loss LD . We refer the reader to the original
paper (Godard et al., 2019) for more details.

3.2 Automatic Data Selection for Annotation

We use SDE as a proxy task for selecting NA samples out
of a set of N unlabeled samples for a human to create
semantic segmentation labels. The selection is conducted
progressively in multiple steps, similar to the standard active
learning cycle (model training→ query selection→ annota-
tion → model training). However, our data selection is fully
automatic and does not require a human in the loop as the
annotation is done by a proxy-task SDE oracle as visualized
in Fig. 2.

Let’s denote by G, GA, and GU , the whole image set, the
selected subset for annotation, and the unselected subset.
Initially, we have GA = ∅ and GU = G. The selection is
driven by two criteria: diversity and uncertainty. Diversity
sampling encourages the selected images to be diverse and
cover different scenes. Uncertainty sampling favors adding
unlabeled images that are near a decision boundary (with
high uncertainties) of the model trained on the current GA.
For uncertainty sampling, we need to train and update the
model with GA. Specifically, the trained model fSIDE solves
the proxy task of single-image depth estimation (SIDE) on
GA with supervision from the SDE oracle. It is inefficient to
repeat this every time a new image is added. For the sake of
efficiency, we divide the selection into T steps and only train
the model T times. In each step t , nt images are selected and
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Fig. 2 The automatic data selection for annotation process selects the
most useful samples from the set of unlabeled data GU to be annotated.
In contrast to active learning, the human annotator is replaced by an
SDE oracle, and the samples are selected according to depth estimation
as proxy-task. This lifts the requirement of a human in the loop. Samples
are selected according to SDE feature diversity (Sect. 3.2.1) and depth
student uncertainty (Sect. 3.2.2). The depth student is a single-image
depth estimation network fSIDE, which is trained with supervision from
the SDE oracle

Algorithm 1 Automatic Data Selection
1: t = 1
2: i ← uniform(1, N )

3: GA = {Ii } and GU = GU \ {Ii }
4: for k = 2 to NA do
5: if k == ∑t

t ′=1 nt ′ then
6: Train depth student �SIDE on GA
7: Calculate E(i) ∀Ii ∈ GU
8: t = t + 1
9: end if
10: if t == 1 then
11: Obtain index i according to Eq. (2)
12: else
13: Obtain index i according to Eq. (4)
14: end if
15: GA = GA ∪ {Ii } and GU = GU \ {Ii }
16: end for

moved from GU to GA, so we have
∑T

t=1 nt = NA. After
each step t , a model is trained on GA and evaluated on GU to
get updated uncertainties for step t + 1.

3.2.1 Diversity Sampling

To ensure that the chosen annotated samples are diverse
enough to represent the entire dataset well, we use an iter-
ative farthest point sampling based on the L2 distance over
features�SDE computed by an intermediate layer of the SDE
network. At step t , for each of the nt samples, we choose the
one in GU with the largest distance to the current annotation
set GA. The set of selected samples GA is iteratively extended
by moving one image at a time from GU to GA until the nt
images are collected:

GU = GU \ {Ii } and GA = GA ∪ {Ii }, (1)

i = argmaxIi∈GU
min
I j∈GA

||�SDE
i − �SDE

j ||2. (2)

3.2.2 Uncertainty Sampling

While diversity sampling is able to select diverse new
samples, it is unaware of the uncertainties of a semantic
segmentation model over these samples. Our uncertainty
sampling aims to select difficult samples, i.e., samples in
GU that the model trained on the current GA cannot handle
well. In order to train this model, active learning typically
uses a human-in-the-loop strategy to add annotations for
selected samples. In this work, we use a proxy task based
on self-supervised annotations, which can run automatically,
to make the methodmore flexible and efficient. Since our tar-
get task is single-image semantic segmentation, we choose
to use single-image depth estimation (SIDE) as the proxy
task. Importantly, due to our SDE framework, depth pseudo-
labels are available for G. Using these pseudo-labels, we
train a SIDE method on GA and measure the uncertainty of
its depth predictions on GU . Due to the high correlation of
single-image semantic segmentation and SIDE, the gener-
ated uncertainties are informative and can be used to guide
our sampling procedure. For example, if the depthmodel fails
to correctly estimate the depth of a truck because trucks were
underrepresented in GA, the semantic segmentation model
will probably also struggle to recognize the truck. As the
depth student model is trained only on GA, it can specifically
approximate the difficulty of candidate samples with respect
to the already selected samples in GA. The student is trained
from scratch in each step t , instead of being fine-tuned from
t − 1, to avoid getting stuck in the previous local minimum.
Note that the SDE method is trained on a much larger unla-
beled dataset, i.e., the M image sequences, and can provide
good guidance for the SIDE method.

In particular, the uncertainty is signaled by the disparity
error between the student network fSIDE and the teacher net-
work fSDE in the log-scale space under L1 distance:

E(i) = || log(1 + fSDE(Ii )) − log(1 + fSIDE(Ii ))||1. (3)

As the disparity difference of far-away objects is small, the
log-scale is used to avoid the loss being dominated by close-
range objects. This criterion can be added into Eq. (2) to
also select samples with higher uncertainties for the dataset
update in Eq. (1):

i = argmaxIi∈GU
min
I j∈GA

||�SDE
i − �SDE

j ||2 + λEE(i), (4)

where λE is a parameter to balance the contribution of the
two terms. For diversity sampling, we still use SDE features
instead of SIDE student features as SDE is trained on the
entire dataset, which provides better features for diversity
estimation. When nt images have been selected according to
Eqs. (1) and (4) at step t , a new SIDE model will be trained
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Fig. 3 Architecture for learning semantic segmentation with SDE as
auxiliary task according to Sect. 3.3. The dashed paths are only used
during training and only if image sequences and/or segmentation ground
truth are available for a training sample

on the current GA in order to continue further. As presented
previously, our selection proceeds progressively in T steps
untilwe collect all NA images. The algorithmof this selection
is summarized in Algorithm 1, where

∑t
t ′=1 nt ′ describes the

desired size of GA at the end of step t .

3.3 Learning with Auxiliary Self-supervised Depth
Estimation

In this section, we resort to features learned by SDE from
unlabeled image sequences to improve the performance of
semantic segmentation through transfer andmulti-task learn-
ing. For that purpose, we use a networkwith a shared encoder
f Eθ , a separate depth decoder f Dθ , and a separate segmenta-
tion decoder f Sθ (seeFig. 3). For effectivemulti-task learning,
useful intermediate features are exchanged between both
task-specific decoders. In particular, we use the attention-
guided multi-modal distillation module proposed by Xu et
al. (2018). Guided by a learned attention map, this module
distills features from the depth decoder, which are relevant
for semantic segmentation decoder, and induces them into
the semantic segmentation decoder. Vice versa, also fea-
tures from semantic segmentation are distilled and induced
in the depth decoder. The depth branch gDθ = f Dθ ◦ f Eθ is
trained using the SDE loss LD and the segmentation branch
gSθ = f Sθ ◦ f Eθ is trained using semi-supervise semantic seg-
mentation loss LS , which we will introduce in Eq. (13) of the
next section

LMTL = LD + LS. (5)

In order to initialize the pose estimation network and the
depth branch gDθ = f Dθ ◦ f Eθ properly, the architecture is first

only trained on M unlabeled image sequences for SDE. As
a common practice, we initialize the encoder with ImageNet
weights as they provide useful semantic features learned dur-
ing image classification. To avoid forgetting these semantic
features during the SDE pretraining, we utilize a feature dis-
tance loss between the current bottleneck features f Eθ and the
bottleneck features generated by the encoder with ImageNet
weights f EI

LF = || f Eθ − f EI ||2. (6)

The loss for the depth pretraining is the weighted sum of the
SDE loss and the ImageNet feature distance loss

LD,pretrain = LD + λF LF . (7)

To exploit the features from SDE for semantic segmenta-
tion by transfer learning, the weights from SDE gDθ are used
to initialize the semantic segmentation branch gSθ .

3.4 DepthMix Data Augmentation

Inspiredby the recent success of data augmentation approaches
that mixup pairs of images and their (pseudo) labels to gen-
erate more training samples for semi-supervised semantic
segmentation (Yun et al., 2019; French et al., 2020; Olsson et
al., 2021),we propose an algorithm, termedDepthMix, to uti-
lize self-supervised depth estimates to maintain the integrity
of the scene structure during mixing.

Given two images Ii and I j of the same size, we would
like to copy some regions from Ii and paste them directly
into I j to get a virtual sample I ′. The copied regions are
indicated by a binary mask M , which has the same size as
the two images. The image creation is done as

I ′ = M 
 Ii + (1 − M) 
 I j , (8)

where 
 denotes the element-wise product. The semantic
segmentation labels of the two images Si and S j are mixed
up with the same mask M to generate the corresponding
mixed semantic segmentation

S′ = M 
 Si + (1 − M) 
 S j . (9)

The mixing can be applied to labeled data and unlabeled
data using human ground truths or pseudo-labels, respec-
tively. Existing methods generate this mask M in different
ways, e.g., randomly sampled rectangular regions (Yun et
al., 2019; French et al., 2020) or randomly selected class seg-
ments (Olsson et al., 2021). In thosemethods, the structure of
the scene is not considered and foreground and background
are not distinguished. We find images synthesized by these
methods often violate the geometric relationships between
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Fig. 4 Concept of the proposed DepthMix data augmentation (refer to
Sect. 3.4) and its baseline ClassMix (Olsson et al., 2021) shown for the
mixing of the semantic segmentation labels. By utilizing SDE, Depth-
Mixmitigates geometric artifacts such asmissing occluders (bus-shaped
hole in the building) or missing occlusion (legs of the person). The cor-
responding images are mixed in the same way

objects. For instance, a distant object can be copied onto
a close-range object or only unoccluded parts of mid-range
objects are copied onto the other image. Imagine how strange
it is to see a pedestrian standing on top of a car or to see the
sky through a hole in a building (just as shown in Fig. 4 left).

Our DepthMix is designed to mitigate this issue. It uses
the self-supervised depth estimates D̂i and D̂ j of the two
images to generate the mask M , which respects the notion of
geometry. It is implemented by selecting only pixels from Ii
whose depth values are smaller than the depth values of the
pixels at the same locations in I j :

M(a, b) =
{
1 if D̂i (a, b) < D̂ j (a, b) + ε

0 otherwise
(10)

where a and b are pixel indices, and ε is a small value to avoid
conflicts of objects that are naturally at the same depth plane
such as road or sky. By using this M , DepthMix respects
the depth of objects in both images, such that only closer
objects can occlude further-away objects. We illustrate this
advantage of DepthMix with an example in Fig. 4.

In order to further take advantage of the unlabeled dataset
GU for DepthMix, we generate pseudo-labels using the mean
teacher algorithm (Tarvainen & Valpola, 2017), which is
commonly deployed in SSL (Berthelot et al., 2019; Verma
et al., 2019; French et al., 2020; Olsson et al., 2021). For
that purpose, an exponential moving average is applied to
the weights of the semantic segmentation model gSθ to obtain
the weights of the mean teacher θT :

θ ′
T = αθT + (1 − α)θ. (11)

To generate the pseudo-labels, an argmax over the classes C
is applied to the prediction of the mean teacher:

SU = argmaxc∈C (gSθT (IU )). (12)

The mean teacher can be considered as a temporal ensemble,
resulting in stable predictions for the pseudo-labels, while the
argmax promotes confident predictions (Olsson et al., 2021).

In order to utilize the pseudo-labels,we applyDepthMix to
two samples (Ii , Si ), (I j , S j ) from the combined labeled and
pseudo-labeled data poolGA∪GU to produce amixed training
pair (I ′, S′) according to Eq. (8). The semantic segmentation
network is trained using the cross-entropy of labeled samples
(IA, SA) and the quality-weighted cross-entropy of mixed
samples (I ′, S′):

LS = Lce(g
S
θ (IA), SA) + q ′Lce(g

S
θ (I ′), S′), (13)

where q ′ denotes the estimated quality of the mixed pseudo-
label. We follow Olsson et al. (2021) and define q ′ as the
fraction of pixels exceeding a threshold τ for the predicted
probability of the most confident class P ′:

q ′ =
∑

a,b[P ′(a, b) > τ ]
W · H . (14)

As theDepthMix segmentation S′ consists of labels from two
images, we calculate P ′ as the mix of its sources:

P ′ = M 
 Pi + (1 − M) 
 Pj , (15)

where P is the predicted probability of the most confident
class for unlabeled images and 1 for labeled images:

P(a, b) =
{
maxc∈C (gSθT (I )(a, b)), if I ∈ GU
1, otherwise

(16)

By applying DepthMix to labeled and pseudo-labeled
samples, the network is exposed to image regions from both
distributions in a single image. This can improve its gen-
eralization to the unlabeled data as the context for labeled
regions can originate from unlabeled data and vice versa.
The improvedgeneralization can lead to better pseudo-labels,
which in turn improve the quality of the DepthMix labels.

3.5 Semi-supervised Domain Adaptation (SSDA)

Synthetic data can be another valuable source for low-effort
semantic segmentation annotations to reduce the number of
expensive target labels. In semi-supervised domain adapta-
tion (SSDA), a neural network is trained to solve a task on
the real (target) domain while being trained using a limited
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Fig. 5 Semi-supervised domain adaptation (SSDA) pipeline with
Cross-Domain DepthMix (CDM) and Target-Domain DepthMix
(TDM). While CDM applies DepthMix to samples from source and
target domain to align both domains, TDM mixes labeled and pseudo-
labeled samples from the target domain to align labeled and unlabeled
target data. The network is trained on clean labeled source data,
CDM/TDM data, and clean labeled target data for semantic segmen-
tation. The target semantic segmentation pseudo-labels are obtained
online using a mean teacher network

number of annotated target samples (I trgA , StrgA ), further unla-
beled target images I trgU , and additional annotated data from
the synthetic (source) domain (I srcA , SsrcA ).

Naively, the semantic segmentation network branch gSθ
can be trained on the labeled samples from both source and
target domain using a pixel-wise cross-entropy loss

Ltrg
ce = Lce(g

S
θ (I trgA ), StrgA ) , (17)

Lsrc
ce = Lce(g

S
θ (I srcA ), SsrcA ) . (18)

However, as the labeled data from the target dataset is limited,
the vanilla training strategy suffers from the gapbetweenboth
domains.

In this work, we propose to use SDE to overcome
the domain gap of SSDA. Extending the default setup,
we augment both the target and the source dataset with
self-supervised depth estimates. For that purpose, an SDE
network f trgD is trained on image sequences from the tar-
get domain and another SDE network f srcD is trained on
image sequences from the source domain. Note that the
image sequences can be different from the images labeled
for semantic segmentation. After the SDE training, depth
pseudo-labels are inferred for the images of the semantic seg-
mentation datasets: Dsrc

A = f srcD (I srcA ); Dtrg
U = f trgD (I trgU );

Dtrg
A = f trgD (I trgA ). Further, pseudo-labels StrgU are obtained

online according to Eq. (12) for the unlabeled target data. The
additional depth and semantic segmentation pseudo-labels
are added to the SSDA training data.

Based on this data, we propose a combined Cross-Domain
and Target-Domain DepthMix in order to facilitate effec-
tive self-training across domains as well as across labeled
and unlabeled samples, respectively. Further, we enhance the

mixing by Matching Geometry Sampling. The training pro-
cess is visualized in Fig. 5 and described in the following.

3.5.1 Target-Domain DepthMix (TDM)

Target-Domain DepthMix (TDM) applies the DepthMix
algorithm to the target dataset. It mixes labeled and unla-
beled target samples to improve the generalization from the
labeled target to the unlabeled target samples due to the
increased variety of objects in different contexts. There-
fore, it can favorably affect the quality of the pseudo-labels.
Target-Domain DepthMix uses the same procedure as the
single-domain SSL DepthMix described in Sect. 3.4. It pro-
duces a mixed sample (I ′

TDM , S′
TDM) based on two target

samples according to Eqs. (8)–10. The segmentation branch
of the network is trained using the pixel-wise cross-entropy
on the mixed samples

LTDM = q ′
TDMLce(g

S
θ (I ′

TDM), S′
TDM), (19)

where q ′
TDM weighs the loss according to the certainty of the

pseudo-label as described in Sect. 3.4.
Mixing within a domain is only applied to the target

domain and not to the source domain because the mix-
ing serves the purpose of better generalization from labeled
to unlabeled samples during the self-training. The source
domain already contains many labeled samples. Therefore,
self-training augmented by mixing is not necessary.

3.5.2 Cross-Domain DepthMix (CDM)

As there is only a small number of labeled samples available
for the target domain, the trained network will still suffer
from thegapbetween the source and target domain.To further
align the domains during training, we proposeCross-Domain
DepthMix, which mixes samples from both domains. This
allows the network to better generalize across domains as
both domains are present within each image.

Cross-Domain DepthMix utilizes one target sample and
one source sample. If the target image is unlabeled, a pseudo-
label is generated according to Eq. (12). The samples are
mixed according to Eqs. (8)–10 to generate the cross-domain
mixed sample (I ′

CDM , S′
CDM). The segmentation branch of

the network is trained using the pixel-wise cross-entropy on
the mixed samples

LCDM = q ′
CDMLce(g

S
θ (I ′

CDM), S′
CDM), (20)

where q ′
CDM weighs the loss according to the certainty of

the pseudo-label as described in Sect. 3.4.
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Fig. 6 Examples of the geometric domain gap and theMatchingGeom-
etry Sampling. Images and their SDE are shown for the target (first
row) and the source domain (remaining rows). Some samples from the
source domain (second and third row) have a different depth distribution
compared to the target domain, which results in unrealistic DepthMix
images (last column). Matching geometry sampling avoids sampling
those domain pairs by selecting pairs with a small geometric difference
(fourth row)

Thefinal SSDA loss combines all four segmentation losses
as well as the SDE loss on the target domain

LSSDA = Ltrg
ce + Lsrc

ce + LCDM + LTDM + Ltrg
D , (21)

where the loss components are weighted equally.

3.5.3 Matching Geometry Data Sampling

For samples from two different domains, the camera pose
can differ between the domains as can be seen in the first
three rows of Fig. 6. The geometric distribution difference
between domains can impede the transfer of knowledge from
the source to the target domain. For example, GTA contains
samples from the view of a pedestrian while all Cityscapes
samples are recorded from a front-facing camera of a car.
This leads to different camera perspectives, which can result
in unrealistic mixed samples such as a car “flying" in the sky
(second row), or samples out of the target distribution such
as images captured right in front of a building (third row).

We address this problemby sampling image pairs from the
source and the target domain with a similar geometry with
respect to the camera. The sampling is guided by the target
geometry, which allows us to better match the geometric tar-

get distribution with mixed images. We define the geometric
difference G(i, j) of two samples i and j as the L1 distance
of the log-scale disparity (inverse depth) estimates in camera
space

G(i, j) = || log
(

1 + 1

Di

)

− log

(

1 + 1

D j

)

||1, (22)

which corresponds to the metric used for the uncertainty
sampling of our automatic data selection in Eq. (3). When
calculating the geometric difference, we exclude the 80 pix-
els at the top of the image and the 100 pixels at the bottom
from the geometric difference. This prevents SDE artifacts
in the sky and the hood of the ego car from contaminating the
geometric difference. The pixel-wise geometric difference is
visualized in the third columnofFig. 6. It can be observed that
it is generally higher for samples that do not have a matching
geometry or camera perspective.

Based on a single target sample i trg and a set of candi-
date source samples Csrc, which are both sampled randomly,
the source sample with the smallest geometric difference is
selected for training

j src = argmincsrc∈Csrc G(i trg, csrc). (23)

As the target sample is fixed during a matching step, it
guides the selection towards the target distribution. The num-
ber of candidate samples |Csrc| balances between a good
geometric match and a higher sampling diversity. A larger
number of candidates results in a potentially better geomet-
ric match of the chosen sample, but it reduces the diversity
of the chosen samples as it limits the sampling to the set of
source samples that have a small geometric distance to the
target domain in general.

This Matching Geometry Sampling allows our method
to avoid the described issues of naive sampling and results
in realistic DepthMix images, which are closer to the target
distribution as can be seen in the last row of Fig. 6.

4 Experiment Setup

4.1 Datasets

CityscapesWemainly evaluate ourmethod on theCityscapes
dataset (Cordts et al., 2016), which consists of 2975 training
and 500 validation imageswith semantic segmentation labels
from European street scenes. We downsample the images to
1024 × 512 pixels. Besides, random cropping to a size of
512 × 512 and random horizontal flipping are used during
the training. Importantly, Cityscapes provides 20 unlabeled
frames before and 10 after the labeled image, which are used
for our SDE training. During the semi-supervised segmen-

123



International Journal of Computer Vision (2023) 131:2070–2096 2081

tation, only the 2975 images of the core dataset are used. If
not stated otherwise, the same processing steps are applied
to the following datasets as well.
CamVid The CamVid dataset (Brostow et al., 2009) con-
tains 367 training, 101 validation, and 233 test images with
dense semantic segmentation labels for 11 classes from street
scenes in Cambridge. To ensure a similar feature resolution
as for Cityscapes, we upsample the CamVid images from
480× 360 to 672× 512 pixels and randomly crop them to a
size of 512 × 512 pixels.
GTA5 The GTA5 dataset (Richter et al., 2016) originates
from a computer game, which enabled time-efficient semi-
automatic semantic segmentation annotation. It contains
about 25k training images labeled using the same 19 classes
as Cityscapes. The SDE is trained on another part of
the dataset (Richter et al., 2017), which provides image
sequences.
Synthia The Synthia dataset (Ros et al., 2016) provides syn-
thetic images with automatically generated annotations from
a simulated urban environment. For semantic segmentation,
we use the SYNTHIA-RAND-CITYSCAPES subset, which
contains 9400 samples labeledwith 16 semantic classes com-
mon with Cityscapes. Following the standard protocol for
domain adaptation, we train our method for the 16 semantic
classes that are common with Cityscapes and evaluate on 13
of them. The SDE is trained on the SYNTHIA-SEQS video
sequence subset.

4.2 Network Architecture

Our network consists of a shared ResNet101 (He et al., 2016)
encoder with output stride 16, a decoder for segmentation,
and a decoder for SDE. The decoder consists of an ASPP
(Chen et al., 2017) block with dilation rates of 6, 12, and 18
to aggregate features from multiple scales and another four
upsampling blocks with skip connections (Ronneberger et
al., 2015). For SDE, the upsampling blocks have a disparity
side output at the respective scale. For effective multi-task
learning, we additionally follow PAD-Net (Xu et al., 2018)
and deploy an attention-guided distillation module after the
third decoder block. It serves the purpose of exchanging use-
ful features between segmentation and depth estimation. The
design of the network architecture was chosen to facilitate
both transfer and multi-task learning. To enable effective
transfer learning, the task decoder branches have the same
architecture and combine elements from typical semantic
segmentation architectures such as the ASPP (Chen et al.,
2017) as well as the commonly used U-Net decoder struc-
ture (Ronneberger et al., 2015) for depth estimation. This
allows for pretraining the segmentation decoder branch with
SDE and repurposing it for semantic segmentation afterward.
For the pose estimation network, we use the same design as
in (Godard et al., 2019). For the SDE network on the source

domains, we use an output stride of 32 and a reduced number
of decoder channels in order to improve convergence.

4.3 Training

For the SDE pretraining, the depth and pose network are
trained using the Adam optimizer, a batch size of 4, and an
initial learning rate of 1 × 10−4, which is divided by 10
after 160k iterations. The SDE loss is calculated on four
scales with three subsequent frames. During the first 300k
iterations, only the depth decoder and the pose network are
trained. Afterwards, the depth encoder is fine-tuned with an
ImageNet feature distance λF = 1 × 10−2 for another 50k
iterations. The encoder is initialized with ImageNet weights,
either before depth pretraining or before semantic segmen-
tation if depth pretraining is ablated. The baseline is trained
with the same hyperparameters but only with a cross-entropy
loss on the labeled samples. Its encoder is initialized with
ImageNet pretrained weights.

For the semi-supervised multi-task learning, we train the
network using SGD with a learning rate of 1 × 10−3 for
the encoder and depth decoder, 1 × 10−2 for the segmen-
tation decoder, and 1 × 10−6 for the pose network. The
learning rate is reduced by 10 after 30k iterations and the
network is trained for another 10k iterations. A momentum
of 0.9, a weight decay of 5 × 10−4, and a gradient norm
clipping to 10 are used. The loss for segmentation and SDE
are weighted equally. The mean teacher has α = 0.99 and
within an iteration, the network is trained on a clean labeled
and an augmented mixed batch with size 2, respectively. The
latter uses DepthMix with ε = 0.03, color jitter, and Gaus-
sian blur. If only pseudo-labeling but no mixing is used in an
experiment, color jitter and Gaussian blur are still applied to
the augmented batch.

For SSDA, the same hyperparameters as in the SSL set-
ting are used. A batch consists of two source samples, two
labeled target samples, and two (pseudo-)labeled target sam-
ples, which are used to compute LSSDA (see Fig. 5). For the
MatchingGeometry Sampling, the number of random source
candidate samples is set to 5: |Csrc| = 5.

4.4 Automatic Data Selection for Annotation

For the automatic data selection, we use a slimmed net-
work architecture for fSI DE with a ResNet50 backbone,
reduced decoder channels, andBatchNorm (Ioffe&Szegedy,
2015) in the decoder for efficiency and faster convergence.
The depth student network is trained with a berHu loss using
Adamwith a learning rate of 1×10−4 and polynomial decay
with exponent 0.9. For calculating the depth feature diver-
sity, we use the output of the second depth decoder block
after SDE pretraining. It is downsampled by average pool-
ing to a size of 8 × 4 pixels and the feature channels are
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Table 1 Comparison of data selectionmethods (DS: diversity sampling
based on depth features, US: uncertainty sampling based on depth stu-
dent error)

# Labeled 1/30 (100) 1/8 (372) 1/4 (744)

Random 48.75 ± 1.61 59.14 ± 1.02 63.46 ± 0.38

Entropy 53.63 ± 0.77 63.51 ± 0.68 66.18 ± 0.50

Ours (US) 51.75 ± 1.12 62.77 ± 0.46 66.76 ± 0.45

Ours (DS) 53.00 ± 0.51 63.23 ± 0.69 66.37 ± 0.20

Ours (DS + US) 54.37 ± 0.36 64.25 ± 0.18 66.94 ± 0.59

mIoU in %, std. dev. over 3 seeds

normalized to zero-mean and unit-variance over the dataset.
The student depth error is weighted by λE = 1000. The
number of the selected samples (

∑t
t ′=1 nt ′ ) is incrementally

increased to 25, 50, 100, 200, 372, and 744. For each subset,
a student depth network is trained from scratch for 4 k, 8
k, 12 k, 16 k, and 20 k iterations, respectively, to calculate
the student depth error and select the samples for the next
subset. The quality of the selected subset with annotations
GA is evaluated for semantic segmentation using our default
architecture and training hyperparameters. For the entropy
baseline, a semantic segmentation network is trained on GA

and the samples with the highest mean pixel-wise Shannon
entropy of the semantic segmentation prediction are greedily
chosen from GU to extend GA. Apart from that, the entropy
baseline uses the same hyperparameters as our method.

5 Results

5.1 Automatic Data Selection for Annotation

First, we evaluate the proposed automatic data selection
(see Sect. 3.2) on the Cityscapes (Cordts et al., 2016) dataset.
Table 1 shows a comparison of our method with a baseline
and a competing method for different numbers of selected
labeled samples. Thefirst baseline selects the labeled samples
randomly, while the second, strong competitor uses active
learning and iteratively chooses the samples with the highest

Table 2 Comparison of the class-wise IoU in % of the data selection
methods for 372 labeled samples

The color visualizes the IoU difference with respect to the baseline

segmentation entropy. In contrast to ourmethod, this requires
a human in the loop to create the semantic labels for itera-
tively selected images. Table 1 shows that our method with
diversity sampling (DS) works better than with uncertainty
sampling (US) for few labeled samples.We hypothesize that,
for a small number of annotated samples, it is more impor-
tant to better cover the underlying distribution with a diverse
subset than just covering uncertain/difficult samples. For a
larger subset, however, it makes sense to focus on the uncer-
tain samples as the common cases are most likely already
covered. Further, it can be seen that combining diversity sam-
pling and uncertainty sampling (DS + US) performs better
than using them individually showing that these criteria are
complementary and cover two relevant aspects of selecting
data for annotation. When comparing our method with both
sampling criteria (DS + US) with the baselines “Random”
and “Entropy”, it can be seen that our method outperforms
both comparisonmethods, demonstrating the effectiveness of
ensuring diversity and exploiting difficult samples based on
depth estimation. It also supports the assumption that depth
estimation and semantic segmentation are correlated in terms
of sample difficulty. With 1/4 of the labeled samples, our
method achieves 98.8% of the fully-supervised performance
and with only 1/8 samples it still reaches 94.8%. Further-
more, the standard deviation of the achieved segmentation
performance with our data selection is noticeably lower than
for the random baseline when using few labeled samples,
resulting in better reproducibility.

To better understand the underlying reasons for the
improved performance, we analyze the class-wise IoU for
372 labeled samples in Table 2. It shows that our automatic
data selection significantly improves the performance of dif-
ficult classes with a low IoU of the random baseline such as
wall, fence, truck, bus, and train. In comparison to the strong
active learning entropy baseline, our method achieves even
better performance for the classes wall, rider, truck, and bus.

In order to investigate possible reasons for the improved
performance of the automatic data selection, we visualize
the ratio of the automatically selected pixels and total dataset
pixels grouped by the ground truth class for 372 selected sam-
ples in Fig. 7. As expected, the ratio is about 0.125 for most
of the classes when selecting 1/8 of the samples randomly
(Fig. 7 left). For the entropy baseline and our method, it can
be seen that a higher ratio of difficult/rare classes (e.g. truck,
bus, and train) are sampled from the underlying training set,
while a smaller ratio of common classes such as road and
building are sampled. When comparing the class-wise IoU
(Table 2) and the ratio of selected pixels (Fig. 7), it can be
seen that the improvement for difficult classes is correlated
with them being selected more frequently by the automatic
data selection. Intuitively, more samples of rare and easy to
confuse classes such as car, truck, bus, and train as well as
wall and fence will help the classifier to distinguish them.
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Fig. 7 Class frequency analysis of the data selection behavior. The ratio of selected pixels (372 samples) and dataset pixels (2975 samples) grouped
by ground truth class for different data selection methods is shown. The values are averaged over 3 random seeds. The error bars indicate the
standard deviation

When comparing the active learning entropy baseline to our
method, Fig. 7 shows that our method selects a higher ratio
of wall, person, rider, and truck, which directly connects to
the higher class IoU for these classes as shown in Table 2.
This is also reflected by a high Pearson correlation coeffi-
cient ρ = 0.92 of the increase in class selection ratio and
the improvement of the class-wise IoU. Please note that the
class-statistics of Fig. 7 are not available to our method dur-
ing the entire selection process. This demonstrates that our
method is able to correctly estimate the utility of samples
for subsequent semantic segmentation without knowing the
ground truth labels during the selection.

5.2 DepthMix Data Augmentation

Second, we study the proposed geometry-guided mixing
strategy DepthMix (see Sect. 3.4). We evaluate the perfor-
mance for the SSL setting with 372 of the labeled training
samples (which corresponds to 1/8 of the labeled samples
in Cityscapes) and the fully-supervised setting with 2975
samples. The subset of labeled samples is chosen randomly.
Table 3 shows themean and standard deviation of themIoU in
percent over three random seeds. Additionally, the improve-
ment in percentage points of the analyzed components over
the baseline, which only uses a cross-entropy loss on labeled
samples, is shown. In accordance with the literature on semi-
supervised mixing (French et al., 2020; Olsson et al., 2021;
Sohn et al., 2020), we first add self-training with pseudo-
labels from the mean teacher to the framework. As can be
seen inTable 3, this already significantly improves the perfor-
mance in the SSL setting by+ 3.24 mIoU percentage points.
Still, our proposed DepthMix module further increases the
performance by another + 1.76 (+ 2.06) percentage points
for 372 (2975) labeled samples. Note that the high variance
for few labeled samples is mostly due to the high influence

Table 3 Comparison of different mixing strategies

372 labels 2975 labels

Baseline 59.14 ± 1.02

�

67.77 ± 0.13

�

Pseudo-labels 62.39 ± 0.86 + 3.24 –

ClassMix 63.16 ± 0.89 + 4.02 69.60 ± 0.32 + 1.83

DepthMix 64.14 ± 1.34 + 5.00 69.83 ± 0.36 + 2.06

mIoU in %, standard deviation over 3 seeds

of the randomly selected labeled subset. The chosen subset
affects all configurations equally and the reported improve-
ments are consistent for each subset.

When comparing DepthMix directly to the competitor
ClassMix (Olsson et al., 2021) in Table 3, the performance of
DepthMix is still+ 0.98 (+ 0.23) percentage point higher for
372 (2975) samples. This demonstrates the effectiveness of
the geometry-aware mixing, which better handles occlusions
as described in Sect. 3.4. The higher improvement of Depth-
Mix for fewer labeled samples might be since the SDE for
DepthMix can be trained on a large set of unlabeled samples,
resulting in precise depth contours over thewhole (un)labeled
training set. ClassMix in contrast uses segmentation pseudo-
labels for mixing, which were only supervised on the subset
of labeled samples. Therefore, on the unlabeled samples, the
mixing contours can be less accurate than for DepthMix.

Further, we analyze the class-wise IoU for 372 labeled
samples as shown in Table 4. Pseudo-labels generally
improve the IoU through self-training. However, for the rare
class motorcycle, the IoU decreases compared to the base-
line. The reason for that is probably a pseudo-label drift of
motorcycle towards the similar class bicycle during the self-
training. Both mixing strategies mitigate the drift by a better
generalization from labeled to unlabeled data throughprovid-
ing different contexts and occlusions during the training. The
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Table 4 Comparison of the class-wise IoU in % of the different mixing
strategies for 372 labeled samples

The color visualizes the IoU difference with respect to the baseline

better generalization leads to less erroneous pseudo-labels
and consequently to less drift. Additionally, this also results
in a higher IoU for other difficult classes with a low base-
line IoU such as sidewalk, wall, fence, traffic light, traffic
sign, rider, truck, bus, and train. When comparing Depth-
Mix and ClassMix, it can be seen that DepthMix improves
over ClassMix for difficult classes with usually pronounced
depth contours such as wall, traffic light, rider, bus, train, and
motorcycle. However, there is a slight decrease in IoU for the
classes sidewalk and terrain. These are classes, which can be
easily confused with each other and with road. DepthMix
might experience difficulties with these classes as there are
usually no depth contours between them, which results in
fewer mixing boundaries.

The effective occlusion handling of DepthMix can be seen
in Fig. 8a–c for samples from Cityscapes. It shows input
images in orange and blue as well as their SDE used for mix-
ing. The column “DepthMix Select." visualizes from which
input image the regions, chosen by DepthMix, originate. As
can be seen in Fig. 8a, DepthMix is able to handle occlusions
at multiple levels. The biker from the blue image occludes
buildings from the orange image, but the blue biker is itself
also partly occluded by the closer biker from the orange
image. Similar cases can be seen for trees, traffic signs, and
cars in Fig. 8b, c. The column “Mixed Image I ′" shows the
resulting image without the selection overlay. It can be seen
that due to the spatially accurate depth contours, the mixed
images contain only minor mixing border artifacts and have
a realistic appearance. The same is the case for the mixed
segmentation as can be seen in the column “Mixed Segm.
S′”.

However, there are also some cases in which DepthMix
fails to correctly mix images according to their geometry.
Examples of typical failure cases are shown in Fig. 8d, e.
First, the SDE can be inaccurate for dynamic objects due to
the violation of the static world assumption, which can cause
an inaccurate structure within the mixed image. This is par-
ticularly the case if a car is driving in front of the ego car
(Fig. 8d). However, this type of failure case is common in

ClassMix and its frequency is greatly reduced with Depth-
Mix. A remedy might be SDE extensions that incorporate
the motion of dynamic objects (Casser et al., 2019; Dai et
al., 2020; Klingner et al., 2020b). Second, in some cases,
the SDE can be imprecise and the depth discontinuities do
not appear at the same location as the class border. This can
cause artifacts in the mixed image as well as in the mixed
segmentation as can be seen for the sky within the building
in Fig. 8e. Note that the same can happen for ClassMix when
the pseudo-labels, used for the mixing, do not have accurate
segmentation borders.

5.3 Transfer andMulti-task Learning

Third, we study the proposed transfer and multi-task learn-
ing of semantic segmentation and the auxiliary task self-
supervised depth estimation in Table 5. For 372 (2975) sam-
ples, SDE transfer learning of the encoder and decoder (with
previous ImageNet pretraining of the encoder) improves per-
formance by + 1.31 (+ 1.23) percentage points mIoU over
the baseline with only ImageNet pretraining of the encoder.
This demonstrates the usefulness of the features learned by
SDE for semantic segmentation, both in the semi- and fully-
supervised case. Additional regularization of the encoder
with an ImageNet feature distance loss during SDE pretrain-
ing improves the performance by another + 0.35 (+ 0.48)
percentage points. Furthermore, multi-task learning in addi-
tion to transfer learning results in a performance increase of
+ 0.45 (+ 0.29) percentage points.

The class-wise analysis for 372 labeled samples (see Table
6) shows that SDE transfer learning without ImageNet Fea-
ture distance loss significantly improves the performance
of classes, where segmentation border coincides with depth
discontinuities such as fence, pole, traffic light, and traffic
sign. This is possibly due to their characteristic depth profile
learned during SDE. For example, a good depth estimation
performance requires correctly segmenting poles or traffic
signs as missing them can cause large depth errors. However,
there is a performance drop for classes that have slight seman-
tic differences such as truck, bus, train, and motorcycle.
We hypothesize that the SDE pretraining causes forgetting
important semantic features from the ImageNet pretraining
that are relevant for semantic segmentation but not for SDE.
For example, for SDE it is not relevant if an object is a bus
or a train but for semantic segmentation it is. Adding the
ImageNet feature distance loss to the SDE pretraining in
order to avoid forgetting these semantic features, prevents
the performance drop for truck, bus, and train. The addi-
tional multi-task learning further improves the performance
for the small difficult classes rider and motorcycle.
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Fig. 8 Examples of DepthMix applied to Cityscapes crops. From left
to right, the source images with their SDE estimate, the mixed image I ′
overlaid with the border of the mix mask M in blue/orange depending
on the adjacent source image (i—orange, j—blue), the mixed image
without visual guidance I ′, the mixed depth D′, and the mixed seg-

mentation S′ are shown. For simplicity, the source segmentations for
the mixed segmentation S′ originate from the ground truth labels. Rows
a–c demonstrate the strength of DepthMix to handle occlusions, while
rows d, e show typical failure cases

5.4 Combined Framework for SSL

Next, we combine the three contributions multi-task learn-
ing, DepthMix, and automatic data selection for annotation
into a unified semi-supervised semantic segmentation frame-
work. The first part of Table 7 summarizes the performance
of these components from the previous sections for a better
comparison. The component with the most improvement is
the automatic data selection for annotation with diversity and
uncertainty samplingwith+5.11mIoUpercentage points for
372 labeled samples. However, it is not applicable to the full
dataset as there is no need for sample selection—all samples
are used. The second-most effective component is DepthMix
with pseudo-labeling, which also has a pronounced mIoU
improvement of+ 5.00 (+ 2.06) for 372 (2975) samples. The
smallest but still significant improvement comes frommulti-
task learning with + 2.00 (+ 1.99) percentage points. The
direct comparison of the class-wise IoU for 372 labeled sam-

Table 5 Comparison of SDE feature transfer methods (F: ImageNet
feature distance loss)

Aux. SDE F 372 labels 2975 labels

59.14 ± 1.02

�

67.77 ± 0.13

�

Transfer 60.46 ± 0.64 + 1.31 69.00 ± 0.70 + 1.23

Transfer � 60.80 ± 0.69 + 1.66 69.47 ± 0.38 + 1.71

Multi-task � 61.25 ± 0.55 + 2.10 69.76 ± 0.39 + 1.99

mIoU in %, standard deviation over 3 seeds

ples in Table 8 shows that data selection mostly improves the
performance of difficult classes with a low baseline IoU (e.g.
wall, fence, truck, bus, and train), SDE multi-task learning
of classes with surrounding depth discontinuities (e.g. fence,
pole, traffic light, traffic sign, and rider), and DepthMix of
both.

Considering that the three contributions follow different
approaches and improve the performance of a different subset
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Table 6 Comparison of the class-wise IoU in% of SDE feature transfer
methods for 372 labeled samples (F: ImageNet feature distance loss)

The color visualizes the IoU difference with respect to the baseline

Table 7 Comparison of the combinations of the proposed framework
components (S: data selection, DM: DepthMix, MTL: SDE multi-task
learning)

S DM MTL 372 labels 2975 labels

59.14 ± 1.02

�

67.77 ± 0.13

�

� 61.25 ± 0.55 + 2.10 69.76 ± 0.39 + 1.99

� 64.14 ± 1.34 + 5.00 69.83 ± 0.36 + 2.06

� 64.25 ± 0.18 + 5.11 –

� � 65.35 ± 0.10 + 6.21 –

� � 66.48 ± 0.27 + 7.34 –

� � 66.66 ± 1.05 + 7.52 71.16 ± 0.16 + 3.40

� � � 68.01 ± 0.83 + 8.87 –

mIoU in %, standard deviation over 3 seeds

Table 8 Comparison of the class-wise IoU in % of the combinations
of the proposed framework components for 372 labeled samples (see
Table 7 for abbreviations)

The color visualizes the IoU difference with respect to the baseline

of classes, we further study the combination of our contri-
butions as shown in the second part of Tables 7 and 8. The
improvement over the baseline performance is + 6.21 when
combining multi-task learning with data selection, + 7.34
when combining DepthMix and data selection, and + 7.52
(+ 3.40) when combining multi-task learning and Depth-
Mix for 372 (2975) samples. In all cases, the combination

is better than every single component. The class-wise anal-
ysis for 372 labeled samples in Table 8 reveals that the class
performance of the combination usually is the highest class
performance of the components. As the components per-
form well on different classes, this already attributes to the
improved performance of the combinations. Moreover, there
are some classes such as fence, traffic sign, rider, truck, bus,
and train, where the performance of the combination is even
higher than its best component. This might be due to self-
reinforcing effects. For example, the improved segmentation
detail at depth contours from multi-task learning is propa-
gated into DepthMix and results in even better pseudo-label
supervision formixed samples. The last row of Table 7 shows
the combination of all three contributions. With an improve-
ment of + 8.87 percentage points for 372 labeled samples,
it achieves the best results so far. It combines the strength of
our three contributions and significantly improves the perfor-
mance for classes with depth discontinuities and for difficult
classes. The most improvement is achieved for truck, bus,
and train, where the mIoU is more than 50% better than the
baseline.

5.5 Influence of Depth Estimation on SSL
Performance

To better understand the influence of the depth estimation
performance on semi-supervised semantic segmentation, we
study the performance of our framework with different depth
estimation networks. In particular, we compare the used SDE
method with fully-supervised depth estimation, where the
supervision comes from the official Cityscapes stereo depth
maps. In contrast to SDE, which only provides relative depth
maps with an unknown scale factor, the fully-supervised
depth estimates have a metric scale and correctly predict the
depth of dynamic objects. Further, we compare the default
SDE network, which was trained with all 83,300 Cityscapes
frames, with SDE networks, which were trained only with
a randomly selected subset of the frames. The performance
of the depth network variants is evaluated on the Cityscapes
validation set with the depth RMSE and RMSE log metrics
with a 50m depth cap. For the evaluation of SDE, the com-
mon practice of per-image median ground truth scaling is
used (Zhou et al., 2017; Godard et al., 2019).

The results are shown in Table 9. It can be seen that the
supervised depth estimation achieves the best RMSE and
RMSE log (lower values are better). SDE performs best
when all training frames are used.When reducing the training
frames of SDE, the depth performance gradually drops.

The semi-supervised semantic segmentation performance
is correlated with the performance of the depth estimation
network. A smaller depth estimation error usually results in
a higher segmentation mIoU. However, the differences in
mIoU are relatively small when compared with the standard
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Table 9 Influence of the depth
estimation method on the
semi-supervised semantic
segmentation performance for
100 labels

Depth estimation RMSE (↓) RMSE log (↓) mIoU (↑)
Supervised depth 4.252 0.159 62.69 ± 0.80

SDE 100% frames 5.693 0.243 62.09 ± 0.39

SDE 10% frames 5.873 0.249 62.29 ± 1.21

SDE 1% frames 6.003 0.256 61.40 ± 1.10

SDE 0.1% frames 7.063 0.303 59.65 ± 1.03

mIoU in %, standard deviation over 3 seeds

Fig. 9 Example semantic segmentations and self-supervised depth estimates of our method for 100 labeled samples in comparison with ClassMix
(Olsson et al., 2021) and the baseline

deviations. Only for the SDE with 0.1% frames, which has
the highest depth error, there is a significant mIoU drop. This
shows that the proposed semi-supervised learning framework
is relatively robust with respect to the precision of the depth
estimates (within certain bounds) and that already a rough
understanding of the scene geometry is sufficient to learn
useful representations for semantic segmentation. Intuitively,
depth estimation requires distinguishing objects from their
background, which facilitates semantic grouping. The pre-
cise distance of an object to the camera plays probably only
a subordinate role for semantic segmentation as long as the
depth estimates are sufficiently correct to facilitate visual
grouping.

Further, this experiment shows that the relative depth
maps, which have an unknown scaling factor, are sufficient
for the proposed semi-supervised semantic segmentation
framework. The metric depth maps from supervised depth
estimation only slightly improve the segmentation perfor-
mance by a margin that is still within the standard deviation.
When considering SDE as a self-supervised representation
learning method for semantic segmentation, the unknown
scaling factor of SDE has probably only a minor influence
because it does not affect foreground/background relations,
which are important for learning a semantic grouping. For
example, SDE maps a traffic sign to the same depth value

while its surrounding would most likely be mapped to a
larger depth. The required SDE features can be re-utilized for
semantic segmentation independent of the exact depth val-
ues.When consideringDepthMix, an unknown scaling factor
is also not problematic as long as it is consistent across the
mixed images (i.e. both images have a similar scale factor).
As qualitatively observed in Figs. 8 and 9, the self-supervised
depth estimates are sufficiently consistent for DepthMix.

5.6 Comparison with State-of-the-Art SSL Methods

Next, we compare our approach with several state-of-the-
art SSL approaches. The results are summarized in Table
10. The performance (mIoU in %) of the SSL methods and
their baselines (which use the same backbone network but
are only trained on the labeled dataset) are shown over a
different number of labeled samples. As the performance of
the baselines differs, there are columns showing the abso-
lute improvement for better comparability. As our baseline
utilizes a more capable network architecture due to the U-
Net decoder with ASPP as opposed to a DeepLabv2 decoder
used by most previous works, we also reimplemented the
state-of-the-art method, ClassMix (Olsson et al., 2021) with
our network architecture and training parameters to ensure a
direct comparison.
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Table 11 Semantic
segmentation performance on
the CamVid test set with SDE
trained on Cityscapes sequences
(mIoU in %, standard deviation
over 3 random seeds)

# Labeled 50 100 367 (Full)

Baseline 59.2± 1.8

�

63.1 ± 0.6

�

68.2 ± 0.1

�

ClassMix 65.9± 0.3 + 6.7 67.5 ± 1.0 + 4.4 –

Ours w/o S 66.8 ± 1.2 + 7.6 68.9 ± 0.6 + 5.8 71.5 ± 0.2 +3.3

Ours 68.2 ± 0.4 +9.0 69.6 ± 0.6 +6.5 –

As shown in Table 10, ourmethod (without data selection)
outperforms all other approaches on each labeled subset size
for both the absolute performance aswell as the improvement
to the baseline. The only exception is the absolute improve-
ment of the original results of ClassMix for 100 labeled
samples.However, ifwe considerClassMix trained in our set-
ting, our method outperforms it also in this case. This can be
explained by the considerably higher baseline performance
in our setting, which increases the difficulty to achieve a high
improvement. Adding data selection even further increases
the performance by a significant margin, so that our method,
trained with only 1/8 of the labels, even slightly outperforms
the fully-supervised baseline.

To identify whether the improvement originates from
access to more unlabeled data or from the effectiveness of
our approach, we compare it to another baseline “ClassMix
(+Video)". More specifically, we also provide all unlabeled
image sequences toClassMix and see howmuch it can benefit
from this additional amount of unlabeled data. Experimental
results show no significant difference. This is probably due
to the high correlation between the Cityscapes image dataset
and the video dataset (the images are the 20th frames of the
video clips).

The adequacyof our approach is also reflected in the exam-
ple predictions in Fig. 9. We can observe that the contours
of classes are more precise. This is particularly the case
for classes, which are surrounded by depth discontinuities
such as poles, traffic signs, rider, or person. Moreover, dif-
ficult objects such as bus, train, rider, or truck can be better
distinguished. As discussed in Sect. 5.4, this observation is
also quantitatively confirmed by the class-wise IoU improve-
ment shown in Table 8. On the downside, SDE sometimes
fails for cars driving directly in front of the camera (see
7th row in Fig. 9) and violating the reconstruction assump-
tions. Those cars are observed at the same location across the
image sequence and can not be correctly reconstructed dur-
ing SDE training, evenwith correct depth and pose estimates.
However, the network-internal differentiation between mov-
ing and non-moving cars does not hinder the transfer of
SDE-learned features to semantic segmentation but can cause
problems with DepthMix (see Sect. 5.2).

5.7 Learning SDE and Semantic Segmentation on
Different Datasets

In this section, we show that the unlabeled image sequences
and the labeled segmentations can also originate from differ-
ent datasets within similar visual domains. For that purpose,
we train the SDEonCityscapes sequences and learn the semi-
supervised semantic segmentation on the CamVid dataset
(Brostow et al., 2009). As we assume in this scenario that
there are no image sequences available for SDE training on
CamVid, we only apply transfer learning but no multi-task
learning.

Table 11 shows that the results on CamVid are similar
to our main results on Cityscapes. For 50/100/367 labeled
training samples, our method improves the mIoU by+ 9.0/+
6.5/+ 3.3 percentage points. In the end, our proposedmethod
significantly outperforms ClassMix (Olsson et al., 2021) by
+ 2.3 percentage points for 50 labeled samples and + 2.1
percentage points for 100 labeled samples.

5.8 Component Study for SSDA

We study the components of the SSDA framework described
in Sect. 3.5 on the commonly used benchmark GTA5 →
Cityscapes, where the synthetic source training samples orig-
inate from theGTA5 dataset (Richter et al., 2016) and the real
target training samples are obtained from Cityscapes (Cordts
et al., 2016). After the training, the network is evaluated on
the target validation samples from the Cityscapes validation
set. First, we analyze our contributions fromSSL in an SSDA
setting by naively adding the additional source samples to the
training according to Eq. (18). The remaining framework is
the same as in the previous experiments. To indicate that
DepthMix is applied specifically to the target domain in this
experiment (as opposed to both domains), we denote it as
Target-Domain DepthMix (TDM). TDM is equivalent to the
single-domain DepthMix of the previous sections as both
operate on Cityscapes.

The first part of Table 12 shows the results using the SSL
framework without source domain supervision, while the
second part shows the results for the framework with addi-
tional semantic segmentation supervision from the source
domain according to Eq. (18).
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Table 12 Comparison of the previous framework components in a
SSDA setting (SD: additional source domain data, S: data selection,
TDM: Target-Domain DepthMix, MTL: SDE multi-task learning)

SD S TDM MTL 100 Trg. Labels 500 Trg. Labels

48.75 ± 1.62 61.66 ± 0.90

� � � 62.09 ± 0.39 67.75 ± 0.10

� 53.83 ± 1.09 60.99 ± 1.04

� � 56.20 ± 0.92 62.46 ± 1.04

� � 60.05 ± 1.91 66.19 ± 0.80

� � 54.92 ± 0.68 61.97 ± 0.74

� � � � 64.54 ± 0.12 68.63 ± 0.34

Table 13 Comparison of the class-wise IoU in%of the previous frame-
work components in a SSDA setting for 100 labeled target samples (see
Table 12 for abbreviations)

The color visualizes the IoU difference with respect to SD

For 100 labeled samples from the target domain, Table 12
shows that additional source domain supervision improves
the performance of the baseline by+ 5.08 percentage points.
As can be seen in Table13, this is mainly due to improve-
ments for classes with a low baseline performance such as
wall, fence, traffic light, rider, truck, bus, and motorcycle.
However, additional source domain supervision deteriorates
the performance for the classes sidewalk, terrain, and bicy-
cle, which are easy to confuse and have a considerable
domain gap. When applying our proposed methods from
SSL, they also lead to an improved performance in the SSDA
setting as shown in the second part of Table 12. For multi-
task learning, the gain is + 2.37 percentage points with the
same performance pattern of the class-wise IoU. For Target-
Domain DepthMix, the improvement is + 6.22, while it also
effectively counters the performance drop (from Baseline to
SD) for the classes road, sidewalk, terrain, and bicycle (see
Table13). For automatic data selection, the improvement by
additional source data is + 1.09. When combining the three
contributions, the performance gain over the baseline with
source supervision is + 10.71. This is + 2.45 percentage
points better than our method for SSL.

For 500 labeled samples from the target domain, addi-
tional source domain supervision decreases the performance
for the baseline by − 0.67 percentage points (see Table 12).
This shows that additional source supervision is not helpful
in this case, probably, because there is already decent super-
vision on the target domain and naively adding the source
domain loss cannot close the domain gap. But also in this
setting, multi-task learning/Target-Domain DepthMix/data
selection can still improve the performance by + 1.47/+
5.2/+ 0.98 over the baseline with source supervision. When
being combined, their performance gain is + 7.64. This is +
0.88 percentage point better than our method for SSL.

Next, we analyze our contributions tailored to over-
come the domain gap of SSDA: Cross-Domain DepthMix
(see Sect. 3.5.2) and Matching Geometry Sampling (see
Sect. 3.5.3). Table 14 shows that both Cross-Domain Depth-
Mix (CDM) and Target-Domain DepthMix (TDM) signifi-
cantly outperform the baseline. As shown in Table15, this
is due to an improved performance for difficult classes
such as sidewalk, wall, traffic sign, terrain, rider, truck,
train, and motorcycle. Through DepthMix presenting these
objects with different backgrounds and occlusions, the net-
work learns to generalize better within the target domain (for
TDM) or across domains (CDM). When comparing the per-
formance of CDM and TDM (see Table 14), it can be seen
that CDM works better for 100 labeled target samples and
TDMworks better for 500. On the one side, CDMcan exploit
the labeled source data to propagate its knowledge to the tar-
get data through mixing. This is especially useful if there are
only a few labeled target samples available andmost supervi-
sion comes from the source domain. On the other side, TDM
can use the already labeled target samples to propagate their
knowledge to the unlabeled target through mixing, without
being impeded by a domain gap. This is most effective when
there are sufficient labels from the target domain available.

Based on this observation, we conclude that it might be
useful to combine CDM and TDM to align labeled source
and target samples as well as labeled target and unlabeled
target samples. Table 14 shows that CDM + TDM indeed
improves the performance over only CDM and only TDM
by + 0.70 (+ 0.79) for 100 (500) labeled target samples due
to an improved performance for the classes sidewalk, wall,
fence, traffic sign, terrain, and train.

To further improve the Cross-Domain DepthMix, we
apply the proposed Matching Geometry Sampling to over-
come the geometric domain gap of source and target domain
and to better align the geometric distribution of the mixed
samples to the geometric target distribution as discussed in
Sect. 3.5.3. Table 14 shows that it improves the mIoU by +
1.65 (+ 0.16) percentage points for 100 (500) labeled target
samples. The geometry and view alignment is probably more
important for fewer labeled target samples because it is more
difficult to bridge the geometric domain gap. For 100 labeled
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Table 14 Comparison of
domain-adaptive mixing
strategies (SD: additional source
domain data, S: data selection,
TDM: Target-Domain
DepthMix, CDM:
Cross-Domain DepthMix, MG:
Matching Geometry Sampling,
MTL: SDE multi-task learning)

SD S TDM CDM MG MTL 100 Trg. labels 500 Trg. labels

� 53.83 ± 1.09 60.99 ± 1.04

� � 60.05 ± 1.91 66.19 ± 0.80

� � 60.65 ± 1.88 65.34 ± 0.08

� � � 61.35 ± 1.39 66.98 ± 0.88

� � � � 63.00 ± 2.09 67.14 ± 0.42

� � � � � � 66.01 ± 0.32 69.88 ± 0.39

mIoU in %, standard deviation over 3 seeds

Table 15 Comparison of the class-wise IoU in % of domain-adaptive
mixing strategies for 100 labeled target samples (see Table 14 for abbre-
viations)

The color visualizes the IoU difference with respect to SD

samples, the improvement mainly originates from difficult
vehicles such as truck, bus, and motorcycle (see Table15).

When combining the domain adaptive strategies (com-
binedCDM+TDMandMatchingGeometrySampling)with
the previous contributions from SSL, the SSDA performance
can be further improved by+ 3.01 (+ 2.74) percentage points
for 100 (500) labeled target samples (see Table 14). Overall,
our contributions sum up to + 17.26 (+ 8.22) percentage

points improvement over the baseline using only target super-
vision and + 12.18 (+ 8.89) percentage points improvement
over the baseline with target and source supervision. Espe-
cially, the performance of truck, bus, and train is increased
by more than 50% as shown in Table15.

5.9 Comparison with State-of-the-Art SSDAMethods

Finally, we compare our framework with other state-of-the-
art SSDAmethods on the benchmarks Synthia→Cityscapes
(Table 16) and GTA → Cityscapes (Table 17). For each
method, its baseline performance is provided because the
methods differ in their architecture and labeled subset. For
better comparability between the architectures, we show the
relative performance in%with respect to the fully-supervised
baseline. As the previous SSDA methods did not publish
their implementation, labeled subset, or variance over the
subset selection, we adapted the UDA state-of-the-art meth-
ods DACS (Tranheden et al., 2021) to our framework for a
fair comparison with a competitive method.

Considering the mIoU and the relative performance with
respect to the fully-supervised baseline, our method notice-

Table 16 Comparison with other SSDA methods for GTA → Cityscapes

# Labeled (Target) 100 200 500 2975
mIoU Rel mIoU Rel mIoU Rel mIoU Rel

Baseline (Wang et al., 2020) 43.6 47.1 53.6 65.9 Ref

ASS (Wang et al., 2020) 54.2 82.3 56.0 85.0 60.2 91.4 69.1 104.9

Baseline (Alonso et al., 2021) – – – 66.4 Ref

Alonso et al. (2021) 59.9 90.2 62.0 93.4 64.2 96.7 –

Baseline (Chen et al., 2021a) 41.9 47.7 55.5 65.3 Ref

Chen et al. (2021a) 61.2 93.7 60.5 92.6 64.3 98.5 69.8 106.9

Baseline 48.75 ± 1.52 54.04 ± 0.64 61.66 ± 0.90 67.77 ± 0.13 Ref

DACS (Tranheden et al., 2021)a 61.04 ± 0.64 90.1 63.14 ± 1.00 93.2 64.89 ± 0.45 95.8 66.51 ± 0.18 98.1

Ours w/o Data Selection 64.14 ± 1.96 94.6 66.13 ± 0.20 97.6 68.16 ± 0.40 100.6 71.71 ± 0.44 105.8

Ours 66.01 ± 0.32 97.4 67.73 ± 0.43 99.9 69.88 ± 0.39 103.1 –

The mIoU in % on the Cityscapes validation set is shown for a different number of labeled target samples. Mean and standard deviation are
aggregated over 3 random seeds. Additionally, the relative performance (Rel.) in % with respect to the fully-supervised baseline is shown. The best
results are shown in bold font and the second-best results are underlined
aResults of the reimplementation in our experiment setting extending DACS from UDA to SSDA
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Table 17 Comparison with other SSDA methods for Synthia → Cityscapes

# Labeled (Target) 100 200 500 2975
mIoU Rel mIoU Rel mIoU Rel mIoU Rel

Baseline (Wang et al., 2020) 57.6 60.8 66.5 73.8 Ref

ASS (Wang et al., 2020) 62.1 84.1 64.8 87.8 69.8 94.6 77.1 104

Baseline (Chen et al., 2021a) 53 58.9 61 72.2 Ref

Chen et al. (2021a) 68.4 94.7 69.8 96.7 71.7 99.3 77.2 106.9

Baseline 58.00 ± 1.96 63.26 ± 0.91 67.74 ± 0.48 73.34 ± 0.21 Ref

DACS (Tranheden et al., 2021)a 64.88 ± 0.30 88.5 67.72 ± 1.19 92.3 71.32 ± 0.38 97.2 74.43 ± 0.41 101.5

Ours w/o Data Selection 68.89 ± 1.94 93.9 71.95 ± 0.49 98.1 74.06 ± 0.30 101.0 77.04 ± 0.31 105.0

Ours 72.35 ± 0.23 98.7 73.54 ± 0.67 100.3 75.36 ± 0.26 102.8 –

The mIoU in % of 13 classes on the Cityscapes validation set is shown for a different number of labeled target samples. Mean and standard deviation
are aggregated over 3 random seeds. Additionally, the relative performance (Rel.) in % with respect to the fully-supervised baseline is shown. The
best results are shown in bold font and the second-best results are underlined
aResults of the reimplementation in our experiment setting extending DACS from UDA to SSDA

Fig. 10 Example semantic segmentations from GTA5 → Cityscapes of our method for 100 labeled target samples in comparison with DACS
(Tranheden et al., 2021) adapted to SSDA and the baseline with/without source supervision

ably outperforms the competitors for 100, 200, and 500
labeled target samples on both benchmarks. Only in the fully-
supervised case, Chen et al. (2021a) achieves slightly better
results. Moreover, it can be seen that even if we remove the
data selection for annotation from our method, the previous
statements still hold.

Wewould like to highlight that ourmethod achieves 97.4%
(GTA → Cityscapes) and 98.7% (Synthia → Cityscapes) of
the fully-supervised baseline performance with only about
1/30 (100) of the target labels. With about 1/15 of the target
labels, it even reaches the fully-supervised baseline perfor-
mance. The improved performance for 100 labeled target
samples can also be observed in Fig. 10, where our method
better distinguishes difficult classes such as truck, bus, and
train and produces more detailed segmentation contours for
classes such as pole, traffic sign, and rider.

6 Conclusions

In this work, we have studied how self-supervised depth
estimation (SDE) can be utilized to improve semantic seg-
mentation in the single-domain semi-supervised and the
domain-adaptive semi-supervised setting.

We introduce four effective strategies capable of leverag-
ing the knowledge learned from SDE. First, we present an
automatic data selection for annotation algorithm based on
SDE, which does not require human-in-the-loop annotations
and, therefore, increases flexibility, efficiency, and scalabil-
ity. By combining diversity sampling based on features from
self-supervised depth estimation and uncertainty sampling
based on the depth student error, our method significantly
outperforms random data selection and even entropy-based
active learning, which requires a human in the loop.We show
that without knowledge of the class labels, our data selection
for annotation prefers samples, which contain difficult/rare
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classes (e.g. rider, truck, bus, and train). This results in a
significantly higher semantic segmentation performance of
these classes.

Second, we demonstrate that the proposed DepthMix
strategy outperforms relatedmixing strategies by avoiding an
inconsistent geometry of the generated images.We show that
DepthMix effectively improves the performance for classes
with a low baseline performance such as wall, fence, traffic
light, rider, truck, bus, and train. We assume that DepthMix
improves generalization by presenting labeled and pseudo-
labeled instances with different backgrounds and occlusions.

Third, we show that the feature representation from self-
supervised depth estimation can be transferred to semantic
segmentation, by means of SDE pretraining and multi-task
learning of semantic segmentation and SDE. This is par-
ticularly effective for difficult classes surrounded by depth
discontinuities such as wall, fence, pole, traffic, light, traf-
fic sign, rider, truck, and motorcycle. By using an ImageNet
feature distance loss during the SDE pretraining, wemitigate
forgetting useful semantic features from ImageNet pretrain-
ing and avoid the resulting performance drop for semantically
similar classes such as truck, bus, train, and motorcycle.

And fourth, we show the effectiveness of combinedCross-
Domain and Target-Domain DepthMix as well as Matching
Geometry Sampling in a semi-supervised domain adaptation
setting. The former effectively aligns source and target data
as well as labeled target and unlabeled data to generate high-
quality pseudo-labels for unlabeled target data. The latter
samples source images with a similar scene geometry and
camera pose with respect to target images to produce more
realistic Cross-Domain DepthMix images.

A combination of the first three contributions in a
single-domain semi-supervised framework can achieve even
higher performance gains than the single components as the
approaches address different aspects of the learning pro-
cess. By using these SDE-based contributions, our approach
results in state-of-the-art performance for semi-supervised
semantic segmentation. Our method achieves 92% of the
fully-supervised baseline performance with only 1/30 of the
available labels and even slightly outperforms it with only
1/8 of the labels.

A combination of all four contributions in a semi-
supervised domain adaptation framework improves the per-
formance even further and outperforms previous state-of-the-
art semi-supervised domain adaptation methods. On GTA
→ Cityscapes, our method achieves even 97% of the fully-
supervised baseline performance with only 1/30 of the target
labels. This roughly corresponds to only 150 working hours
for data annotation for the target domain instead of 4460
working hours.

All in all, our findings suggest that SDE can be a
valuable source of self-supervision for semantic segmenta-

tion, improving the semantic segmentation performance and
reducing the number of necessary annotations.
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