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Abstract
Advances in visual perceptual tasks have been mainly driven by the amount, and types, of annotations of large-scale datasets.
Researchers have focused on fully-supervised settings to train models using offline epoch-based schemes. Despite the evident
advancements, limitations and cost of manually annotated datasets have hindered further development for event perceptual
tasks, such as detection and localization of objects and events in videos. Theproblem ismore apparent in zoological applications
due to the scarcity of annotations and length of videos-most videos are at most tenminutes long. Inspired by cognitive theories,
we present a self-supervised perceptual prediction framework to tackle the problemof temporal event segmentation by building
a stable representation of event-related objects. The approach is simple but effective. We rely on LSTM predictions of high-
level features computed by a standard deep learning backbone. For spatial segmentation, the stable representation of the
object is used by an attention mechanism to filter the input features before the prediction step. The self-learned attention
maps effectively localize the object as a side effect of perceptual prediction. We demonstrate our approach on long videos
from continuous wildlife video monitoring, spanning multiple days at 25 FPS. We aim to facilitate automated ethogramming
by detecting and localizing events without the need for labels. Our approach is trained in an online manner on streaming
input and requires only a single pass through the video, with no separate training set. Given the lack of long and realistic
(includes real-world challenges) datasets, we introduce a new wildlife video dataset–nest monitoring of the Kagu (a flightless
bird from New Caledonia)–to benchmark our approach. Our dataset features a video from 10 days (over 23 million frames)
of continuous monitoring of the Kagu in its natural habitat. We annotate every frame with bounding boxes and event labels.
Additionally, each frame is annotated with time-of-day and illumination conditions.Wewill make the dataset, which is the first
of its kind, and the code available to the research community. We find that the approach significantly outperforms other self-
supervised, traditional (e.g., Optical Flow, Background Subtraction) and NN-based (e.g., PA-DPC, DINO, iBOT), baselines
and performs on par with supervised boundary detection approaches (i.e., PC). At a recall rate of 80%, our best performing
model detects one false positive activity every 50min of training. On average, we at least double the performance of self-
supervised approaches for spatial segmentation. Additionally, we show that our approach is robust to various environmental
conditions (e.g., moving shadows). We also benchmark the framework on other datasets (i.e., Kinetics-GEBD, TAPOS) from
different domains to demonstrate its generalizability. The data and code are available on our project page: https://aix.eng.usf.
edu/research_automated_ethogramming.html
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1 Introduction

Much effort in computer vision science has been devoted
toward tracking, modeling, and understanding the behavior
of humans (Petrovich et al., 2021; Kocabas et al., 2021;
Dwivedi et al., 2021; Hesse et al., 2020; Kocabas et al.,
2020); however, fewer works explore the same tasks for
other species (Testard et al., 2021; Hayden et al., 2021).
The scarcity of annotation and difficulty of collecting data
has a significant contribution to the slow progress of the
field (Hayden et al., 2021). Recent developments in digital
video and recording technology opened new opportunities
to study animal behavior in the wild. Not only do these
recent developments increase the volume of data, but also the
speed at which data is generated. Monitoring video systems
can generate data at faster rates than those can be handled
by AI systems, leading to the notion of fast data (Lam et
al., 2012). Batch (offline) learning systems fail to process
fast data, where–possibly infinite–items arrive in a tempo-
ral sequence (Sahoo et al., 2018), due to the need to access
old data. Revisiting old data not only wastes computational
resources but also requires that the data be stored, which is
impractical for large volumes of data and hinders the scalabil-
ity of the learning systems. For streaming input applications
(e.g., monitoring and surveillance), storage costs can exceed
computational costs. The goal is to process and summarize
streaming input data to store only useful high-level infor-
mation, such as detected events and their objects’ attributes,
while ignoring spatial and temporal background clutter.

StreamLearning (SL) aims to build adaptivemodels of the
streaming data (Benczúr et al., 2018). These models must be
updated after every datapoint without access to any past data.
Additionally, the SL systems need to account for distribution
shifts by adapting to the changes in the streaming data. Our
training scheme completely disregards data points after being
processed by the network. Training and inference are done
simultaneously, alleviating the need for epoch-based train-
ing in order to appeal to practical applications and reduce
training time. We address the distribution shift problem by
building adaptable event modelswhich contain a feature rep-
resentation of the event and its objects (i.e., bird), allowing
us to effectively segment the object from its surrounding at
every frame–despite changes in illumination and environ-
mental conditions.

Ethology is the scientific and objective study of animal
behavior, from which stems the term Ethogram. Ethogram-
ming defines and categorizes animal behaviors in a com-
pletely objective manner. It is important to avoid subjectivity
and bias when describing animal behavior in ethograms;
behavior definitions must be based on “mechanical actions
that are observed rather than on any intentionality,motivating
the expression of that behavior” Rose and Riley (2021). The
required objectivity in the behavior descriptions makes com-

puter vision algorithms a suitable candidate for automating
ethograms. Ethogramming can ideally be automated by cor-
relating low-level attributes (e.g., location, motion patterns,
time-of-day) to high-level behaviors (e.g., incubation) Hay-
den et al. (2021). Our goal is to detect the low-level attributes
used in describing the behavior of animals in ethograms, such
that these attributes can then be used to generate and localize
objective behavior labels automatically.

Events are ubiquitous; they are the building blocks of
videos. Events can be present at various time scales, whereas
actions are a type of event that occurs at a smaller tempo-
ral scale. For example, the event of a bird feeding its chick
can be composed of multiple feeding actions, where feed-
ing here refers to the activity. To truly understand videos,
algorithms must be capable of detecting and segmenting sig-
nificant events from background noise. The detected events
can then be encoded in an embedding space for representa-
tion learning (Pan et al., 2021; Lin et al., 2021), annotated
and classified (Arnab et al., 2021; Liu et al., 2021; Yan et
al., 2022; Li et al., 2021), or even used for video summa-
rization tasks (Apostolidis et al., 2021; Ji et al., 2019; Fajtl
et al., 2018; Zhu et al., 2020). The task of detecting promi-
nent events becomes even more important when processing
long videos for wildlife monitoring or even videomonitoring
of other contexts (Corona et al., 2021). To perceive events,
one must not rely on the noisy low-level features but instead
build algorithms that detect the dynamics and patterns of
high-level features. These high-level features should be suf-
ficient to capture object-level representations; the designed
architectures should ideally capture these features’ temporal
evolution over time.

Very few publications show event detection and localiza-
tion performance on video spanning several days, mainly due
to the challenges arising from storing, processing, and evalu-
ating on large datasets. Researchers have mainly focused on
event-centric datasets by using trimmed videos of actions,
thus eliminating the need to segment events. This is analo-
gous to removing background from images and using only
masks of objects to train an object classifier. Although this
makes the task easier on the learning model, it becomes
harder to generalize to real-world applications. Real-world
datasets contain more challenging scenarios of untrimmed
events (e.g., empty segments) and noisy low-level changes
in the foreground (e.g., occlusions, shadows). Most wildlife
monitoring studies use camera traps with motion triggers to
store images of animals or record short videos of animals
in controlled environments – eliminating real-world light-
ing variations and environmental conditions. We address the
issues mentioned above by collecting and annotating a ten-
day continuous monitoring dataset of a nest of the Kagu;
a flightless bird of New Caledonia. The dataset is sampled
at 25 FPS, offering more than 23 million frames and more
than 253h of video footage. Events are not trimmed to allow
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researchers to evaluate the models’ performances on more
realistic and challenging scenarios. Ideally, algorithms will
have to deal with overfitting, catastrophic forgetting, and
sparsity of events to maintain high performance in spatial
and temporal event segmentation tasks.

Our framework follows key ideas from the perceptual
prediction line of work in cognitive psychology (Zacks et
al., 2001; Zacks & Tversky, 2001; Zacks & Swallow, 2007;
Loschky et al., 2020). Research has shown that “event seg-
mentation is an ongoing process in human perception, which
helps form the basis of memory and learning” (Radvansky &
Zacks, 2014; Zacks et al., 2007). Humans can identify event
boundaries, in a purely bottom-up fashion, using a perceptual
predictive model that predicts future states based on the cur-
rent perceived sensory information. Experiments have shown
that the human perceptual system identifies event bound-
aries based on the appearance and motion cues in the video
(Zacks, 2004; Speer et al., 2003; Radvansky et al., 2011).
Our model implements this perceptual predictive framework
and introduces a motion-weighted loss function to allow for
the localization and processing of motion cues.

As shown in Fig. 1, our approach uses a feature encoding
network to transform low-level perceptual information into
a higher-level feature representation. The model is trained
to predict the future perceptual encoded input and signal an
event if the prediction is significantly different from the future
perceived features (i.e., unpredictable features). The predic-
tion error signal is used to flag events and train the model
to predict better features. Prediction occurs after aggregat-
ing higher-level features with a recurrent cell; the hidden
state incorporates a higher-level representation of the move-
ment cues within frames. We utilize an attention mechanism
on the backbone features to provide a more focused predic-
tion error signal and, more importantly, spatially segment the
frames. The error signal is used for temporal event segmenta-
tion, while an attention map segments a frame spatially. Our
approach takes a significant step toward an eventual system
that can detect adverse behavioral events without requiring
a dataset of such behaviors. We aim to facilitate the goal
of automated ethogramming; detecting and characterizing
behaviors of animals objectively without prior domain infor-
mation or low-level annotations.

Our key contributions can be summarized as:

• Introducing a stream learning framework capable of
detecting and localizing prominent events without prior
knowledge of the target events.

• Collecting and annotating a remarkably long wildlife
video monitoring dataset (over 23M frames) with frame-
level bounding box annotation and behavioral categories.
For all frames containing the bird (i.e., moving or sta-

tionary), a single frame-level bounding box is provided
to highlight its location.

• Providing extensive evaluation of our framework’s per-
formance with respect to other traditional and state-of-
the-art approaches on multiple domains and datasets.

2 Relevant Work

This section presents a literature review of relevant works.
We begin by introducing supervised approaches targeting
event segmentation and boundary detection in Sect. 2.1, fol-
lowed by a review of self-supervised event segmentation
approaches in Sect. 2.2. We also provide a review of other
approaches that share a similar predictive learning intuition
for training models without explicit supervision (Sect. 2.3).
Additionally, a short review of attention-based models and
continual learning approaches can be found in Sects. 2.4
and 2.5, respectively. We conclude by presenting animal-
related computer vision works and comparison of the Kagu
videomonitoring dataset to other animal datasets provided in
different formats (e.g., images, videos, features) in Sects. 2.6
and 2.7.

2.1 Fully Supervised Approaches

Supervised temporal event segmentation uses direct label-
ing (of frames) to segment videos into smaller constituent
events. Fully supervised models are heavily dependent on
a vast amount of training data to achieve good segmen-
tation results. Different model variations and approaches
have been tested, such as using an encoder-decoder tempo-
ral convolutional network (ED-TCN) Lea et al. (2017) or a
spatiotemporal CNN model (Lea et al., 2016). To alleviate
the need for expensive direct labeling, weakly supervised
approaches (Richard et al., 2017; Bojanowski et al., 2014;
Ding & Xu, 2018; Huang et al., 2016) have emerged with
an attempt to use metadata (such as captions or narrations)
to guide the training process without the need for explicit
training labels (Malmaud et al., 2015; Alayrac et al., 2016).
However, such metadata are not always available as part of
the dataset, making weakly supervised approaches inappli-
cable to most practical applications. UnweaveNet (Price et
al., 2022) introduces the task unweaving, which defines each
activity as a single thread and builds a thread bank to seg-
ment and label parts of activities in an untrimmed video.
UnweaveNet uses a supervised transformer architecture to
learn temporal dependencies between clips.

Supervised boundary detection approaches use bound-
ary labels as a supervised learning signal for the model. For
example, Lea et al. (2017, 2016); Lin et al. (2018); Shao
et al. (2020); Shou et al. (2021) use a binary classifier head
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Fig. 1 Overview of our full
architecture. The perceptual
processing unit encodes current
frames and future frames into a
grid feature representations. An
attention operation is applied to
the current features to spatially
segment the event objects. The
predictor combines the event
model representation with the
current features to predict the
future features. Error in the
prediction is used as a learning
signal for the trainable weights.
The spatio-temporal pooling
layer receives as input spatial
localization map and prediction
error signal and outputs the
detected events
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on the extracted features to classify the state of every frame
(boundary/non-boundary). The undesirable need for direct
labeling gave rise to a family of approaches categorized
as “weakly-supervised” methods. Similar to event segmen-
tation, weakly supervised approaches (Ding & Xu, 2018;
Huang et al., 2016) make use of certain metadata, such as
video narrations or temporal ordering of frames, to provide
a learning signal.

2.2 Self-supervised Approaches

Self-supervised temporal event segmentation attempts to
completely eliminate the need for annotations (Sener & Yao,
2018),[48]. Many approaches rely heavily on higher-level
features clustering of frames to sub-activities (Bhatnagar et
al., 2017; VidalMata et al., 2021). The performance of the
clustering algorithms in unsupervised event segmentation is
proportional to the performance of the embedding/encoding
model that transforms frames into higher-level feature rep-
resentations. Clustering algorithms can be computationally
expensive depending on the number of frames to be clustered.
Recent work (Aakur & Sarkar, 2019) uses a self-supervised
perceptual predictive model to detect event boundaries; we
improve upon this model to include an attention unit (other
differences are discussed in Sec. 5.1.3), which helps the
model focus on the main event-causing object and allows
for locating it in each frame. Other work (Metcalf & Leake,
2017) uses a self-supervised perceptual predictionmodel that
is refined over a significant amount of reinforcement learn-
ing iterations. Recently (Shou et al., 2021) proposed the use
of context embedding difference before and after the target
frame to classify the state of each frame (boundary/non-
boundary). Despite using a backbone pretrained (Han et al.,
2019) on the same domain (Kinetics400), we still outperform
(Shou et al., 2021) using our online training approach.

Recent work (Aakur & Sarkar, 2020) has used the predic-
tion loss, with the assistance of pretrained region proposal
networks (RPNs) and multi-layer LSTM units, to localize
actions. We eliminate the need for RPNs and multi-layer
LSTM units by extracting Bahdanau Bahdanau et al. (2014)
attention weights prior to the LSTM prediction layer, which
allows our model to localize objects of interest, even when
stationary. From our experiments, we found that the pre-
diction loss attention tends to fade away as moving objects
become stationary, whichmakes its attentionmapmore simi-
lar to results extracted frombackground subtractionor optical
flow. In contrast, our model successfully attends to moving
and stationary objects despite variations in environmental
conditions, such as moving shadows and lighting changes,
as presented in the supplementary videos.

2.3 Predictive Models

Frame predictive models have attempted to provide accu-
rate predictions of the next frame in a sequence (Lotter et
al., 2017; Wang et al., 2018; Qiu et al., 2019; wichers et al.,
2018; Finn et al., 2016); however, these models focus on pre-
dicting future frames in raw pixel format. Such models may
generate a prediction loss that only captures frame motion
difference with a limited understanding of higher-level fea-
tures that constitutes event boundaries.

High-level predictive models (Adeli et al., 2021; Huang
et al., 2019; Ivanovic & Pavone, 2019; Kosaraju et al., 2019;
Salzmann et al., 2020; Mohamed et al., 2020; Wang et
al., 2021; Lee et al., 2017; Liang et al., 2019) implement
recurrent-based architecture to predict high-level attributes,
such as future trajectories and activity classes. In addition
to the useful predictions made by the trained models, such
models are expected to output useful intermediate represen-
tations. However, predicting a small subset of the high-level
features (e.g., human trajectories) does not result in a better
representation when compared to models trained to extract
and predict high-level features directly from RGB images.

Recent representation learning models (Doersch et al.,
2015; Grill et al., 2020; Chen &He, 2021; Caron et al., 2021;
Zbontar et al., 2021; Bardes et al., 2022) create two transfor-
mations of a single image and forces one to predict the other.
Such a setting can be thought of as a predictive learning
approach applied to images. The goal of these models is to
learn a useful representation of images, where distances in
the embedding space resemble distances in visual/semantic
space. Most works have not yet considered applying the
knowledge learned from training these image-based architec-
tures to video-based applications. Our approach implements
the predictivemodel on the temporal dimension of data while
using changes between frames as transformations to avoid
model collapse.

2.4 Attention Units and Transformers

Attention units were first introduced as a method to elimi-
nate the bottleneck representation in encoder-decoder archi-
tectures (Bahdanau et al., 2014; Luong et al., 2015); it gives
the decoder a way to weight the inputs (based on their repre-
sentations) before decoding. The transformer architecture is
based on the attention unit and has been extensively applied
to NLP tasks (Xu et al., 2015; Vaswani et al., 2017; Devlin
et al., 2019; Yang et al., 2019; Zaheer et al., 2020; Radford
et al., 2018, 2019; Brown et al., 2020; Liu et al., 2019).
The success of transformers in NLP has triggered the rapid
increase of the transformers’ usage in the vision domain as
joint CNN-Transformer architectures (Carion et al., 2020;
Girdhar et al., 2019; Kamath et al., 2021; Guan et al., 2022;
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Chen et al., 2021), and as stand-alone vision transformer
architectures (Dosovitskiy et al., 2020; Arnab et al., 2021;
Zhang et al., 2021; Caron et al., 2021)-to list a few.

2.5 Continual and Lifelong Learning

The continual learning task, alternatively known as class
incremental learning, focuses on avoiding catastrophic for-
getting by evaluating the model’s ability to retain the perfor-
mance of classifying old classes after training on new classes
(Mittal et al., 2021; Choi et al., 2021; Sun et al., 2021). Mod-
els have unlimited access to the current classes (or tasks) but
cannot retrain on previous classes. One popular solution is to
learn a generative function of each class and use it to generate
class instances to continue training on old classes after mov-
ing to new classes. The datasets used in such tasks usually
consist of image classes or short videos. For example, the
Core50 dataset (Lomonaco & Maltoni, 2017) is comprised
of 15-second videos. Additionally, the training schemes used
in these approaches are not appropriate for streaming input
applications; these models use offline batch-based learning.
Incremental learning approaches attempt to simulate real-life
datasets by not shuffling traditional datasets (e.g., ImageNet,
Cifar, MNIST) and training sequentially on class labels to
evaluate for catastrophic forgetting. We provide a real-life
dataset and a true benchmark containing most of the chal-
lenges currently being artificially simulated in continual and
incremental learning datasets.

2.6 Computer Vision for Animals

Machine learning models, specifically deep learning
approaches, have been rising in popularity among etholo-
gists.Recentmodels have targetedpose estimation (Fangbemi
et al., 2020; Zhang et al., 2021), tracking (McIntosh et al.,
2020; Ratnayake et al., 2021; Pedersen et al., 2020) and other
tasks (Sarfati et al., 2020; Clapham et al., 2020). However,
most approaches rely heavily on full supervision and manu-
ally annotated datasets. Similarly, a few works (Tuia et al.,
2022; Akçay et al., 2020; Ferreira et al., 2020; Hawkins &
DuRant, 2020; Mathis & Mathis, 2020; Valletta et al., 2017;
Wang, 2019) have used manual annotations to train deep
learning architectures and facilitate behavioral analysis of
animals. In contrast to these approaches, we propose a stream
learning model that learns and adapts to the data in an online
manner without the need for task-specific labels.

2.7 Animal Datasets

The field of animal video monitoring and analysis has
recently started growing in popularity in the vision commu-
nity (Günel et al., 2019; Li et al., 2020; Silvia Zuffi, 2019;
Zuffi et al., 2018, 2017; Kanazawa et al., 2016; Sanakoyeu et

al., 2020).However,mostworks focus on image-level species
classification and, more recently, pose and keypoint estima-
tion. The types of annotations providedwith datasets limit the
available tasks to be tackled by researchers. As can be seen
from Table 1, large-scale datasets targeting event localiza-
tion are almost nonexistent-limiting the research in the field
of animal behavior analysis. The majority of datasets col-
lect animal images through camera traps which are motion
activated. The collected images are then manually filtered to
remove false positives triggered by wind or lighting condi-
tions (e.g., moving clouds and falling leaves). The animals
detected in camera trap datasets are then manually labeled
for classification (i.e., species (Swanson et al., 2015; Welin-
der et al., 2010) or ID annotations (Li et al., 2019; Holmberg
et al., 2009)), localization (i.e., bounding box (Ferrari et al.,
2018; Li et al., 2019; Holmberg et al., 2009; Welinder et al.,
2010)[123], masks (Welinder et al., 2010), point annotations
(Kellenberger et al., 2021)), or pose estimation (Yao et al.,
2021; Li et al., 2019).

Video data of continuous monitoring of animal behavior
in their natural habitat are hard to find; very few annotated
datasets (Burgos-Artizzu et al., 2012; Sun et al., 2021; Lor-
bach et al., 2018) provide a collectionof short videos captured
in a controlled environment with event/behavior labels. The
scarcity of extensivewildlife video datasets, targeting events,
and behavioral analysis, led to the collection and annotation
of our dataset. Our dataset features ten consecutive days (11
nights) of continuous monitoring of a Kagu nest. We provide
two types of annotations; bounding boxes for spatial seg-
mentation and frame-level event labels for temporal event
segmentation. Both types of annotations are provided for the
whole dataset (23million frames). In addition to the dataset’s
scale, length, and quantity of annotations, our dataset is col-
lected in the wild, in a non-invasive manner.

3 Approach

This section introduces the technical details of our
cognitively-inspired stream learning framework.Wefirst dis-
cuss the inspiration from cognitive theories in Sect. 3.1. The
proposed architecture, summarised in Fig. 2, can be divided
into several individual components. We explain the role of
each component, startingwith the encoder network and atten-
tion unit in Sects. 3.2 & 3.3, followed by a discussion on the
recurrent predictive layer in Sect. 3.4. We conclude by intro-
ducing the loss functions (Sect. 3.5) used for self-supervised
learning as well as the output pooling layer (Sect. 3.6). Full
pseudocode is provided in Algorithm 1.
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Fig. 2 The architecture of the self-supervised learning, perceptual pre-
diction algorithm. Input frames from each time instant are encoded into
high-level features using a deep-learning stack, followed by an atten-
tion overlay that is based on inputs from previous time instant, which
is input to an LSTM. The training loss is composed of the predicted
and computed features from current and next frames. ⊕ and ⊗ denote
element-wise addition and multiplication operations, whereas I , y, h,
c, and A represent input image, prediction, hidden state, cell state, and
attentionmap, respectively. The teacher forcing connection is discussed
in the implementation details section

3.1 Cognitive Inspiration

Our proposed framework is heavily inspired by cognitive
psychology theories, more specifically, the Event Segmenta-
tion Theory (EST). The theory is developed by Zacks and
Swallow (2007) based on findings from cognitive neuro-
science experiments. EST introduces a cognitive learning
theory,wheremaking predictions of future inputs plays a cen-
tral role in both, learning and event segmentation. The theory
posits that humansmaintain a stable representation of the cur-
rent event called the “event model”. The event model and the
current perceptual inputs are used to predict the future per-
ceptual input. Failing to predict the next input is an indicator
that the current event has changed, and the event model can-
not be used to predict inputs received from a different event,
which results in perceiving an event boundary. Thus, event
segmentation does not require conscious attention; instead,
it emerges as a side effect of the ongoing perceptual pre-
diction process. The predictive learning approach allows for
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Algorithm 1 Temporal Event Segmentation Model with
Attention-based Spatial Event Localization. The input is an
untrimmed/streaming video I, which is a set of frame blocks
{I1, ..., It , It+1, ...IT }, each of the size N frames. The output
is a boolean set of event predictions B = {b1, b2, ...bT−1} ∈
{0, 1}T−1.
Input: Video frames {I1, ..., It , It+1, ...IT } ∈ R

T xNxCxWxH

Output: Event prediction values B = {b1, b2, ...bT−1}
1: procedure Attention(I ′

t , ht−1)
2: at ← linear(tanh(linear(ht−1) + linear(I ′

t )))

3: At ← so f tmax(at )
4: I ′′

t ← At � I ′
t

5: return I ′′
t

6: end procedure

7: procedure Segment(It , It+1, ht−1, yt−1)
8: I ′

t ← encoder(It )
9: I ′

t+1 ← encoder(It+1)

10: I ′′
t ← Attention(I ′

t , ht−1)

11: ht ← lstm(ht−1, linear(concat(I ′′
t , yt−1)))

12: yt ← decoder(ht )
13: et ← ‖(I ′

t+1 − yt )�2 � (I ′
t+1 − I ′

t )
�2‖2

14: bt ← gate(et )
15: return ht , bt , yt
16: end procedure

17: (ht−1, yt−1) ← (0, 0)
18: for {It , It+1} ∈ {I1, I2}, {I2, I3}, ..., {IT−1, IT } do
19: ht , bt , yt ← segment(It , It+1, ht−1, yt−1)

20: (ht−1, yt−1) ← (ht , yt )
21: B.append(bt )
22: end for

detecting generic events without providing a definition or a
description of the target event.

The mismatch between the predicted future inputs and the
actual future inputs drives the segmentation process to group
events into discrete time intervals. EST is a continual percep-
tual process that segments a continuous streamofmultimodal
sensory input into a discrete and coherent set of events. The
prediction error is also used as a training signal for the pre-
dictor to finetune the predictions within the same event. Our
approach uses an LSTM unit as a predictor where the hidden
state builds an event representation over time. We also use
a CNN backbone to extract features, resembling the percep-
tual processing unit in EST. We study the prediction error to
detect and localize events in a stream of RGB images. Addi-
tionally, we utilize the event model representation inside the
LSTM to spatially localize the objects in the input feature
representation.

3.2 Input Encoding

The raw input images are transformed from pixel space into
a higher-level feature space by utilizing an encoder (CNN)
model. This encoded feature representation allows the net-
work to extract features of higher importance to the task

being learned. We denote the output of the CNN layers
by I ′

t = f (It , θe) where θe is the learnable weights and
biases parameters and It is the input image at time t . The
encoder network transforms an input image with dimen-
sions It ∈ R

3×W×H to output features with dimensions
I ′
t ∈ R

M×N×N , where N × N is the spatial dimensions and
M is the feature vector length.

3.3 Attention Unit

In this framework, we utilize Bahdanau attention (Bahdanau
et al., 2014) to spatially localize the event in each processed
frame. The attention unit receives as an input the encoded
features and outputs a set of attention weights (At ) with
dimensions N × N . The hidden feature vectors (ht−1) from
the prediction layer of the previous time step are used to
calculate the output set of weights using Eq.1, expressed
visually in Fig. 2.

At = γ ( FC( ϕ(FC(ht−1) + FC(I ′
t )) ) ) (1)

where ϕ represents hyperbolic tangent (tanh) function, and γ

represents a softmax function. Theweights (At ) are thenmul-
tiplied by the encoded input feature vectors (I ′

t ) to generate
the masked feature vectors (I ′′

t ). The attention function uses
the object representation embedded in ht−1 to filter the fea-
tures It and remove the noisy background features. In other
words, the attention function ensures that the LSTM model
receives only the object (i.e., bird) features when making its
prediction. Interestingly, as we will see in the experimental
section, this change does not have a significant quantifiable
effect on the overall temporal segmentation performance due
to the sparsity of events in the proposed dataset, however,
it does enable spatial segmentation. We have experimented
with other datasets (i.e.,Kinetics) in different domains,where
multiple objects can be present. Results (Fig. 18) show that
the model can localize multiple objects simultaneously.

3.4 Prediction Layer

The process of future prediction requires a layer capable of
storing a flexible internal state (event model) of the previous
frames. For this purpose, we use a recurrent layer, specifi-
cally long-short term memory cell (LSTM) Hochreiter and
Schmidhuber (1997), which is designed to output a future
prediction based on the current input and a feature repre-
sentation of the internal state. More formally, the LSTM cell
can be described using the function ht = g(I ′′

t ,Wlstm, ht−1),
where ht and ht−1 are the output hidden state and previous
hidden state respectively, I ′′

t is the attention-masked input
features at time step t andWlstm is a set of weights and biases
vectors controlling the internal state of the LSTM. The input

123



International Journal of Computer Vision (2023) 131:2267–2297 2275

to the LSTM can be formulated as:

FC([I ′′
t , yt−1]) (2)

where I ′′
t is themasked encoded input feature vector and yt−1

is defined as FC(ht−1). The notation [.] represents vector
concatenation.

3.5 Loss Function

The perceptual prediction model aims to train a model capa-
ble of predicting the feature vectors of the next time step.
We define two different loss functions; prediction loss and
motion-weighted loss.
Prediction Loss This function is defined as the L2 Euclidean
distance loss between the output prediction yt and the next
frame encoded feature vectors I ′

t+1.

ept = ‖(I ′
t+1 − yt )‖2 (3)

Motion Weighted Loss This function aims to extract the
motion-related feature vectors from two consecutive frames
to generate amotion-dependent mask, which is applied to the
prediction loss. The motion-weighted loss function allows
the network to benefit from motion information in higher-
level feature space rather than pixel space. This function is
formally defined as:

emw
t = ‖(I ′

t+1 − yt ) ⊗ (I ′
t+1 − I ′

t )‖2 (4)

where ⊗ denotes an element-wise multiplication operation.

3.6 Spatio-Temporal Pooling Layer

The spatio-temporal pooling layer is a decision-based func-
tion that receives as input a spatial attention map and
continuous prediction error signal. The pooling layer gen-
erates a bounding box from the attention map and detects
events from the error signal. The output of the layer is
the detected events segmented spatially and temporally.
We define pooling, in this context, as going from noisy
frame-level representation of prediction error to event-level
classification. Ideally, more layers of prediction and pooling
can be built on top of this pooled event-level representation to
create a hierarchy of event models (Zacks & Swallow, 2007;
Hawkins et al., 2017; Hawkins & Ahmad, 2016).

3.6.1 Bounding Box generation

We use the attention map output from Eq. 1 to spatially
localize the objects in the frames. However, it can be fur-
ther processed to generate bounding boxes, which are more
important to ethogramming. As shown in Fig. 1, the model

outputs an 8 × 8 attention map, which we resize to the orig-
inal image size using bilinear interpolation. Then we apply
MinMax scaling to the attention map and threshold it. The
result is a binary map for which we calculate the bounding
rectangle.We evaluate the performance of the attentionmaps
and the generated bounding boxes in Sect. 5.2.2.

3.6.2 Activity Gating

The Activity gating function receives, as an input, the error
signal defined in Sect. 3.5, and applies a thresholding func-
tion to classify each frame. The threshold function applies a
threshold (φ) to each loss value resulting in a binary signal
(i.e., {0, 1}T ). Groups of frames with loss above the thresh-
old value are detected as events. Additionally, we define the
parameter ψ as the gap (in frames) between two consecutive
events, below which the two events will be merged as one.
The performance of our approach with different thresholds,
and model ablations, are provided in Sect. 5.1.2.
Simple Threshold The simple threshold function applies a
constant threshold value to the prediction error signal e ∈
R
T . Each loss value et is compared against the threshold φ

as shown in Eq. 6.

e = {e1 . . . et . . . eT } ∈ R
T (5)

f (et , φ) =
{
1, if et ≥ φ

0, otherwise
(6)

Adaptive Threshold A simple threshold does not adapt to
changes in the loss values over time; it is expected for the
loss values to decrease as the model learns to predict better
future features. Therefore, we propose to use an adaptive
threshold function that defines the threshold value φ as an
offset above the smoothed error signal es . First, we compute
the smoothed values es as shown in Eq. 7. The smoothing
function acts as a low-pass filter to attenuate high-frequency
noise in the raw prediction signal e. Then, we use Eq. 8 to
calculate the difference between the raw prediction signal
and the smoothed signal. Finally, we apply a threshold φ to
each value edt in ed using Eq. 9.

es = {es1 . . . est . . . esT } ∈ R
T

= e � [{1
n

. . .
1

n
} ∈ R

n] (7)

ed = e − es (8)

f (edt , φ) =
{
1, if edt ≥ φ

0, otherwise
(9)

where � represents a 1D convolution operation.
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3.7 Implementation Details

In our experiments, we use an Inception V3 (Szegedy et al.,
2016) encoding model (pretrained on the ImageNet dataset)
to transform input images from raw pixel representation to a
higher-level feature representation. We freeze the encoder’s
parameters (weights and biases) and remove the last layer.
We resize the input image to 3×299×299. The output of the
Inception V3 model is a 2048 × 8 × 8 feature tensor, which
we reshape to 2048 × 64 feature vectors. Each 2048 feature
vector requires one LSTM cell for future feature prediction.
In other words, the encoded input frame (I ′

t ) is provided
with 64 LSTM cells (sharing the same weights WLST M ),
each processing a 2048 features vector (hidden state size)
simultaneously. During a single optimization step, the model
receives eight current frames andpredicts eight future frames.
The next training step slides the model 8 frames into the
future. Hidden states of the LSTM are copied (i.e., stop gra-
dient operation) to initialize the LSTMs of future training
steps (i.e., stateful LSTM). We use a 0.4 drop rate (recurrent
dropout) on the hidden states to prevent overfitting, which
may easily occur due to the stateful LSTM nature of the
model and the dataset size. LSTMs’ hidden states are initial-
ized to zero. Teacher forcing (Lamb et al., 2016) approach is
utilized by concatenating the weighted encoded input image
(I ′′
t ) with the encoded input image (I ′

t ) instead of concatenat-
ing it with its prediction from the previous time step (yt−1).
Adam optimizer is used with a learning rate of 1e−8 for the
gradient descent algorithm. We do not use data augmenta-
tions. The dataset is divided into four equal portions and
simultaneously trained on four Nvidia GTX 1080 GPUs.

4 Nest monitoring of the Kagu

4.1 Dataset Overview

Weused a dataset of videos from nest monitoring of theKagu
Gula et al. (2010). The dataset consists of around ten days
(253h) of continuous monitoring sampled at 25 frames per
second. We fully annotated the entire dataset (23M frames)
with spatial localization labels in the form of a tight bounding
box. Additionally, we provide temporal event segmentation
labels as five unique bird activities: {Feeding, Pushing leaves,
Throwing leaves, Walk-In, Walk-Out}. The feeding event
represents the period of time when the birds feed the chick.
The nest-building events (pushing/throwing leaves) occur
when the birds work on the nest during incubation. Push-
ing leaves is a nest-building behavior during which the birds
form a crater by pushing leaves with their legs toward the
edges of the nest while sitting on the nest. Throwing leaves is
another nest-building behavior during which the birds throw
leaves with the bill towards the nest while being, most of the

Fig. 3 Samples of images from the Nest of the Kagu dataset at different
behavioral categories and lighting conditions. Red bounding box shows
the groundtruth label of the bird location (Color figure online)

time, outside the nest. Walk-in and walk-out events represent
the transitioning events from an empty nest to incubation or
brooding, and vice versa. We also provide five additional
labels that are based on time-of-day and lighting conditions:
{Day,Night, Sunrise, Sunset, Shadows}.While our approach
ignores the lighting conditions and focuses only on object-
centric (bird) activities, we include these labels to evaluate
and contrast the different performances under different con-
ditions. Ideally, a model with a robust representation of the
bird should perform consistently well during all lighting
conditions. A good model learns to extract useful features
and inhibit background features. Figure3 shows a sample of
images from the dataset.

4.2 Dataset Statistics

Wepresent the distributions of event counts and their dura-
tions in Fig. 4. Both event counts and event durations are
further categorized by Day and Night conditions. As can be
seen from the stacked bar charts, the Walk-in, Walk-out, and
Feeding contribute the highest number of events, whereas the
Throwing event has the highest total duration. Most events
have a high day-to-night ratio, except for the Throwing event,
where around 40% of the event duration occurs during twi-
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Fig. 4 Proportion of behavioral categories (subcategorized for day and night) of event counts (left) and event duration (right)

light periods. Feeding event occurs only in the daytime. It
can be seen that both count and duration plots show the same
day-to-night ratio for each event type, which means that the
duration of each event at night equals its duration at day.
In other words, the average duration of each event does not
change based on the time of day.

Figure 5 shows the durations of different event types and
bird states (stationary inside frame,moving inside frame, out-
side frame). As shown in the right subfigure, event duration
vary significantly based on its type. Throwing events can span
over two minutes, whereas short events (e.g., Walk-In/Out)
only take a few seconds. This variability in durations makes
the dataset more challenging to activity detection algorithms.
The left subfigure introduces a different kind of challenge-
sparsity of events. We show that the dataset contains a total
duration of around one hour of motion/activities (for the
whole dataset), while for the rest of the dataset, the bird is
either stationary in the nest or outside of the image frame.
The sparsity of events simulates real-life conditions; online
algorithms should be robust against the resulting challenges-
unbalanced dataset, catastrophic forgetting, etc.

4.3 Annotation Protocol

We have manually annotated the dataset with temporal
events, time-of-day/lighting conditions, and spatial bound-
ing boxes without relying on any object detection/tracking
algorithms. The temporal annotations were initially created
by experts who study the behavior of the Kagu bird and
later refined to improve the precision of the temporal bound-
aries. Additional labels, such as lighting conditions, were

added during the refinement process. The spatial bounding
box annotations of 23M frames were created manually using
professional video editing software (Davinci Resolve). We
attempted to use available data annotation software tools,
but they did not work for the scale of our video (10 days of
continuous monitoring). We resorted to video editing soft-
ware, which helped us annotate and export bounding box
masks as videos. The masks were then post-processed to
convert annotations from binary mask frames to bounding
box coordinates for storage. It is worth noting that the video
editing software allowed us to linearly interpolate between
keyframes of the bounding boxes annotations, which helped
save time and effort when the bird’s motion is linear. Both
temporal and spatial annotations were verified by two vol-
unteer graduate students. The process of creating spatial and
temporal annotations took approximately two months.

4.4 Validation and Test Splits

We split the full 10-day dataset into a validation and test set.
The validation set is chosen as the first two days of the dataset
(20% of the total frames), while the remaining eight days are
used to create the test set. The validation set can be used to
tune hyperparameters, such as segmentation thresholds, for
adjusting segmentation granularity. The tuned parameters are
then used for evaluation on the test set. As shown in Fig. 6,
less than 10% of the total number of events occur in the
first two days. Additionally, the feeding event occurs only
after the chick has hatched on day 8, which also affects the
frequency of walking in and out of the nest. The significant
changes in event statistics (counts and durations) between
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Fig. 5 Event statistics. (Left): Total durations of bird states plotted in log scale and categorized by Day and Night conditions. (Right): Box-and-
Whisker-Plots for the duration of behavioral categories

Fig. 6 Stack plot of event
counts for each day of the
proposed 10-day dataset
categorized by the event type.
The validation split is chosen as
the first two days

the validation and test splits provide a challenging setup for
learning algorithms.

5 Experimental Evaluation

In this section, we present the results of our experiments for
our approach defined in Sect. 3. We divide the results section
into temporal segmentation and spatial segmentation. In both
sections, we explain the evaluation metrics used to quantify
the performance, discuss model variations and conclude by
presenting quantitative and qualitative results on the Kagu
monitoring dataset. We also provide comparisons with state-
of-the-art approaches on other datasets in different domains
in Sect. 5.3

5.1 Temporal Segmentation

Temporal segmentation is the task of segmenting events in
untrimmed videos. The goal is to detect and localize events
such that important activities (e.g., bird walking out) are
accurately trimmed to their start and end boundaries. We
present twodifferent evaluation approaches to temporal event
segmentation; activity detection and boundary detection.
Activity detection targets the detection of the full event and
distinguishes between the start and end boundaries. Bound-
ary detection only considers the detection of event boundaries
as a separation between events. As discussed in Sect. 5.1.1,
the evaluation of activity detection is based on one-to-one
mapping, with IoU maximization objective, of the predicted
events and the ground truth events, whereas the boundary
detection is evaluated based on the distance between the pre-
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Fig. 7 Plots of the two kinds of errors before, during, and after an
activity: (top): feature prediction loss over the frames, (bottom):motion
weighted feature prediction loss over the frames. Some selected frames
are shownandoverlaidwith corresponding attentionmaps (after bilinear
interpolation resizing)

dicted boundaries and the ground truth boundaries. Figure7
shows an example of temporal segmentation for an event; the
event is detected by thresholding the error signal.

5.1.1 Evaluation Metrics

Our evaluation metrics are tied directly to the quality of
ethogramming. Accurately localizing the events and their
boundaries can lead to higher ethogramming quality since the
behavior attributes can only be found within the boundaries
of the event. It is important to increase the recall rate (reduce
missed detections) and decrease false positives to ensure
all important events are detected and analyzed while erro-
neous and irrelevant activities are disregarded. We use three
different evaluation metrics to assess the temporal segmenta-
tion performance of our approach. Conceptually, frame-level
evaluation captures the ability of a model to correctly clas-
sify whether a frame belongs to an event. Unlike frame-level,
activity-level evaluation focuses on the ability to capture the
existence and location of full events within an untrimmed
video. The boundary distance metric measures the tempo-
ral precision of the predicted boundaries to the groundtruth
boundaries. We discuss the evaluation metrics in more detail
in the following paragraphs.

Frame Level The frame-level evaluation of temporal seg-
mentation measures the ability of an algorithm to classify
whether each frame belongs to an event. The recall value
in frame-level ROC is calculated as the ratio of true positive
frames (event present) to the number of positive frames in the
annotations dataset, while the false positive rate is expressed
as the ratio of the false positive frames to the total number of

negative frames (event not present) in the annotation dataset.
Frame window size (ψ) is defined as the maximum joining
window size between events; a high ψ value can cause sep-
arate detected events to merge, which decreases the overall
performance. The threshold value (φ) is varied to obtain a
single ROC line, while varying the frame window size (ψ)
results in a different ROC line.

Activity Level The Activity level evaluation measures the
ability of an algorithm to detect events. We utilize the Hun-
garian matching (Munkres assignment) algorithm to achieve
one-to-one mapping between the ground truth labeled events
and the detected events. The recall is defined as the ratio of the
number of correctly detected events (overlapping frames) to
the total number of ground truth events. For the activity level
ROC chart, the recall values are plotted against the false pos-
itive rate per minute, defined as the ratio of the total number
of false-positive detected events to the total duration of the
dataset in minutes. The false-positive rate per minute evalu-
ation metric is also used in the ActEV TRECVID challenge
[139]. Frame window size value (ψ) is varied to obtain a sin-
gle ROC line, while varying the threshold value (φ) results
in a different ROC line.

Boundary Distance In addition to activity detection evalu-
ation, we also evaluate the ability of our approach to detect
generic boundaries of events. We quantify the performance
of boundary detection by applying one-to-one (Hungarian)
matching between the detected boundaries and the annotated
boundaries. The distances, in seconds, between the resulting
matches are calculated and thresholded. If the distance for
a boundary is lower than the specified threshold value, it is
considered a true positive (TP). As the threshold increases,
more TPs occur, resulting in higher recall and precision val-
ues and vice versa. By using Hungarian matching, we make
sure that the algorithm is penalized for duplicated detections
by reducing its precision value.

5.1.2 Activity Detection Results

Model Variations Different variations of our framework
(section 3) have been evaluated to quantify the effects
of individual components on the overall performance. In
our experiments, we tested the base model, which trains
the perceptual prediction framework-including the attention
unit-using the prediction loss function for backpropaga-
tion of the error signal. We refer to the base model as
LSTM+ATTN. We also experimented with the effect of
removing the attention unit, from the model architecture, on
the overall segmentation performance; results of this varia-
tion are reported under themodel nameLSTM. Further testing
includes using themotion-weighted loss for backpropagation
of the error signal. We refer to the motion-weighted model
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Fig. 8 Frame-level event segmentation ROCs when activities are detected based on simple thresholding of the prediction and motion weighted loss
signals. Plots are shown for different ablation studies

Fig. 9 Activity-level event segmentation ROCs when activities are detected based on simple thresholding of the prediction and motion weighted
loss signals. Plots are shown for different ablation studies

Fig. 10 Activity-level event segmentation ROCs when activities are detected based on adaptive thresholding of the prediction and motion weighted
loss signals. Plots are shown for different ablation studies

as LSTM+ATTN+MW. Each of the models has been tested
extensively; frame-level segmentation results are shown in
Fig. 8, while activity-level results are provided in Figs. 9
and 10. Ablations are evaluated on the full ten-days dataset.

Comparing the results shown in Figs. 9 & 10 indicates a
significant increase in overall performance when using an
adaptive threshold for loss signal gating. The efficacy of
adaptive thresholding is evident when applied to activity-
level event segmentation. Comparing the results (LSTM &
LSTM+ATTN) show that the model can effectively generate

attention maps for spatial segmentation without impacting
the temporal segmentation performance.

Results DiscussionWe tested three different models, LSTM,
LSTM+ATTN, and LSTM+ATTN+MW, for frame level and
activity level event segmentation. Simple and adaptive gat-
ing functions (Sect. 3.6.2), were applied to prediction and
motion-weighted loss signals (Sect. 3.5) for frame-level and
activity-level experiments. For each model, we vary parame-
ters such as the threshold value φ and the frame window size
ψ to achieve the ROC charts presented in Figs. 8, 9 & 10.
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Fig. 11 Activity IoU for the
best performing Activity-level
temporal segmentation model.
Results are categorized by event
type

It is to be noted that thresholding a loss signal does not
necessarily imply that themodel was trained tominimize this
particular signal. In otherwords, loss functions used for back-
propagating the error to the models’ learnable parameters
are identified only in the model name; however, thresholding
experiments have been conducted on different types of loss
signals, regardless of the backpropagating loss function used
for training.

The best performing model, for frame level segmentation,
(LSTM+ATTN,ψ = 1000) is capable of achieving {40%,
60%, 70%} frame recall value at {5%, 10%, 20%} frame
false positive rate respectively. Activity level segmentation
can recall {80%, 90%, 95%} of the activities at {0.02, 0.1,
0.2} activity false positive rate per minute, respectively, for
the model (LSTM+ATTN+MW,φ = 0.0001) as presented in
Fig. 10. A 0.02 false positive activity rate per minute can also
be interpreted as one false activity detection every 50min
of training (for detecting 80% of the groundtruth activi-
ties). While the attention mechanism does not offer a clear
improvement in temporal segmentation, it allows us to local-
ize the object in every frame. Spatial segmentation was not
possiblewithout the attentionmechanism added to theLSTM
baseline. Other modifications, such as motion-weighted loss
and adaptive thresholding, contribute more to a significant
improvement in temporal segmentation performance.

We further inspect the performance of the best-performing
activity-level model by presenting the IoU between the
detected events and the ground truth events–categorized by
event type in Fig. 11. Based on the results, it can be seen
that there is a correlation between the event durations and
the activity overlap. Long events (e.g., Throwing) result in
higher IoU, with the detected event, than short events (e.g.,
Walk-In).

5.1.3 Boundary Detection Results

Even though our approach targets the detection of full
activities, we can evaluate the performance of our approach
on the boundary detection task by converting each detected
activity into two boundaries. Using boundaries, we can
quantify the performance of our approach by calculating
the distance of each detected boundary to the ground truth
boundary. We evaluate the performance at varying distance
thresholds and report the results (with baseline comparisons)
in Table 2. All segmentation thresholds are tuned on the val-
idation set and used for evaluation on the test set.

Baselines Scene detect [140] is a popular online tool for
shot boundary detection. Scenedetect analyzes the video for
changes in average frame brightness/intensity and applies a
threshold to detect boundaries. Lower threshold values result
in more boundaries, which increases recall and decreases
precision.

Uniform is a simple baseline created by using equally sep-
arated boundaries as predictions. Varying the frequency of
predicted boundaries results in moving to different positions
on the Precision-Recall line. We use the frequency resulting
in the best F1 score on the validation set for evaluation on
the test set.

PredictAbility (PA-DPC) Shou et al. (2021) is a baseline
created by using the ability of the model to predict future
frames. PA uses Dense Predictive Coding (DPC)model (Han
et al., 2019) as a backbone and provides state-of-the-art
results for self-supervised generic event boundary detection.
This baseline calculates the prediction loss for a given frame
by computing the difference between past and future context
embeddings. The context is defined as five frames before and
after the target frame. DPC uses a 3D ResNet architecture as
the backbone, which is used to calculate the context embed-
dings. The PA model proposes event boundaries at the local
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Table 2 Temporal segmentation results on Kagu dataset for unsupervised event boundary detection methods at different distance thresholds

Metric Approach Distance threshold (seconds)

10 50 100 150 200 250 300 350 400 450

Precision SceneDetect* 0.095 0.095 0.143 0.143 0.143 0.143 0.238 0.238 0.238 0.238

Uniform 0.005 0.019 0.030 0.044 0.055 0.069 0.078 0.088 0.098 0.103

PA-DPC Shou et al. (2021) 0.005 0.016 0.026 0.035 0.049 0.058 0.063 0.067 0.075 0.087

PA-DPC-FT Shou et al. (2021) 0.002 0.009 0.012 0.012 0.012 0.014 0.014 0.014 0.014 0.014

LSTM+AL Aakur and Sarkar (2019) 0.030 0.042 0.052 0.059 0.062 0.067 0.069 0.073 0.079 0.088

KNN 0.120 0.201 0.233 0.254 0.265 0.273 0.281 0.283 0.289 0.294

Ours 0.167 0.304 0.361 0.369 0.386 0.411 0.416 0.439 0.449 0.460

Recall SceneDetect* 0.003 0.003 0.004 0.004 0.004 0.004 0.007 0.007 0.007 0.007

Uniform 0.013 0.054 0.084 0.121 0.152 0.192 0.218 0.244 0.271 0.287

PA-DPC Shou et al. (2021) 0.006 0.018 0.029 0.040 0.056 0.066 0.072 0.077 0.075 0.087

PA-DPC-FT Shou et al. (2021) 0.001 0.006 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.010

LSTM+AL Aakur and Sarkar (2019) 0.042 0.057 0.072 0.081 0.086 0.092 0.095 0.100 0.109 0.121

KNN 0.055 0.092 0.106 0.116 0.121 0.125 0.128 0.130 0.132 0.134

Ours 0.108 0.196 0.232 0.237 0.248 0.264 0.268 0.282 0.289 0.296

F1 SceneDetect* 0.005 0.005 0.008 0.008 0.008 0.008 0.013 0.013 0.013 0.013

Uniform 0.007 0.028 0.045 0.064 0.080 0.102 0.115 0.129 0.144 0.152

PA-DPC Shou et al. (2021) 0.006 0.017 0.027 0.038 0.053 0.062 0.067 0.072 0.080 0.092

PA-DPC-FT Shou et al. (2021) 0.001 0.007 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011

LSTM+AL Aakur and Sarkar (2019) 0.035 0.048 0.061 0.068 0.072 0.077 0.080 0.084 0.092 0.102

KNN 0.076 0.126 0.146 0.159 0.166 0.171 0.176 0.178 0.181 0.185

Ours 0.131 0.238 0.283 0.289 0.302 0.321 0.326 0.344 0.351 0.360

Bold highlights best results
FT denotes fine-tuned on the Kagu dataset
∗ SceneDetect’s threshold parameter is tuned on the full dataset, otherwise the performance is zero

maxima of the error signal. The Laplacian of Gaussian (LoG)
is applied to the 1D temporal error signal. Peaks are detected
at the negative to positive zero crossings of the derivative of
the LoG signal. In our experiments, we found that threshold-
ing the error signal and applying a 1D non-max suppression
operation provides better results (reported) on our proposed
dataset.PA-DPC-FT Shou et al. (2021) is a finetuned version
of PA-DPC, where the DPC model (Han et al., 2019) is fine-
tuned on 1000 short videos (≈ 10 seconds each) extracted
from the Kagu dataset.

LSTM+AL Aakur and Sarkar (2019) is a predictive learn-
ing baseline that tackles the problem of event boundary
detection by learning a future prediction function on high-
level frame features. LSTM+AL detects event boundaries
as peaks in the prediction loss signal. Similar to our pro-
posed approach, LSTM+AL is heavily inspired by the “Event
Segmentation Theory” introduced by Zacks and Swallow
(2007). However, in addition to the added attention mod-
ule, there exist several important distinctions between the
two approaches. We summarize the main differences in the
following points:

• Our approach processes a sliding window of 16 frames
(8 frames predicting 8 frames) with a stride of 8 frames,
allowing the representation to be more robust by predict-
ing farther into the future. LSTM+AL (Aakur & Sarkar,
2019) uses a single frame to predict a single future frame,
limiting the representation and prediction capacity of the
network.

• Our approach uses motion-weighted loss to learn events
frommotion cues, whereas LSTM+AL (Aakur & Sarkar,
2019) only uses the prediction loss peaks to detect bound-
aries.

• Our approach freezes the encoder weights and only
allows the prediction network weights to be modified.
According to recent findings (Vasconcelos et al., 2022),
“an extreme form of knowledge preservation-freezing
the classifier-initialized backbone- consistently improves
many different detection models, and leads to consider-
able resource savings.”. We also find that freezing the
encoder network leads to better performance and pre-
vents model collapse.

• Our approach does not use the adaptive learning trick
introduced in LSTM+AL (Aakur&Sarkar, 2019) to keep
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the prediction loss in a specific range. Instead, we use
adaptive thresholding to detect events.

• LSTM+AL (Aakur & Sarkar, 2019) focuses on detect-
ing boundaries by detecting peaks in the prediction loss,
whereas our approach detects full events by thresholding
the motion-weighted prediction loss signal.

KNN is an unsupervised online learning baseline that aims
to adapt to changes in the data distributions. We design
an unsupervised KNN algorithm where every frame in the
dataset is compared to the five nearest neighbors in a moving
window of the past four seconds (100 frames). The average
(over the nearest five neighbors) cosine similarity score is
stored for every frame.We threshold the similarity scores and
apply 1D non-max suppression to remove duplicate bound-
ary detections in a window of 1 s.

Results discussionWe report the evaluation results of bound-
ary detection in Table 2. The F1 score metric is used to
compare the overall performance of ourmethod to other base-
lines. We additionally provide precision and recall values to
analyze and compare the behavior of each detector with vary-
ing distance thresholds. Based on the F1 results, it can be
seen that we at least double the performance of all the other
methods at all thresholds.

SceneDetect [140] is designed to detect shot bound-
aries based on illumination changes; therefore, it fails when
applied to a dataset of continuous monitoring. It results in
higher precision values than the other baselines because there
is a higher chance of what is perceived as a shot boundary to
be also classified as an activity boundary. However, the preci-
sion values are matched with a significantly lower recall rate
demonstrating its inability to detect most of the boundaries.

Uniform results in high recall rates and low precision
values, which demonstrate the ability to detect a high per-
centage of the ground truth boundaries, but only when
sampling predicted boundaries at high frequency (shown by
the low precision values). This baseline is implemented to
demonstrate the irregular distribution of activities over time,
causing simple, equally spaced boundary predictions to fail-
especially at lower distance thresholds.

PA-DPC uses a pretrained backbone to detect bound-
aries based on the difference between context embeddings.
The PA baseline, surprisingly, fails at detecting boundaries
and results in average performance with respect to the other
baselines. The F1 scores are slightly lower than the Uni-
form baseline. The low performance of this baseline can be
attributed to the difference between the pretraining domain
(kinetics 400) and the animal monitoring domain (Kagu
dataset). A substantial difference between our approach
and PA-DPC lies in the continuous predictive learning and
adaptation on the target dataset, which cannot be done
with PA-DPC by merely comparing the context embed-

dings. The results highlight the importance of the proposed
online stream learning approach. Other results comparing
our method to PA-DPC on in-domain datasets (e.g., GEBD-
Kinetics) are discussed in Sect. 5.3.

PA-DPC-FT attempts to bridge the gap in domains
between theKinetics dataset and theKagu dataset by finetun-
ing the DPC architecture on a subset of our proposed Kagu
dataset. Results show that training on the Kagu dataset did
not increase performance; our approach still outperforms it
by a significantmargin. It is important to note that contrastive
approaches such asDPC rely heavily on the diversity of labels
and features within and across video samples, making the
Kagu videos a challenging dataset for learning useful repre-
sentation in a contrastive manner.

LSTM-AL shows a slight improvement in performance
over PA-DPC-FT; however, the performance is lowcompared
to our approach. The low performance can be attributed to
the differences discussed earlier in the baselines section.

KNN reports approximately double the performance of
LSTM-AL. The results highlight the importance of online
training and adaptation for processing streaming data. How-
ever, the KNN approach is still significantly outperformed
by our predictive framework indicating that the similarity
between frame features does not contain enough informa-
tion to detect event boundaries.

5.2 Spatial Segmentation

Spatial segmentation is the task of detecting and localizing
the object of interest in each frame; the foreground (i.e., bird)
is segmented from the background (i.e., nest). We use the
Bhadanau attention map (Sect. 3.3) to spatially localize the
bird.

5.2.1 Evaluation Metrics

Successful spatial segmentation of the events not only
depends on the ability of the algorithm to spatially locate the
event-causing objects but also detect their presence inside
the frame. To generate high quality ethograms, the algo-
rithm must be evaluated on event detection and localization
tasks. The bird’s location, velocity, and motion patterns in
the nest can be correlated with specific behavior. Therefore,
the accurate localization of events is essential for automating
ethograms.

EvaluatingAttentionMapsAlthough the ground truth anno-
tations are given in a bounding box format, most of our
baselines output a heat map–or a mask–indicating the pre-
dicted location of the bird in each frame. The probability sum
is a metric designed to evaluate the success of the mask in
predicting the location of the object. First, the predictedmask
is converted into a probability distribution using the Softmax
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Fig. 12 Spatial segmentation evaluation metrics. (Left): Entropy distributions for when the bird is inside and outside of the nest. (Right): Joint
distributions of Probability Sum and IoU metrics

function. The probability sum is then calculated by adding all
the probability values located inside the ground truth bound-
ing box. Applying the Softmax function provides means for
penalizing the mask for predicting high values outside of the
ground truth bounding box. A high probability sum value
indicates a high percentage of mask values inside the bound-
ing box; however, it does not guarantee a high overlap.

Generating Bounding Boxes We generate bounding boxes
by thresholding the predicted mask to detect the biggest con-
tour for which we find the bounding rectangle. The IoU
metricmeasures the overlap between the two bounding boxes
normalized by the union of their areas. We use the Jaccard
Index (IoU) to quantify the overlap of the predicted bounding
box with the ground truth bounding box. As can be seen in
Fig. 12 (right), there is a correlation between the Probability
Sum values and the calculated IoU values; however, we also
expect to see some values with high Probability Sum and
relatively lower IoU representing detections of parts of the
bird (e.g., bill) inside a larger ground truth bounding box.

Bird Detection Both, Probability Sum and IoU, metrics
merely quantify the accuracy of the true positive detections
(i.e., when the bird is in the frame); however, we can also
quantify the ability of the approaches to detect when the bird
is outside of the frame. The average precision (AP) uses the
detector’s confidence as an indicator of whether an object is
present. In our approach, we use the entropy of the probabil-
ity distribution of the attention map to indicate the presence
of the bird. As shown in Fig. 12 (left), when the bird is in the
nest, entropy values are low, indicating that themodel ismore
confident in its predictions; however, when the bird is not in
the nest, attention becomes more spatially distributed result-

ing in higher entropy values. A Precision-Recall chart can be
generated at different Probability Sum/IoU thresholds by cal-
culating the true positives, false positives, and false negatives
at each entropy threshold. The AP is calculated by taking the
average of 11-recall points (Everingham et al., 2010) on the
precision-recall chart. We report the AP values at different
Probability Sum/IoU thresholds in Table 4. The entropy H
is calculated using the Eq. 10.

H(P) = −
k∑

i=1

pi log(pi ) (10)

5.2.2 Spatial Localization Results

Baselines We evaluated the performance of five different
baselines on the spatial segmentation task. Some of the base-
lines are traditional computer vision approaches (e.g.,Optical
Flow) that do not require any training data, while others (i.e.,
DINO) are trained on ImageNet in a self-supervised manner.

Optical Flow outputs the magnitude and direction of the
pixels’ motion patterns. We only use the magnitude of the
distance traveled by each pixel to predict the bird’s location.
In addition to using the magnitude for localization, we also
use themaximummagnitude as a confidence score to detect if
the bird is not inside the nest, which is necessary for Average
Precision computation.

Background SubtractionZivkovic and Van Der Heijden
(2006) shares the same goal (i.e., motion detection) with
Optical Flow, but instead of comparing two consecutive
frames, it builds a background model of the scene over
time and compares it to the current frame. The background
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Table 3 Probability Sum evaluation for different approaches at various illumination conditions

Approach Probability Sum at different conditions

Day Night Shadows Sunrise Sunset Avg

Optical Flow 0.147 0.047 0.190 0.181 0.153 0.144

Background Subtraction Zivkovic and Van Der Heijden (2006) 0.339 0.593 0.163 0.330 0.432 0.371

Pretrained Inception Szegedy et al. (2016) 0.131 0.139 0.129 0.131 0.140 0.134

DINO Caron et al. (2021) 0.361 0.354 0.273 0.411 0.472 0.374

Ours 0.858 0.779 0.784 0.708 0.864 0.799

Bold highlights best results

model is constantly updated by new images to ensure con-
tinuous adaptation to the changing background features. The
resulting foreground maps consisted of many disconnected
contours. We applied ellipse kernel convolutions to dilate
the foreground map and join the disconnected–but close–
contours before finding the largest contour for bounding box
calculation.

Fixed Boundingbox is based on the premise that the bird
staysmost of the time sitting in the nest.We design a baseline
that assumes a stationary bounding box placed at the center
of the nest at all times. This simple baseline uses priors about
the behavior of the bird in the dataset and cannot be blindly
applied to other datasets.

Pretrained Inception is the same backbone that we use for
our approach (Sect. 3.2). The Inception-V3 (Szegedy et al.,
2016) backbone is pretrained on ImageNet to extract useful
features. We compare the feature grids extracted from every
two consecutive images to calculate a feature difference grid.
The difference in pretrained features should, in theory, inhibit
background features (e.g., shadows) and highlight important
bird features. This baseline is designed to test whether a rep-
resentation of the bird is embedded in the pretrained weights
of the backbone or is trained in an online learning manner in
the LSTM and attention weights of our approach.

DINO-ImageNet Caron et al. (2021) is a recent self-
supervised vision transformer model (ViT (Dosovitskiy et
al., 2020)), designed specifically for representation learning.
The DINO model is trained on ImageNet from scratch, and
the output representations achieve competitive classification
results on ImageNet. DINO also utilizes the ViT model to
visualize the attention as a heat map. We use the attention
maps from DINO as a baseline for spatial segmentation.
DINO-Landmarks v2 uses weights from the ViT model pre-
trained on the Google Landmarks v2 dataset (Weyand et al.,
2020).DINO-FT-{N}E refers to a DINOmodel pretrained on
ImageNet and finetuned on 1000 randomly sampled images
from the Kagu dataset for N epochs.

iBOT Zhou et al. (2021) is another self-supervised
approach to representation learning in images. It uses the
masked language model pretraining paradigm to perform
masked predictionwith an online tokenizer. Similar toDINO,

we extract the output attention from the last layer of the ViT
architecture (Dosovitskiy et al., 2020) and use it as a spatial
segmentation baseline on the Kagu dataset.

Results Discussion We evaluate our results against the
baselines and show that our approach outperforms all the
baselines. Table 3 shows the Probability Sum performances
at different conditions (e.g., day, night). Table 4 presents the
Average Precision performances at different probability sum
and IoU thresholds. We also provide additional results to
further categorize the performance by the bird’s state and the
type of activity in Figs. 13 and 14, respectively.

Table 3 only considers the frameswhere the bird is present
inside the frame and presents the average Probability Sum
for each of the baselines. Based on the results, it can be seen
that the shadows pose the biggest challenge to many of the
baselines, except for Optical Flow, which is more affected by
the low illumination–and lessmovement–conditions at night.
The sharp shadows present in the Kagu dataset can become
problematic to object detectors and traditional motion track-
ers because the shadows can cause severe changes to the look
and texture of both the object and the background. A robust
and adaptable representation of the bird is amust to overcome
these challenges; our approach learns a robust representation
by attending to the object and its motion cues and adapting
to the changing background through continuous online train-
ing. On average, our approach doubles the performance of
SOTA and traditional methods while providing stable and
robust localization performance across all the different illu-
mination and shadow conditions.

The Average Precision (AP) results reported in Table 4
consider not only the localization performance but also eval-
uate the detection performance and the ability of the different
models to predict if the bird is not inside the nest. For a detec-
tion to be counted as true positive, both the detection score
(Entropy or Magnitude) and localization score (Prob. Sum.
or IoU) must exceed the specified threshold values. Vary-
ing the detection threshold results in a Precision-Recall chart
which is summarized by the AP value; however, each col-
umn reports the results at different localization thresholds.
Our approach significantly outperforms the other baselines
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Fig. 13 The density function of the probability sum for several spatial segmentation approaches. Each plot is further categorized by the motion
state of the bird

Fig. 14 Spatial segmentation
performance comparison for
differnt methods. (top): IoU
metric. (bottom): Probability
Sum metric

123



2288 International Journal of Computer Vision (2023) 131:2267–2297

Fig. 15 Qualitative comparison
of the spatial segmentation task.
Red bounding boxes indicate
groundtruth labels, while blue
boxes indicate predicted
location of the bird

at all localization thresholds. Both Optical Flow and Back-
ground Subtraction result in a low performance which can be
attributed to the extended periods of timewhen the bird is sta-
tionary in the nest. Background Subtraction (Zivkovic &Van
Der Heijden, 2006) results show a big difference between
Prob. Sum. and IoU, which can be interpreted as a very
localized prediction (low entropy) on part of the bird inside
the ground truth bounding box. On the contrary, Pretrained
Inception predicts high entropy masks resulting in low Prob.
Sum. scores and a large predicted boundingbox.Outperform-
ing the pretrained Inceptionweights highlights the efficacy of
our approach in learning a robust representation of the bird,
which is not embedded in the Inception pretrained weights.
The fixed bounding box baseline is designed based on prior
knowledge of the dataset and the bird’s location; it performs
better than the other baselines but is still outperformed by our

approach. We noticed that the DINO baseline consistently
attends to a tree branch in the background, which affects the
qualitative results by consistently producing average local-
ization scores. Results from DINO highlight the importance
of continuous domain adaptation and online training. Using
the Google Landmarks V2 (Weyand et al., 2020) weights
instead of ImageNet results in lower performance, which is
likely due to the lower domain overlap of the Kagu dataset
with the Landmarks dataset than with ImageNet. Finetun-
ing the DINO architecture (pretrained on ImageNet) shows a
significant decrease in performance, which could result from
model collapse. DINO (Caron et al., 2021) relies on the simi-
larity between crops of the same image and requires the main
object to occupy most of the image (otherwise, the crop will
not contain the object). Our dataset can prove to be challeng-
ing for crop-based contrastive approaches like BYOL (Grill
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Fig. 16 Localization metrics
and entropy values during the
first two hours of training. As
expected, IoU and Prob.Sum.
increase while the entropy of the
attention map decreases,
indicating more localized
predictions. The experiment is
repeated four times at different
dataset starting points. Results
are shown as average lines with
widths (in faded color)
indicating deviation from the
averages

Table 5 Quantitative results on
the validation set of TAPOS and
Kinetics-GEBD datasets

Supervision Approach Rel.Dis.@5%

TAPOS Kinetics

Full ISBA Ding and Xu (2018) 0.106 –

TCN Lea et al. (2016); Lin et al. (2018) 0.237 0.588

CTM Huang et al. (2016) 0.244 –

TransParser Shao et al. (2020) 0.289 –

BMN Lin et al. (2019) – 0.186

BMN-StartEnd Shou et al. (2021) – 0.491

TCN-TAPOS Shou et al. (2021) – 0.464

PC Shou et al. (2021) 0.522 0.625

Kang et al. (2021) – 0.813

None SceneDetect Shou et al. (2021) 0.035 0.275

PA-Random Shou et al. (2021) 0.158 0.336

PA-DPC Shou et al. (2021) 0.360 0.396

Ours 0.562 0.672

Bold highlights best results
Results are reported as F1 scores and shown at 0.05 Rel.Dis. threshold

et al., 2020) andDINO (Caron et al., 2021) because the object
of interest (Kagu bird) occupies, on average, less than 10%
of the image. iBOT (Zhou et al., 2021) performs significantly
better than DINO on our proposed Kagu dataset, yet it is still
outperformed by our approach.

Figure 13 can provide better insights into the performance
of each baseline and their differences. We show the density
function for the Probability Sum scores over the entire dataset
and further categorize the results by the motion state of the
bird. It can be seen that Optical Flow performs much worse
when the bird is stationary (shown as a high peak close to zero
Prob. Sum score). Background Subtraction performs slightly
better when the bird is moving, but the performance is almost
uniformly distributed over the entire range of Prob. Sum.

DINO shows both moving and stationary peaks at approx-
imately 0.4; both distributions have average variances. Our
approach shows two high peaks (low variance) close to 1.0
Prob.Sum score. Having similar moving and stationary dis-
tributions is desirable behavior for object detectors because
it shows the robustness of the detector to the location and
motion state of the object of interest. Figure15 provides qual-
itative examples to support the findings presented in Fig. 13.
We show that, despite our low resolution (8×8 grid) atten-
tion, our bird representation is more accurate and robust to
different lighting and environmental conditions when com-
pared to DINO and traditional approaches. Results show
that DINO is always distracted by other features (e.g., tree
branch), which explains the 0.4 Prob.Sum score presented in
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Table 6 F1 validation results on Kinetics-GEBD for various supervised and unsupervised GEBD methods at different Rel.Dis. thresholds

Supervision Approach Rel.Dis. threshold

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Full BMN Lin et al. (2019) 0.186 0.204 0.213 0.220 0.226 0.230 0.233 0.237 0.239 0.241

BMN-StartEnd Shou et al. (2021) 0.491 0.589 0.627 0.648 0.660 0.668 0.674 0.678 0.681 0.683

TCN-TAPOS Shou et al. (2021) 0.464 0.560 0.602 0.628 0.645 0.659 0.669 0.676 0.682 0.687

TCN Lea et al. (2016); Lin et al. (2018) 0.588 0.657 0.679 0.691 0.698 0.703 0.706 0.708 0.710 0.712

PC Shou et al. (2021) 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870

None SceneDetect Shou et al. (2021) 0.275 0.300 0.312 0.319 0.324 0.327 0.330 0.332 0.334 0.335

PA-Random Shou et al. (2021) 0.336 0.435 0.484 0.512 0.529 0.541 0.548 0.554 0.558 0.561

PA-DPC Shou et al. (2021) 0.396 0.488 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564

Ours 0.672 0.768 0.793 0.804 0.809 0.812 0.814 0.815 0.816 0.818

Bold highlights best results

Table 7 F1 validation results on TAPOS for various supervised and unsupervised GEBD methods at different Rel.Dis. thresholds

Supervision Approach Rel.Dis. threshold

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Full ISBA Ding and Xu (2018) 0.106 0.170 0.227 0.265 0.298 0.326 0.348 0.369 0.382 0.396

TCN Lea et al. (2016); Lin et al. (2018) 0.237 0.312 0.331 0.339 0.342 0.344 0.347 0.348 0.348 0.348

CTM Huang et al. (2016) 0.244 0.312 0.336 0.351 0.361 0.369 0.374 0.381 0.383 0.385

TransParser Shao et al. (2020) 0.289 0.381 0.435 0.475 0.500 0.514 0.527 0.534 0.540 0.545

PC Shou et al. (2021) 0.522 0.595 0.628 0.646 0.659 0.665 0.671 0.676 0.679 0.683

None SceneDetect Shou et al. (2021) 0.035 0.045 0.047 0.051 0.053 0.054 0.055 0.056 0.057 0.058

PA-Random Shou et al. (2021) 0.158 0.233 0.273 0.310 0.331 0.347 0.357 0.369 0.376 0.384

PA-DPC Shou et al. (2021) 0.360 0.459 0.507 0.543 0.567 0.579 0.592 0.601 0.609 0.615

Ours 0.562 0.617 0.644 0.668 0.682 0.692 0.700 0.708 0.715 0.718

Bold highlights best results

Fig. 13. Traditional approaches (i.e., Optical Flow and Back-
ground Subtraction) are heavily affected by the bird’s motion
state and environmental conditions (e.g., shadows).

In addition to the motion state of the bird, we investigate
the performance of all approaches categorized by the event
type in Fig. 14. Results show that our approach outperforms
the other baselines for all event types except for “Walk-In”
and “Throwing”, where Optical Flow performs better due to
the bird being located at the far edges of the nest.Optical Flow
detectsmotion toward the edges of the framemore accurately
than our approach due to the scarcity of training examples
with the bird moving close to the edge of the frame/nest.

It is challenging to quantify the performance of models
that learn in an online manner from streaming input, mainly
due to the absence of explicit training split. Therefore, it is
necessary to monitor the model’s performance and training
progress during the initial phase of training (i.e., the first few
hours of data). Ideally, the model should not be able to local-
ize the bird at the beginning of the training; however, it should
start to more accurately and confidently locate the bird as the
training progresses. During the first few hours, we expect

to see an increase in the localization metrics and a decrease
in entropy–indicating higher performance and confidence in
the predictions as training progresses. Figure16 displays the
IoU and Prob.Sum. localization metrics and the entropy of
the attention map plotted for the first two hours of streaming
data. Results show a significant increase in localization per-
formance, as well as a decrease in entropy–indicating more
localized predictions. We repeat the experiment starting at
four different starting times in the dataset; the lines report
the averages, while the widths of the lines (shown with faded
color) report the deviations from the averages.

5.3 Applicability to other Vision Domains

To test the validity and generalizability of our approach in
other domains, we evaluate its performance on other datasets
and report state-of-the-art results compared to both super-
vised and self-supervised generic event boundary detection
(GEBD) approaches. In addition to evaluating the perfor-
mance on a different domain, we test the robustness of our
approach to model variations. In this section, we experi-
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Fig. 17 Qualitative results demonstrating the efficacyof our approach at
detecting event boundaries and localizing actions within input frames.
Middle plots show the gradient of error signal for 4 different exam-
ples. Green vertical lines show the location of the predicted boundaries

relative to the annotated boundaries presented as red vertical lines.
Action localization qualitative results are presented as an overlay of
transparency map (Color figure online)

ment with using a transformer architecture (instead of an
LSTM) as the prediction layer.We use a transformer encoder
architecture to both encode temporal patches of eight images
and decode patch predictions of the next eight images. The
transformer is a drop-in replacement to the LSTM recurrent
architecture; both models are used for prediction and have
the same input and output dimensions.

5.3.1 Datsets

TAPOS The TAPOS (Shao et al., 2020) dataset contains 21
action categories of Olympics sports videos collected from
public resources (e.g., YouTube). 16,294 video instances are
provided, with an average duration of 9.4 s per instance. The
total number of boundaries for all instances is 33K, and the
number of instances per class varies from 200 to 1,600. A
single annotation is released for each video instance.

Kinetics-GEBD The Kinetics-GEBD (Shou et al., 2021)
dataset contains 55,351 videos with 1,498K generic bound-
aries collected from the Kinetics400 dataset (originally from
YouTube). The average duration of each video is 10 s at
30 FPS (300 Frames total). The dataset is divided evenly
between training, validation, and test splits. Five annotations
per video are released.Unlike other datasets,Kinetics-GEBD
provides generic boundaries, not only boundaries caused by
action change. The main two boundary causes are action
change and shot change, which constitute 63.6% and 19.0%
of the dataset, respectively. Consistency scores between

annotators are provided, and inconsistent annotations are dis-
regarded.

5.3.2 Results Discussion

The performance of our approach is mainly quantified in
Table 5. We use the evaluation protocol in Shou et al. (2021)
to test the performance of our approach compared to other
baselines. The relative distance metric requires normalizing
the boundary distance by the total duration of the video
instance. We compare our self-supervised architecture to
other supervised and self-supervised approaches. The results
are reported at 5% Rel.Dis. threshold value for both TAPOS
and Kinetics-GEBD datasets. It is clear from the results that
our approach significantly outperforms all the other self-
supervised approaches and performs competitively with the
supervised state-of-the-art on both datasets. Our approach
achieved a 0.733 F1 score on the Kinetics-GEBD test set.

Finally, we provide F1 scores at different thresholds for
TAPOS and kinetics-GEBD datasets in Tables 6 and 7,
respectively. The tables compare the F1 scores to other
approaches at different Rel.Dis. thresholds. For the TAPOS
dataset (Table 7), the results show that our approach
consistently outperforms all other approaches across all
thresholds. However, for the Kinetics-GEBD (Table 6),
our approach doubles the performance of all other self-
supervised approaches and performs on par with the best-
supervised approach when considering the whole range of
thresholds.
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Fig. 18 Additional qualitative
results for action localization
from the Kinetics-GEBD
dataset. Results are displayed as
transparency map overlayed on
the input RGB images

We present qualitative results (Fig. 17) in the form of
prediction error plots annotated with ground truth and pre-
diction timestamps. We show that the predicted boundaries
(shown in green lines), detected at the peaks of the predic-
tion error signal, appear close to the ground truth boundaries
(red vertical lines), which results in high precision. It is also
clear that the number of predicted boundaries is relatively
close to the ground truth boundaries resulting in a high recall
rate. The figure also shows the corresponding action local-

ization result for each plot. Action localization results are
presented as alpha/transparency channels overlayed on top
of the input images; the visible regions of the image high-
light themost dominant action.We provide qualitative results
showing videos duringwhich the camera is movingwhen our
approach performs reasonablywell on both segmentation and
localization tasks. This demonstrates the effectiveness of the
predictive approach in learning to predict and ignore camera
motion when calculating the total loss. More action localiza-
tion results are provided in Fig. 18.
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5.4 Limitations

We have demonstrated the ability of our approach to work
on different vision domains, as well as provide adapting rep-
resentations of objects that are robust to environmental and
lighting conditions. However, there exists a few limitations
worth discussing. Our approach does not label its outputs;
while it can temporally detect events and spatially localize
the objects in frames, it cannot label these events or objects.
This results in not being able to handle instance segmenta-
tion when multiple objects are causing the perceived event.
The algorithm outputs a single union mask of the objects, as
shown in Fig. 18, to represent all objects causing the event.
Additionally, the detected temporal events are currently unla-
beled, which results in not being able to count the instances
of a specific event or provide a summary of the different types
of events present in the video. Our approach usesmotion cues
as a learning signal. It does not require the object to be always
moving (as required by traditional approaches), but it uses
motion cues to learn the representation of the objects causing
the event; the learned representations are used to localize the
objects even when they are not moving.

6 Conclusion

Wedemonstrate a stream learning approach to temporal event
segmentation. Our framework can effectively segment a long
sequence of activities (video) into a set of individual events.
We introduce a novel approach to extracting attention results
from unsupervised temporal event segmentation networks.
Gating the loss signal with different threshold values can
result in segmentation at different granularities.We introduce
a new remarkably long wildlife monitoring dataset that is
more realistic and challenging for event segmentation tasks;
our dataset provides a true benchmark containing most of
the challenges currently being artificially simulated in con-
tinual and incremental learning datasets. We evaluate our
approach on spatial and temporal segmentation on the Kagu
video monitoring dataset and compare our performance to
traditional and state-of-the-art methods. Additionally, our
approach is tested on datasets from other domains (i.e.,
action). We demonstrated the effectiveness of our approach
in understanding the higher-level spatiotemporal features
required for practical event segmentation. Further employ-
ing this approach for automated ethogramming will facilitate
progress in the study of animal behavior by reducing theman-
ual labor of dataset annotations.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01781-
2.
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A. (2020).Automatedbird countingwith deep learning for regional
bird distribution mapping. Animals, 10(7), 1207.

Alayrac, J.-B., Bojanowski, P., Agrawal, N., Sivic, J., Laptev, I., &
Lacoste-Julien, S. (2016). Unsupervised learning from narrated
instruction videos. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 4575–4583).

Apostolidis, E., Balaouras, G.,Mezaris, V.,&Patras, I. (2021). Combin-
ing global and local attention with positional encoding for video
summarization. In 2021 IEEE international symposium on multi-
media (ISM) (pp. 226–234). IEEE

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., & Schmid,
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