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Abstract
Despite the significant improvements that self-supervised representation learning has led towhen learning fromunlabeled data,
no methods have been developed that explain what influences the learned representation. We address this need through our
proposed approach, RELAX, which is the first approach for attribution-based explanations of representations. Our approach
can also model the uncertainty in its explanations, which is essential to produce trustworthy explanations. RELAX explains
representations by measuring similarities in the representation space between an input and masked out versions of itself, pro-
viding intuitive explanations that significantly outperform the gradient-based baselines. We provide theoretical interpretations
of RELAX and conduct a novel analysis of feature extractors trained using supervised and unsupervised learning, providing
insights into different learning strategies. Moreover, we conduct a user study to assess how well the proposed approach aligns
with human intuition and show that the proposed method outperforms the baselines in both the quantitative and human eval-
uation studies. Finally, we illustrate the usability of RELAX in several use cases and highlight that incorporating uncertainty
can be essential for providing faithful explanations, taking a crucial step towards explaining representations.

Keywords Representation learning · Explainability · Uncertainty · Self-supervised learning

1 Introduction

Interpretability is of vital importance for designing trustwor-
thy and transparent deep learning-based systems (Pedreschi
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et al., 2019; Tonekaboni et al., 2019), and the field of
explainable artificial intelligence (XAI) has made great
improvements over the last couple of years (Antoran et al.,
2021; Schulz et al., 2020). However, there exists no methods
for attribution-based explanations of representations, despite
the tremendous advances in representation learning using
e.g self-supervised learning (Chen et al., 2020; Caron et al.,
2020;He et al., 2020).Also,modifying existingXAImethods
to handle representations is often impractical or not possible
at all, as explained in “Appendix A”. This lack of explain-
ability makes representation learning less trustworthy and
dependable, and there is therefore a need for representa-
tion learning explainability. To be able to explain learned
representations would provide crucial information in sev-
eral use-cases. For instance, a typical clustering approach is
applying K-means to the representation produced by a fea-
ture extractor trained on unlabeled data (Lin et al., 2021;Wen
et al., 2020; Yang et al., 2017), but there is no method for
investigating which features are characteristic for the mem-
bers of a cluster.

Representation learning explainability would also allow
for a new approach for evaluating representation learn-
ing frameworks. Representation learning frameworks are
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typically evaluated by training simple classifiers on the rep-
resentation produced by the feature extractor or through a
downstream task (Chen et al., 2020; He et al., 2020; Caron
et al., 2020). However, such approaches provide only limited
information about the features used by themodels, andmight
ignore important distinctions between them. For instance, a
similar accuracy on some downstream task does not neces-
sarily equate to the representations being based on the same
features. This highlights the need for an explanatory frame-
work for representations, as many of the current evaluation
methods are not sufficient for illuminating differences in the
what features are used by different feature extractors.

However, any explanatory framework can make over or
under-confident explanations. Hence, uncertainty is a key
component for designing trustworthy models, since trust-
ing an explanation without knowing the uncertainty of the
explanation might lead to an unjustified trust in the model. A
recent survey where clinicians were asked what was neces-
sary formaking trustworthymodels, found that explainability
alone was not enough and that uncertainty was also of high
importance (Tonekaboni et al., 2019). Our experiments show
that uncertainty can be used to increase the faithfulness of
explanations, by removing uncertain parts. Nevertheless, lit-
tle work has been done on uncertainty in explanations of
representations.

In this work, we present the first framework for explaining
representations, entitled REpresentation LeArning eXplain-
ability (RELAX), which is also equipped with uncertainty
quantification with respect to its own explanations. The
framework is illustrated in Fig. 1. RELAX measures the
change in the representation of an imagewhen comparedwith
masked versions of itself. The core idea is that when infor-
mative parts of the input are masked out, the representation
should change significantly. When averaging over numerous

Fig. 1 Conceptual illustration of RELAX. An image is passed through
an encoder that produces a new vector representation of the image.
Similarly, masked images are embedded in the same latent space. Input
feature importance is estimated by measuring the similarity between
the representation of the unmasked input with the representations of
numerous masked inputs

masks, RELAX reveals the important regions of the input.
RELAX is an intuitive and highly versatile framework that
can explain any representation, given a suitable similarity
function and masking strategy. To provide insight into the
geometrical properties of RELAX, we show that the impor-
tance of a pixel can be seen as the result of a scoring function
based on an inner product between the input and the mean of
the masked representations in the representation space. Fig-
ure 2 shows an example where RELAX is used to investigate
the relevance maps and the corresponding uncertainties for
a selection of widely used feature extraction models, which
demonstrate that RELAX is a versatile framework for high-
lighting the emphasis that feature extractors put on pixels and
regions in the input (top row).

Our contributions are:

• RELAX, a novel framework for explaining representa-
tions that also quantifies its uncertainty.

• A threshold approach called U-RELAX that removes
uncertain parts of an explanation and increases the faith-
fulness of the explanations.

• A theoretical analysis of the framework and an estimation
of the number of masks needed to obtain a given level of
confidence.

• A comprehensive experimental section that compares
widelyused supervised and self-supervised feature extrac-
tion models and evaluates a number of hyperparameters.

• A user study that examines how well the explanations
align with human evaluation.

• Two use cases for RELAX. First, RELAX enables
explainability in state-of-the-art incomplete multi-view
clustering. This illustrates the usability of RELAX in
recent cutting-edge research. Second, RELAX allows for
explanation of classic computer vision techniques such
as Histogram ofOrientedGradients (HOG). This demon-
strates that RELAX is a flexible framework, which is
capable of explaining representations produced by any
method, not just those produced by deep neural networks.

Code for RELAX is available at https://github.com/
Wickstrom/RELAX.

2 RelatedWork

In this section, we present the previous works that are most
closely related to our work. The focus will be on attribution-
based explanations where each input feature is assigned an
importance. Therefore, we will not consider other explain-
ability methods such as example-based explanations (Koh
& Liang, 2017; Karimi et al., 2020) or global explanations
(Mordvintsev et al., 2015).
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Fig. 2 The figure shows the RELAX importance score and its uncer-
tainty for the representation of the leftmost image for three widely used
feature extractors. The first row displays the importance for the repre-
sentation and the second row shows the uncertainty associated with the
different explanations. Red indicates high values and blue indicates low
values. In this example, two objects are present in the image, one bird
prominently displayed in the foreground, and another more inconspic-
uous bird in the background. The plots show that all models emphasize

the bird in the foreground with low uncertainty. On the other hand,
there is more disagreement on how much emphasis to put on bird in the
background, also with a differing degree of uncertainty. The example
illustrates that different feature extractors utilize different features in the
representation of the image, and with different amounts of uncertainty.
The image is taken from VOC (Everingham et al., 2009) (Color figure
online)

Occlusion-based explainability There exist a number
of occlusion-based explainability methods. Systematically
occluding an image with a gray and then measuring the
change in activations could be used to provide coarse
explanations for CNNs (Zeiler & Fergus, 2014). A more
sophisticated occlusion approach can improve explanations,
in which smooth masks are generated and accumulated to
produce explanations for the prediction of a model (Petsiuk
et al., 2018). A slightly different approach is meaningful per-
turbations, where a spatial perturbation mask that maximally
affects the model’s output is optimized (Fong & Vedaldi,
2017). A follow up work proposed extremal perturbations,
where a perturbation canbe considered extremal if it hasmax-
imal effect on the network’s output among all perturbation
of a given, fixed area (Fong et al., 2019). On a different note,
an information theoretic approach toXAI has been proposed,
where noise is injected in order to measure the information in
different regions of the input (Schulz et al., 2020). Similarly,
Kolek et al. (2021) introduced a rate-distortion perspective to
explainability. Note that none of these methods are capable
of providing explanations for representations.

Explaining representations Attribution-based explain-
ability methods are extensively used to explain specific
sample predictions (Bach et al., 2015; Petsiuk et al., 2018;

Schulz et al., 2020). However, to the best of our knowledge,
no attribution-based explainabilitymethod exists for explain-
ing representations.While initial attempts have beenmade to
explain representations such as the Concept Activation Vec-
tors (Kim et al., 2018), which uses directional derivatives
to quantify the model prediction’s sensitivity, these explana-
tions only relate the representations to high-level concepts
and require label information. Similarly, network dissection
has been proposed to interpret representations (Bau et al.,
2017), but requires predefined concepts and label informa-
tion without indicating the importance of individual pixels.
A different direction is designing models that have the capa-
bility to explain their own decisions built into the system
(Chen et al., 2019; Alvarez-Melis & Jaakkola, 2018). Two
drawbacks of such an approach is that it might lead tomodels
with weaker performance and does not explain representa-
tions. Another approach maps semantic concepts to vectorial
embedding (Fong & Vedaldi, 2018). However, this requires
segmentation masks that are not available in the unsuper-
vised setting. Representations have also been investigated
from learnability and describability perspectives (Laina et al.,
2020), but this was achieved through human-annotators that
are typically not available. Lastly, the inspectability of deep
representations have been investigated through an informa-
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tion bottleneck approach (Losch et al., 2021), butwith a focus
on segmentation and predefined concepts.

Uncertainty in explainability Modeling uncertainty in
explainability is a rapidly evolving research topic that is
receiving an increasing amount of attention. One of the ear-
liest works proposed to use Monte Carlo Dropout (Gal &
Ghahramani, 2016) in order to estimate the uncertainty in
gradient-based explanations (Wickstrøm et al., 2018, 2020),
which was later followed by a similar approach that was
based on Layer-wise Relevance Propagation (Bykov et al.,
2020). Uncertainties that are inherent in the widely used
LIME method (Ribeiro et al., 2016) have been explored
(Zhang et al., 2019). Also, ensemble-based approaches,
where uncertainty estimates are obtained by taking the stan-
dard deviation across the ensemble, have also been proposed
(Wickstrøm et al., 2021). Recently, Counterfactual Latent
Uncertainty Explanations (CLUE) was presented (Antoran
et al., 2021), where uncertainty estimates from probabilis-
tic models can be interpreted. Nevertheless, none of these
approaches were designed for quantifying the uncertainty in
explanations of representations, as they either require label
information or are computationally impractical.

3 Representation Learning Explainability

We present RELAX, our proposed method for explaining
representations, equipped with uncertainty quantification.
Furthermore, we leverage RELAX’s ability to quantify
uncertainty and introduce as a new concept a method for
filtering out uncertain parts of the explanations, which we
entitle U-RELAX. This is important, as uncertain expla-
nations might give an unwarranted trust in the model. Our
framework is inspired by RISE (Petsiuk et al., 2018). How-
ever, RISE was designed for explaining predictions and is
not transferable for explaining representations or quantify-
ing uncertainty. Note that the proofs of the theorems in this
section are given in “Appendix E”.

3.1 RELAX

The central idea of RELAX is that when informative parts are
masked out, the representation should change significantly.
LetX ∈ R

H×W represent an image1 consisting of H×W pix-
els, and f denote a feature extractor that transforms an image
into a representation h = f (X) ∈ R

D . To mask out regions
of the input, we apply a stochastic mask M ∈ [0, 1]H×W ,
where each element Mi j is drawn from some distribution.

The stochastic variable h̄ = f (X�M), where � denotes
element-wise multiplication, is a representation of a masked

1 To enhance readability, we do not include image channels, but this
can be easily included by letting the masks span the channel dimension.

version of X. Moreover, we let s(h, h̄) represent a similarity
measure between the unmasked and the masked represen-
tation. Intuitively, h and h̄ should be similar if M masks
non-informative parts of X. Conversely, if informative parts
are masked out, the similarity between the two representa-
tions should be low.

Motivated by this intuition, we define the importance Ri j

of pixel (i, j) as:

Ri j = EM
[
s(h, h̄)Mi j

]
. (1)

Equation (1) is core to our framework as it computes the
importance of a pixel (i, j) as a weighted similarity score
for masked versions of a given image. However, integrating
over the entire support of M is not computationally feasi-
ble. Therefore, we approximate the expectation in Eq. (1) by
sampling N masks for then to compute the sample mean:

R̄i j = 1

N

N∑

n=1

s(h, h̄n)Mi j (n). (2)

Here, h̄n is the representation of the imagemaskedwithmask
n, and Mi j (n) the value of element (i, j) for mask n. The
explanations of RELAX are computed through Eq. (2), and
an illustration of RELAX is given in Fig. 1. As a similarity
measure we use the cosine similarity

s(h, h̄) = 〈h, h̄〉
‖h‖‖h̄‖ , (3)

where ‖·‖ denotes the Euclidean norm of a vector. There
are several motivations for this choice. First, Liu et al.
(2021) argued that angular information preserves the essen-
tial semantics in neural networks, in contrast to magnitude
information. Since the cosine kernel normalizes the represen-
tation, essentially discarding magnitude information, such a
similarity measure would be suited to capture key informa-
tion encoded in the representations. We have compared the
cosine similarity to the Euclidean distance to examine the
effects of including magnitude information, with the results
shown in “Appendix B”. Second, the cosine kernel does not
rely on hyperparameters that must be selected, which may
be beneficial in an unsupervised setting where we cannot do
cross validation. Third, a large portion of feature extractors
trained using self-supervised learning use the cosine kernel
in their loss function (Chen et al., 2020; Chen & He, 2021).
Therefore, it is the natural choice formeasuring similarities in
their latent space. However, based on the two first points, the
cosine kernel is still suitable for models trained without the
cosine kernel. Lastly, other alternatives for the kernel func-
tions, such as the radial basis function or polynomial kernel,
requires careful tuning of hyperparameters. We consider an
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investigation of such alternatives and their hyperparameters
as a direction for future research.

Note thatwe recognize that themasking strategy can intro-
duce a shift in the distribution of pixel intensities. However,
in our experiments, we observed that this potential shift did
not impact the explanations. An experiment where the distri-
bution is approximately preserved is included in “Appendix
C”.

Masking distribution There are several ways to sample
the masks in Eq. (2), for instance by letting each Mi j (n) be
iid. Bernoulli. However, sampling masks with the same size
as the input results in a massive sample space, and simul-
taneously makes it challenging to create smooth masks that
cover different portions of the image.2

To avoid these problems, we generate masks as suggested
by Petsiuk et al. (2018). Binary masks of smaller size than
the input image are generated, where each element of these
smaller masks is sampled from a Bernoulli distribution with
probability p. Thesemasks are then upsampled using bilinear
interpolation to the same size as the image. The distribution
for Mi j is then a continuous distribution between 0 and 1.
Specifically: we sample N binary masks, each with size h ×
w, where h < H and w < W . We upsample these masks to
size (h+1)CH × (w +1)CW , where CH ×CW = �H/h�×
�W/w� is the size of the cell in the upsampled masks. Lastly,
we crop the final masks of size H × W randomly from the
(h + 1)CH × (w + 1)CW masks.

Number of masks required In order to minimize the
computational cost ofRELAX,wederive the following lower
bound on the number of masks required for a certain estima-
tion error.

Theorem 3.1 Suppose s(·, ·) is bounded in (0, 1).3 Then, for
any δ ∈ (0, 1) and t > 0, if N in Eq. (2), satisfies:

N ≥ − ln(δ/2)

2t2
, (4)

we have P(|R̄i j − Ri j | ≥ t) ≤ δ.

Theorem3.1 states that if N satisfies Eq. (4), we are able to
estimate Ri j to an absolute error of less than t with probabil-
ity at least 1−δ. See “Appendix E” for proof and verification
of bound. In all of our experiments, we generate 3000 masks,
which ensures an estimation error below 0.01 with a proba-
bility of 0.99.

RELAX from a kernel perspective To provide insights
into the geometrical properties of RELAX, we present a ker-
nel viewpoint of Eq. (2).

2 See “Appendix D” for evaluation of masking strategies.
3 This holds for the cosine similarity, since the representations consid-
ered are assumed to be ReLU outputs (non-negative).

Theorem 3.2 Suppose the similarity function s(·, ·) is a valid
Mercer kernel (Mercer, 1909). The importance R̄i j then acts
as a linear scoring function between h, and the weighted
mean of h̄1, . . . , h̄N in the reproducing kernel Hilbert space
(RKHS) induced by s(·, ·). That is:

R̄i j = 〈φ(h),
1

N

N∑

n=1

φ(h̄n)Mi j (n)〉H, (5)

where φ : Rd → H is the mapping to the RKHS,H, induced
by the kernel s(·, ·), and 〈·, ·〉H is the inner product on H.

Theorem 3.2 provides interesting insight, as many scoring
functions are based on inner-products, e.g. between points of
interest and class-conditional means (e.g., Fisher discrimi-
nant analysis, Bayes classifier under Gaussian distributions
with equal covariance structure). Thismeans that even though
RELAX is a novel approach, it is founded in well-known sta-
tistical concepts (McCullagh & Nelder, 1989).

Additionally, RELAX has the following interpretation
from non-parametric statistics

Theorem 3.3 Suppose s(·, ·) is a valid Parzen window
(Theodoridis & Koutroumbas, 2009). Then:

R̄i j ∝ pi j (h), (6)

where pi j (·) is a weighted Parzen density estimate (Parzen,
1962) of the density of the masked embeddings:

pi j (·) = 1
∑N

n′=1 Mi j (n′)

N∑

n=1

s(·, h̄n)Mi j (n). (7)

A high RELAX score is obtained when the unmasked repre-
sentationh is close tomean ofmasked representations, which
aligns well with out intuition for RELAX.

3.2 Uncertainty in Explanations

Trusting an explanation without a notion of uncertainty can
lead to an unjustified faith in the model. Therefore, we intro-
duce an approach that allows uncertainty quantification to
be incorporated into the RELAX framework. Our intuition
for this approach stems from what happens when informa-
tive and uninformative parts are masked out. If informative
parts are masked out, the similarity score will not only drop,
but drop with varying degree. If there is a big variation in
the similarity scores for a given pixel, it indicates that the
explanation for said pixel is uncertain. Based on this intu-
ition, we propose to estimate the uncertainty in input feature
importance as:

Ui j = EM[(s(h, h̄) − R̄i j )
2Mi j ]. (8)
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Again, it is not feasible to integrate over all of M and Ui j is
therefore approximated by the sample variance:

Ūi j = 1

N

N∑

n=1

(s(h, h̄n) − R̄i j )
2Mi j (n). (9)

Equation (9) estimates the uncertainty of the RELAX-score
for pixel (i, j) by measuring the spread along Mi j between
the similarity score and the explanations. In other words,
Eq. (9) estimates the uncertainty in the importance scores
themselves. To estimate Eq. (9), we must first estimate the
importance of a pixel. The uncertainty estimates provided
in Eq. (9) can be thought of as measuring the spread of
pixel importance values in relation to importance estimated
using Eq. (2). There are several benefits of our method.
First, it requires no labels, which is sometimes used in other
uncertainty estimation methods (Antoran et al., 2021). Sec-
ondly, it avoids computationally intense sampling methods,
for instance throughMonteCarlo sampling (Teye et al., 2018;
Gal & Ghahramani, 2016). Lastly, the uncertainty estima-
tion can be combined with the computation of Eq. (2), as
explained in Sect. 3.4.

3.3 U-RELAX: Uncertainty Filtered Explanations

All parts of an explanation do not have the same level of
uncertainty associated with it. In such cases, it could be ben-
eficial to remove input features that are indicated as important
but also have high uncertainty, while only keeping important
input features with low uncertainty. This could increase the
faithfulness of an explanation and provide clearer explana-
tions. Therefore, we propose a thresholding approach where
explanations with high uncertainty are removed from the
explanation. We define our U-RELAX importance score as:

R̄′
i j =

{
R̄i j , if Ūi j < ε

0, otherwise
, (10)

where ε is a threshold chosen by the user. Essentially, Eq. (10)
provides the possibility to only consider explanations of a
particular certainty level, depending on ε. We propose two
ways of choosing epsilon. First as:

ε = γ

HW

H∑

i

W∑

j

Ūi j , (11)

that is, the average uncertainty for a particular image,
weighted by hyperparameter γ . This provides a simple and
intuitive way of selecting the threshold, which is motivated
by only wanting to consider pixels that have high importance
and low uncertainty. Alternatively, ε can be computed by
taking the median uncertainty for a particular image. Using

mean or median statistics to select hyperparameters is a com-
mon approach in machine learning. For instance, in kernel
methods the kernel width is often chosen by taking the mean
or median distance between all samples in the training data
NordhaugMyhre et al. (2018); Shi et al. (2009). Determining
which approach will give the best performance is dependent
on the distribution of the data, in this case the distribution
of the uncertainty estimates for a given image. The median
is more robust to outliers in the data Leys et al. (2013), and
could therefore be a better choice for noisy or challenging
samples. If the distribution is symmetric the mean is usually
preferred Leys et al. (2013). In Sect. 5.4, we conduct a thor-
ough examination of the mean versus median thresholding
approach for U-RELAX.

We refer to this uncertainty-filtered version of RELAX as
U-RELAX. Figure 3 shows an example of the U-RELAX
explanation compared with the RELAX explanation. In this
case, the emphasis on the bird in the background is removed
as the uncertaintywas too high for this part of the explanation.

3.4 One-Pass Version of RELAX

Computing Eq. (9) requires first computing Eq. (2), since the
uncertainty estimation requires an estimate of the importance
in order to be computed. This introduces additional compu-
tational overhead. We refer to computing Eq. (2) followed
by Eq. (9) as the two-pass version of RELAX. To improve
computational efficiency, we propose an online version of
RELAX where importance and uncertainty is computed
simultaneously, which we refer to as the one-pass version of
RELAX. One-pass RELAX is based on well-known estima-
tors of running mean and variance (West, 1979). Importance
is computed as:

R̄(n)
i j = R̄(n−1)

i j

+ Mi j (n)
s(h, h̄n)(n) − R̄(n−1)

i j

Wi j (n)
,

(12)

where R̄(n)
i j is the importance of pixel (i, j) at mask n, and

Wi j (n) = ∑n
n′=0 Mi j (n′) is the sum of the mask elements

(i, j) for the first n masks. Uncertainty is computed as:

Ū (n)
i j = Ū (n−1)

i j + Mi j (n)(s(h, h̄n)

− R̄(n)
i j )(s(h, h̄n) − R̄(n−1)

i j ),
(13)

where Ū (n)
i j is the uncertainty in the importance of pixel (i, j)

after the nth mask. Pseudo-code is shown in Algorithm 1.
All experiments are carried out using the one-pass version of
RELAX. See “Appendix F” for a comparison of the one-pass
versus two-pass version.
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Fig. 3 Comparison of RELAX and U-RELAX on an image taken from PASCAL VOC, where red indicates high importance and blue indicates
low importance. In this case, the emphasis on the bird in the background is removed as the uncertainty was to high for this part of the explanation
(Color figure online)

Algorithm 1 Pytorch-like pseudocode for RELAX.

# f - feature extractor
# X[1,C,H,W]- input image
# R[H,W] - importance (init as

zeros)
# U[H,W] - uncertainty (init as

zeros)
# W[H,W] - sum of masks (init

with
# small positive number

)<
for mask in mask_generator: # [1,1,

H,W]
W += mask
h, h_mask = f(x), f(x*mask)
s = cosine_similarity(h, h_mask

)
R_prev = R
R += m*(s-R)/W
U += (s-R)*(s-R_prev)*m

return R, U/(W-1)

4 Evaluation and Baseline

4.1 Evaluation of Explanations

Evaluation is a developing subfield of XAI, and a unifying
score is not agreed upon Doshi-Velez and Kim (2017), even
more so for explanations of representations. To evaluate the
explanations,weuse twoof themostwidely used explainabil-
ity evaluation scores, namely localisation and faithfulness
(Samek et al., 2017; Petsiuk et al., 2018; Fong et al., 2019;
Schulz et al., 2020). All scores are computed using the Quan-
tus toolbox.4 Evaluating these metrics is not just important
for comparison, but also to ensure the correctness and rigour
of RELAX, similarly as done in other works Selvaraju et al.

4 https://github.com/understandable-machine-intelligence-lab/
Quantus.

(2017). Bymeasuring the localisation and faithfulness scores
of the explanations created from RELAX we empirically
investigate the correctness and reliability of RELAX.

Localisation The explanations should put emphasis on
input regions corresponding to the objects present in an
image. Localisation measures to which degree the expla-
nation agrees with the ground truth location of an object.
High performance in localisation indicates that the explana-
tions often align with the bounding boxes or segmentation
masks provided by human annotators. We consider three
localisation scores, the pointing game (Zhang et al., 2017),
top-k intersection, and relevance rank accuracy (Arras et al.,
2022). The pointing game measures whether the pixel with
the highest importance is located within the object location.
Top-k intersection considers the binarized version of the top-
k most important pixels and measures the intersection with
the ground truth mask. Relevance rank accuracy is mea-
sured by taking the ratio of high intensity relevances within
the ground truth mask. Since RELAX operates in the unsu-
pervised setting we do not have explanations for individual
classes. Therefore, the bounding boxes/segmentation masks
are collected into one unified bounding box/segmentation
mask. This results in an unsupervised version of localisation
that is suitable for explaining representations.

FaithfulnessPixels assignedwith high importance should
be indicative of “true” importance. Faithfulness is typi-
cally measures by monitoring the classification accuracy of
a classifier as input features are iteratively removed. High
faithfulness indicates that the explanation is capable of iden-
tifying features that are important for classifying an image
correctly. We measure faithfulness using the monotonicity
score. Nguyen and Martinez (2020) proposed to measure
monotonicity by computing the correlation of the absolute
values of the attributions and the uncertainty in the probabil-
ity estimation. This will indicate if an explanation is correctly
highlighting important features in the input.
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Fig. 4 Comparison of RELAX and saliency explanation for an image from PASCAL VOC. The example shows how both explanations focus on
the dog, but the saliency explantion is much more erratic and unfocused than the RELAX explanations

Fig. 5 Comparison of RELAX and Saliency explanation for an image from PASCAL VOC. The example shows how RELAX captures information
about both objects, while the saliency explanation is focused on the gap in between the two objects

4.2 Representation Explainability Baseline

While there are are no existing methods that provide
attribution-based explanations for representations, it is pos-
sible to adopt certain methods to provide such explanations.
One of the most common baselines in the field of explain-
ability is saliency explanations (Springenberg et al., 2015;
Adebayo et al., 2018), which utilize gradient information to
attribute importance. An explanation is obtained by comput-
ing the gradient for a prediction with respect to the input.
However, it is not trivial to extend such methods for explain-
ing representations. We propose the following for a saliency
approach:

S = 1

D

D∑

d=1

∇ f (X)d , (14)

where D is the dimensionality of the representation and Si j
is the importance of pixel (i, j) for the given representa-
tion. The gradient for each dimension of the representation
will give an explanation, and Eq. (14) takes the mean across
all explanations. This is the most straight-forward and intu-
itive approach for explaining representations with gradients.

It also illustrates the challenges that arise when adopting
gradient-based explanations for representation, as some form
of agglomeration of the explanations is required. Figures 4
and 5 shows a qualitative comparison between the RELAX
and saliency explanation for a representation of an image.
Both figures illustrate how RELAX provides more intuitive
and clear explanations that are able to capture information
related to the objects in the image, when compared with the
saliency explanation.

Once the saliency approach from Eq. (14) have been
established, it is also possible to adopt improvements of the
standard saliency explanations. For instance, Guided Back-
propagation is a widely used explainability technique that
uses gradient information (Springenberg et al., 2015).Guided
Backpropagation differs from Eq. (14) by zeroing out nega-
tive gradients in the backward pass of the backpropagation
scheme. We define the Guided Backpropagation procedure
for representations as:

Sgb = 1

D

D∑

d=1

∇gb f (X)d . (15)

Second, SmoothGrad is another gradient-based explainabil-
ity method that can be adopted from Eq. 14 (Smilkov et al.,
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2017). SmoothGrad injects noise into the input and produces
an explanation by averaging over multiple explanations. We
define SmoothGrad for representation as:

Ssg = 1

M

M∑

m=1

1

D

D∑

d=1

∇ f (Xm)d , (16)

where M is the number of explanations computed based on
the noisy input.

Adaptation of state-of-the-art methods As explained in
“Appendix A”, many of the existing explanation methods are
not trivially extended to the representation learning explain-
ability setting. Nevertheless, using the baselines introduced
above we can construct adaptation of the state-of-the-art
algorithms integrated gradients Sundararajan et al. (2017)
and GRAD-CAM Selvaraju et al. (2017). For the integrated
gradients explanations, we follow their proposed procedure
but compute gradients using Eq. 14. For the GRAD-CAM
explanations, the upsampled output of the global average
pooling layer is typically weighted by the class weights.
However, these classweights are not available in our unsuper-
vised representation learning setting. Therefore, we weight
all parts equally, and gradients are computed using Eq. 14.

5 Experiments

To evaluate RELAX, we conduct numerous experiments and
report both quantitative and qualitative results. We evaluate
several features extraction models, both deep and non-deep,
and trained with and without supervision. Our experiments
show the advantages of RELAX compared to the base-
lines, and illustrate how RELAX enables new approaches
for analysing and understanding representation learning.

Implementation details. For the supervised model, we use
the pretrained model from Pytorch (Paszke et al., 2019). For
the models trained without labels but with self-supervision,
we use the SimCLR (Chen et al., 2020) and SwAV (Caron
et al., 2020) frameworks, both of which have seen recent
widespread use. These methods are chosen to represent two
major types of self-supervised learning frameworks, namely
contrastive instance learning (SimCLR) and clustering-based
learning (SwAV). For SimCLR and SwAV, we use the pre-
trainedmodels fromPytorch Lightning Bolts (Falcon&Cho,
2020). We use a ResNet50 (He et al., 2016) as the backbone
for the feature extractors, and all models are trained on Ima-
geNet (Deng et al., 2009). Additionally, we also perform
experiments with recent Vision Transformer architectures
(Dosovitskiy et al., 2021). The results of these experiments
are shown in “Appendix G”.

Similarly as in previous works (Fong et al., 2019; Schulz
et al., 2020), we use the test split of the PASCAL VOC07
(VOC) (Everingham et al., 2009) and the validation split of
MSCOCO2014 (COCO) (Lin et al., 2014) for evaluating the
localisation scores, since they contain information about the
location of the objects in the images. For the faithfulness
score, we use the validation set of ImageNet (Deng et al.,
2009). For all datasets, we randomly sample 1000 images for
evaluation and repeat all experiments 3 times. Since we are
interested in investigating how RELAX and U-RELAX vary
due to the stochastic masking process, we use the same 1000
images across the repeated experiments. We generate 3000
masks to ensure a low estimator error. We set h = w = 7
and resize all images to H = W = 224, as suggested by
Zhang et al. (2017). For the monotonicity score, we use
Alexnet (Krizhevsky et al., 2012) as the classifier, as sug-
gested by Samek et al. (2017). We also experiment with the
VGG13 (Simonyan & Zisserman, 2015) as the classifier for
monotonicity score. These results are reported in “Appendix
H”. The threshold for U-RELAX is determined with median
aggregation and γ = 1.0, based on the empirical evaluation
conduced in Sect. 5.4.

5.1 Qualitative Results

Figures 2 and 6 displays the explanation and the uncertainty
in the explanations provided by RELAX for an image from
the PASCAL VOC and MS COCO dataset, respectively. See
“Appendix J” for additional qualitative results. The input to
the feature extractors is shown on the left, the first row shows
the explanations, and the second row shows the uncertainties.

Are all instances of the same object equally important?

Figure 2 shows an example with two objects, one bird
prominently displayed in the foreground, and another more
inconspicuous bird in the background. An interesting ques-
tion that RELAX allows us to answer is: are both of these
birds important for the representation of this image? And,
are both of them equally important? First, all models indi-
cate that the bird in the foreground is important, and that the
importance scores for this bird have low uncertainty. Second,
SimCLR puts little emphasis on the bird in the background.
In contrast, both the supervised feature extractor and SwAV
are highlighting the second bird as having an influence on
the representation. However, the uncertainty estimates for
the second bird is slightly higher than those of the first bird,
but still low compared to the remaining parts of the image.

123



International Journal of Computer Vision (2023) 131:1584–1610 1593

Fig. 6 The figure shows the RELAX explanation and its uncertainty for
the representation of the leftmost image for a number of widely used
feature extractors. The first row displays the explanations for the repre-
sentation and the second row shows the uncertainty associated with the
different explanations. Red indicates high values and blue indicates low
values. In this example, three elephants are visible in the image. The

results show that all models highlight the elephant in the foreground as
important for the representation, but there is more disagreement about
the elephants in the background.Moreover, the uncertainty of the expla-
nation for the elephant in the foreground is very low compared to the
remaining regions of the image. Image is taken fromMS COCO (Color
figure online)

What features are important in complex images
with numerous objects?

Figure 6 shows an image with 3 elephants, one in the
foreground and two in the background. Additionally, the
background is more diverse and the objects have different
lighting and perspective. Again, RELAX enables investiga-
tion of interesting aspects of the representations, such as: are
the models capable of recognizing all elephants and to uti-
lize the information? Does the models focus on background
information instead of the objects? All models highlight the
elephant in the foreground as important with high certainty.
However, there is little emphasis on the shaded elephant, and
the associated region of the image also has a high degree of
uncertainty. Both the supervised model and SwAV put some
importance on the third elephant with some degree of cer-
tainty, while SimCLR uses little or no information about the
third elephant.

In both Figs. 2 and 6, the SwAV feature extractor is focus-
ing on several regions in the input, but with some regions
of high uncertainty. While it is difficult to say exactly why,
we hypothesize that it can be related to its self-supervised
training procedure. SwAV relies on matching image views
to a set of prototypes. Therefore, different parts of the input
can be related to different prototypes, which we conjecture
can lead to SwAV considering several regions of the input.

5.2 Quantitative Results

Tables 1 and 2 displays the quantitative evaluation of our
proposed methodology compared with the gradient-based
baselines described in Sect. 4.2. The results show how
the proposed method outperforms the baselines across all
scores. The low standard deviation for RELAX show that
the proposed methodology is robust to the stochasticity in
the masks. Furthermore, the feature extractor trained using
supervised learning achieves the highest performance com-
pared to the feature extractors trained using self-supervised
learning, which illustrates that label information does pro-
vide additional useful information for these scores.

For the localisation scores, RELAX provides the highest
performance. The segmentation masks or bounding boxes
can in many cases be large, and U-RELAX might remove
uncertain points close to the boundaries of the segmentation
masks. This might be desirable from a human perspective,
as it provides clearer explanations with less uncertainty, but
it will decrease the localisation scores. For the faithfulness
score, U-RELAXprovides a significant boost in performance
for two encoders. The removal of uncertain explanations
allows the classifier to focus on a smaller subset of highly
relevant features. This can lead to the classifier having amore
stable decrease in accuracy and a higher faithfulness score.
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Table 1 Pointing game, top k, and relevance rank scores in percentages and averaged over 3 runs

Scores Methods Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

Pointing game Saliency 67.1±0.0 82.8±0.0 59.9±0.0 75.9±0.0 60.0±0.0 76.3±0.0

Smooth Saliency 62.8±0.0 79.5±0.0 60.1±0.0 75.9±0.0 59.8±0.0 76.4±0.0

Guided Saliency 66.6±0.0 82.9±0.0 58.4±0.0 73.3±0.0 59.5±0.0 75.8±0.0

Integrated Gradients 47.8±0.0 59.1±0.0 32.9±0.0 48.2±0.0 36.5±0.0 51.5±0.0

Grad CAM 66.8±0.4 78.7±0.5 47.7±0.7 57.0±0.6 48.7±1.0 58.6±0.8

RELAX 72.6±0.1 86.6±0.2 68.7±0.3 85.2±0.3 67.8±0.2 84.7±0.2

U-RELAX 72.1±0.3 86.4±0.4 68.6±0.2 85.0±0.5 66.7±0.7 84.1±0.4

Top k Saliency 62.2±0.0 80.1±0.0 56.5±0.0 71.3±0.0 56.5±0.0 71.4±0.0

Smooth Saliency 59.2±0.0 74.1±0.0 56.4±0.0 71.1±0.0 56.4±0.0 71.3±0.0

Guided Saliency 62.2±0.0 80.2±0.0 55.1±0.0 69.0±0.0 56.3±0.0 71.1±0.0

Integrated Gradients 47.7±0.0 61.0±0.0 35.4±0.0 52.8±0.0 33.2±0.0 49.0±0.0

Grad CAM 64.0±0.0 78.3±0.0 43.6±0.0 55.3±0.0 43.1±0.1 54.8±0.0

RELAX 72.8±0.4 86.9±0.1 69.0±0.3 85.6±0.2 68.1±0.4 85.1±0.2

U-RELAX 72.2±0.4 86.5±0.2 68.8±0.4 85.3±0.1 66.6±0.4 84.2±0.3

Relevance rank Saliency 46.8±0.0 59.5±0.0 41.2±0.0 53.6±0.0 40.9±0.0 53.4±0.0

Smooth Saliency 42.6±0.0 54.6±0.0 41.1±0.0 53.4±0.0 40.9±0.0 53.3±0.0

Guided Saliency 46.8±0.0 59.8±0.0 40.6±0.0 53.0±0.0 40.9±0.0 53.3±0.0

Integrated Gradients 38.4±0.0 51.9±0.0 31.9±0.0 47.2±0.0 32.3±0.0 48.3±0.0

Grad CAM 46.0±0.0 60.2±0.0 37.5±0.0 50.7±0.0 37.8±0.0 50.9±0.0

RELAX 56.4±0.0 70.2±0.1 54.2±0.2 69.8±0.1 52.4±0.1 69.1±0.0

U-RELAX 52.4±0.0 64.7±0.1 50.7±0.1 63.3±0.1 46.2±0.1 59.5±0.0

Higher is better and bold numbers highlight the top performance. Results show that our method improves on the baseline across all scores

Table 2 Monotonicity scores
averaged over 3 runs

Scores Methods Supervised SimCLR SwAV

Monotonicity Saliency 12.8±0.2 14.8±0.5 14.6±0.3

Smooth Saliency 15.4±0.1 14.3±0.3 14.0±0.3

Guided Saliency 15.3±0.3 15.3±0.2 14.2±0.6

Integrated Gradients 12.4±0.3 11.9±0.3 13.5±0.5

Grad CAM 19.6±0.2 18.6±0.3 18.5±0.3

RELAX 18.3±0.5 20.2±0.4 21.3±0.4

U-RELAX 23.6±0.4 22.9±0.1 18.3±0.6

Higher is better and bold numbers highlight the top performance. Results show that our method improves on
the baseline

Table 3 Human evaluation of
representation explainability
methods across 10 images from
the PASCAL VOC dataset

RELAX U-RELAX Saliency Smooth Saliency Guided Saliency Random

Counts 79 29 9 4 8 1

Results show that the majority of the votes were cast for RELAX and U-RELAX

5.3 Human Evaluation

The localisation and faithfulness scores are both proxies for
human evaluation that allow for quantitative analysis. How-
ever, the ultimate goal of XAI is to provide explanations that
are understandable for people and align well with human
intuition. Therefore, we conduct a user study with human

evaluation of explanations. Our study is inspired by the local-
isation scores but rely on evaluation of individual humans
instead of segmentation masks or bounding boxes. In this
user study, 13 people were asked to select their preferred
explanation from a selection of explanations across 10 dif-
ferent images. See “Appendix I” for a detailed description of
the user study.
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Table 4 Evaluation of U-RELAX hyperparameters in terms of pointing game, top k, and relevance rank scores in percentages and averaged over
3 runs

Scores (aggregation, γ ) Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

Pointing game (mean, 0.95) 71.1±0.4 86.5±0.2 67.6±0.1 83.9±0.3 63.3±0.7 81.1±0.5

(mean, 0.99) 71.8±0.4 86.4±0.5 68.6±0.4 85.0±0.4 66.4±0.6 84.2±0.4

(mean, 1.0) 71.7±0.1 86.5±0.2 68.6±0.1 85.0±0.3 66.7±0.7 84.1±0.2

(median, 0.95) 71.2±0.2 86.6±0.1 67.6±0.4 84.2±0.2 63.6±0.2 80.9±0.1

(median, 0.99) 71.8±0.3 86.5±0.4 68.8±0.3 85.0±0.2 66.3±0.6 84.0±0.3

(median, 1.0) 72.1±0.3 86.4±0.4 68.6±0.2 85.0±0.5 66.7±0.7 84.1±0.4

Top k (mean, 0.95) 71.3±0.4 86.2±0.2 67.1±0.1 83.2±0.3 62.8±0.2 79.5±0.4

(mean, 0.99) 72.2±0.4 86.6±0.2 68.8±0.3 85.2±0.2 66.4±0.2 84.0±0.3

(mean, 1.0) 72.2±0.4 86.5±0.2 68.8±0.4 85.3±0.1 66.7±0.4 84.3±0.2

(median, 0.95) 71.2±0.4 86.1±0.2 67.1±0.2 83.2±0.4 62.7±0.2 79.1±0.4

(median, 0.99) 72.2±0.4 86.5±0.2 68.7±0.3 85.2±0.2 66.4±0.2 83.9±0.3

(median, 1.0) 72.2±0.4 86.5±0.2 68.8±0.4 85.3±0.1 66.6±0.4 84.2±0.3

Relevance rank (mean, 0.95) 45.9±0.0 55.7±0.0 41.6±0.1 52.3±0.1 39.6±0.1 51.0±0.0

(mean, 0.99) 50.3±0.0 61.2±0.1 48.6±0.1 59.8±0.1 44.0±0.1 56.0±0.1

(mean, 1.0) 51.4±0.1 63.0±0.1 50.3±0.1 62.2±0.1 45.6±0.1 58.2±0.1

(median, 0.95) 46.8±0.0 57.2±0.1 42.4±0.1 53.3±0.1 40.4±0.1 52.1±0.0

(median, 0.99) 51.2±0.0 63.0±0.1 49.1±0.1 60.8±0.1 44.6±0.1 57.3±0.1

(median, 1.0) 52.4±0.0 64.7±0.1 50.7±0.1 63.3±0.1 46.2±0.1 59.5±0.0

Higher is better and bold numbers highlight the top performance

Table 5 Evaluation of
U-RELAX hyperparameters in
terms of monotonicity score in
percentages and averaged over 3
runs

Scores (aggregation, γ ) Supervised SimCLR SwAV

Monotonicity (mean, 0.95) 16.3±0.5 11.8±0.3 12.4±0.3

(mean, 0.99) 22.2±0.2 20.4±0.5 16.2±0.3

(mean, 1.0) 23.2±0.1 21.8±0.3 18.0±0.0

(median, 0.95) 17.9±0.7 12.8±0.2 13.5±0.2

(median, 0.99) 23.0±0.7 21.1±0.1 17.1±0.4

(median, 1.0) 23.6±0.4 22.9±0.1 18.3±0.6

Higher is better and bold numbers highlight the top performance

Table 3 reports the results of the human evaluation. The
results clearly indicate that RELAX and U-RELAX were
the methods that aligned most closely with human intuition.
Some participants highlighted that when both RELAX and
the gradient-based methods indicated an object as important,
they often preferred the more object focused explanation of
RELAX, as opposed to the more edge focused explanations
of the baselines. It was also noted that for some images the
participants disagreed with most explanations, and would
have provided a different explanation if possible. We believe
that these are valuable insights that will be useful for improv-
ing explainability methods and also for designing future user
studies.

5.4 U-RELAX Hyperparameter Evaluation

Tables 4 and 5 reports localisation and faithfulness scores for
different values of the hyperparameters in U-RELAX. Mean
versus median aggregation is considered, and a selection of
values for γ . The results indicate that setting γ to less than
1, typical degrades performance. This can be understood by
the thresholding being to strict and removing to many pixel
indicated as important. Also, the differences between mean
andmedian aggregation of the uncertainties ismostly low, but
median aggregation gives a slight improvement, particularly
for the relevance rank score and the monotonicity score.
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Fig. 7 RELAX explanation and uncertainty for the representation of an
example fromNoisyMNIST image for a number of widely used feature
extractors. The first row displays input, explanation, and uncertainty for
view 1, and the second row for view 2. Red indicates high values and
blue indicates low values. The figure shows that Completer is extracting
complementary information from the two views for creating its unified
representation (Color figure online)

5.5 Use Case I: Multi-View Clustering

To further illustrate the ability of RELAX to obtain insights
into new tasks, we conduct an experiment on multi-view
clustering. We learn a feature extractor using the Completer
framework (Lin et al., 2021),which uses an information theo-
retic approach to fuse several views into a new representation.
Completer uses individual encoders for each view, and con-
catenates the representation from each encoder to produce a
unified representation. Clustering is performed by applying
K-means to the learned representations. To adopt RELAX for
such a setting, we generate individual masks for each view
and monitor the change in the representation in the unified
representation space. While there is no way to investigate
which parts of the different views that influence the unified
representation in the Completer framework, using RELAX
allows us to answer this question. Figure 7 shows an example

on Noisy MNIST (Wang et al., 2015), where one view is a
digit and the other view is a noisy version of the same digit.
The result shows that the Completer framework is exploiting
information from both views to produce a new representa-
tion, even if one view contains more noise. Such insights
would not be obtainable without RELAX.

5.6 Use Case II: Explaining HOG Features

RELAX is not limited to representations produced by deep
neural networks. It can be used to explain the representa-
tion produced by any function that transform an image into a
vector representation. To illustrate the versatility of RELAX,
we explain representation produced by the Histogram of
Oriented Gradients (HOG) feature extraction method (Dalal
& Triggs, 2005), which have been used extensively in the
computer vision literature. Figures 8 and 9 shows two exam-
ples where the relevance map for the HOG representation is
compared with the SimCLR and SwAV representations. We
consider the representations from these two methods since
they are also unsupervised like the HOG features.

Features produced by deep neural networks typically
allow for higher performance than those from algorithms
such as HOG and other handcrafted feature extraction meth-
ods. RELAX provides insights into why this is. In Fig. 8,
both the SimCLR and the SwAV feature extractors focus on
the cat in the center of the images. The HOG algorithm has
a more widespread focus. Also, much of the emphasis is put
on the cord going along the staircase. Since the HOG algo-
rithm is utilizing gradient information, these sharp lines will
have a big influence on the representation, and it is therefore
not surprising that the cat receives less attention. In Fig. 8,
both SimCLR and SwAV focus on the bird, while the HOG
features are more focused on other regions in the image.
For instance, the iron rod and a tree in the background and
are indicated as being important for the representation of
this image. Both examples provide insights into why HOG
features lead to inferior performance, when compared with

Fig. 8 The figure shows the RELAX explanation for two deep learning-based feature extractors compared with the traditional HOG algorithm.
Figure shows how HOG features focus on more indistinct regions in the input, while deep learning methods focus mainly on the cat. Image is taken
from PASCAL VOC
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Fig. 9 The figure shows the RELAX explanation for two deep learning-based feature extractors compared with the traditional HOG algorithm.
Figure shows how HOG features puts little attention on the bird and mostly focus on the background. Image is taken from PASCAL VOC

features produced by deep neural networks. This informa-
tion would not be available without the proposed RELAX
framework.

6 Conclusion

In this work, we presented RELAX, a framework for
explaining representations produced by any feature extrac-
tor. RELAX is based on masking out parts of an image
and for then to measure the similarity with an unmasked
version in the representation space. We introduced a prin-
cipled approach to quantifying uncertainty in explanations.
RELAX was evaluated by comparing several widely used
feature extractors. Results indicate that there can be a big
difference in the quality of the explanations. It was shown
that filtering out parts of an explanation based on its uncer-
tainty can improve the faithfulness, and that RELAX can
have a facilitating role, providing explainability for several
downstream applications such as multi-view clustering. We
consider the evaluation of RELAX to other use-cases. such
as for the investigation of a models failure cases, as an inter-
esting direction for future research. We believe that RELAX
can be an important addition in the intersection between XAI
and representation learning.
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Appendix A

The field of XAI have grown significantly in recent years,
with a recent review article listing 46 different XAI methods
(Samek et al., 2021). Nevertheless, the majority are designed
with classification tasks inmind, and it is not straight forward
to adapt these methods for the task of explaining represen-
tations. The difficulty stems from handling outputs in the
form of vectors instead of scalars, since many method rely
on propagating the scalar score from the output to the input or
in other ways exploit the classification score for generating
an explanation. For instance, surrogate models are a popular
family of explainability methods, with LIME being the most
well known approach. Molnar (2022) list the following steps
for constructing relevance maps using surrogate models:
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1. Select a dataset X.
2. For the selected dataset X, get the predictions of the black

box model.
3. Select an interpretable model type.
4. Train the interpretable model on the dataset X and its

predictions.
5. Measure howwell the surrogate model replicates the pre-

dictions of the black box model.
6. Interpret the surrogate model.

Notice that the prediction of the model and labels are
required in this procedure, neither of which are available
in our representation learning scenario. Therefore, it is not
obvious how such a procedure could be adapted to the unsu-
pervised representation learning setting.

Another popular family of explanationmethods is attribution-
based explanation methods, where Layer-wise relevance
propagation (LRP) is one of the most popular techniques.
There exists several variants of LRP, but the core computa-
tion is to distribute the relevance of a neuron from the output
layer back to the input. For instance, to explain the prediction
for an input for a given class, the output of the class-neuron
can be propagated back to the input. However, in the rep-
resentation setting, the output is not a scalar, but typically
a vector representation of the image. Therefore, each ele-
ment of the vector must be propagated back, which would
give an explanation for each of the elements. These explana-
tions could be aggregated together as described in Sect. 4.2
of the main manuscript. However, this introduced a lot of
noise in the explanation, since many of the elements that are
being explained will not contain relevant information about
the input. Both of these examples illustrate how it is chal-
lenging or not possible to trivially extend current explanation
methods the context of representation learning explainability.

Appendix B

We compare the cosine similarity with the Euclidean dis-
tance for computing the similarity between the masked and
unmasked representation. The results based on 100 samples
are shown in Table 6 and show how the cosine similarity
gives better performance. This suggests that angular infor-
mation is more important in the context of representation
learning explainability, which could be a result of angular
information encoding semantically relevant information in
neural networks Liu et al. (2021).

Appendix C

An alternative approach for creating the random variable h̄
is the following:

h̄ = f (X � M − D(1 − M)), (C1)

where each element of D follows N (μxi j , σxi j ). The mean
μxi j and standard deviation σxi j is estimated by averaging
across all samples in the data. Such a strategy could avoid
potential distribution shifts that might occur when zeroing
out large parts of the image, but also required determining
the mean and variance of the data distribution.

Table 7 displays localisation scores scores the two mask-
ing strategies outlines in Sect. 3.1, namely zero masking or
insertion of normally distributed noise. While there is some
variation in the results, masking out with zeros provide the
highest performance overall.

Appendix D

Figure 10 shows alternative strategies for masking out part
of the input. One alternative is to apply Bernoulli noise to
the input, which is equivalent to using Dropout (Srivastava
et al., 2014) on the input. However, this does not introduce
noise with spatial awareness, and therefore results in failing
to explain the representation of the image. Another option is
to drop regions of the input, such that objects could be fully
or partially removed from the input. This could be achieved
using the DropBlock algorithm (Ghiasi et al., 2018). How-
ever, this requires tuning the size of the mask on the input,
which will be highly dependent on the objects present in
the image. Such a per-image tuning would be impractical in
most scenarios. Table 8 displays localisation scores for the
Block drop strategy with different patch sizes. It shows how
the patch-based strategy can both improve and decrease the
performance of RELAX.

Appendix E

In this section we present the proofs for all theorems in the
main paper.

Proof of Theorem 3.1

Proof First, let theBoundeddifference assumptionbedefined
as follows:

Definition 11.1 (Bounded difference assumption) Let A be
some set and f : AN → R. The function f satisfies the
bounded differences assumption if there exists real numbers
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c1, . . . , cN ≥ 0 so that for all i = 1, . . . , N ,

sup
x1,...,xN ,xi∈A

| f (x1, . . . , xN , x ′
i ) − f (x1, . . . , xN , x ′

i )| (E1)

We then have the following lemmas:

Lemma 11.2 (McDiarmid’s inequality) Let X1, . . . , XN be
arbitrary independent random variables on set A and f :
AN → R satisfies the bounded difference assumption. Then,

Table 6 Pointing game, top k, and relevance rank scores in percentages and averaged over 3 runs

Scores Methods Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

Pointing game RELAX 72.7±1.5 85.0±0.0 71.3±3.1 88.7±0.6 64.0±3.0 87.0±0.0

RELAX (E) 20.0±3.0 31.7±1.5 24.3±7.0 34.7±8.6 22.3±9.7 34.0±1.0

U-RELAX 72.3±2.3 85.0±0.0 71.0±3.6 88.3±1.2 64.0±3.6 86.7±0.6

U-RELAX (E) 18.3±2.9 28.3±1.5 33.0±4.4 41.0±6.0 27.3±5.0 41.7±3.8

Top k RELAX 73.0±0.6 84.6±0.1 71.5±0.8 88.2±0.2 65.8±0.6 86.8±0.2

RELAX (E) 19.3±0.5 30.3±2.4 21.2±4.6 30.3±3.9 19.2±8.4 29.6±1.1

U-RELAX 72.2±0.7 84.6±0.1 70.0±1.5 87.3±0.2 65.3±0.8 86.3±0.3

U-RELAX (E) 18.5±1.9 30.2±3.5 27.4±4.3 41.1±5.1 24.2±6.2 41.0±3.0

Relevance rank RELAX 58.2±0.1 72.1±0.4 53.8±0.2 70.5±0.3 53.1±0.1 72.4±0.3

RELAX (E) 22.6±0.6 34.5±1.1 29.1±2.6 43.5±1.9 26.8±3.2 43.6±2.1

U-RELAX 52.9±0.2 66.8±0.1 46.9±0.4 59.9±0.3 49.2±0.3 65.1±0.5

U-RELAX (E) 26.9±0.4 43.4±0.9 31.5±1.9 45.2±0.8 31.5±1.7 45.9±0.4

Scores are computed using the cosine similarity and the Euclidean distance (indicated by (E))

Table 7 Evaluation of zero versus noise masking strategy in terms of pointing game, top k, and relevance rank scores in percentages and averaged
over 3 runs

Scores Methods Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

Pointing game RELAX (zeros) 72.6±0.1 86.6±0.2 68.7±0.3 85.2±0.3 67.8±0.2 84.7±0.2

RELAX (noise) 72.0±0.5 86.0±0.3 66.6±0.1 84.3±0.7 67.7±0.5 85.1±0.3

Top k RELAX (zeros) 72.8±0.4 86.9±0.1 69.0±0.3 85.6±0.2 68.1±0.4 85.1±0.2

RELAX (noise) 72.4±0.4 86.5±0.1 66.0±0.3 84.2±0.2 68.2±0.3 85.3±0.2

Relevance rank RELAX (zeros) 56.4±0.0 70.2±0.1 54.2±0.2 69.8±0.1 52.4±0.1 69.1±0.0

RELAX (noise) 56.7±0.0 70.1±0.1 53.5±0.1 68.5±0.0 52.8±0.1 69.2±0.0

Higher is better and bold numbers highlight the top performance. Results indicate that zero masking provides the best performance

Fig. 10 Comparison of different masking strategies. Leftmost image
shows input, and second to left is the RELAX explanations with
the masking presented in the main paper. The center image is with
Bernoulli-noise (Dropout) directly on the input, and the remaining two

images are with Block Dropout with different block size. The example
illustrates that other masking strategies either fail completely, or require
per-image parameter tuning, which is impractical in most scenarios
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for all t > 0

P(| f (X1, . . . , XN ) − E[ f (X1, . . . , XN )|] ≥ t)

≤ 2e
−2t2∑N
n=1 c

2
n

(E2)

Proof See McDiarmid (1989).

Lemma 11.3 Let X1, . . . , XN and f be defined as in Lemma
11.2, then if each Xn satisfies Xn ∈ (an, bn) and f (X1, . . . ,

XN ) = ∑N
n=1 Xn, then cn = bn − an.

Proof See McDiarmid (1989).

We are now ready to prove the theorem. First, let

Xn = s(h, h̄n)Mi j (n)

N
, (E3)

and

f (X1, . . . , Xn) =
N∑

n=1

Xn . (E4)

Since s(·, ·) is bounded in (0, 1) (we use the cosine sim-
ilarity between vectors with non-negative elements (ReLU
outputs)), we have an = 0 and bn = 1/N , which gives
cn = 1/N by Lemma 11.3.

Now, observe that

f (X1, . . . , Xn) = 1

N

N∑

n=1

s(h, h̄n)Mi j (n) = R̄i j . (E5)

Fig. 11 Empirical evaluation of the derived bound for the number of
masks necessary for lowestimation error.Wecalculate the absolute error
as the number of masks increase, average over 10 randomly samples
images from the PASCAL VOC dataset. To obtain a value for Ri j , we
use 10,000 masks and average over 10 runs for a single sample. Results
indicate that the estimation error ismuch lower than the predicted bound

Combining Lemmas 11.2 and 11.3 then gives

P(|R̄i j − Ri j |] ≥ t) ≤ 2e
−2t2∑N

n=1(1/N )2 (E6)

for all t > 0. Inserting N = − ln(δ/2)/2t2 gives

P(|R̄i j − Ri j |] ≥ t) ≤ 2e
−2t2∑N

n=1(1/N )2 (E7)

= 2e
−2t2

(
− ln(δ/2)

2t2

)

(E8)

= 2eln(δ/2) (E9)

= δ, (E10)

Table 8 Pointing game, top k, and relevance rank scores in percentages and averaged over 3 runs

Scores Methods Supervised SimCLR SwAV

COCO VOC COCO VOC COCO VOC

Pointing game RELAX (16) 78.0±1.0 84.0±0.6 60.8±0.8 77.3±0.7 66.9±0.5 78.8±0.4

RELAX (20) 79.1±0.5 87.7±0.3 70.2±0.6 83.2±0.4 70.7±0.5 84.6±0.4

RELAX (50) 78.9±0.8 88.1±0.2 69.9±0.1 84.2±0.4 67.0±1.2 85.3±1.0

RELAX 72.6±0.1 86.6±0.2 68.7±0.3 85.2±0.3 67.8±0.2 84.7±0.2

Top k RELAX (16) 75.9±0.1 83.9±0.0 60.6±0.6 76.3±0.3 65.6±0.1 78.6±0.2

RELAX (20) 78.7±0.1 87.3±0.2 69.2±0.3 82.7±0.4 69.3±0.4 84.0±0.1

RELAX (50) 77.8±0.4 87.7±0.1 69.0±0.6 84.2±0.2 66.6±0.8 85.0±0.4

RELAX 72.8±0.4 86.9±0.1 69.0±0.3 85.6±0.2 68.1±0.4 85.1±0.2

Relevance rank RELAX (16) 52.0±0.0 60.0±0.0 43.9±0.0 56.8±0.0 46.0±0.1 56.7±0.0

RELAX (20) 57.9±0.0 67.3±0.0 49.5±0.1 64.2±0.1 49.8±0.1 64.0±0.1

RELAX (50) 58.4±0.1 72.5±0.0 51.8±0.1 69.2±0.0 52.5±0.2 69.8±0.0

RELAX 56.4±0.0 70.2±0.1 54.2±0.2 69.8±0.1 52.4±0.1 69.1±0.0

Scores computed with the masking strategy outline in the main manuscript and using the DropBlock algorithm with different patch size (indicated
in parenthesis)
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Table 9 Pointing game, top k,
and relevance rank scores in
percentages and averaged over 3
runs for vision transformers

Scores Methods ViT MAE
COCO VOC COCO VOC

Pointing game Saliency 37.1±0.0 46.2±0.0 20.8±0.0 28.3±0.0

Smooth Saliency 37.1±0.0 46.2±0.0 35.1±1.1 51.6±1.2

Guided Saliency 36.4±0.0 45.3±0.0 19.0±0.0 29.6±0.0

Integrated Gradients 52.2±0.5 65.2±2.5 14.9±0.0 26.0±0.0

Grad CAM 37.7±0.0 48.2±0.0 42.9±0.0 63.3±0.0

RELAX 69.1±0.3 85.2±0.5 60.0±1.4 74.9±0.9

U-RELAX 68.7±0.3 84.9±0.5 60.0±0.8 75.3±0.8

Top k Saliency 36.8±0.0 48.5±0.0 24.0±0.0 39.8±0.0

Smooth Saliency 36.8±0.0 48.5±0.0 37.6±0.0 56.5±0.1

Guided Saliency 36.3±0.0 46.2±0.0 24.6±0.0 40.3±0.0

Integrated Gradients 47.8±0.1 61.5±0.3 23.4±0.0 41.0±0.0

Grad CAM 35.7±0.0 47.8±0.0 39.2±0.0 55.8±0.0

RELAX 70.0±0.1 84.7±0.4 60.2±0.5 74.6±0.6

U-RELAX 69.6±0.0 84.4±0.4 60.1±0.4 74.7±0.6

Relevance rank Saliency 34.7±0.0 48.9±0.0 29.6±0.0 44.5±0.0

Smooth Saliency 34.7±0.0 48.9±0.0 34.4±0.0 49.1±0.0

Guided Saliency 33.9±0.0 47.9±0.0 29.7±0.0 44.6±0.0

Integrated Gradients 36.7±0.0 50.2±0.0 30.5±0.0 45.6±0.0

Grad CAM 33.1±0.0 47.4±0.0 32.8±0.0 47.3±0.0

RELAX 55.6±0.0 70.0±0.1 51.6±0.1 66.6±0.1

U-RELAX 52.7±0.1 65.3±0.1 51.0±0.2 63.9±0.2

Higher is better and bold numbers highlight the top performance. Results show that our method improves on
the baseline across all scores

Fig. 12 Absolute error of one-pass versus two-pass version of RELAX
for importance (leftmost figure) anduncertainty (rightmost figure), aver-
aged over 50 images from the VOC dataset. The figure shows how the
difference between the versions is small for both the importance and
uncertainty estimates

which concludes our proof.
In Fig. 11 we show an empirical validation the bound. We

calculate the absolute error as the number of masks increase,
averaged over 10 randomly sampled images from the PAS-
CAL VOC dataset. To obtain a value for Ri j , we use 10,000
masks and average over 10 runs for a single sample. The
results indicate that the true error is much lower than the pro-
posed bound, which we attribute to setting an = 0. While

Table 10 Monotonicity scores averaged over 3 runs for vision trans-
formers

Scores Methods ViT MAE

Monotonicity Saliency 14.2±0.0 3.6±0.3

Smooth Saliency 14.6±0.6 3.4±0.2

Guided Saliency 4.7±0.0 3.9±0.0

Integrated Gradients 12.8±0.3 1.9±0.4

Grad CAM 4.5±0.0 4.6±0.0

RELAX 17.7±0.4 15.4±0.3

U-RELAX 24.9±0.3 23.7±0.5

Higher is better and bold numbers highlight the top performance.
Results show that our method improves on the baseline

it is possible to obtain a similarity of 0, it is highly unlikely
since our masking strategy never removes all information in
an image.

Proof of Theorem 3.2

Proof Since s(·, ·) is a valid Mercer kernel, we can write
s(h, h̄n) = 〈φ(h), φ(h̄n)〉H. This gives

R̄i j = 1

N

N∑

n=1

〈φ(h), φ(h̄n)〉HMi j (n) (E11)
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Fig. 13 The figure shows the RELAX explanation and its uncertainty
for the representation of the leftmost imagewith two recent vision trans-
former architectures used as feature extractors. The first row displays
the explanations for the representation and the second row shows the
uncertainty associated with the different explanations. Red indicates
high values and blue indicates low values. In this example, the ViT

that is trained with label information produces a more focused explana-
tion, while MAE focus on larger parts of the image. Interestingly, both
models are more certain about importance of the rightmost cow in the
background. The image is taken from VOC Everingham et al. (2009)
(Color figure online)

Fig. 14 Example from the human evaluation experiment. Participants
were asked to select which explanation they preferred out of the 6 alter-
natives. For each of the images, the explanations were shuffled in a

random order. One of the explanations for each image was randomly
sampled from random noise, in order to assess if any participants would
select a nonsensical explanation
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Table 11 Monotonicity scores
averaged over 3 runs with a
VGG13 classifier

Scores Methods Supervised SimCLR SwAV

monotonicity Saliency 11.2±0.0 12.7±0.5 12.8±0.3

Smooth Saliency 14.4±0.7 12.6±0.6 12.3±0.6

Guided Saliency 13.2±0.4 12.5±0.1 11.6±0.9

Integrated Gradients 10.9±0.2 6.3±0.5 8.3±0.4

Grad CAM 19.2±0.4 16.2±0.1 15.8±0.3

RELAX 24.0±0.4 28.3±0.7 24.0±0.0

U-RELAX 29.3±0.4 26.1±0.7 18.7±0.8

Higher is better and bold numbers highlight the top performance. Results show that our method improves on
the baseline

= 〈φ(h),
1

N

N∑

n=1

φ(h̄n)Mi j (n)〉H (E12)

by the bilinearity of the inner product on H.

Proof of Theorem 3.3

Proof Observe that

R̄i j · N
∑N

n′=1 Mi j (n′)
(E13)

= N
∑N

n′=1 Mi j (n′)
· 1

N

N∑

n=1

s(h, h̄n)Mi j (n) (E14)

= 1
∑N

n′=1 Mi j (n′)

N∑

n=1

s(h, h̄n)Mi j (n) (E15)

= pi j (h) (E16)

R̄i j is therefore proportional to pi j (h).

Appendix F

We investigate the potential differences between the one-
pass and two-pass version of RELAX. For a given image, we
calculate the absolute error between the one-pass and two-
pass estimates for different number of masks. The results are
shown in Fig. 12 and illustrate that the difference between
the two methods is very small, particularly as the number of
masks increases. However, since the one-pass version com-
putes both the importance anduncertainty in onepass through
the data, it requires only half the number of masks compared
to the two pass version, thus increasing the computational
efficiency of RELAX.

Appendix G

We use RELAX to investigate the representation of recent
vision transformer architectures. Specifically, we investigate
the Vision Transformer (ViT) (Dosovitskiy et al., 2021) and
the Masked Autoencoder (MAE) (He et al., 2022), with the
same setting as in the main manuscript. Tables 9 and 10
shows the localisation and faithfulness scores, and Fig. 13
shows a qualitative comparison of the RELAX explanation.
Again, the scores show how RELAX outperforms all other
methods. Also, the representation created by the ViT model
give slightly superior performance to theMAEmodel, which
again illustrates that label information is useful to create high
quality representations.

Appendix H

Table 11 displays themonotonicity scorewith aVGG13 clas-
sifier. Similarly as with an Alexnet classifier, the proposed
methods improves upon the baseline.

Appendix I

The user study in the main manuscript was conducted by
having a group of participants select among competing expla-
nations for a random selection of images from the PASCAL
VOC dataset. The group of participants consisted of men and
women, where some had knowledge ofmachine learning and
other were uneducated. None of the participants have been
involved in the development of this work. Figure 14 displays
an example from the study. The participants were shown an
image with 6 competing explanations, and asked to chose
which one they preferred. To determine which explanation
each participant judged to be the “best”, they were told to
ask themselves the following questions:
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Fig. 15 Example from the VOC dataset

Fig. 16 Example from the COCO dataset

“Which of these explanations agree the most with how
you would explain the important content in the given
image?

For each image, the explanations were shuffled randomly.
The participants were shown 10 images, and asked to only
pick on explanation. Overall, 13 people participated in the
study.

There are several limitations. Both the number of images
and the number of participants could have been greater. The

participants had to chose one explanation, when in some
cases theymight havewanted to select none ormore explana-
tions. Also, the images could have been selected from other
datasets. There are also potential biases with the study. Most
participants are from one country and from a limited age
segment. Lastly, we did not control the type of screen that
participants performed their evaluation on, which could also
have an undesirable affect.
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Fig. 17 Example from the VOC dataset

Fig. 18 Example from the COCO dataset

Appendix J

This section presents additional qualitative results. Fig-
ures 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24 displays
examples of explanations and their associated uncertainty,
provided by RELAX, for images from the VOC and COCO
dataset. Figure 15 displays an example where all feature
extractors agree in terms of importance, but the degree of

uncertainty varies. Figure 16 shows an example where only
SwAV highlight both objects as important for the represen-
tation. Similarly, Fig. 17 displays an example where only
SwAV is considering both the person and the car as impor-
tant for the representation. Figures 17, 18, 19, 20, 21, 22,
23 and 24 shows similar examples where RELAX provides
insights into the different feature extractors.
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Fig. 19 Example from the VOC dataset

Fig. 20 Example from the COCO dataset
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Fig. 21 Example from the VOC dataset

Fig. 22 Example from the COCO dataset
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Fig. 23 Example from the VOC dataset

Fig. 24 Example from the COCO dataset

123



International Journal of Computer Vision (2023) 131:1584–1610 1609

References

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim,
B. (2018). Sanity checks for saliency maps. In Advances in neural
information processing systems. Curran Associates, Inc.

Alvarez-Melis, D., & Jaakkola, T. S. (2018). Towards robust inter-
pretability with self-explaining neural networks. InProceedings of
the 32nd international conference on neural information process-
ing systems (pp. 7786–7795). Curran Associates Inc., Red Hook,
NY, USA, NIPS’18.

Antoran, J., Bhatt, U., Adel, T., Weller, A., & Hernandez-Lobato, J.
M. (2020). Getting a clue: A method for explaining uncertainty e
(2021). Getting a clue: A method for explaining uncertainty esti-
mates. In International conference on learning representations.

Arras, L., Osman, A., & Samek, W. (2022). Clevr-xai: A benchmark
dataset for the ground truth evaluation of neural network expla-
nations. Information Fusion, 81, 14–40. https://doi.org/10.1016/j.
inffus.2021.11.008

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., &
Samek,W. (2015). On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation. PLoS ONE,
10(7), e0130140. https://doi.org/10.1371/journal.pone.0130140

Bau,D., Zhou,B.,Khosla,A.,Oliva,A.,&Torralba,A. (2017).Network
dissection: Quantifying interpretability of deep visual representa-
tions. In IEEE computer vision and pattern recognition.

Bykov, K., Höhne, M. M. C., Müller, K. R., Nakajima, S., & Kloft, M.
(2020) How much can I trust you?—Quantifying uncertainties in
explaining neural networks. CoRR arXiv:2006.09000

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin,
A. (2020). Unsupervised learning of visual features by contrasting
cluster assignments. InAdvances in neural information processing
systems (pp. 9912–9924).

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., & Su, J. K. (2019).
This looks like that: Deep learning for interpretable image recogni-
tion. In International conference on neural information processing
systems.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple
framework for contrastive learning of visual representations. In
International conference on machine learning (pp. 1597–1607).

Chen, X., & He, K. (2021). Exploring simple siamese representation
learning. In IEEE computer vision and pattern recognition (pp.
15750–15758).

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. IEEE Computer Vision and Pattern Recognition,
1, 886–893. https://doi.org/10.1109/CVPR.2005.177

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009).
Imagenet: A large-scale hierarchical image database. In IEEE
Computer Vision and Pattern Recognition (pp. 248–255). IEEE.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of inter-
pretable machine learning. arXiv:1702.08608

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly,
S., Uszkoreit, J., & Houlsby, N. (2021) An image is worth 16x16
words: Transformers for image recognition at scale. In Interna-
tional conference on learning representations. https://openreview.
net/forum?id=YicbFdNTTy

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisser-
man, A. (2009). The pascal visual object classes (VOC) challenge.
International Journal of Computer Vision, 88, 303–338. https://
doi.org/10.1007/s11263-009-0275-4

Falcon, W., & Cho, K. (2020). A framework for contrastive self-
supervised learning and designing a new approach. arXiv preprint
arXiv:2009.00104.

Fong, R., & Vedaldi, A. (2018). Net2vec: Quantifying and explaining
how concepts are encoded by filters in deep neural networks. In

IEEE computer vision and pattern recognition (pp. 8730–8738).
https://doi.org/10.1109/CVPR.2018.00910

Fong, R., Patrick, M., & Vedaldi, A. (2019). Understanding deep net-
works via extremal perturbations and smooth masks. In IEEE
International Conference on Computer Vision.

Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black
boxes by meaningful perturbation. In IEEE international confer-
ence on computer vision (pp. 3449–3457). https://doi.org/10.1109/
ICCV.2017.371

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approx-
imation: Representing model uncertainty in deep learning. In
International conference on machine learning (pp. 1050–1059).

Ghiasi, G., Lin, T. Y., & Le, Q. V. (2018). Dropblock: A regularization
method for convolutional networks. In International conference
on neural information processing systems (pp. 10750–10760).

He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learning for
image recognition. In 2016 CVPR (pp. 770–778). https://doi.org/
10.1109/CVPR.2016.90

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum
contrast for unsupervised visual representation learning. In IEEE
computer vision and pattern recognition.

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., & Girshick, R. (2022).
Masked autoencoders are scalable vision learners. In Proceedings
of the IEEE/CVFconference on computer vision andpattern recog-
nition (CVPR) (pp. 16000–16009).

Karimi, A.H., Barthe, G., Balle, B., &Valera, I. (2020).Model-agnostic
counterfactual explanations for consequential decisions. In Inter-
national conference on artificial intelligence and statistics (pp.
895–905).

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., & Viegas,
F. (2018). Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TCAV). In International
conference on machine learning (pp. 2673–2682).

Koh, P. W., & Liang, P. (2017). Understanding black-box predictions
via influence functions. In International conference on machine
learning (pp. 1885–1894).

Kolek, S., Nguyen, D. A., Levie, R., Bruna, J., & Kutyniok, G.(2021).
A rate-distortion framework for explaining black-box model deci-
sions. arXiv:2110.08252

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Ima-
genet classification with deep convolutional neural networks.
In: F. Pereira, C. Burges, L. Bottou, et al. (Eds.), Advances
in Neural Information Processing Systems (Vol 25). Curran
Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Laina, I., Fong, R., & Vedaldi, A. (2020). Quantifying learnability and
describability of visual concepts emerging in representation learn-
ing. In Advances in neural information processing systems.

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting
outliers: Do not use standard deviation around the mean, use abso-
lute deviation around the median. Journal of Experimental Social
Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.
03.013

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollar, P. & Lawrence Zitnick, C. (2014). Microsoft COCO:
Common objects in context. In: Computer Vision—ECCV 2014
(pp. 740–755). Springer International Publishing. https://doi.org/
10.1007/978-3-319-10602-1_48

Lin, Y., Gou, Y., Liu, Z., Li, B., Lv, J., & Peng, X. (2021). Completer:
Incomplete multi-view clustering via contrastive prediction. In
IEEE computer vision and pattern recognition (pp. 11174–11183).

Liu, W., Lin, R., Liu, Z., Xiong, L., Scholkopf, B., & Weller, A.
(2021). Learning with hyperspherical uniformity. In Proceed-
ings of the 24th international conference on artificial intelligence
and statistics, Proceedings of machine learning research (Vol.

123

https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1371/journal.pone.0130140
http://arxiv.org/abs/2006.09000
https://doi.org/10.1109/CVPR.2005.177
http://arxiv.org/abs/1702.08608
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
http://arxiv.org/abs/2009.00104
https://doi.org/10.1109/CVPR.2018.00910
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/2110.08252
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48


1610 International Journal of Computer Vision (2023) 131:1584–1610

130, pp. 1180–1188). PMLR. http://proceedings.mlr.press/v130/
liu21d.html

Losch, M., Fritz, M., & Schiele, B. (2021). Semantic bottlenecks:
Quantifying and improving inspectability of deep representations.
International Journal of Computer Vision, 129(11), 3136–3153.
https://doi.org/10.1007/s11263-021-01498-0

McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd
ed.). Chapman & Hall.

McDiarmid, C. (1989). On the method of bounded difference (pp.
148–188). Cambridge University Press. https://doi.org/10.1017/
CBO9781107359949.008

Mercer, J. (1909). Functions of positive and negative type, and their
connection with the theory of integral equations. Philosophical
Transactions of the Royal Society, London, 209, 415–446.

Molnar, C. (2022). Interpretable machine learning. 2nd edn. https://
christophm.github.io/interpretable-ml-book

Mordvintsev, A., Olah, C., & Tyka, M. (2015). Inceptionism: Going
deeper into neural networks. https://research.googleblog.com/
2015/06/inceptionism-going-deeper-into-neural.html

Nguyen,A.,&Martinez,M.R. (2020). On quantitative aspects ofmodel
interpretability. arXiv:2007.07584

Nordhaug Myhre, J., Øvind Mikalsen, K., & Løkse, S. (2018). Robust
clustering using a kNN mode seeking ensemble. Pattern Recogni-
tion, 76, 491–505. https://doi.org/10.1016/j.patcog.2017.11.023

Parzen, E. (1962). On estimation of a probability density function and
mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.
https://doi.org/10.1214/aoms/1177704472

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Benoit Steiner, L., Fang, J. B., & Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning
library. In Advances in neural information processing systems (pp.
8024–8035).

Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A., & Ruggieri, S.
(2019).Meaningful explanations of black boxAI decision systems.
Proceedings of the AAAI Conference on Artificial Intelligence, 33,
9780–9784. https://doi.org/10.1609/aaai.v33i01.33019780

Petsiuk, V., Das, A., & Saenko, K. (2018). Rise: Randomized input
sampling for explanation of black-box models. In Proceedings of
the British machine vision conference.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust
you?”: Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1135–1144), San Francisco, CA,
USA, August 13–17, 2016.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., & Müller, K. R.
(2017). Evaluating the visualization of what a deep neural network
has learned. In IEEE TNNLS (pp. 2660–2673). https://doi.org/10.
1109/TNNLS.2016.2599820

Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller,
K. R. (2021). Explaining deep neural networks and beyond: A
review of methods and applications. In Proceedings of the IEEE
(pp. 247–278).

Schulz, K., Sixt, L., Tombari, F., & Landgraf, T. (2020). Restricting
the flow: Information bottlenecks for attribution. In International
conference on learning representations.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., &
Batra, D. (2017). Grad-cam: Visual explanations from deep net-
works via gradient-based localization. In 2017 IEEE international
conference on computer vision (ICCV) (pp. 618–626). https://doi.
org/10.1109/ICCV.2017.74

Shi, T., Belkin, M., & Yu, B. (2009). Data spectroscopy: Eigenspaces
of convolution operators and clustering. The Annals of Statistics,
37(6B), 3960–3984. https://doi.org/10.1214/09-AOS700

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional
networks for large-scale image recognition. In International con-
ference on learning representations.

Smilkov, D., Thorat, N., Kim, B., Viegas, F., &Wattenberg, M. (2017).
Smoothgrad: Removing noise by adding noise. In International
conference on machine learning visualization workshop.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015).
Striving for simplicity: The all convolutional net. In ICLR Work-
shop.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdi-
nov, R. (2014). Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15,
1929–1958.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution
for deep networks. In D. Precup, & Y. W. Teh (Eds.), Proceedings
of the 34th international conference on machine learning, ICML
2017, Sydney, NSW, Australia, 6–11 August 2017, Proceedings
of Machine Learning Research (Vol. 70, pp. 3319–3328). PMLR.
http://proceedings.mlr.press/v70/sundararajan17a.html

Teye, M., Azizpour, H., & Smith, K. (2018). Bayesian uncertainty
estimation for batch normalized deep networks. In International
conference on machine learning (pp. 4907–4916).

Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition (4th
ed.). Academic Press.

Tonekaboni, S., Joshi, S., McCradden,M. D., &Goldenberg, A. (2019).
What clinicians want: Contextualizing explainable machine learn-
ing for clinical end use. In Machine learning for healthcare
conference (pp. 359–380).

Wang, W., Arora, R., Livescu, K., & Bilmes, J. (2015) On deep
multi-view representation learning. In International conference on
machine learning (pp. 1083–1092).

Wen, J., Wu, Z., Zhang, Z., Fei, L., Zhang, B., & Xu, Y. (2020). Cdimc-
net: Cognitive deep incomplete multi-view clustering network. In
International joint conference on artificial intelligence.

West, D. H. D. (1979). Updating mean and variance estimates: An
improved method. Communications of the ACM, 22(9), 532–535.
https://doi.org/10.1145/359146.359153

Wickstrøm, K., Kampffmeyer, M., & Jenssen, R. (2018). Uncertainty
modeling and interpretability in convolutional neural networks for
polyp segmentation. In IEEE International workshop on machine
learning for signal processing (pp. 1–6).

Wickstrøm, K., Kampffmeyer, M., & Jenssen, R. (2020). Uncertainty
and interpretability in convolutional neural networks for semantic
segmentation of colorectal polyps. Medical Image Analysis, 60,
101619.

Wickstrøm, K., Mikalsen, K., Kampffmeyer, M., Revhaug, A., &
Jenssen, R. (2021). Uncertainty-aware deep ensembles for reliable
and explainable predictions of clinical time series. IEEE Journal
of Biomedical and Health Informatics, 25(7), 2435–2444. https://
doi.org/10.1109/JBHI.2020.3042637

Yang, B., Fu, X., Sidiropoulos, N. D., & Hong, M. (2017.) Towards k-
means-friendly spaces: Simultaneous deep learning and clustering.
In International conference onmachine learning (pp. 3861–3870).

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding con-
volutional networks. In D. Fleet, T. Pajdla, B. Schiele, et al. (Eds.),
European conference on computer vision (pp. 818–833).

Zhang, J., Bargal, S. A., Lin, Z., Brandt, J., Shen, X., & Sclaroff, S.
(2017). Top-down neural attention by excitation backprop. Inter-
national Journal of Computer Vision, 126(10), 1084–1102. https://
doi.org/10.1007/s11263-017-1059-x

Zhang, Y., Song, K., Sun, Y., Tan, S., & Udell, M. (2019). “Why should
you trust my explanation?” Understanding uncertainty in LIME
explanations. In Workshop on AI for social good.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://proceedings.mlr.press/v130/liu21d.html
http://proceedings.mlr.press/v130/liu21d.html
https://doi.org/10.1007/s11263-021-01498-0
https://doi.org/10.1017/CBO9781107359949.008
https://doi.org/10.1017/CBO9781107359949.008
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://arxiv.org/abs/2007.07584
https://doi.org/10.1016/j.patcog.2017.11.023
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1609/aaai.v33i01.33019780
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1214/09-AOS700
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.1145/359146.359153
https://doi.org/10.1109/JBHI.2020.3042637
https://doi.org/10.1109/JBHI.2020.3042637
https://doi.org/10.1007/s11263-017-1059-x
https://doi.org/10.1007/s11263-017-1059-x

	RELAX: Representation Learning Explainability
	Abstract
	1 Introduction
	2 Related Work
	3 Representation Learning Explainability
	3.1 RELAX
	3.2 Uncertainty in Explanations
	3.3 U-RELAX: Uncertainty Filtered Explanations
	3.4 One-Pass Version of RELAX 

	4 Evaluation and Baseline
	4.1 Evaluation of Explanations
	4.2 Representation Explainability Baseline

	5 Experiments
	5.1 Qualitative Results
	Are all instances of the same object equally important?
	What features are important in complex images with numerous objects?

	5.2 Quantitative Results
	5.3 Human Evaluation
	5.4 U-RELAX Hyperparameter Evaluation
	5.5 Use Case I: Multi-View Clustering
	5.6 Use Case II: Explaining HOG Features

	6 Conclusion
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	References




