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Abstract
Remote photoplethysmography (rPPG), which aims at measuring heart activities and physiological signals from facial video
without any contact, has great potential in many applications (e.g., remote healthcare and affective computing). Recent deep
learning approaches focus on mining subtle rPPG clues using convolutional neural networks with limited spatio-temporal
receptive fields, which neglect the long-range spatio-temporal perception and interaction for rPPG modeling. In this paper,
we propose two end-to-end video transformer based architectures, namely PhysFormer and PhysFormer++, to adaptively
aggregate both local and global spatio-temporal features for rPPG representation enhancement. As key modules in Phys-
Former, the temporal difference transformers first enhance the quasi-periodic rPPG features with temporal difference guided
global attention, and then refine the local spatio-temporal representation against interference. To better exploit the temporal
contextual and periodic rPPG clues, we also extend the PhysFormer to the two-pathway SlowFast based PhysFormer++ with
temporal difference periodic and cross-attention transformers. Furthermore, we propose the label distribution learning and a
curriculum learning inspired dynamic constraint in frequency domain, which provide elaborate supervisions for PhysFormer
and PhysFormer++ and alleviate overfitting. Comprehensive experiments are performed on four benchmark datasets to show
our superior performance on both intra- and cross-dataset testings. Unlike most transformer networks needed pretraining from
large-scale datasets, the proposed PhysFormer family can be easily trained from scratch on rPPG datasets, which makes it
promising as a novel transformer baseline for the rPPG community.
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1 Introduction

Physiological signals such as heart rate (HR), respiration fre-
quency (RF), and heart rate variability (HRV) are important
vital signs to be measured in many circumstances, especially
for healthcare or medical purposes. Traditionally, the elec-
trocardiography (ECG) and photoplethysmograph (PPG) or
blood volume pulse (BVP) are the two most common ways
for measuring heart activities and corresponding physiologi-
cal signals. However, both ECG and PPG/BVP sensors need
to be attached to body parts, which may cause discomfort

1 Great Bay University, Dongguan 523000, China

2 University of Oxford, Oxford OX13PJ, UK

3 Xi’an Jiaotong University, Xi’an 710049, China

4 The University of Hong Kong, Hong Kong, China

5 University of Oulu, 90014 Oulu, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-023-01758-1&domain=pdf
http://orcid.org/0000-0001-6505-3304


1308 International Journal of Computer Vision (2023) 131:1307–1330

and are inconvenient for long-term monitoring. To counter
this issue, remote photoplethysmography (rPPG) (Chen et
al., 2018; Liu et al., 2021b; Yu et al., 2021) methods are
developing fast in recent years, which aim to measure heart
activity remotely without any contact.

In earlier studies of facial rPPGmeasurement, most meth-
ods analyze subtle color changes on facial regions of interest
(ROI) with classical signal processing approaches (Li et al.,
2014; Magdalena Nowara et al., 2018; Poh et al., 2010a,
2010b; Tulyakov et al., 2016; Verkruysse et al., 2008).
Besides, there are a few color subspace transformation meth-
ods (De Haan & Jeanne, 2013; Wang et al., 2016) which
utilize all skin pixels for rPPG measurement. Based on the
prior knowledge from traditional methods, a few learning
based approaches (Hsu et al., 2017; Niu et al., 2018, 2019a;
Qiu et al., 2018) are designed as non-end-to-end fashions.
ROI based preprocessed signal representations [e.g., time-
frequency map (Hsu et al., 2017) and spatio-temporal map
(Niu et al., 2018, 2019a)] are generated first, and then learn-
able models could capture rPPG features from these maps.
However, these methods need the strict preprocessing pro-
cedure and neglect the global contextual clues outside the
pre-defined ROIs. Meanwhile, more and more end-to-end
deep learning based rPPG methods (Chen & McDuff, 2018;
Liu et al., 2020; Špetlík et al., 2018; Yu et al., 2019a; 2019b
are developed, which treat facial video frames as input and
predict rPPG and other physiological signals directly. How-
ever, pure end-to-end methods are easily influenced by the
complex scenarios (e.g., with head movement and various
illumination conditions) and rPPG-unrelated features can not
be ruled out in learning, resulting in huge performance drops
(Yu et al., 2020) in realistic datasets [e.g., VIPL-HR (Niu et
al., 2019a)].

Recently, due to its excellent long-range attentional mod-
eling capacities in solving sequence-to-sequence issues,

rPPG signals

t1 t2 t3

Direction

Query Key interaction

Fig. 1 The trajectories of rPPG signals around t1, t2, and t3 share
similar properties (e.g., trends with rising edge first then falling edge
later, and relatively high magnitudes) induced by skin color changes.
It inspires the long-range spatio-temporal attention (e.g., blue tube
around t1 interactedwith red tubes from intra- and inter-frames) accord-
ing to their local temporal difference features for quasi-periodic rPPG
enhancement. Here ‘tube’ indicates the same regions across short-time
consecutive frames (Color figure online)

transformer (Han et al., 2022; Lin et al., 2022) has been suc-
cessfully applied in many artificial intelligence tasks such as
natural language processing (NLP) (Vaswani et al., 2017),
image (Dosovitskiy et al., 2020) and video (Bertasius et al.,
2021) analysis. Similarly, rPPG measurement from facial
videos can be treated as a video sequence to signal sequence
problem, where the long-range contextual clues should be
exploited for semantic modeling. As shown in Fig. 1, rPPG
clues fromdifferent skin regions and temporal locations (e.g.,
signal trajectories around t1, t2, and t3) share similar prop-
erties (e.g., trends with rising edge first then falling edge
later and relative high magnitudes), which can be utilized
for long-range feature modeling and enhancement. How-
ever, different from the most video tasks aiming at semantic
motion representation, facial rPPG measurement focuses on
capturing subtle skin color changes, whichmakes it challeng-
ing for global spatio-temporal perception. Besides, the rPPG
measurement task usually relies on periodic hidden visual
dynamics, and the existing deep end-to-end models are weak
in representing such clues. Furthermore, video-based rPPG
measurement is usually a long-timemonitoring task, and it is
challenging to design and train transformers with long video
sequence inputs.

Motivated by the discussions above, we propose two
end-to-end video transformer architectures, namely Phys-
Former and PhysFormer++, for remote physiological mea-
surement. On the one hand, the cascaded temporal difference
transformer blocks in PhysFormer benefit the rPPG fea-
ture enhancement via global spatio-temporal attention based
on the fine-grained temporal skin color differences. Fur-
thermore, the two-pathway SlowFast temporal difference
transformer based PhysFormer++ with periodic- and cross-
attention is able to efficiently capture the temporal contextual
and periodic rPPG clues from facial videos. On the other
hand, to alleviate the interference-induced overfitting issue
and complement theweak temporal supervision signals, elab-
orate supervision in frequency domain is designed, which
helps the PhysFormer family learn more intrinsic rPPG-
aware features.

This paper is an extended version of our prior work (Yu
et al., 2022) accepted by CVPR 2022. The main differ-
ences with the conference version are as follows: (1) besides
the temporal difference transformer based PhysFormer, we
propose the novel SlowFast video transformer architecture
PhysFormer++ for rPPG measurement task; (2) based on
the temporal difference transformer, the temporal difference
periodic transformer and temporal difference cross-attention
transformer are proposed to enhance the rPPG periodic per-
ception and cross-tempo rPPG dynamics, respectively; (3)
a detailed overview about the traditional, non-end-to-end
learning based, and end-to-end learning based rPPG mea-
surement methods is discussed in the related work; (4) more
elaborate experimental results, visualization, and efficiency
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analysis are given for the PhysFormer family. To sum up, the
main contributions of this paper are listed:

• We propose the PhysFormer family, i.e., PhysFormer
and PhysFormer++, which mainly consists of a pow-
erful video temporal difference transformer backbone.
To our best knowledge, it is the first time to explore the
long-range spatio-temporal relationship for reliable rPPG
measurement. Besides, the proposed temporal difference
transformer is potential for broader fine-grained or peri-
odic video understanding tasks in computer vision (e.g.,
video action recognition and repetition counting) due to
its excellent spatio-temporal representation capacitywith
local temporal difference description and global spatio-
temporal modeling.

• We propose the two-pathway SlowFast architecture for
PhysFormer++ to efficiently leverage both fine-grained
and semantic tempo rPPG clues. Specifically, the tempo-
ral difference periodic and cross-attention transformers
are respectively designed for the Slow and Fast pathways
to enhance the representation capacity of the periodic
rPPG dynamics.

• We propose an elaborate recipe to supervise Phys-
Former with label distribution learning and curriculum
learning guided dynamic loss in frequency domain to
learn efficiently and alleviate overfitting. Such curricu-
lum learning guided dynamic strategy could benefit not
only the rPPG measurement task but also general deep
learning tasks such as multi-task learning and multi-loss
adjusting.

• We conduct intra- and cross-dataset testings and show
that the proposed PhysFormer achieves superior or on
par state-of-the-art performance without pretraining on
large-scale datasets like ImageNet-21K.

In the rest of the paper, Sect. 2 provides the related work
about rPPG measurement and vision transformer. Section 3
first introduces the detailed architectures of the PhysFormer
andPhysFormer++, and then formulates the label distribution
learning and curriculum learning guided dynamic supervi-
sion for rPPG measurement. Section 4 introduces the four
rPPG benchmark datasets and evaluation metrics, and pro-
vides rigorous ablation studies, visualizations and evaluates
the performance of the proposed models. Finally, a conclu-
sion is given in Sect. 5.

2 RelatedWork

In this section, we provide a brief discussion of the related
facial rPPG measurement approaches. As shown in Table 1,
these approaches can be generally categorized into tradi-
tional, non-end-to-end learning, and end-to-end learning

based methods. We also briefly review the transformer archi-
tectures for vision tasks.

2.1 rPPGMeasurement

Traditional Approaches An early study of rPPG-based
physiological measurement was reported in Verkruysse et
al. (2008). Plenty of traditional hand-crafted approaches
have been developed in this field since then. Compared with
coarsely averaging arbitrary color channel from the detected
full face region, selectivemerging information from different
color channels (Poh et al., 2010a, 2010b) from different ROIs
(Lam & Kuno, 2015; Li et al., 2014) with adaptive temporal
filtering (Li et al., 2014) are proven to be more efficient for
subtle rPPG signal recovery. To improve the signal-to-noise
rate of the recovered rPPG signals, several signal decom-
position methods such as independent component analysis
(ICA) (Lam & Kuno, 2015; Poh et al., 2010a, 2010b) and
matrix completion (Tulyakov et al., 2016) are also proposed.
To alleviate the impacts of the skin tone and head motion,
several color space projection [e.g., chrominance subspace
(De Haan & Jeanne, 2013) and skin-orthogonal space (Wang
et al., 2016)] methods are developed. Despite remarkable
early-stage progresses, these approaches have the following
limitations: (1) they require empirical knowledge to design
the components (e.g., hyperparameter in signal processing
filtering); (2) there is a lack of supervised learning models
to counter data variations, especially in challenging environ-
ments with serious interference.

Non-End-to-End Learning Approaches In recent years,
deep learning based approaches dominate the field of rPPG
measurement due to the strong spatio-temporal representa-
tion capabilities. One representative framework is to learn
robust rPPG features from the facial ROI-based spatio-
temporal signal map (STmap). STmap (Niu et al., 2018,
2019b) or its variants [e.g.,multisacle STmap (Lu et al., 2021;
Niu et al., 2020) and chrominance STmap (Lu&Han, 2021)]
are first extracted from predefined facial ROIs on different
color spaces, and then classical convolutional neural network
(CNN) [e.g., ResNet (He et al., 2016)] and recurrent neural
network (RNN) [e.g., GRU (Cho et al., 2014)] are cascaded
for rPPG feature representation. The STmap-based non-end-
to-end learning framework focuses on learning an underlying
mapping from the input feature maps to the target rPPG sig-
nals. With dense raw rPPG information and less irrelevant
elements (e.g., face-shape attributes), these methods usually
converge faster and achieve reasonable performance against
head movement but need explicit and exhaustive preprocess-
ings.

End-to-End Learning Approaches Besides learning upon
handcraftedSTmaps, end-to-end learning fromfacial sequence
directly is also favorite. Both spatial 2DCNN networks
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(Chen & McDuff, 2018; Špetlík et al., 2018) and spatio-
temporal models (Gideon & Stent, 2021; Liu et al., 2020,
2023; Nowara et al., 2021; Yu et al., 2019a, 2019b, 2020)
are developed for rPPG feature representation. Yu et al.
(2019a) investigates the recurrent methods (PhysNet-LSTM,
PhysNet-ConvLSTM) for rPPGmeasuremnt. However, such
CNN+LSTM based architectures are good at long-range
sequential modeling via LSTM but fail to explore long-range
intra-frame spatial relationship using CNN with local con-
volutions. In contrast, with spatial transformer backbone and
temporal shift module, EfficientPhys (Liu et al., 2023) is able
to explore long-range spatial but only short-term temporal
relationship. In other words, existing end-to-end methods
only consider the spatio-temporal rPPG features from local
neighbors and adjacent frames but neglect the long-range
relationship among quasi-periodic rPPG features.

Compared with the non-end-to-end learning based meth-
ods, end-to-end approaches are less dependent on task-
related prior knowledge and handcrafted engineering (e.g.,
STmap generation) but rely on diverse and large-scale data
to alleviate the problem of overfitting. To enhance the long-
range contextual spatio-temporal representation capacities
and alleviate the data-hungry requirement of the deep rPPG
models, we propose the PhysFormer and PhysFormer++
architectures, which can be easily trained from scratch on
rPPG datasets with the elaborate supervision recipe.

2.2 Transformer for Vision Tasks

Due to thepowerful self-attentionbased long-rangemodeling
capacity, transformer (Lin et al., 2022; Vaswani et al., 2017)
has been successfully applied in the field ofNLP tomodel the
contextual relationship for sequential data. Then vision trans-
former (ViT) (Dosovitskiy et al., 2020) is proposed recently
by feeding transformer with sequences of image patches for
image classification. Many other ViT variants (Chen et al.,
2021a; Ding et al., 2021; Han et al., 2022, 2021; Khan et
al., 2021; Liu et al., 2021d; Touvron et al., 2021; Wang et
al., 2021b; Yuan et al., 2021) are proposed from then, which
achieve promising performance compared with its counter-
part CNNs for image analysis tasks (Carion et al., 2020; He
et al., 2021; Zheng et al., 2020). Recently, some works intro-
duce vision transformer for video understanding tasks such as
action recognition (Arnab et al., 2021; Bertasius et al., 2021;
Bulat et al., 2021; Fan et al., 2021; Girdhar et al., 2018; Liu
et al., 2021e; Neimark et al., 2021), action detection (Liu
et al., 2021c; Wang et al., 2021a; Xu et al., 2021; Zhao et
al., 2021), video super-resolution (Cao et al., 2021), video
inpainting (Liu et al., 2021a; Zeng et al., 2020), and 3D ani-
mation (Chen et al., 2021b, 2021c). Some works (Girdhar et
al., 2018; Neimark et al., 2021) conduct temporal contextual
modeling with transformer based on single-frame features
from pretrained 2D networks, while other works (Arnab et

al., 2021; Bertasius et al., 2021; Bulat et al., 2021; Fan et
al., 2021; Liu et al., 2021e) mine the spatio-temporal atten-
tions via video transformer directly. Most of these works are
incompatible for long-video-sequence (> 150 frames) sig-
nal regression task. There are two related works (Liu et al.,
2023; Yu et al., 2022) using ViT for rPPG feature represen-
tation. TransRPPG (Yu et al., 2022) extracts rPPG features
from the preprocessed signal maps via ViT for face 3D mask
presentation attack detection (Yu et al., 2022). Based on the
temporal shift networks (Lin et al., 2018; Liu et al., 2020),
EfficientPhys-T (Liu et al., 2023) adds several Swin Trans-
former (Liu et al., 2021d) layers for global spatial attention.
Different from these two works, the proposed PhysFormer
andPhysFormer++ are end-to-end video transformers,which
are able to capture long-range spatio-temporal attentional
rPPG features from facial video directly.

3 Methodology

We will first introduce the architecture of PhysFormer and
PhysFormer++ in Sects. 3.1 and 3.2, respectively. Then we
will introduce label distribution learning for rPPG measure-
ment in Sect. 3.3, and at last present the curriculum learning
guided dynamic supervision in Sect. 3.4.

3.1 PhysFormer

As illustrated in Fig. 2, PhysFormer consists of a shallow
stem Estem, a tube tokenizer Etube, N temporal difference
transformer blocks Ei

trans (i = 1, ..., N ) and a rPPG pre-
dictor head. Inspired by the study in Xiao et al. (2021), we
adopt a shallow stem to extract coarse local spatio-temporal
features, which benefits the fast convergence and clearer sub-
sequent global self-attention. Specifically, the stem is formed
by three convolutional blocks with kernel size (1 × 5 × 5),
(3 × 3 × 3) and (3 × 3 × 3), respectively. Each convolu-
tion operator is cascaded with a batch normalization (BN),
ReLU and MaxPool. The pooling layer only halves the spa-
tial dimension. Therefore, given an RGB facial video input
X ∈ R

3×T×H×W , the stem output Xstem = Estem(X),
where Xstem ∈ R

D×T×H/8×W/8, and D, T , W , H indicate
channel, sequence length, width, height, respectively. Then
Xstem would be partitioned into spatio-temporal tube tokens
X tube ∈ R

D×T ′×H ′×W ′
via the tube tokenizer Etube. Subse-

quently, the tube tokens will be forwarded with N temporal
difference transformer blocks and obtain the global-local
refined rPPG features X trans, which has the same dimen-
sions with X tube. Finally, the rPPG predictor head temporally
upsamples, spatially averages, and projects the features X trans

to 1D signal Y ∈ R
T .

Tube Tokenization Here the coarse feature Xstem would be
partitioned into non-overlapping tube tokens viaEtube(Xstem),
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Fig. 2 Framework of the PhysFormer. It consists of a shallow stem, a
tube tokenizer, several temporal difference transformers, and a rPPG
predictor head. The temporal difference transformer is formed from
the Temporal Difference Multi-head Self-attention (TD-MHSA) and

Spatio-temporal Feed-forward (ST-FF) modules, which enhances the
global and local spatio-temporal representation, respectively. ‘TDC’ is
short for the temporal difference convolution (Yu et al., 2020, 2022)

which aggregates the spatio-temporal neighbor semantics
within the tube region and reduces computational costs for
the subsequent transformers. Specifically, the token tokenizer
consists of a learnable 3D convolution with the same ker-
nel size and stride (non-overlapping setting) as the targeted
tube size Ts × Hs × Ws . Thus, the expected tube token map
X tube ∈ R

D×T ′×H ′×W ′
has length, height and width

T ′ =
⌊
T

Ts

⌋
, H ′ =

⌊
H/8

Hs

⌋
,W ′ =

⌊
W/8

Ws

⌋
. (1)

Please note that there are no positional embeddings after the
tube tokenization as the stem with cascaded convolutions
and poolings at early stage already captures relative spatio-
temporal positional information (Hassani et al., 2021).

Temporal Difference Multi-head Self-Attention (TD-MHSA)
In self-attentionmechanism (Dosovitskiy et al., 2020;Vaswani
et al., 2017), the relationship between the tokens is mod-
eled by the similarity between the projected query-key pairs,
yielding the attention score. Instead of point-wise linear pro-
jection, we utilize temporal difference convolution (TDC)
(Yu et al., 2020, 2022) for query (Q) and key (K ) projection,
which could capture fine-grained local temporal difference
features for subtle color change description. TDCwith learn-
able w can be formulated as

TDC(x) =
∑
pn∈R

w(pn) · x(p0 + pn)

︸ ︷︷ ︸
vanilla 3D convolution

+θ · (−x(p0) ·
∑

pn∈R′
w(pn))

︸ ︷︷ ︸
temporal difference term

,

(2)

where p0 = (0, 0, 0) indicates the current spatio-temporal
location. R = {

(−1,−1,−1), (−1,−1, 0), . . . , (0, 1, 1),
(1, 1, 1)

}
indicates the sampled local (3 × 3 × 3) spatio-

temporal receptive field cube for 3D convolution in both
current (t0) and adjacent time steps (t−1 and t1), while R′
only indicates the local spatial regions in the adjacent time
steps (t-1 and t1). The hyperparameter θ ∈[0, 1] tradeoffs
the contribution of temporal difference. The higher value of
θ means the more importance of temporal difference infor-
mation (e.g., trends of the skin color changes). Specially,
TDC degrades to vanilla 3D convolution when θ = 0. Then
query and key are projected via unshared TDC and BN as

Q = BN(TDC(X tube)), K = BN(TDC(X tube)). (3)

For the value (V ) projection, point-wise linear projection
without BN is utilized. Then Q, K , V ∈ R

D×T ′×H ′×W ′
are

flattened into sequence, and separated into h heads (Dh =
D/h for each head). For the i-th head (i ≤ h), the self-
attention (SA) can be formulated

SAi = Softmax(Qi K
T
i /τ)Vi , (4)

where τ controls the sparsity. We find that the default setting
τ = √

Dh in Dosovitskiy et al. (2020); Vaswani et al. (2017)
performs poorly for rPPG measurement. According to the
periodicity of rPPG features, we use a smaller τ value to
obtain sparser attention activation. The corresponding study
can be found in Table 8. The output of TD-MHSA is the
concatenation of SA from all heads and then with a linear
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Fig. 3 Framework of the PhysFormer++ with two-stream SlowFast
pathways. Different from the PhysFormer using only slow pathway,
the PhysFormer++ extracts and fuses attentional features from slow
and fast pathways. Moreover, temporal difference periodic transformer

blocks are used in the slow pathway. The information flow between two
pathways interacts via temporal difference cross-attention transformer
blocks and lateral connection

projection U ∈ R
D×D

TD-MHSA = Concat(SA1;SA2; ...;SAh)U . (5)

As illustrated in Fig. 2, residual connection and layer nor-
malization (LN) would be conducted after TD-MHSA.
Spatio-Temporal Feed-Forward (ST-FF) The vanilla feed-
forward network consists of two linear transformation layers,
where the hidden dimension D′ between two layers is
expanded to learn a richer feature representation. In contrast,
we introduce a depthwise 3D convolution (with BN and non-
linear activation) between these two layers with extra slight
computational cost but remarkable performance improve-
ment. The benefits are twofold: (1) as a complementation
of TD-MHSA, ST-FF could refine the local inconsistency
and parts of noisy features; (2) richer locality provides TD-
MHSA sufficient relative position cues.

3.2 PhysFormer++

In the PhysFormer, the temporal length Ts of the tube token
map is fixed. However, the fixed value of Ts might be sub-
optimal for robust rPPG feature representation as the larger
Ts reduces the temporal redundancybut loses thefine-grained
temporal clues, and vice versa for the smaller Ts . To alleviate
this issue, we design the temporal enhanced version Phys-
Former++ (see Fig. 3) consisting of two-stream SlowFast
pathways with large and small Ts , respectively. Similar to the
SlowFast concept in Feichtenhofer et al. (2018) and Kaza-
kos et al. (2021), the Slow pathway has high channel capacity
with low framerates, and reduces the temporal redundancy.
In contrast, the Fast pathway operates at a fine-grained
temporal resolution with high framerates. Furthermore, two
novel transformer blocks, temporal difference periodic trans-
former and temporal difference cross-attention transformer,

are designed for the slow and fast pathway, respectively.
The former one encodes contextual rPPG periodicity clues
for the slow pathway while the latter one introduces effi-
cient SlowFast interactive attentions for the fast pathway.
The SlowFast architecture is able to adaptively mine richer
temporally rPPG contexts for robust rPPG measurement.

As illustrated in Fig. 3 and detailed architecture in Table 2,
different from the PhysFormer using a single tube tokenizer,
two tube tokenizers Efast

tube and Eslow
tube are adopted in Phys-

Former++ to form the spatio-temporal tube tokens X fast
tube ∈

R
Dfast×T fast×H ′×W ′

and X slow
tube ∈ R

Dslow×T slow×H ′×W ′
, respec-

tively. Default settings Dslow = D = 2Dfast and T fast =
2T ′ = 2T slow are used for computational tradeoff. Here we
set temporal scale to two by considering that there are many
low-framerate videos in the VIPL-HR dataset (Niu et al.,
2019a). Too higher scales would result in the pulse rhythm
incompletion/artifacts for high HR values (e.g., >120 bpm).
Wewill investigatemore scales for higher framerate videos in
the future. Subsequently, the tube tokens from the slow path-
way will be forwarded with N = 3N ′ temporal difference
periodic transformer blocks while tube tokens from the fast
pathway will pass N ′ temporal difference transformer and
2N ′ temporal difference cross-attention transformer blocks.
Specifically, the feature interactions between SlowFast path-
ways are in two folds: (1) all semantic mid- and high-level
features from the slow path are cross-attentive with those
from the fast path; and (2) the last mid-level features from
two pathways X fast-mid

tube , X slow-mid
tube are lateral connected and

then aggregated for the high-level propagation in the slow
pathway. The lateral connection and aggregation can be for-
mulated as

X slow-mid
tube = Conv2

(
Concat

(
X slow-mid
tube ,Conv1

(
X fast-mid
tube

)))
,

(6)
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where Conv1 is the temporal convolution with size= 3×1×
1, stride= 2×1×1, padding= 1×0×0whileConv2 denotes
the point-wise convolutionwith D output channel. The lateral
connection adaptively transfers the mid-level fine-grained
rPPG clues from the Fast pathway to the Slow pathway,
and provides complementary temporal details for the Slow
pathway to alleviate information loss especially for high-HR
scenarios (e.g., after exercise). Finally, the refined high-level
rPPG features from fast and slow (upsampled) pathways are
concatenated and forwarded the rPPG predictor head with
temporally aggregation, upsampling, spatially averaging, and
1D signal Ŷ ∈ R

T projection.
Temporal Difference Multi-head Cross- and Self-Attention
Compared with the slow pathway, the fast pathway has more
fine-grained features but conducts inefficient and inaccurate
self-attention due to the temporal redundancy/artifacts. To
alleviate the weak self-attention issue in the fast pathway, we
propose the temporal difference multi-head cross- and self-
attention (TD-MHCSA) module, which could be cascaded
with ST-FF module to form the temporal difference cross-
attention transformer. With TD-MHCSA, the features in the
fast pathway can not only be refined by its own self-attention
but also the cross-attention between the SlowFast pathways.

The structure of the TD-MHCSA is illustrated in Fig. 4.
The features from the fast pathway X fast

tube are first projected
to query and key via

Qfast = BN(TDC(X fast
tube)), K

fast = BN(TDC(X fast
tube)). (7)

For the value (V fast) projection, point-wise linear pro-
jection without BN is utilized. Then Qfast, K fast, V fast ∈
R

Dfast×T fast×H ′×W ′
are flattened into sequence, and separated

intoh heads (Dfast
h = Dfast/h for eachhead). For the i-th head

(i ≤ h), the self-attention can be formulated

SAfast
i = Softmax(Qfast

i K fast
i

T
/τ)V fast

i . (8)

Similarly, the features from the slow pathway X slow
tube are pro-

jected to key K slow via BN(TDC(X slow
tube )) as well as the

value (V slow) projection using point-wise linear projection.
Then K slow, V slow ∈ R

Dslow×T slow×H ′×W ′
are flattened into

sequence, and separated into h heads. For the i-th head
(i ≤ h), the cross-attention (CA) can be formulated as

CAi = Softmax(Qfast
i K slow

i
T
/τ)V slow

i . (9)

Thus, the combined cross- and self-attention (CSA) is formu-
lated as CSAi = CAi + SAfast

i . The output of TD-MHCSA
is the concatenation of CSA from all heads and then with a
linear projection U fast ∈ R

Dfast×Dfast
, which is formulated

TD-MHCSA = Concat(SCA1;SCA2; ...;SCAh)U
fast. (10)

TDC TDC 1x1x1

Softmax

CSA

TDC1x1x1

Softmax

SAfastCA

Fig. 4 Illustration of the temporal difference multi-head cross- and
self-attention (TD-MHCSA) module

TDC TDC 1x1x1

Q K V

Contextual
Periodicity
Encoding

Softmax

BVP Signals Peak Map

S
up

er
vi

si
on

CPSA

S

R

Fig. 5 Illustration of the temporal difference multi-head periodic- and
self-attention (TD-MHPSA) module

Finally, residual connection and LN layer would be con-
ducted after TD-MHCSA.
TemporalDifferenceMulti-headPeriodic- and Self-Attention
Inspired by the music transformer (Huang et al., 2019) using
relative attention (Shaw et al., 2018; Wu et al., 2021) to
mine richer positional relationship (e.g., periodicity in music
signals), we propose the temporal difference multi-head
periodic- and self-attention (TD-MHPSA), which extends
theTD-MHSA(inSect. 3.1)with learnable rPPG-aware posi-
tional contextual periodicity representation. Specifically, as
shown in Fig. 5, the learnable contextual periodicity encod-
ing R ∈ R

T ′H ′W ′×T ′H ′W ′×D contains the spatio-temporal
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positional clues, and modulates the query vector Q into
the periodic attention S = QRT . In consideration of the
multi-head h setting, for the i-th head, the joint contextual
periodicity (CP) and self-attention (SA) can be formulated
as

CPSAi = Softmax((Qi K
T
i + λ · Si )/τ)Vi , (11)

where λ tradeoffs the CP and SA. Here we follow the mem-
ory efficient implementation in Huang et al. (2019) for S
calculation.

Despite richer positional periodicity clues, the predicted
periodic attention S might be easily influenced by some
rPPG-unrelated clues (e.g., light changes and dynamic
noise). To alleviate this issue, we propose a periodicity con-
straint to supervise the periodic S representation. As shown
in the top left of Fig. 5, the approximate peak map PM can
be obtained via (1) first extracting the binary peak signal
P ∈ R

T from the ground truth BVP signal Y ∈ R
T via

Pt∈T =
{
1, i f Yt ∈ Rpeak,

0, i f Yt /∈ Rpeak,
(12)

where Rpeak denotes the 1D-region of peak locations; and
then (2) calculating the auto-correlation of the peak signal
P via PM = PPT . Finally, the periodic-attention loss Latten

can be calculated with the binary cross-entropy (BCE) loss
between the adaptive-spatial-pooled periodic attention maps
S′ ∈ R

T ′×T ′
(from each head and each TD-MHPSAmodule)

and the subsampled binary peak maps PM’ ∈ R
T ′×T ′

. It can
be formulated as

Latten = 1

h × N

∑
i∈h, j∈N

BCE(S′,PM’). (13)

We also try supervision with L1 regression loss instead of
BCE loss but with poorer performance.

RelationshipBetweenPhysFormerandPhysFormer++Phys-
Former++ can be treated as an upgraded version of Phys-
Former towards excellent performance while with more
computational cost. With similar temporal difference trans-
formers, PhysFormer can be seen as a slow-pathway version
of PhysFormer++, which is more lightweight and efficient.
In contrast, PhysFormer++ is designed based on a dual-
pathway SlowFast architecture with complex cross-tempo
interactions, which is more robust to head motions and less
sensitive to the video framerate, but with heavier computa-
tional cost (see Table 12 for efficiency analysis).

3.3 Label Distribution Learning

Similar to the facial age estimation task (Gao et al., 2018;
Geng et al., 2010) that faces at close ages look quite simi-

lar, facial rPPG signals with close HR values usually have
similar periodicity. Inspired by this observation, instead of
considering each facial video as an instance with one label
(HR), we regard each facial video as an instance associated
with a label distribution. The label distribution covers a cer-
tain number of class labels, representing the degree that each
label describes the instance. Through this way, one facial
video can contribute to both targeted HR value and its adja-
cent HRs.

To consider the similarity information among HR classes
during the training stage, we model the rPPG-based HR
estimation problem as a specific L-class multi-label clas-
sification problem, where L = 139 in our case (each integer
HR value within [42, 180] bpm as a class). A label distri-
bution p = {p1, p2, ..., pL } ∈ R

L is assigned to each facial
video X . It is assumed that each entry of p is a real value
in the range [0,1] such that

∑L
k=1 pk = 1. We consider the

Gaussian distribution function, centered at the ground truth
HR label YHR with the standard deviation σ , to construct the
corresponding label distribution p.

pk = 1√
2πσ

exp

(
− (k − (YHR − 41))2

2σ 2

)
. (14)

The label distribution loss can be formulated as LLD =
KL(p,Softmax( p̂)),where divergencemeasureKL(·)denotes
the Kullback-Leibler (KL) divergence (Gao et al., 2016), and
( p̂) is the power spectral density (PSD) of predicted rPPG
signals.

Please note that the previous work (Niu et al., 2017) also
considers the distribution learning for HR estimation. How-
ever, it is totally different with our work: (1) the motivation
in Niu et al. (2017) is to smooth the temporal HR outliers
caused by facial movements across continuous video clips,
while our work is more generic, aiming at efficient feature
learning across adjacent labels under limited-scale training
data; (2) the technique used in Niu et al. (2017) is after a
post-HR-estimation for the handcrafted rPPG signals, while
our work is to design a reasonable supervision signal LLD

for the PhysFormer family.

3.4 Curriculum Learning Guided Dynamic Loss

Curriculum learning (Bengio et al., 2009), as amajormachine
learning regime with philosophy of easy-to-hard curriculum,
is utilized to train PhysFormer. In the rPPG measurement
task, the supervision signals from temporal domain [e.g.,
mean square error loss (Chen & McDuff, 2018), negative
Pearson loss (Yu et al., 2019a, b)] and frequency domain
[e.g., cross-entropy loss (Niu et al., 2020; Yu et al., 2020),
signal-to-noise ratio loss (Špetlík et al., 2018)] provide dif-
ferent extents of constraints for model learning. The former
one gives signal-trend-level constraints, which is straight-
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forward for model convergence but overfitting after that. In
contrast, the latter one with strong constraints on frequency
domain enforces the model learning periodic features within
target frequency bands, which is hard to converge well due
to the realistic rPPG-irrelevant noise. Inspired by the cur-
riculum learning, we propose the dynamic supervision to
gradually enlarge the frequency constraints, which alleviates
the overfitting issue and benefits the intrinsic rPPG-aware
feature learning gradually. Specifically, exponential incre-
ment strategy is adopted, and comparisonwith other dynamic
strategies (e.g., linear increment) will be shown in Table 11.
The dynamic loss Loverall can be formulated as

Loverall = α · Ltime︸ ︷︷ ︸
temporal

+β · (LCE + LLD)︸ ︷︷ ︸
frequency

+Latten,

β = β0 · (η(Epochcurrent−1)/Epochtotal),

(15)

where hyperparameters α, β0 and η equal to 0.1, 1.0 and 5.0,
respectively. Negative Pearson loss (2019a, 2019b) and fre-
quency cross-entropy loss (Niu et al., 2020; Yu et al., 2020)
are adopted asLtime andLCE, respectively.With the dynamic
supervision, PhysFormer and PhysFormer++ could perceive
better signal trend at the beginning while such perfect warm-
ing up facilitates the gradually stronger frequency knowledge
learning later.

4 Experimental Evaluation

In this section, experiments of rPPG-based physiological
measurement for three types of physiological signals, i.e.,
heart rate (HR), heart rate variability (HRV), and respiration
frequency (RF), are conducted on four benchmark datasets
(VIPL-HR (Niu et al., 2019a), MAHNOB-HCI (Soleymani
et al., 2012), MMSE-HR (Tulyakov et al., 2016), and OBF
(Li et al., 2018)). Besides, comprehensive ablations about
PhysFormer and PhysFormer++ are also investigated in the
VIPL-HR dataset.

4.1 Datasets and PerformanceMetrics

VIPL-HR (Niu et al., 2019a) is a large-scale dataset for
remote physiological measurement under less-constrained
scenarios. It contains 2,378 RGB videos of 107 subjects
recorded with different head movements, lighting conditions
and acquisition devices.MAHNOB-HCI (Soleymani et al.,
2012) is one of the most widely used benchmark for remote
HR measurement evaluations. It includes 527 facial videos
of with 61 fps framerate and 780 × 580 resolution from 27
subjects. MMSE-HR (Tulyakov et al., 2016) is a dataset
including 102 RGB videos from 40 subjects, and the raw res-
olution of each video is at 1040×1392.OBF (Li et al., 2018)

Fig. 6 Example video frames from datasets a VIPL-HR (Niu et al.,
2019a); b MAHNOB-HCI (Soleymani et al., 2012); c MMSE-HR
(Tulyakov et al., 2016); and d OBF (Li et al., 2018)

is a high-quality dataset for remote physiological signal mea-
surement. It contains 200 five-minute-long RGB videos with
60 fps framerate recorded from100healthy adults. The exam-
ple video frames from these four rPPG datasets are illustrated
in Fig. 6.

ForMAHNOB-HCI, as there are no availableBVPground
truth, we first smooth the sharp ECG signals (with 10-
point averaging strategy) into pseudo BVP signals as ground
truth. Specifically, to alleviate the incorrect synchronization
between videos and ground truth signals in MAHNOB-HCI,
OBF, andVIPL-HR datasets, we first extract the coarse green
channel signals via averaging the segmented facial skin in
each frame. Then, we calculate the cross-correlation between
the coarse green rPPG signals and (pseudo) BVP signals, and
use the maximum-correlation phase to calibrate/compensate
the phase bias. Furthermore, we remove the samples withHR
> 180 in the VIPL-HR and MMSE-HR datasets because the
ground truths in these samples are unreliable due to poor con-
tact of sensors (resulting in very noisy and fluctuated HRs).

In terms of evaluationmetrics, averageHR estimation task
is evaluated on all four datasetswhileHRVandRF estimation
tasks on high-quality OBF (Li et al., 2018) dataset. Specifi-
cally, we follow existing methods (Lu et al., 2021; Niu et al.,
2020; Yu et al., 2019b) and report low frequency (LF), high
frequency (HF), and LF/HF ratio for HRV and RF estima-
tion.We report themost commonlyusedperformancemetrics
for evaluation, including the standard deviation (SD), mean
absolute error (MAE), root mean square error (RMSE), and
Pearson’s correlation coefficient (r ).

4.2 Implementation Details

Both PhysFormer and PhysFormer++ are implemented with
Pytorch. For each video clip, the MTCNN face detector
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Table 3 Intra-dataset testing results on the VIPL-HR dataset

Method SD ↓ (bpm) MAE ↓ (bpm) RMSE ↓ (bpm) r ↑
Tulyakov2016 (Tulyakov et al., 2016)� 18.0 15.9 21.0 0.11

POS (Wang et al., 2016)� 15.3 11.5 17.2 0.30

CHROM (De Haan & Jeanne, 2013)� 15.1 11.4 16.9 0.28

RhythmNet (Niu et al., 2019a)� 8.11 5.30 8.14 0.76

ST-Attention (Niu et al., 2019b)� 7.99 5.40 7.99 0.66

NAS-HR (Lu & Han, 2021)� 8.10 5.12 8.01 0.79

CVD (Niu et al., 2020)� 7.92 5.02 7.97 0.79

Dual-GAN (Lu et al., 2021)� 7.63 4.93 7.68 0.81

I3D (Carreira & Zisserman, 2017)
 15.9 12.0 15.9 0.07

PhysNet (Yu et al., 2019a)
 14.9 10.8 14.8 0.20

DeepPhys (Chen & McDuff, 2018)
 13.6 11.0 13.8 0.11

VideoTransformer (Revanur et al., 2022)
 13.5 10.4 13.2 0.16

AutoHR (Yu et al., 2020)
 8.48 5.68 8.68 0.72

PhysFormer (Ours)
 7.74 4.97 7.79 0.78

PhysFormer++ (Ours)
 7.65 4.88 7.62 0.80

The symbols �, � and 
 denote traditional, non-end-to- end learning based and end-to-end learning based methods, respectively. Best results are
marked in bold and second best in underline

Table 4 Intra-dataset results on
the MAHNOB-HCI dataset

Method SD ↓ (bpm) MAE ↓ (bpm) RMSE ↓ (bpm) r ↑
Poh2010 (Poh et al., 2010a)� 13.5 – 13.6 0.36

CHROM (De Haan & Jeanne, 2013)� – 13.49 22.36 0.21

Li2014 (Li et al., 2014)� 6.88 – 7.62 0.81

Tulyakov2016 (Tulyakov et al., 2016)� 5.81 4.96 6.23 0.83

SynRhythm (Niu et al., 2018)� 10.88 – 11.08 –

RhythmNet (Niu et al., 2019a)� 3.99 – 3.99 0.87

HR-CNN (Špetlík et al., 2018)
 – 7.25 9.24 0.51

rPPGNet (Yu et al., 2019b)
 7.82 5.51 7.82 0.78

DeepPhys (Chen & McDuff, 2018)
 – 4.57 – –

AutoHR (Yu et al., 2020)
 4.73 3.78 5.10 0.86

Meta-rPPG (Lee et al., 2020)
 4.9 3.01 3.68 0.85

PhysFormer (Ours)
 3.87 3.25 3.97 0.87

PhysFormer++ (Ours)
 3.90 3.23 3.88 0.87

The symbols �, � and 
 denote traditional, non-end-to- end learning based and end-to-end learning based
methods, respectively. Best results are marked in bold and second best in underline

(Zhang et al., 2016) is used to crop the enlarged face area
at the first frame and fix the region through the following
frames. The videos in MAHNOB-HCI and OBF are down-
sampled to 30 fps for efficiency. The numbers of temporal
difference transformer blocks N = 12, transformer heads
h = 4, channel dimension D = 96, hidden dimension in
ST-FF D′ = 144 are used for PhysFormer while temporal
difference coefficient θ = 0.7 and attention sparsity τ = 2.0
for TD-MHSA. λ = 0.5 is utilized in the TD-MHPSA. The
targeted tube size Ts × Hs × Ws equals to 4×4×4. For the
Rpeak calculation in Eq. (12), the function ‘findpeaks()’ in
Matlab is used for BVP peak detection, and then the detected
peak locations are extended with successive ±3 neighbors.

In the training stage, we randomly sample RGB face
clips with size 160×128×128 (T × H × W ) as model
inputs. Random horizontal flipping and temporally up/down-
sampling (Yu et al., 2020) are used for data augmentation.
The PhysFormer is trained with Adam optimizer and the
initial learning rate and weight decay are 1e−4 and 5e−5,
respectively. We cannot find obvious performance improve-
ment using AdamW optimizer. We train models with 25
epochs with fixed setting α = 0.1 for temporal loss while
exponentially increased parameter β ∈ [1, 5] for frequency
losses. We set standard deviation σ = 1.0 for label distri-
bution learning. The batch size is 4 on one V100 GPU. In
the testing stage, similar to Niu et al. (2019a), we uniformly
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separate 30-second videos into three short clips with 10 sec-
onds, and then video-level HR is calculated via averaging
HRs from three short clips.

4.3 Intra-dataset Testing

In this subsection, two datasets (VIPL-HR and MAHNOB-
HCI) are used for intra-dataset testing on HR estimation
while the OBF dataset is used for intra-dataset HR, HRV
and RF estimation.

HR Estimation on VIPL-HR Here we follow (Niu et al.,
2019a) and use a subject-exclusive 5-fold cross-validation
protocol on VIPL-HR. As shown in Table 3, all three tradi-
tional methods [Tulyakov2016 (Tulyakov et al., 2016), POS
(Wang et al., 2016) and CHROM (DeHaan& Jeanne, 2013)]
perform poorly due to the complex scenarios (e.g., large
head movement and various illumination) in the VIPL-HR
dataset. In terms of deep learning based methods, the exist-
ing end-to-end learning based methods [e.g., PhysNet (Yu et
al., 2019a), DeepPhys (Chen &McDuff, 2018), and AutoHR
(Yu et al., 2020)] predict less reliable HR values with larger
RMSE compared with non-end-to-end learning approaches
[e.g., RhythmNet (Niu et al., 2019a), ST-Attention (Niu et
al., 2019b), NAS-HR (Lu & Han, 2021), CVD Niu et al.
(2020), and Dual-GAN (Lu et al., 2021)]. Such the large
performance margin might be caused by the coarse and over-
fitted rPPG features extracted from the end-to-end models.
In contrast, all five non-end-to-end methods first extract fine-
grained signalmaps frommultiple facial ROIs, and thenmore
dedicated rPPG clues would be extracted via the cascaded
models. Without strict and heavy preprocessing procedure in
Niu et al. (2019a, 2019b, 2020), Lu and Han (2021) and Lu
et al. (2021), the proposed PhysFormer and PhysFormer++
can be trained from scratch on facial videos directly, and
achieve better or on par performance with state-of-the-art
non-end-to-end learning based method Dual-GAN (Lu et
al., 2021). It indicates that PhysFormer and PhysFormer++
are able to learn the intrinsic and periodic rPPG-aware fea-
tures automatically. It can be seen from Table 3 that the
proposed PhysFormer family outperforms the VideoTrans-
former (Revanur et al., 2022) by a large margin, indicating
the importance of local and global spatio-temporal physio-
logical propagation.

In order to further check the correlations between the
predicted HRs and the ground-truth HRs, we plot the HR
estimation results against the ground truths in Fig. 7a. From
the figure we can see that the predicted HRs from Phys-
Former++ and the ground-truth HRs are well correlated in a
wide range of HR from 47 to 147 bpm.

HR Estimation on MAHNOB-HCI For the HR esti-
mation tasks on MAHNOB-HCI, similar to Yu et al.
(2019b), subject-independent 9-fold cross-validation proto-

col is adopted. In consideration of the convergence difficulty
due to the low illumination and high compression videos
in MAHNOB-HCI, we finetune the VIPL-HR pretrained
models on MAHNOB-HCI for further 15 epochs. The HR
estimation results are shown in Table 4. The proposed Phys-
Former and PhysFormer++ achieves the lowest SD (3.87
bpm) and highest r (0.87) among the traditional, non-end-
to-end learning, and end-to-end learning methods, which
indicates the reliability of the learned rPPG features from
PhysFormer family under sufficient supervision. Our perfor-
mance is on par with the latest end-to-end learning method
Meta-rPPG (Lee et al., 2020)without transductive adaptation
from target frames.

HR,HRVandRFEstimation onOBF BesidesHRestimation,
we also conduct experiments for three types of physiological
signals, i.e., HR, RF, and HRVmeasurement on the OBF (Li
et al., 2018) dataset. Following Niu et al. (2020) and Yu et
al. (2019b), we use a 10-fold subject-exclusive protocol for
all experiments. All the results are shown in Table 5. It is
clear that the proposed PhysFormer and PhysFormer++ out-
perform the existing state-of-the-art traditional [ROI_green
(Li et al., 2018)), CHROM (De Haan & Jeanne, 2013), POS
(Wang et al., 2016)] and end-to-end learning [rPPGNet (Yu
et al., 2019b)] methods by a large margin on all evaluation
metrics forHR,RF and allHRV features. The proposedPhys-
Former and PhysFormer++ give more accurate estimation in
terms ofHR,RF, and LF/HF comparedwith the preprocessed
signalmap based non-end-to-end learningmethodCVD (Niu
et al., 2020). These results indicate that PhysFormer family
could not only handle the average HR estimation task but
also give a promising prediction of the rPPG signal for RF
measurement and HRV analysis, which shows its potential
in many healthcare applications.

We also check the short-time HR estimation performance
of the after exercising scenario on the OBF, in which the
subject’s HR decreases rapidly. Two examples are given in
Fig. 7b. It can be seen that PhysFormer++ could follow the
trend of HR changes well, which indicates the proposed
model is robust in the significant HR changing scenarios.
We further check the predicted rPPG signals of the Phys-
Former++ from these two examples in Fig. 7c. From the
results, we can see that the proposed method could give an
accurate prediction of the interbeat intervals (IBIs), thus can
give a robust estimation of RF and HRV features (Table 6).

4.4 Cross-dataset Testing

Besides of the intra-dataset testings on the VIPL-HR,
MAHNOB-HCI, and OBF datasets, we also conduct cross-
dataset testings on MMSE-HR (Tulyakov et al., 2016)
following the protocol of Niu et al. (2019a). The models
trained on VIPL-HR are directly tested on MMSE-HR. All
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Table 5 Performance comparison of HR and RF measurement as well as HRV analysis on the OBF dataset

HR (bpm) RF (Hz) LF (u.n) HF (u.n) LF/HF
Method RMSE r RMSE r RMSE r RMSE r RMSE r

ROI_green (Li et al., 2018)� 2.162 0.99 0.084 0.321 0.24 0.573 0.24 0.573 0.832 0.571

CHROM (De Haan & Jeanne, 2013)� 2.733 0.98 0.081 0.224 0.206 0.524 0.206 0.524 0.863 0.459

POS (Wang et al., 2016)� 1.906 0.991 0.07 0.44 0.158 0.727 0.158 0.727 0.679 0.687

CVD (Niu et al., 2020)� 1.26 0.996 0.058 0.606 0.09 0.914 0.09 0.914 0.453 0.877

rPPGNet (Yu et al., 2019b)
 1.8 0.992 0.064 0.53 0.135 0.804 0.135 0.804 0.589 0.773

PhysFormer (Ours)
 0.804 0.998 0.054 0.661 0.086 0.912 0.086 0.912 0.39 0.896

PhysFormer++ (Ours)
 0.765 0.998 0.052 0.686 0.083 0.921 0.083 0.921 0.368 0.908

The symbols �, � and 
 denote traditional, non-end-to- end learning based and end-to-end learning based methods, respectively. Best results are
marked in bold and second best in underline

Table 6 Cross-dataset results
on the MMSE-HR dataset

Method SD ↓ (bpm) MAE ↓ (bpm) RMSE ↓ (bpm) r ↑
Li2014 (Li et al., 2014)� 20.02 – 19.95 0.38

CHROM (De Haan & Jeanne, 2013)� 14.08 – 13.97 0.55

Tulyakov2016 (Tulyakov et al., 2016)� 12.24 – 11.37 0.71

ST-Attention (Niu et al., 2019b)� 9.66 – 10.10 0.64

RhythmNet (Niu et al., 2019a)� 6.98 – 7.33 0.78

CVD (Niu et al., 2020)� 6.06 – 6.04 0.84

PhysNet (Yu et al., 2019a)
 12.76 – 13.25 0.44

TS-CAN (Liu et al., 2020)
 – 3.85 7.21 0.86

AutoHR (Yu et al., 2020)
 5.71 – 5.87 0.89

EfficientPhys-C (Liu et al., 2023)
 – 2.91 5.43 0.92

EfficientPhys-T1 (Liu et al., 2023)
 – 3.48 7.21 0.86

PhysFormer (Ours)
 5.22 2.84 5.36 0.92

PhysFormer++ (Ours)
 5.09 2.71 5.15 0.93

The symbols �, � and 
 denote traditional, non-end-to- end learning based and end-to-end learning based
methods, respectively. Best results are marked in bold and second best in underline

Fig. 7 a The scatter plot of the ground truth HRgt and the predicted
HRpre via PhysFormer++ of all the face videos on VIPL-HR dataset.
b Two examples of the short-time HR estimation from PhysFormer++

for face videos with significantly decreased HR. c Two example curves
of the predicted rPPG signals from PhysFormer++ and the ground truth
ECG signals used to calculate the HRV features
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Table 7 Ablation of Tube
Tokenization of PhysFormer

Inputs [Stem] Feature size [Tube size] Token numbers RMSE ↓ (bpm)

160 × 128 × 128 [×] 160 × 128 × 128 [4 × 32 × 32] 40 × 4 × 4 10.62

160 × 128 × 128 [
√
] 160 × 16 × 16 [4 × 4 × 4] 40 × 4 × 4 7.56

160 × 96 × 96 [
√
] 160 × 12 × 12 [4 × 4 × 4] 40 × 3 × 3 8.03

160 × 128 × 128 [
√
] 160 × 16 × 16 [4 × 16 × 16] 40 × 1 × 1 10.61

160 × 128 × 128 [
√
] 160 × 16 × 16 [2 × 4 × 4] 80 × 4 × 4 7.81

Best result is marked in bold
The three dimensions in tensors indicate length× height×width

the results of the proposed PhysFormer family and the state-
of-the-art methods are shown in Table 12. It is clear that
PhysFormer and PhysFormer++ generalize well in unseen
domains (e.g., skin tone and lighting conditions). It is worth
noting that PhysFormer++ achieves the lowest SD (5.09
bpm), MAE (2.71 bpm), RMSE (5.15 bpm) as well as the
highest r (0.93) among the traditional, non-end-to-end learn-
ing and end-to-end learning basedmethods, indicating (1) the
predicted HRs are highly correlated with the ground truth
HRs, and (2) the model learns domain-invariant intrinsic
rPPG-aware features. Compared with the spatio-temporal
transformer based EfficientPhys-T1 (Liu et al., 2023), our
proposed PhysFormer and PhysFormer++ are able to pre-
dict more accurate physiological signals, which indicates the
effectiveness of the long-range spatio-temporal attention.

4.5 Ablation Study

Here We provide the results of ablation studies for HR esti-
mation on the Fold-1 of the VIPL-HR (Niu et al., 2019a)
dataset. Specifically, we first evaluate the impacts of archi-
tecture configurations for PhysFormer in terms of ‘Tube
Tokenization’, ‘TD-MHSA’ and ‘ST-FF’. Then based on the
optimal configuration of PhysFormer, the impacts of archi-
tecture configurations of PhysFormer++ with ‘TD-MHPSA’
and ‘SlowFast architecture’ will be studied. Finally, we study
the transformer configurations (‘θ in TDC’ and ‘layer/head
numbers’) and the training receipts (‘label distribution learn-
ing’ and ‘dynamic supervision) for the whole PhysFormer
family (i.e., PhysFormer and PhyFormer++).

Impact of Tube Tokenization in PhysFormer In the default
setting of PhysFormer, a shallow stem cascaded with a tube
tokenization is used. In this ablation, we consider other four
tokenization configurations with or w/o stem. It can be seen
from the first row in Table 7 that the stem helps the Phys-
Former see better (Xiao et al., 2021), and theRMSE increases
dramatically (+ 3.06 bpm) when w/o the stem. Then we
investigate the impacts of the spatial and temporal domains
in tube tokenization. It is clear that the result in the fourth
row with full spatial projection is quite poor (RMSE = 10.61
bpm), indicating the necessity of the spatial attention. In con-

Table 8 Ablation of TD-MHSA and ST-FF in PhysFormer

MHSA τ Feed-forward RMSE (bpm) ↓
– – ST-FF 9.81

TD-MHSA
√
Dh ≈ 4.9 ST-FF 9.51

TD-MHSA 2.0 ST-FF 7.56

Vanilla MHSA 2.0 ST-FF 10.43

TD-MHSA 2.0 Vanilla FF 8.27

Best result is marked in bold

Table 9 Ablation of TD-MHPSA for the single pathway configuration
in PhysFormer++

Pathway MHSA Latten RMSE (bpm) ↓
Slow TD-MHSA – 7.56

Slow TD-MHPSA – 7.69

Slow TD-MHPSA
√

7.43

Fast TD-MHSA – 7.81

Fast TD-MHPSA – 8.12

Fast TD-MHPSA
√

7.85

Best result is marked in bold

trast, tokenization with smaller tempos (e.g., [2× 4× 4]) or
spatial inputs (e.g., 160 × 96 × 96) reduces performance
slightly. Based on the observed results, tokenizations with
[4 × 4 × 4] and [2 × 4 × 4] are adopted for the defaulted
setting of slow and fast pathway in PhysFormer++, respec-
tively.
Impact of TD-MHSA and ST-FF in PhysFormer As shown
in Table 8, both the TD-MHSA and ST-FF play vital roles in
PhysFormer. The result in the first row shows that the perfor-
mance degrades sharply without spatio-temporal attention.
Moreover, it can be seen from the last two rows that with-
out TD-MHSA/ST-FF, PhysFormer with vanilla MHSA/FF
obtains 10.43/8.27 bpm RMSE. Thus, we can draw the con-
clusion that the key element ‘vanilla MHSA’ in transformer
cannot provide rPPG performance gain although it captures
the long-term global spatio-temporal physiological features.
In contrast, the proposed ‘TD-MHSA’benefits the rPPGmea-
surement via local spatio-temporal physiological clue guided
long-term global spatio-temporal physiological aggregation.
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Table 10 Ablation of SlowFast
two-pathway based architecture
in PhysFormer++

TD-MHPSA Lateral connect TD-MHCSA RMSE

– – – 7.78

Slow pathway – – 7.58

Slow pathway High-level – 7.34

Slow pathway Mid&High-level – 7.38

Slow pathway High-level High-level 7.28

Slow pathway High-level Mid&High-level 7.16

Slow pathway High-level Low&Mid&High-level 7.24

Best result is marked in bold

One important finding in this research is that, the temperature
τ influences the MHSA a lot. When the τ = √

Dh like pre-
vious ViT (Dosovitskiy et al., 2020; Arnab et al., 2021), the
predicted rPPG signals are unsatisfied (RMSE = 9.51 bpm).
Regularizing the τ with smaller value enforces sparser spatio-
temporal attention, which is effective for the quasi-periodic
rPPG task.

Impact of TD-MHPSA for Different Pathway in Phys-
Former++ Based on the TD-MHSA in PhysFormer, the
PhysFormer++ further extends the slow pathway with the
more periodic TD-MHPSA modules. Table 9 shows the
results of the TD-MHPSA for single pathway configuration.
It is interesting to find that compared with TD-MHSA, the
performance even drop for both slow and fast pathwayswhen
assembling with TD-MHPSA but without explicit attention
supervision Latten. When training TD-MHPSA with Latten,
the RMSE is decreased by 0.26 and 0.27 bpm for the slow
and fast pathway, respectively. It indicates the importance
of explicit rPPG-aware periodicity supervision. Some visu-
alizations with and without Latten can be found in Sect. 4.7.

From the results inTable 9we can see that theTD-MHPSA
withLatten benefits the periodic rPPG cluemining in the slow
pathway while limited effects for the fast pathway. It may
be because the attention loss calculated from the periodic
maps with huger temporal resolution in the fast pathway is
inefficient to back-propagate the rPPG-aware information.
Thus, we only apply the TD-MHPSA in the slow pathway as
the defaulted setting for PhysFormer++.

Impact of the SlowFast Architecture in PhysFormer++
Table 10 illustrates the ablations of SlowFast two-pathway
based architecture in PhysFormer++. From the results of the
first two rows we can see that such SlowFast rPPG models
even achieve inferior performance (7.78/7.58 vs. 7.56 bpm
RMSE) compared with single pathway based PhysFormer.
The unsatisfied resultsmight be caused by the lack of efficient
rPPG feature interactionbetween twopathways.Wealso con-
duct experiments with lateral connections in different levels
and cross-attention based TD-MHCSA in the fast pathway.
FromTable 10we can obviously find that both lateral connec-
tions andTD-MHCSA improve the performance remarkably.
This is because the former one brings more temporally fine-

Fig. 8 Impacts of the a σ in label distribution learning for PhysFormer
and PhysFormer++ and b θ in TD-MHSA, TD-MHCSA, and TD-
MHPSA

Fig. 9 Ablation of the a layers and b heads in PhysFormer and Phys-
Former++

grained clues back to the slow pathway to alleviate rPPG
information loss while the latter one leverages the cross -
attention features to refine the redundant rPPG features in
the fast pathway. The best configuration for PhysFormer++
iswith high-level lateral connection andmid&high-level TD-
MHCSA.

Impact of θ and Layer/Head Numbers in the PhysFormer
Family Hyperparameter θ tradeoffs the contribution of local
temporal gradient information. As illustrated in Fig. 8b,
PhysFormer could achieve smaller RMSE when θ = 0.4
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Fig. 10 Testing results of fixed and dynamic frequency supervisions
for a PhysFormer and b PhysFormer++ on the Fold-1 of VIPL-HR

and 0.7 while PhysFormer++ obtains the best performance
when θ = 0.7, indicating the importance of the normal-
ized local temporal difference features for global spatio-
temporal attention. We also investigate how the layer and
head numbers influence the performance of PhysFormer and
PhysFormer++. As shown in Fig. 9a, with deeper tempo-
ral transformer blocks, the RMSE are reduced progressively
despite heavier computational cost. In terms of the impact of
head numbers, it is clear to find from Fig. 9b that the Phys-
Former family with four heads performs the best while fewer
heads lead to sharp performance drops.

Impact of Label Distribution Learning for the PhysFormer
Family Besides the temporal loss Ltime and frequency cross-
entropy loss LCE, the ablations w/ and w/o label distribution
loss LLD are shown in the last four rows of Table 11.
Although the LLD performs slightly worse (respective +0.12
and+ 0.13 bpm RMSE for PhysFormer and PhysFormer++)
than LCE, the best performance can be achieved using both
losses, indicating the effectiveness of explicit distribution
constraints for extreme-frequency interference alleviation
and adjacent label knowledgement propagation. It is inter-
esting to find from the last two rows in both PhysFormer and
PhysFormer++ that using real PSD distribution from ground
truth PPG signals as p, the performance is inferior due to the
lack of an obvious peak in the distribution and partial noise.

We can also find from the Fig. 8a that the σ ranged from 0.9
to 1.2 for LLD are suitable to achieve good performance.
Impact of Dynamic Supervision for the PhysFormer Family
Figure 10 illustrates the testing performance of PhysFormer
and PhysFormer++ on Fold-1 VIPL-HR when training with
fixed and dynamic supervision. It is clear that with expo-
nentially increased frequency loss, models in the blue curves
converge faster and achieve smaller RMSE.We also compare
several kinds of fixed and dynamic strategies in Table 11. The
results in the first four rows indicate (1) using fixed higher β

leads to poorer performance caused by the convergency diffi-
culty; (2) models with the exponentially increased β perform
better than using linear increment.

4.6 Efficiency Analysis

Here we also investigate the computational cost1 com-
pared with the baselines. The number of parameters and
the multiply-accumulates (MACs) are shown in Table 12.
Despite huge number of parameters, PhysFormer and Phys-
Former++ are with smaller MACs compared with base-
lines PhysNet, TS-CAN, and AutoHR. Compared with
PhysFormer, the PhysFormer++ introduces extra 2.76M
paramters and 1.16G MACs. The inference time of one
face clip 3 × 160 × 128 × 128 (C × T × H × W )
for PhysFormer and PhysFormer++ on one V100 GPU
is 29ms and 40ms, respectively. Despite slightly heavier,
it can predict more accurate rPPG signals on both intra-
dataset (− 0.17 bpm RMSE on VIPL-HR) and cross-dataset
(− 0.21 bpm RMSE on MMSE-HR) testings. Towards effi-
cient mobile-level rPPG applications, the computational cost
of the proposed PhysFormer family is still unsatisfied. One
potential future direction is to design more lightweight Phys-
Formerwith advanced network quantization (Lin et al., 2021)
and binarization (Qin et al., 2022) techniques.

4.7 Visualization and Discussion

Visualization of the Self-Attention Map We visualize the
attention maps from the last TD-MHSA module of Phys-
Former (left) and the last TD-MHCSA module in the fast
pathway of PhysFormer++ (right) in Fig. 11. The x and y
axes of the attention map indicate the attention confidence
from key and query tube tokens, respectively. From the atten-
tion maps activated from the video sample with limited head
movement in Fig. 11a, we can easily find periodic or quasi-
periodic responses along both axes, indicating the periodicity
of the intrinsic rPPG features from PhysFormer and Phys-
Former++. To be specific, given the 530th tube token (in blue)
from the forehead (spatial face domain) and peak (temporal
signal domain) locations as a query, the corresponding key

1 https://pypi.org/project/thop/.
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(a) Visualization on the video sample with limited head movement

(b) Visualization on the video sample with serious head movement

Query
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Fig. 11 Visualization of the attention maps from (left) the 1st head in
last TD-MHSA module of PhysFormer and (right) the 1st head in last
TD-MHCSA module of the fast pathway in PhysFormer++. Given the
530th and 276th tube tokens in blue as the query for the video samples
with a limited headmovement and b serioud headmovement, represen-

tative key responses are illustrated (the brighter, themore attentive). The
predicted downsampled rPPG signals as well as the ground truth BVP
signals are shown for temporal attention understanding (Color figure
online)
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Table 11 Ablation of dynamic
loss in the frequency domain for
PhysFormer and PhysFormer++

Frequency loss β Strategy RMSE (bpm) ↓
PhysFormer

LCE + LLD 1.0 Fixed 8.48

LCE + LLD 5.0 Fixed 8.86

LCE + LLD [1.0, 5.0] Linear 8.37

LCE + LLD [1.0, 5.0] Exponential 7.56

LCE [1.0, 5.0] Exponential 8.09

LLD [1.0, 5.0] Exponential 8.21

LLD (real distribution) [1.0, 5.0] Exponential 8.72

PhysFormer++

LCE + LLD 1.0 Fixed 7.98

LCE + LLD 5.0 Fixed 8.54

LCE + LLD [1.0, 5.0] Linear 8.13

LCE + LLD [1.0, 5.0] Exponential 7.16

LCE [1.0, 5.0] Exponential 7.76

LLD [1.0, 5.0] Exponential 7.89

LLD (real distribution) [1.0, 5.0] Exponential 8.67

Best results are marked in bold
The temporal lossLtime is with fixed α = 0.1 here. ‘CE’ and ‘LD’ denote cross-entropy and label distribution,
respectively

Table 12 Cross-dataset results
with computational cost on
MMSE-HR

Method #Param.(M) MACs(G) RMSE ↓ (bpm)

PhysNet (Yu et al., 2019a) 0.73 65.19 13.25

TS-CAN (Liu et al., 2020) 3.91 61.96 7.21

AutoHR (Yu et al., 2020) 0.99 189.22 5.87

EfficientPhys-C (Liu et al., 2023) 3.84 31.32 5.43

PhysFormer (Ours) 7.03 47.01 5.36

PhysFormer++ (Ours) 9.79 49.85 5.15

Best result is marked in bold and second best in underline
The FLOPs are calculated with the video input size 3×160×128×128 (C × T × H × W ) for PhysNet/
AutoHR/ PhysFormer/ PhysFormer++ while 3×160×96×96 for TS-CAN/EfficientPhys

responses are illustrated at the blue line in the attention map.
On the one hand, it can be seen from the key responses that
dominant spatial attentions focus on the facial skin regions
and discard unrelated background. On the other hand, the
temporal localizations of the key responses are around peak
positions in the predicted rPPG signals. All these patterns are
reasonable: (1) the forehead and cheek regions (Verkruysse et
al., 2008) have richer blood volume for rPPG measurement
and are also reliable since these regions are less affected
by facial muscle movements due to e.g., facial expressions,
talking; and (2) rPPG signals from healthy people are usually
periodic.

We also visualize the attention maps from another video
sample with serious head movement in Fig. 11b. It can be
observed from the left subfigure that the attentional response
of PhysFormer is inaccurate (e.g., focusing on the neck
region) when the head moves to the left. Another issue is
that due to the large temporal token size (Ts = 4) in the tok-

enization stage, the temporal rPPG clues might be partially
discarded, resulting in the sensitivity about the head move-
ment and the biased rPPG prediction (i.e., huge IBI gaps
between the predicted rPPG and ground truth BVP signals).
In contrast, it can be seen from the right subfigure in Fig. 11b
that the attentional response and the predicted rPPG signal
from PhysFormer++ are reliable, indicating the effectiveness
of the SlowFast architecture and advanced attentionmodules.

Overall, two limitations of the spatio-temporal attention
could be concluded from Fig. 11. First, there are still some
unexpected responses (e.g., continuous query tokens with
similar key responses) in the attention map, which might
introduce task-irrelevant noise and damage to the perfor-
mance. Second, the temporal attentions are not accurate
under serious headmovement scenarios, and some are coarse
with phase shifts.

Visualization of the Periodic Attention Map We also visu-
alize the periodic attention map from the last TD-MHPSA
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Fig. 12 Visualization of the periodic attention maps from the 1st head
in last TD-MHPSA module of the slow pathway in PhysFormer++.
The top row show the periodic attention map from the facial video
with limited head movement while the bottom one with serious head
movement
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Fig. 13 HR results with different a compression bitrates on OBF, and
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module of PhysFormer++ in Fig. 12. It is interesting to find
that the periodic attention maps from the PhysFormer++ (1)
trained without Latten are more arbitrary and easily influ-
enced by the large headmovement; and (2) trainedwithLatten

are more regular and keep the periodicity even under the
scenarios with serious head movement. In other words, the
proposed TD-MHPSA with attention loss Latten enforces the
PhysFormer++ to learn more periodic and robust attentional
features from the face videos.
Evaluation Under Serious Motion, Video Compression, and
Low Resolution In real-world scenarios, large head move-
ment, high video compression rate and low face resolution
usually introduce serious motion noises, compression arti-
facts and blurriness, respectively. All these corruptions and
quality degradations make the rPPG measurement chal-
lenging. Here we evaluate the performance under these
challenging scenarios.

Table 13 HR results (RMSE (bpm)) when training with different pro-
portion of samples on VIPL-HR

Method 10% 50% 100%

AutoHR (Yu et al., 2020) 15.77 10.27 8.68

PhysFormer (Ours) 14.84 11.18 7.79

PhysFormer++ (Ours) 13.92 10.29 7.62

Best results are marked in bold

First, we evaluate the PhysFormer family under scenar-
ios of large head movement (i.e., ‘v2’ and ‘v9’ samples) on
VIPL-HR dataset. PhysFormer and PhysFormer++ achieve
RMSE of 11.46 bpm and 10.25 bpm, respectively. In other
words, with richer temporally contextual rPPG clues, the
two-pathway SlowFast architecture in PhysFormer++ is
more motion-robust. Note that there are still performance
gaps between non-end-to-endmethod [e.g., RhythmNet (Niu
et al., 2019a) with RMSE = 9.4 bpm].

Second, we evaluate the PhysFormer family on OBF
with high compression rates (250/500/1000 kb/s) using x264
codec. The corresponding HRmeasurement results are illus-
trated in Fig. 13a. Compared with the rPPGNet (Yu et al.,
2019b), the PhysFormer family performs significantly bet-
ter when bitrates equal to 500 and 1000 kb/s. This might
be because the spatio-temporal self-attention mechanism
helps filter out the compression artifacts. However, all three
methods perform poorly under extremely high compression
situation (i.e., bitrate = 250 kb/s).

Finally, we evaluate the PhysFormer family on VIPL-HR
with different low-resolution settings to mimic the long-
distance rPPG monitoring scenario. Specifically, bilinear
interpolation is used to downsample the face frames to the
sizes 16×16/32×32/64×64 first, and then upsample them
back to 128 × 128. The HR measurement results are illus-
trated in Fig. 13b. Despite performance dropswith lower face
resolution for both AutoHR (Yu et al., 2020) and the Phys-
Former family, PhysFormer++ still achieves RMSE = 9.58
bpm with the lowest (16 × 16) resolution setting.

Training with Fewer Samples Since end-to-end deep models
(e.g., CNNs and transformers) are data hungry, herewe inves-
tigate three methods [AutoHR Yu et al. (2020), PhysFormer
and PhysFormer++] under conditions of fewer training sam-
ples. As shown in Table 13, when training with only 10% or
50% samples, all these threemethods obtain poor RMSEper-
formance (> 10 bpm). Another observation is that, compared
with pure CNN-based AutoHR, the proposed PhysFormer++
still achieves on par or better performancewith fewer training
samples. It indicates that the proposed transformer architec-
tures can learn CNN-comparable rPPG representation even
with limited data.
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5 Conclusions

In this paper, we propose two end-to-end video transformer
architectures, namely PhysFormer and PhysFormer++, for
remote physiological measurement. With temporal differ-
ence transformer and elaborate supervisions, the PhysFormer
family is able to achieve superior performance on benchmark
datasets on both intra- and cross-testings. Comprehensive
ablation studies as well as visualization analysis demon-
strate the effectiveness of the proposed methods. In the
future, it is potential to explore more accurate yet efficient
spatio-temporal self-attentionmechanism especially for long
sequence rPPG monitoring. Besides the rPPG measurement
task, we will investigate the effectiveness of the proposed
temporal different transformer for broader fine-grained or
periodic video understanding tasks in computer vision (e.g.,
video action recognition and repetition counting).

Acknowledgements This work was supported by the Academy of
Finland (Academy Professor project EmotionAI with grant num-
bers 336116 and 345122, and ICT2023 project with grant number
345948), the National Natural Science Foundation of China (Grant
No. 62002283), HKU Startup Fund, HKU Seed Fund for Basic
Research, and the EPSRCgrant: TuringAI Fellowship: EP/W002981/1,
EPSRC/MURI grant EP/N019474/1. We would also like to thank
the Royal Academy of Engineering and FiveAI. The authors wish to
acknowledge CSC-IT Center for Science, Finland, for computational
resources.

Funding Open Access funding provided by University of Oulu includ-
ing Oulu University Hospital.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucic, M., & Schmid,
C. (2021). Vivit: A video vision transformer. In 2021 IEEE/CVF
international conference on computer vision (ICCV) (pp. 6816–
6826).

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Cur-
riculum learning. In Proceedings of the 26th annual international
conference onmachine learning (pp. 41–48).Association forCom-
puting Machinery.

Bertasius, G.,Wang, H., & Torresani, L. (2021). Is space–time attention
all you need for video understanding? In ICML (Vol. 2, p. 4).

Bulat,A., Pérez-Rúa, J.-M., Sudhakaran, S.,Martíez,B.,&Tzimiropou-
los,G. (2021).Advances in neural information processing systems.

In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J.
Wortman Vaughan (Eds.), Space-time mixing attention for video
transformer (vol. 34, pp. 19594–19607). Curran Associates, Inc.

Cao, J., Li, Y., Zhang, K., & Gool, L. V. (2021). Video super-resolution
transformer. ArXiv:2106.06847

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., &
Zagoruyko, S. (2020). End-to-end object detectionwith transform-
ers. ArXiv:2005.12872

Carreira, J. & Zisserman, A. (2017). Quo vadis, action recognition? A
new model and the kinetics dataset. In 2017 IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 4724–4733).

Chen, C.-F. R., Fan, Q., & Panda, R. (2021a). Crossvit: Cross-attention
multi-scale vision transformer for image classification. In Pro-
ceedings of the IEEE/CVF international conference on computer
vision (pp. 357–366).

Chen, H., Tang, H., Sebe, N., & Zhao, G. (2021b). Aniformer: Data-
driven 3d animation with transformer. ArXiv:2110.10533

Chen, H., Tang, H., Yu, Z., Sebe, N., & Zhao, G. (2021c). Geometry-
contrastive transformer for generalized 3d pose transfer. In AAAI
conference on artificial intelligence.

Chen, W. & McDuff, D. (2018). Deepphys: Video-based physiological
measurement using convolutional attention networks. In Proceed-
ings of the European conference on computer vision (ECCV) (pp.
349–365).

Chen, X., Cheng, J., Song, R., Liu, Y., Ward, R., & Wang, Z. J. (2018).
Video-based heart rate measurement: Recent advances and future
prospects. IEEE Transactions on Instrumentation and Measure-
ment, 68(10), 3600–3615.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014).
On the properties of neural machine translation: Encoder–decoder
approaches. ArXiv:1409.1259

DeHaan, G., & Jeanne, V. (2013). Robust pulse rate from chrominance-
based rPPG. IEEE Transactions on Biomedical Engineering,
60(10), 2878–2886.

Ding, M., Lian, X., Yang, L., Wang, P., Jin, X., Lu, Z., & Luo, P. (2021).
Hr-nas: Searching efficient high-resolution neural architectures
with lightweight transformers. In 2021 IEEE/CVF conference on
computer vision and pattern recognition (CVPR) (pp. 2981–2991).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani,M.,Minderer,M., Heigold, G., &Gelly,
S., Uszkoreit, J. (2020). An image is worth 16x16 words: Trans-
formers for image recognition at scale. ArXiv:2010.11929

Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., &
Feichtenhofer, C. (2021). Multiscale vision transformers. In 2021
IEEE/CVF international conference on computer vision (ICCV)
(pp. 6804–6815).

Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2018). Slowfast net-
works for video recognition. In 2019 IEEE/CVF international
conference on computer vision (ICCV) (pp. 6201–6210).

Gao, B.-B., Xing, C., Xie, C.-W.,Wu, J., &Geng, X. (2016). Deep label
distribution learning with label ambiguity. IEEE Transactions on
Image Processing, 26, 2825–2838.

Gao, B.-B., Zhou, H.-Y., Wu, J., & Geng, X. (2018). Age estimation
using expectation of label distribution learning. In International
joint conference on artificial intelligence.

Geng, X., Smith-Miles, K., & Zhou, Z.-H. (2010). Facial age estimation
by learning from label distributions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35, 2401–2412.

Gideon, J. & Stent, S. (2021). The way to my heart is through con-
trastive learning: Remote photoplethysmography from unlabelled
video. In Proceedings of the IEEE/CVF international conference
on computer vision (pp. 3995–4004).

Girdhar, R., Carreira, J., Doersch, C., & Zisserman, A. (2018). Video
action transformer network. In 2019 IEEE/CVF conference on
computer vision and pattern recognition (CVPR) (pp. 244–253).

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2106.06847
http://arxiv.org/abs/2005.12872
http://arxiv.org/abs/2110.10533
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/2010.11929


International Journal of Computer Vision (2023) 131:1307–1330 1329

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., & Yang, Z.
(2022). A survey on vision transformer. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45, 87–110.

Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., & Wang, Y. (2021). Trans-
former in transformer.Advances in Neural Information Processing
Systems, 34, 15908–15919.

Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., & Shi, H.
(2021). Escaping the big data paradigm with compact transform-
ers. ArXiv:2104.05704

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR.

He, S., Luo, H., Wang, P., Wang, F., Li, H., & Jiang, W. (2021).
Transreid: Transformer-based object re-identification. In 2021
IEEE/CVF international conference on computer vision (ICCV)
(pp. 14993–15002).

Hsu, G.-S., Ambikapathi, A., &Chen,M.-S. (2017). Deep learningwith
time-frequency representation for pulse estimation from facial
videos. In 2017 IEEE international joint conference on biomet-
rics (IJCB) (pp. 383–389). IEEE.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne,
C., Shazeer, N. M., Dai, A. M., Hoffman, M. D., Dinculescu,
M., & Eck, D. (2019). Music transformer: Generating music with
long-term structure. In International conference on learning rep-
resentations.

Kazakos, E., Nagrani, A., Zisserman, A., & Damen, D. (2021). Slow-
fast auditory streams for audio recognition. In ICASSP2021—2021
IEEE international conference on acoustics, speech and signal
processing (ICASSP) (pp. 855–859).

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M.
(2021). Transformers in vision: A survey. ArXiv:2101.01169

Lam, A. & Kuno, Y. (2015). Robust heart rate measurement from video
using select random patches. In Proceedings of the IEEE interna-
tional conference on computer vision (pp. 3640–3648).

Lee, E., Chen, E., & Lee, C.-Y. (2020). Meta-rppg: Remote heart rate
estimation using a transductive meta-learner. In European confer-
ence on computer vision.

Li, X., Alikhani, I., Shi, J., Seppänen, T., Junttila, J.M.,Majamaa-Voltti,
K., Tulppo, M. P., & Zhao, G. (2018). The obf database: A large
face video database for remote physiological signal measurement
and atrial fibrillation detection. In 2018 13th IEEE international
conference on automatic face & gesture recognition (FG 2018)
(pp. 242–249).

Li, X., Chen, J., Zhao, G., & Pietikainen, M. (2014). Remote heart rate
measurement from face videos under realistic situations. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4264–4271).

Lin, J., Gan, C., & Han, S. (2018). Tsm: Temporal shift module for
efficient video understanding. In 2019 IEEE/CVF international
conference on computer vision (ICCV) (pp. 7082–7092).

Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers.
AI Open.

Lin, Y., Zhang, T., Sun, P., Li, Z., & Zhou, S. (2021). Fq-vit: Fully quan-
tized vision transformer without retraining. ArXiv:2111.13824

Liu, R., Deng, H., Huang, Y., Shi, X., Lu, L., Sun, W., Wang, X., Dai,
J., & Li, H. (2021a). Fuseformer: Fusing fine-grained information
in transformers for video inpainting. In 2021 IEEE/CVF interna-
tional conference on computer vision (ICCV) (pp. 14020–14029).

Liu, X., Fromm, J., Patel, S., &McDuff, D. (2020). Multi-task temporal
shift attention networks for on-device contactless vitals measure-
ment. Advances in Neural Information Processing Systems, 33,
19400–19411.

Liu, X., Hill, B., Jiang, Z., Patel, S., & McDuff, D. (2023). Efficient-
phys: Enabling simple, fast and accurate camera-based cardiac
measurement. In Proceedings of the IEEE/CVF winter conference
on applications of computer vision (pp. 5008–5017).

Liu, X., Patel, S., & McDuff, D. (2021b). Camera-based physiological
sensing: Challenges and future directions. ArXiv:2110.13362

Liu, X., Wang, Q., Hu, Y., Tang, X., Zhang, S., Bai, S., & Bai, X.
(2021c). End-to-end temporal action detection with transformer.
IEEE Transactions on Image Processing, 31, 5427–5441.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B.
(2021d). Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF international
conference on computer vision (pp. 10012–10022).

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., & Hu, H. (2021e).
Video swin transformer. In 2022 IEEE/CVF conference on com-
puter vision and pattern recognition (CVPR) (pp. 3192–3201).

Lu, H., & Han, H. (2021). Nas-hr: Neural architecture search for heart
rate estimation from face videos. Virtual Reality & Intelligent
Hardware, 3(1), 33–42.

Lu, H., Han, H., & Zhou, S. K. (2021). Dual-gan: Joint bvp and noise
modeling for remote physiological measurement. In Proceedings
of the IEEE/CVFconference on computer vision andpattern recog-
nition (pp. 12404–12413).

Magdalena Nowara, E., Marks, T. K., Mansour, H., & Veeraraghavan,
A. (2018). Sparseppg: Towards driver monitoring using camera-
based vital signs estimation in near-infrared. In Proceedings of
the IEEE conference on computer vision and pattern recognition
workshops (pp. 1272–1281).

Neimark, D., Bar, O., Zohar, M., & Asselmann, D. (2021). Video trans-
former network. In 2021 IEEE/CVF international conference on
computer vision workshops (ICCVW) (pp. 3156–3165).

Niu, X., Han, H., Shan, S., & Chen, X. (2017). Continuous heart rate
measurement from face: A robust rppg approach with distribution
learning. In 2017 IEEE international joint conference on biomet-
rics (IJCB) (pp. 642–650).

Niu, X., Han, H., Shan, S., & Chen, X. (2018). Synrhythm: Learning
a deep heart rate estimator from general to specific. In 2018 24th
international conference on pattern recognition (ICPR) (pp. 3580–
3585). IEEE.

Niu, X., Shan, S., Han, H., & Chen, X. (2019a). Rhythmnet: End-to-end
heart rate estimation from face via spatial-temporal representation.
IEEE Transactions on Image Processing, 29, 2409–2423.

Niu, X., Yu, Z., Han, H., Li, X., Shan, S., & Zhao, G. (2020). Video-
based remote physiologicalmeasurement via cross-verified feature
disentangling. In ECCV (pp. 295–310). Springer.

Niu, X., Zhao, X., Han, H., Das, A., Dantcheva, A., Shan, S., & Chen,
X. (2019b). Robust remote heart rate estimation from face utilizing
spatial-temporal attention. In 2019 14th IEEE international con-
ference on automatic face & gesture recognition (FG 2019) (pp.
1–8). IEEE.

Nowara, E.M.,McDuff, D., &Veeraraghavan, A. (2021). The benefit of
distraction: Denoising camera-based physiological measurements
using inverse attention. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision (pp. 4955–4964).

Poh, M.-Z., McDuff, D. J., & Picard, R. W. (2010a). Advancements in
noncontact, multiparameter physiological measurements using a
webcam. IEEE Transactions on Biomedical Engineering, 58(1),
7–11.

Poh, M.-Z., McDuff, D. J., & Picard, R.W. (2010b). Non-contact, auto-
mated cardiac pulse measurements using video imaging and blind
source separation. Optics Express, 18(10), 10762–10774.

Qin, H., Ding, Y., Zhang, M., Yan, Q., Liu, A., Dang, Q., Liu, Z., &
Liu, X. (2022). Bibert: Accurate fully binarized bert. In ICLR.

Qiu, Y., Liu, Y., Arteaga-Falconi, J., Dong, H., & El Saddik, A. (2018).
EVM-CNN:Real-time contactless heart rate estimation from facial
video. IEEE Transactions on Multimedia, 21(7), 1778–1787.

Revanur, A., Dasari, A., Tucker, C. S., & Jeni, L. A. (2022).
Instantaneous physiological estimation using video transformers.
ArXiv:2202.12368

123

http://arxiv.org/abs/2104.05704
http://arxiv.org/abs/2101.01169
http://arxiv.org/abs/2111.13824
http://arxiv.org/abs/2110.13362
http://arxiv.org/abs/2202.12368


1330 International Journal of Computer Vision (2023) 131:1307–1330

Shaw, P., Uszkoreit, J., & Vaswani, A. (2018). Self-attention with rel-
ative position representations. In North American chapter of the
Association for Computational Linguistics.

Soleymani, M., Lichtenauer, J., Pun, T., & Pantic, M. (2012). A multi-
modal database for affect recognition and implicit tagging. IEEE
Transactions on Affective Computing, 3, 42–55.

Špetlík, R., Franc, V., & Matas, J. (2018). Visual heart rate estimation
with convolutional neural network. In Proceedings of the British
machine vision conference, Newcastle, UK (pp. 3–6).

Touvron, H., Cord,M., Douze,M.,Massa, F., Sablayrolles, A., & Jégou,
H. (2021). Trainingdata-efficient image transformers&distillation
through attention. In International conference onmachine learning
(pp. 10347–10357). PMLR.

Tulyakov, S.,Alameda-Pineda,X.,Ricci, E.,Yin,L.,Cohn, J. F.,&Sebe,
N. (2016). Self-adaptive matrix completion for heart rate estima-
tion from face videos under realistic conditions. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 2396–2404).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you
need. In Advances in neural information processing systems, 30.

Verkruysse, W., Svaasand, L. O., & Nelson, J. S. (2008). Remote
plethysmographic imaging using ambient light. Optics Express,
16(26), 21434–21445.

Wang, L., Yang, H., Wu, W., Yao, H., & Huang, H. (2021a). Temporal
action proposal generation with transformers. ArXiv:2105.12043

Wang, W., Den Brinker, A. C., Stuijk, S., & De Haan, G. (2016).
Algorithmic principles of remote PPG. IEEE Transactions on
Biomedical Engineering, 64(7), 1479–1491.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo,
P., & Shao, L. (2021b). Pyramid vision transformer: A versatile
backbone for dense prediction without convolutions. In Proceed-
ings of the IEEE/CVF international conference on computer vision
(pp. 568–578).

Wu, K., Peng, H., Chen, M., Fu, J., & Chao, H. (2021). Rethinking
and improving relative position encoding for vision transformer.
In 2021 IEEE/CVF international conference on computer vision
(ICCV) (pp. 10013–10021).

Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., & Girshick, R. B.
(2021). Early convolutions help transformers see better. In Neural
information processing systems.

Xu, M., Xiong, Y., Chen, H., Li, X., Xia, W., Tu, Z., & Soatto, S.
(2021). Long short-term transformer for online action detection.
ArXiv:2107.03377

Yu, Z., Li, X., Niu, X., Shi, J., & Zhao, G. (2020). Autohr: A strong
end-to-end baseline for remote heart rate measurement with neural
searching. IEEE Signal Processing Letters, 27, 1245–1249.

Yu, Z., Li, X., Wang, P., & Zhao, G. (2021). Transrppg: Remote photo-
plethysmography transformer for 3dmask face presentation attack
detection. IEEE Signal Processing Letters, 28, 1290–1294.

Yu, Z., Li, X., &Zhao, G. (2019a). Remote photoplethysmograph signal
measurement from facial videos using spatio-temporal networks.
In British machine vision conference (pp. 277–289).

Yu, Z., Li, X., & Zhao, G. (2021). Facial-video-based physiological
signal measurement: Recent advances and affective applications.
IEEE Signal Processing Magazine, 38(6), 50–58.

Yu, Z., Peng, W., Li, X., Hong, X., & Zhao, G. (2019b). Remote
heart rate measurement from highly compressed facial videos: an
end-to-end deep learning solutionwith video enhancement. InPro-
ceedings of the IEEE/CVF international conference on computer
vision (pp. 151–160).

Yu, Z., Qin, Y., Li, X., Zhao, C., Lei, Z., & Zhao, G. (2021). Deep
learning for face anti-spoofing: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

Yu, Z., Shen, Y., Shi, J., Zhao, H., Torr, P. H., & Zhao, G. (2022).
Physformer: facial video-based physiological measurement with
temporal difference transformer. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 4186–
4196).

Yu, Z., Zhou, B., Wan, J., Wang, P., Chen, H., Liu, X., Li, S. Z., &
Zhao, G. (2022). Deep learning for face anti-spoofing: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence.
https://doi.org/10.1109/TPAMI.2022.3215850.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay, F. E.,
Feng, J., & Yan, S. (2021). Tokens-to-token vit: Training vision
transformers from scratch on imagenet. In Proceedings of the
IEEE/CVF international conference on computer vision (pp. 558–
567).

Zeng, Y., Fu, J., & Chao, H. (2020). Learning joint spatial-temporal
transformations for video inpainting. ArXiv:2007.10247

Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection
and alignment using multitask cascaded convolutional networks.
IEEE SPL, 23, 1499–1503.

Zhao, J., Li, X., Liu, C., Shuai, B., Chen, H., Snoek, C. G. M., &
Tighe, J. (2021). Tuber: Tube-transformer for action detection.
ArXiv:2104.00969

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J.,
Xiang, T., Torr, P. H. S., & Zhang, L. (2020). Rethinking semantic
segmentation from a sequence-to-sequence perspective with trans-
formers. In 2021 IEEE/CVF conference on computer vision and
pattern recognition (CVPR) (pp. 6877–6886).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2105.12043
http://arxiv.org/abs/2107.03377
https://doi.org/10.1109/TPAMI.2022.3215850
http://arxiv.org/abs/2007.10247
http://arxiv.org/abs/2104.00969

	PhysFormer++: Facial Video-Based Physiological Measurement with SlowFast Temporal Difference Transformer
	Abstract
	1 Introduction
	2 Related Work
	2.1 rPPG Measurement
	2.2 Transformer for Vision Tasks

	3 Methodology
	3.1 PhysFormer
	3.2 PhysFormer++
	3.3 Label Distribution Learning
	3.4 Curriculum Learning Guided Dynamic Loss

	4 Experimental Evaluation
	4.1 Datasets and Performance Metrics
	4.2 Implementation Details
	4.3 Intra-dataset Testing
	4.4 Cross-dataset Testing
	4.5 Ablation Study
	4.6 Efficiency Analysis
	4.7 Visualization and Discussion

	5 Conclusions
	Acknowledgements
	References




